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Abstract. A Linear Feedback Shift Register (LFSR) is a device
that can generate a long seemingly random sequence of ones and
zeroes, which is important in cryptography. We consider the some-
times unexpected periodic properties of LFSRs, how to understand
them using linear algebra, and how to relate them to finite fields,
another important topic in cryptography. Along the way, we re-
solve the puzzle of what it means for a polynomial to be primitive.

1. Introduction

Modern cryptography comes in two flavors: Private key, or classical,
crypto uses complicated substitution and transposition techniques to
obscure a message and relies on the receiver sharing a secret key with
the sender. Public key cryptography, an essential tool in internet secu-
rity, uses powerful mathematical ideas to allow secure communication
between parties who do not have a shared key.

Courses in the mathematics of cryptography attract at least two
different groups of students: mathematics majors, many with strong
backgrounds in algebra or number theory, and engineering students,
with strong backgrounds in computer science and computer engineer-
ing.

For public-key cryptography, an understanding of finite fields is es-
sential, and mathematics majors are likely to have the necessary back-
ground in field theory and linear algebra.

Engineering students routinely learn about Linear Feedback Shift
Registers (LFSR’s), which are used in communications and in generat-
ing pseudo-random sequences; students may even know how to physi-
cally build them. LFSR’s can also be used to create extremely efficient
private-key cryptosysems, although in their straightforward implemen-
tation they are not cryptographically secure. The students are taught
that so-called maximal-length LFSR’s employ primitive polynomials,
which can be found in look-up tables, but the students don’t know
how a primitive polynomial works, or what happens if they are using
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one that is not primitive. The explanation for this requires an under-
standing of finite fields.

So it is useful for both math majors and CS majors to learn the
theory of finite fields and then apply this to the theory of LFSR’s. The
connection between the two topics is rather subtle. In fact, the question
of what periodicity properties a not-necessarily-maximal n-bit LFSR
may have does not seem to be addressed in the literature. In the last
part of this article we illustrate the solution in the case of n = 6, which
is just large enought to make the result interesting but small enough
to allow for a complete solution.

2. Linear Feedback Shift Registers

A Linear Feedback Shift Register (LFSR) is a device that can gen-
erate a long seemingly random sequence of ones and zeroes; it is used
in computer simulations of random processes, error-correcting codes,
and other engineering applications. The ease with which shift regis-
ters can produce such sequences make them an attractive topic in an
introductory course in the mathematics of cryptography.

A first course in cryptography inevitably explores the notion of the
One-Time Pad. This cryptosystem, introduced by G. S. Vernam in
1917, is a “perfectly secure cryptosystem”, that is, the cipher text does
not leak any information about the message ([1], P. 53, [5], p. 336). It
relies on generating long random sequences of letters or numbers.

Suppose the message M consists of a sequence m1m2 . . .ml of l let-
ters taken from the usual 26-letter English alphabet. The venerable
Caesar cipher works by shifting each letter of the alphabet some fixed
amount; the Vernam cipher shifts the letters by a different amount at
each position in the message. To encrypt M , we generate a sequence
k1k2 . . . kl of l random letters of the alphabet, each letter chosen ran-
domly and independently with uniform probability 1

26
. The ciphertext

is then the sequence c1c2 . . . cl with ci determined by adding mi to ki,
where we treat the letters as the integers from 0 to 25 mod 26.

Mod 26 arithmetic is somewhat inconvenient, and mod 2 arithmetic
is more natural in digital computers. So we assume that a message has
been encoded in some standard way as a string m1m2 . . .ml of “bits”,
i.e., zeroes and ones. The key is then a random binary string k1k2 . . . kl
and we compute the ciphertext by ci = mi⊕ki, where the operation⊕ is
addition mod 2. To decrypt, we use the simple formula mi = ci⊕ki. To
do this, of course, the recipient of the message must have the key string.
Since this string is completely arbitrary, it is theoretically impossible
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to recover the message without the key, since every possible message
of length l can be encrypted to any ciphertext of length l.

