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0 Introduction

The well-know spectral theorem in linear algebra ([G], p. 222) may be formulated as saying
that given a self-adjoint transformation S of R", there is an orthonormal basis for R™
consisting of eigenvectors of S. A somewhat less well-known theorem ([G], p. 230) gives
normal forms for skew-adjoint transformations: there is an orthonormal basis with respect
to which a skew-adjoint transformation A satisfies the conditions: Ae; = 0,7 > 2p; Aegi—1 =
—xie2i,Aea; = xieai—1, 1 < p. A restatement of the above is that S can be represented by a
diagonal matrix and that A can be represented by matrix which is block diagonal with p 2
x 2 blocks of the form:
o=
] LS 15

Note that the result for the skew adjoint transformation A follows easily from the first
theorem by using the fact that 42 = S is self-adjoint.

In this note we solve the analogous problem when R™ is replaced by R™! (n + 1) -
dimensional Lorentzian space. Our motivation for considering this problem comes from the
theory of Lie groups and its application to Hamiltonian systems. If G is a Lie group, then
it acts as linear transformations of its Lie algebra G by the adjoint action and on the dual
space G* by the co-adjoint action. When G is a matrix group, the Lie algebra is a matrix
Lie algebra, and the action of G on G is just conjugation. In general, the co-adjoint action
is different from the adjoint action [F, p. 41], but when the Lie group is semi-simple there is
a natural isomorphism between G and G*, and the co-adjoint action may also be regarded
as conjugation. The orbits of the co-adjoint action are symplectic manifolds (Kyrillov’s
Theorem — see [F, p. 43]) and form a natural setting for the study of Hamiltonian systems
with symmetries.

Now in the case where G = SO(n,R), the group of orientation-preserving orthogonal
transformations of R", the Lie algebra G = so(n) is just the algebra of skew-symmetric
matrices. The normal forms theorem gives canonical representatives of the orbits of the
(co-)adjoint action.
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Our goal is to give a similar characterization of the orbits of the adjoint action of the
semi-simple Lie group SO*(n,1) on its Lie algebra so(n, 1).Note that the group SO*(n, 1)
is isomorphic to the group of rigid motions of hyperbolic n - dimensional space, and its Lie
algebra is the space of infinitesimal rigid motions (or Killing fields) on hyperbolic space.

1 Basic definitions

Lorentzian n + 1 space is the (n + 1) - dimensional real vector space spanned by vectors

€1,...,€n,€n41, equipped with the bilinear form (, ) given by
I a=3<n
{eig5) =< =1 i=j=n+1
0 i#j

(The name Minkowski space or Minkowski space-time is usually reserved for the case n = 3.).
A vector v in V is called isotropic or null if (v,v) = 0.
If V is a real vector space with a bilinear form (, ) , a linear transformation

e S:V — V is self-adjoint if (Sv, w) = (v, Sw) for all vectors v,w in V;
e A:V —V is skew-adjoint if {Av, w) = —(v, Aw) for all vectors v,w in V; and
e g:V — V is orthogonal if (gv, gw) = (v, w) for all v,w in V.

In the case that V' is Lorentzian n+1 space, the orthogonal transformations of V form the
Lie group O(n, 1); the subgroup SO*(n, 1) consists of those transformations which preserve
the orientation of V' and carry each component of {v | {(v,v) = —1} to itself. The skew-
adjoint transformations form its Lie algebra so(n, 1) (For an exposition of the properties of
orthogonal groups, see [P],[M], or [H]).

Let J be the diagonal matrix

Then we may describe the matrix representations of the transformations defined in the
previous paragraph in terms of the standard basis.

e The matrix of a self-adjoint transformation satisfies ST = JSJ;
e the matrix of a skew-adjoint transformation satisfies AT = —JAJ; and

o the matrix of an orthogonal transformation satisfies g* Jg=J,or g~ ' = Jg' J.
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A subspace W of V is called non-singular if V is the direct sum of W and its orthogonal
complement W+ . This condition is equivalent to the statement that the bilinear form (, )
when restricted to W remains non-singular. For any subspace W, dim (W) + dim(W+)
= n+ 1 [H, p.26] , so the condition of being non-singular is equivalent to the statement:
W W+ = {0}. A transformation with no non-singular invariant subspaces other than {0}
and the whole space is said to be an indecomposable transformation.

2 Self-adjoint transformations

If S : V — V is a self-adjoint linear transformation of Lorentzian n + 1 space, and if
S(W) C W for some non-singular subspace W of V with 0 < dim(W) < n + 1, then
S(W+) Cc W+, and we can decompose S into the direct sum of two transformations each
of which is self-adjoint. One of the two spaces will be positive-definite, while the other
will be a Lorentzian k + 1 space for some & < n. Thus the normal forms theorems for
Euclidean spaces, together with induction arguments allow us to restrict our attention to
indecomposable transformations.
The following easily proved lemma is used in the proof of the theorem ([R]).

Lemma 2.1 No two linearly independent isotropic vectors are orthogonal. Given an isotropic
vector v, any vector w orthogonal to v is either a multiple of v or is such that (w,w) > 0.

Theorem 2.2 Let S : V — V be a self-adjoint transformation of V. = R™! which is
indecomposable. Then n < 2, and if n > 0 there is an orthonormal basis for V' with respect
to which the mairiz of S has one of the following forms:

o |3 7 |wmizsia-sl
[ a+r —a
9 I —a+r]’
) [ a+r o
= —a —a+r |’
r o -
d) a B+r —-B ,where & # 0 in cases b, ¢,and d.
MR (e -

Proof. Suppose S is indecomposable and self-adjoint.

First suppose further that S has a complex eigenvalue A = o + (i, where 7 # 0. By
complexifying, we may find a complex eigenvector v + iw. This means that S(v + iw) =
(av — fw) + i(aw + Bv); that is, Sv = av — fw and Sw = Pv + aw. Since S is self-adjoint
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and 3 # 0,it easily follows that (v,v) = —(w,w). Let P be the plane spanned by v and w.
Then P is an invariant subspace of S. Since S is indecomposable and P is not trivial, if we
can show that P is non-singular, it will follow that P = V.

If (v,v) # 0 then the Grammian matrix

(v,0) (v, w)
| |

(v,w) (w,w)

has negative determinant and therefore the bilinear form is non-singular. If (v,v) =0, then
the only way the grammian could be singular would be if (v, w) also vanished. Thus v and
w would be linearly independent isotropic vectors, but this violates the lemma.Thus P is
non-degenerate. Since the characteristic polynomial of S has a complex root, the matrix of
S must have the form a) of the theorem.

Next assume that all eigenvalues of S are real. If A is an eigenvalue and v is an eigenvector
with eigenvalue A, then the line spanned by v is an invariant subspace of S. If the dimension
of V is greater than 1, the assumption that S is indecomposable implies that v is an isotropic
vector, that is (v,v) = 0. If w is another isotropic vector and Sw = pw for some u # A,
then self-adjointness implies (v, w) = 0. Again, this is impossible in R™! as it violates the
lemma. We conclude that S has only one eigenvalue r. Replacing S by the self-adjoint
transformation S — rI, we may consider transformations whose only eigenvalue is 0.

ker(S) is exactly one-dimensional, for otherwise we could find a non-isotropic vector in
the kernel. S is nilpotent, and we can choose v;,0 < 7 < n, such that S(v;y+1) = v; for
1> 1,S(vp) = 0,and v is an isotropic vector.

Using self-adjointness, we have (vg,v1) = (vo, Sva) = (Swo,v2) = 0. The lemma then
implies that (v, 21) > 0.

The cases n = 1 and n = 2 remain since if n > 3 then we would get the following
contradiction:

0= (Svo,va) = (Uu,S‘Ua) = (Uo,vg) = (Svi,vg) = (‘L’l,S‘Ug) = (‘Ul, Ul) -'/—' 0.

If n = 1, then let {u;,us} be any orthonormal basis. Since S is nilpotent, im(S) =
ker(S), so S(u1) = a(u; £ us) for some & # 0. This leads to the cases b) and ¢) above.

As our final case, assume that n = 2. We may scale the v; so that (v;,v;) = 1. Choose
an orthonormal basis {uy,us,u3} for V such that v; is the first vector in the basis. Then
Su; = vo = a(uy % u3) for some o # 0. From the equation, 0 = Svp = a(Suz =+ Sus), we
deduce that the matrix of S has one of the forms:

0 oo —« 0 a a
a B -p or o=
« B —B e - -§

These are conjugate by —J . This is case d) with r = 0. o
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As a result of theorem, we have the following results for normal forms for self-adjoint
transformations of R™!. The case n = 1 is exceptional and could also easily be proved
directly without the machinery of the theorem.