There are some major practical difficulties with this scheme. First,
the recipient must have previously received the key, which is as large
as the message! Second, the key must be chosen completely randomly.
To overcome these difficulties in practice, cryptographers try to come
up with a device or algorithm for generating a long seemingly random
binary string of bits using only a small random string S (called the
“seed”). Then the sender and receiver only need to agree on the seed,
which they can exchange using public-key cryptography.

By definition, this long string is not random, since we generate it al-
gorithmically, but perhaps it simulates a random string in the sense of
being unpredictable for someone who does not possess the seed; such a
sequence is called “pseudo-random.” This sequence should have statis-
tical properties that true random sequences have; e.g., 0 and 1 should
appear with roughly the same frequency, likewise the four strings of
length two should each appear with roughly the same frequency, and
so on. This is necessary but by no means sufficient for a secure cryp-
tosystem. We need a semantically secure algorithm, so an adversary
can not recover partial information about a message in a reasonable
amount of time. As you might guess, this last item is one of the most
challenging problems of modern crytography.

One simple and elegant (but definitely not cryptographically secure)
algorithm, or machine, for generating a pseudo-random string is the
LFSR, shown in Figure 1. It consists of n cells, each capable of storing
one bit, either a 0 or 1. The device is controlled by a clock; at each
time step it transfers the content of each cell the next cell. The last cell
outputs its bit to the stream. To get the new content of the leftmost
cell, we feed back the mod 2 sum of the contents of certain specified
cells. Mathematically, this is expressed using connection coefficients ci,
one for each cell, each of which is 0 or 1. When ci = 1 the content of the
ith cell is added in to the feedback. The machine is exactly determined
by these coefficients, as in formula (1) below. We will always assume
cn = 1, since otherwise we would get the same output by deleting
the last cell. For each choice of the connection coefficients we get a
machine, and there are 2n−1 possibilities (assuming cn = 1), so there
are 2n−1 different LFSR’s with n cells.
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Figure 1. 6-cell LFSR

If Xi(t) denotes the content of the ith cell at time step t, then the
rules for the cells are

Xi(t+ 1) = Xi−1(t) (2 ≤ i ≤ n)

X1(t+ 1) = c1X1(t)⊕ c2X2(t)⊕ · · · ⊕ cnXn(t)
(2.1)

The state of the system at time t is given by the column vector

x(t) =


X1(t)
X2(t)
. . .
Xn(t)

 .

The initial configuration is

x(0) =


X1(0)
X2(0)
. . .

Xn(0)

 =


s1
s2
. . .
sn

 = s

where the initial state of the system is given by the seed s.
Since there are only 2n possible states for the machine, it is obvious

that whatever initial state is specified, the machine must eventually
repeat. It is not quite as obvious that it must return to its initial
state, and if we did not assume cn = 1 this would not be true! For
instance, the initial state (0, 0, . . . , 1) would drop into the zero state.
We will soon see that if cn = 1, the machine will always return to its
initial state. If the initial state is the zero vector, then the machine
will remain in that state forever, so we exclude that from considera-
tion. Consequently, the maximum number of steps before the machine
returns to its initial state is 2n − 1. Given a seed s, the period of s is
the number of steps it takes to return to s; the period is the smallest
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positive r such that x(r) = s = x(0). The period of the machine is the
maximum period achieved for any seed. If the period of s is 2n − 1,
then the machine must visit every non-zero state, and so the period
for any seed must be 2n − 1; call such a machine a maximal machine.
A fundamental fact in the theory of LFSR’s is the fact that for every
n a maximal machine exists. Since the goal is to achieve a long string
from a small seed, this is the preferred result.

This is where the subject becomes mysterious. Of the 2n−1 possi-
ble machines, which choices correspond to ones that are maximal ma-
chines? What happens in the cases where the machine is not maximal?