Corollary 2.3 Every self-adjoint transformation of RY! is conjugaie by an element of
SO*(1,1) to one whose mairiz is either diagonal or a matriz of one of the following five

types:

i) f’r :’]witha;eo,
) [ 149 -1 ) —1+r 1
2 e e ' e

) [ 1+ 1 e B [ Lt |
% | fe=di Tad s : 1 1+r |°

No two of the siz types of matrices are conjugate by an element of SOT(1,1).

Proof: From the theorem it follows that the matrix of any self-adjoint transformation of
RU! is conjugate by an element of SO*(1, 1) to one whose matrix is either diagonal or one
of types a), b), or ¢) as listed in the theorem. We note that the orthonormal bases chosen
in the proof can always be chosen to preserve the orientations of V. We will first show that
no two of these four types are conjugate. Since the dimensions of all invariant subspaces
are preserved by conjugacy, we need only check that matrices of types b) and c) are not
conjugate. This computation is straightforward. Take an arbitrary element

coshu sinhu 1 -1
= [ sinhu coshu ] of SO*(1,1). If K = [ 1 -1 ]

then an arbitrary matrix B of type b) will have the form B = oK + rl, and an arbitrary
matrix C of type ¢) will have the form C = aK T +rI, where a # 0. Hence we discover that
gBg~! = agKg~! + rI = a(cosh u + sinh u)?K + rI. Since (coshu +sinhu)? >0, gBg~!
is another matrix of type b). Similarly we find that gCg~" is another matrix of type ¢). So
types b) and c) are not conjugate.

Further, since (cosh u+sinhu)? = e?* is an arbitrary positive real number, we can find
u so that (coshu + sinhu)? =| e |~!. In case b), if @ > 0 and u is chosen appropriately,
we obtain case #i.. If instead a < 0, a similar choice of u leads to case iii.). These are not
conjugate to each other. Similarly for case ¢) we get cases iv.) when o > 0 and v.) when
a < 0. These are also not conjugate to each other.

Finally, the condition | 2y |>| @ — @ | , implies that we could choose u such that
tanh2u = (8 — a)2y. If we conjugate a matrix A of type a) by the matrix g above, with
this u, we obtain a matrix of the form:

a8
[ e gie ] . This is a matrix of type 1.}. o
2

,rl
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Corollary 2.4 For n > 1, every self-adjoint transformation of R™! is conjugate by an
element of SO*(n, 1) to one whose matriz is either diagonal or a direct sum of a diagonal
matriz and a matriz of one of the following five types:

. [ @ —7 :
1) SeEs ] with @ # 0,
i) [ 1+r -1 i) -14+r 1
L e S ' S e
[0 1 -1 (1 s |
iv.) 1 ¥+ —v |or, v.) = P
i g s o e

No two of the siz types of matrices are conjugate by an element of SO (n,1).

Proof: From the theorem we conclude immediately that the matrix is either diagonal
or a direct sum of a diagonal matrix and a matrix of type a), b), ¢), or d) as listed in the
theorem, with the orthonormal bases chosen to preserve the orientations of V. As in the
proof of Corollary 2.2, the dimensions of all invariant subspaces are preserved by conjugacy.
Also as in Corollary 2.2, a matrix that is the direct sum of a diagonal matrix and a matrix
of type a) is conjugate to a matrix that is the direct sum of the same diagonal matrix and
a matrix of type i.). So what remains to be shown is that matrices that are the direct sum
of a diagonal matrix and matrices of types b) and ¢) are conjugate and that the direct sum
of a diagonal matrix and a matrix of type d) is conjugate to the direct sum of a diagonal
matrix and a matrix of type iv) listed above.

For the latter, conjugate a matrix of type d) by the matrix

1 0 0
h=| 0 coshu sinhu | and obtain,
0 sinhu coshu
0 o —-a
(coshu +sinhu) | a (coshu+sinhu)3 —(coshu+sinhu)f

a (coshu+sinhu)f —(coshu+sinhu)g

We can find u such that cosh u+ sinhu =| @ |~!, and hence obtain a matrix of type iv) if
we start with & > 0 and of type v) if we start with & < 0.
For matrices of types b) and c), define a diagonal matrix

(=1
=1
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Then K is an element of SOT(n,1) . If B is the direct sum of a diagonal matrix and a
matrix of type b) and C is the corresponding matrix that is the direct sum of a diagonal
matrix and a matrix of type ¢), then KBK~! = C. As in the preceding corollary, a matrix
of type b) from the theorem will be conjugate to one of type ii), if @ > 0, and to one of type
i) ifa<0. 0

3 Skew-adjoint transformations

As in the case of self-adjoint transformations, if A : V — V is skew-adjoint, and if A(W) C
W for some non-singular subspace W of V with 0 < dim(W) < n+ 1, then A(W1) Cc W+,
and we can decompose S into the direct sum of two transformations each of which is self-
adjoint. As before one of the two spaces will be positive-definite, while the other will be a
Lorentzian k + 1 space for some k < n. We will also need the following fact:

Lemma 3.1 The characteristic polynomial of a skew-adjoint iransformation is odd if dim(V')
is odd and even if dim(V) is even.