Associate with the machine the connection polynomial C(x) = xn −
c1x

n−1 − · · · − cn−1x − cn, whose coefficients are the connection coef-
ficients. Typically, a cryptography text will say that the condition for
the machine to be maximal is that the polynomial C(x) is primitive
(See, e.g., [7], p. 130, [4], p. 197.) But what does that mean? More
generally, what kind of periodicity can occur for an LFSR? This is the
question we propose to explore. As a teaser, consider the following
question: which of the following integers cannot be the period of a 6-
cell machine: 6, 7, 8, 9, 10, 11, 12, 21, 30, or 31? The full answer is
at the end of the paper. As Beutelspacher wisely suggests ([1], p. 59),
it is instructive “to construct – without any theory – your own shift
registers of maximum period.”

3. Using Linear Algebra

As the name suggests, a Linear Feedback Shift Register can be
viewed through the lens of linear algebra. The relation between x(t+1)
and x(t) is given by the equation x(t+ 1) = Ax(t), where A is the ma-
trix

(3.1) A =



c1 c2 c3 · · · cn−1 cn
1 0 0 · · · 0 0
0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
... · · · ...

...
0 0 0 · · · 1 0

 .

A is non-singular exactly when cn 6= 0; to see that, one can either
observe that in that case the rows are obviously independent or note
that the (mod 2) determinant is cn. Note that we are doing linear
algebra over Fp, the field of integers modulo a prime number p, which
is an important tool in cryptography. The matrix is invertible, which
implies that the output is periodic for any initial seed. We have x(t) =
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Atx(0). The group GL(n,F2) of invertible n× n matrices with entries
in F2 has finite order, and therefore the matrix A has finite order k;
that is Ak = I, where I is the n× n identity matrix. So the period of
any seed must be a divisor of k. What are the possible values of k?

Using the idea that a matrix is invertible if and only if the columns
(or rows) are linearly independent, we can count the number of invert-
ible matrices. This leads to the following well known result:

Proposition 3.1. The number N of elements of GL(n,F2) is given by
the formula

N = (2n − 1)(2n − 2)(2n − 22) · · · (2n − 2n−1)

= 2
n2−n

2 (2n − 1)(2n−1 − 1) · · · (22 − 1)

Proof. To construct an invertible matrix, we must choose the n rows(or
columns) to be linearly independent vectors. The top row can be any-
thing except the zero vector. The second row can be any other non-
zero row, so there are 2n − 2 choices. These two vectors span a two-
dimensional subspace, so the third row must avoid the four vectors in
it, leaving 2n− 4 choices. Continuing along these lines, the k+ 1st row
will have 2n − 2k possible vectors available. �

Since the order of an element of a group divides the order of the
group, k must be a divisor of this number. For example, if n = 6, then
k must divide N = 215 × 34 × 5× 72 × 31. In particular k 6= 11, giving
a partial answer to the teaser. Furthermore, k must be no larger than
2n − 1. We will demonstrate this here and again in the next section.
The key fact we need is the following algebraic lemma ([3], p. 77).

Lemma 3.2. Let P (x) = a0 + a1x + · · · + xn be a polynomial with
coefficients in Fp, p a prime, a0 6= 0. Then for some k < pn, P (x) is a
factor of xk − 1.

Proof. The ring R = Fp[x]/(P (x)) consists of congruence classes of
polynomials with Fp coefficients, where two polynomials are in the same
congruence class if they differ by a multiple of P (x). Using division
with remainder, we see that every polynomial is equivalent to exactly
one polynomial of degree less than n, and therefore there are exactly
pn− 1 non-zero equivalence classes in R. Since there are pn monomials
in the set {xi : 0 ≤ i < pn} there must exist numbers 0 ≤ i < j < pn

with xi ≡ xj mod P (x). Then P (x) divides xj − xi = xi(xj−i − 1).
Since P (0) 6= 0, P (x) must divide xj−i − 1. �

Now a basic fact from linear algebra is that every n × n matrix
satisfies a polynomial relation of degree n, namely its characteristic



LFSR 7

equation. In the case of the matrix A, the polynomial is the connection
polynomial C(x) = xn − c1xn−1 − c2xn−2 − · · · − cn, so C(A) = An −
c1A

n−1− c2An−2− · · ·− cnI = 0. Any polynomial P (x) having C(x) as
a factor must also satisfy P (A) = 0. By Lemma 3.2, C(x) is a factor
of xk − 1 for some k < 2n. So Ak − I = 0.

So far, we see that the order of A must divide the order of GL(n,F2)
and be no larger than 2n − 1. These conditions, while necessary, are
not sufficient. For example, no matrix in GL(6,F2) has order exactly
35 or 49. The precise set of conditions is quite complicated; see, for
example, [2], pp. 41–43 for the detailed result. In the next section, we
indicate a method for finding matrices of given orders.

We conclude this section with an important definition.

Definition 3.3. A polynomial C(x) of degree n in F2[x] is primitive
if it is irreducible and divides x2

n−1 − 1 but does not divide xk − 1 for
k < 2n − 1.

A basic result in the theory of polynomials is that primitive poly-
nomials of degree n exist for all n ≥ 1. This implies the existence of
maximal machines; a machine is maximal if and only if the connection
polynomial is primitive.

4. Using Finite Fields

The basic facts we need about finite fields are the following, all of
which are elementary:

(1) If p is a prime, then the field Fp of integers mod p is a finite
field with p elements.

(2) If Fq is a finite field with q elements, then the ring of polynomi-
als Fq[x] has unique factorization and in fact has a Euclidean
algorithm.

(3) If P (x) is an irreducible polynomial of degree n, then the quo-
tient ring R = Fp[x]/(P (x)) is a field with qn elements. If P (x)
is not irreducible, then the resulting quotient ring has zero-
divisors.

(4) Every finite field has a subfield Fp of prime order p; it can be
viewed as a vector space over Fp, and therefore has order q = pk

for some prime p and positive integer k.

A less elementary fact is that up to isomorphism there is exactly
one field of order pk. Such a field can be constructed by finding an
irreducible polynomial of degree k over Fp and forming the quotient
field. Since there are generally many such polynomials, the uniqueness
is certainly not obvious. The standard proof, from the observation that
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Fq is the splitting field of xq−x, is generally not accessible to students
in a first cryptography course.

Suppose now that P (x) is irreducible over Fp of degree n and consider
the field F = Fp[x]/(P (x)). We will always use the symbol α to denote
the element of F representing the congruence class of x. So in F we
have P (α) = 0; another way of thinking about this is that F is obtained
by enlarging the field Fp by throwing in a root of the polynomial P (x).

An element of F is the congruence class of a polynomial, which can
be uniquely taken to be of degree less than n. Therefore the elements
are uniquely expressible in the form

b = bn−1α
n−1 + · · ·+ b2α

2 + b1α + b0 bi ∈ Fp

Now represent b by the row vector (bn−1 . . . b2 b1 b0). That is, F will
be viewed as the n-dimensional vector space of row vectors over Fp.
Then multiplication by α is a linear map and can be represented by a
matrix A; bα is represented by (bn−1 . . . b2 b1 b0)A. If the polynomial is
the connection polynomial C(x) = xn− c1xn−1−· · ·− cn−1x− cn, then
the matrix is nothing more than the same matrix A defined earlier in
Equation (3.1)!

It follows from this that the order of the matrix A is the order of
the element α. It is a fact about finite fields that the multiplicative
group of non-zero elements is a cyclic group. A generator of this group
is called a primitive element. The polynomial C(x) is primitive if and
only if α is a primitive element of the field F. The existence of primitive
roots mod p is already an important fact from number theory, and it
comes up naturally in a cryptography course. In general α need not
be a primitive element, although it is elementary (from group theory)
that αpn−1 = 1, since the non-zero elements of a field form a group.

Remark 4.1. Once we have found a matrix A as in Equation (3.1) of
order pn − 1, we can use it to give a lovely description of the finite
field Fpn , namely as the powers of the matrix A together with the zero
matrix. See [6] for a discussion of this.