Proof: det(A — AI) = det(AT — AI) = det(—=JAJ — AI) = det(—A — AI) = (=1)**!
det(A + AT). O

Theorem 3.2 Let A : V — V be a skew-adjoint transformation of V = R™! which is
indecomposable. Then n < 2, and if n > 0 there is an orthonormal basis for V with respect
to which the mairiz of A has one of the following forms:

[0 « . )

a) £ O]vvxthagéﬂ,
[0 -1 1

R i TS
B

» §=50 1 =
c) = Bt 1
o ISR

ProofIf dim(V) =2, then the formula AT = —J AJ implies immediately that the matrix
of A has form a). We will next show that dim(V) < 3 and classify the remaining case:
n==2:

Let S = A2. Then S is self-adjoint. If dim(V) > 3, then S has an eigenvector v with
eigenvalue ) such that (v,v) = 1. Let w = Av. Then Aw = Av and the subspace P spanned
by v and w is invariant. If P is 1-dimensional, then v is an eigenvector of A.P is non-singular.
This contradicts indecomposability.
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The above implies that dim(P) = 2. If we were to assume that A # 0, then (w,w) =
(Av, w) = —(v, Aw) = =A(v,v) = =A. (v,w) = (v, Av) = 0, so P is non-singular. Since this
contradicts indecomposability, we must have A = 0 and w is isotropic.

Let L = ker(A). If dim(L) > 1, then there is a vector z with Az = 0 and w and =
independent. Now (z,w) = (z, Av) = —(Az,v) = 0. Therefore, (z,z) # 0 and the line
spanned by z is nonsingular and invariant, contradicting indecomposability. Thus L is the
line spanned by w. Since im(A4) C L* and both have codimension 1 in V, they are equal.
In particular, v = Au for some vector u. Now let W be the subspace spanned by u,v,
and w. W is invariant, and we will see that it is nonsingular. This will show that if A is
indecomposable then dim(V) < 3.

(u,v) = (u, Au) =0
(u,w) = {u, Av) = —(Au,v) = —(v,v) = -1
(v,w) = (v, Av) =0
(v,v) =1
(w,w) =0

Putting these together, the matrix of the bilinear form restriced to W with respect to
the basis u, v, w is the Grammian:

(u,u) (u,v) (u,w) (u,u) 0 -1
(v,u) (v,v) (v,w) = 0 100
(w,u) (w,v) (w,w) =1 =10 0
which is non-singular. So if A is indecomposable, n < 2. If n = 1, then we have seen that

A is a matrix of type a).

Suppose dim(V) = 3. By Lemma 3.1, 0 is an eigenvalue of A. From the indecomposabil-
ity of A we see that the corresponding eigenvector w must be isotropic and that the kernel
is the line L spanned by w. Therefore, by the above arguement, im(A) = L1. But w is in
L+, so w = Av for some v. (w,v) = 0, so likewise v = Au for some u. By Lemma 2.1,
(v,v) > 0, so we may scale these vectors so that (v,v) = 1.

Let u; be an orthonormal basis for V such that u; = v.A is skew- adjoint and so is of
the form:

0 —a 8
A=l 0%
=

Since Av = Au; = w is a non-zero isotropic vector, « = £3. Since Aw =0, = 0. As
in the proofs of the Corollary 2.4 above, conjugation by the matrix h allows us to scale by
| & |~t. This gives us the four cases: A = £By, where

0 -1 #+1

By-= eess it ()
BN (el
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B, and B_ are conjugate via —J. By and B_ are not conjugate. A must, therefore, be
+ B, which is type b) or ¢) of the statement of the theorem. O

Corollary 3.3 The matriz of any self-adjoint transformation of R™* can be put in the
following block diagonal canonical form:

o

where 0 is the m x m 0 mairiz,m > 0, B is a block diagonal mairiz with 2 x 2 blocks

05t o :
< >
[_ai 0]!1_151)3?_0!
and C is one of the matrices described in Theorem 3.1. The representation is unique ezcept
for the order of the blocks in B.
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