But suppose C(x) is not irreducible? Then the quotient ring R is
not a field, and the non-zero elements do not form a group. If we
look instead at the invertible elements of R, they do form a group.
This is the secret key that unlocks the mystery of the LFSR! While
the argument below generalizes, let us now return to the special case
p = 2. In this case addition is the same as subtraction, so we don’t
have to worry about signs.
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The matrix A represents multiplication by α in the ring R. Because
cn = 1, we can write

1 = (αn−1 + c1α
n−2 + · · ·+ cn−1)α

Therefore, α is invertible and its order (which is the order of the matrix
A) divides the number of invertible elements. This helps explain why
the period of an LFSR may be a number not dividing 2n − 1. If the
polynomial is irreducible, however, α must have order dividing 2n − 1.

To determine the possible periods of LFSR’s, then, we need to con-
sider the ways in which a polynomial of degree n can be constructed
from irreducible polynomials. Here are the basic rules; details may be
found in ([3], Chapter 3.) Write C(x) = g1g2 . . . gr, where g1, . . . , gr are
pairwise relatively prime. Call the order of a polynomial f the order
of the element α ; note that this is potentially confusing terminology!
Then the order of f is the least common multiple of the orders of gi.
If gi = hbi , with hi irreducible, and the order of hi is e, then the order
of gi is 2te, where t is the smallest integer with 2t ≥ b. Finally, if h has
degree k, then its order is a divisor of 2k − 1.

5. Example: LFSRs with six cells

Suppose a polynomial C(x) has degree 6. Then since the sum of
the degrees of the irreducible factors is 6, C(x) determines a set D of
positive integers adding up to 6. We use the notation mi to represent
a factor of degree m repeated i times. For example, (4, 12) represents a
product of a polynomial of degree 4 and the square of a linear polyno-
mial. The order of an irreducible polynomial of degree 4 must divide
24 − 1 = 15. In fact, such a polynomial will have order 15 or order
5. There is only one linear polynomial, and its square has order 2.
Therefore, a polynomial with this pattern must have order 30 or 10.
Since 22− 1 = 3, 23− 1 = 7, and 25− 1 = 31 are all primes, irreducible
polynomials of degrees 2, 3, and 5 are automatically primitive. The
order of a 6th degree polynomial is either 9, 21, or 63. The following
table includes all possible cases; each of the 32 possible polynomials
fits one of these patterns.
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D (c1c2c3c4c5c6) Factors O
6 (000011) z6 + z + 1 63
6 (010111) z6 + z4 + z2 + z + 1 21
6 (001001) z3 + z + 1 9

5, 1 (101111) (z + 1)(z5 + z2 + 1) 31
4, 12 (011111) (z4 + z + 1)(z + 1)2 30
4, 12 (100011) (z4 + z3 + z2 + z1)(z + 1)2 10
4, 2 (111001) (z4 + z + 1)(z2 + z + 1) 15
3, 13 (001011) (1 + z)3(1 + z2 + z3) 28
3, 2, 1 (010011) (1 + z)(1 + z + z2)(1 + z + z3) 21

32 (010001) (1 + z2 + z3)2 14
3, 3 (111111) (z3 + z + 1)(z3 + z2 + 1) 7
23 (101011) (z2 + z + 1)3 12

22, 12 (000001) (z + 1)2(z2 + z + 1)2 6
2, 14 (110111) (z + 1)4(z2 + z + 1) 12
16 (010101) (z + 1)6 8

So the possible orders of the matrix are 6, 7, 8, 9, 10, 12, 14, 15,
21, 28, 30, 31, and 63. These numbers represent the largest periods of
seeds in the corresponding machines. It is easy to show that the initial
seed (0, 0, 0, 0, 0, 1) will always achieve the largest period. Of course,
the seed (0, 0, 0, 0, 0, 0) always achieves the shortest period, namely
1. Other periods are also possible, although they must be divisors
of the largest period. For example, for the machine with connection
polynomial z6 + z4 + z3 + z2 + z + 1, depending on the initial non-zero
seed, the period will be 30, 15, 2, or 1. So perhaps we have not yet
uncovered all the secrets of the LFSR.
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