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Abstract

We consider complex curves of genus zero and answer the above riddle.
Namely, the lemniscate of Bernoulli, which has obvious four-fold symme-
try, actually has the octahedral group as its symmetry group, and may in
fact be characterized by this symmetry.

1 Introduction

Our goal is to fully describe the remarkable hidden symmetries of the lemniscate
of Bernoulli, and to demonstrate just how exceptional these symmetries are.
This famous plane curve has equation (x2 + y2)2 + A(y2 − x2) = 0 and looks
like ∞ (for A > 0). The lemniscate has a celebrated history: it was described
by Jacob Bernoulli in 1694, who determined the polar coordinate equation and
the radius of curvature for the curve. The curve was hidden among a larger
family of curves, the Cassinian ovals, which had been proposed in 1680 as
planetary trajectories by the astronomer Giovanni Cassini. In this context it
can be described as a locus of points the product of whose distances from two
fixed points is a constant. This was not noticed until it was pointed out by Pietro
Ferroni in 1782, and again by G. Saladini in 1806 ([5, p. 221]). One could argue,
however, that the curve was known to Perseus two thousand years earlier, who
studied the spiric sections derived from slicing a torus with a plane. Here the
lemniscate hides among a family of curves called hippopedes, about which we
have more to say later. (It can also be found lurking among the family of curves
whose curvature is proportional to distance from the origin [10].) But most
significantly, in studying the arc length of the lemniscate, Bernoulli gave us
the lemniscatic integral, which played an important role in the development of
elliptic integrals and elliptic functions. (See [11, pp. 215–224].)

The lemniscate is an elegant curve, with obvious fourfold symmetry. But we
want to consider all the complex (and infinite) points on the lemniscate, not just
the “visible” (real) ones. When we do so, the full lemniscate looks topologically
like a sphere with certain pairs of points glued together; in other words, as a
complex algebraic curve, the lemniscate has genus zero. In fact, it is the image
under an immersion of the sphere in complex projective space ℂP 2, with three
double points. The full curve is unexpectedly more symmetric than it might
appear to be; to our knowledge, the following fact, which is the main result of
this work, has not been observed until now:
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Theorem 1.1 (Main Theorem). The group of symmetries of the lemniscate,
thought of as a subset of complex projective space, is the octahedral group. Up
to projective equivalence, it is the unique genus zero curve of degree less than or
equal to four with this property.

Figure 1: The Bernoulli Lemniscate

To explain this theorem, let us survey some ideas from projective geometry.
Points in the real projective line are lines through the origin in ℝ2. A point in the
projective line can be represented by the homogeneous coordinates [v, w] ∕= [0, 0],
where [v, w] and [¸v, ¸w] correspond to the same point for any ¸ ∕= 0. An
ordinary real number u corresponds to the point with coordinates [u, 1]. We can
recover the ordinary coordinate of the number u by taking the ratio u = v/w.
However, there is one extra point, the ‘point at infinity’; it has coordinates
[v, 0]. Thus the projective line arises from the real line by adding a single
point, and it closes up the line to form a circle. In exactly the same way, using
complex numbers instead of real numbers, the complex plane can be completed
by adding one point, forming the Riemann sphere S2 = ℂP 1. This is also called
the extended complex plane or the complex projective line.

In the same way, points in the complex projective plane ℂP 2 are (complex)
lines through the origin in ℂ3. That is, they can be represented by triples
[x, y, z] ∕= [0, 0, 0] of complex numbers, where [x, y, z] and [¸x, ¸y, ¸z] corre-
spond to the same point for any ¸ ∕= 0. A point (x, y) in the (ordinary) plane
corresponds to the point with projective coordinates [x, y, 1]. A point with co-
ordinates [x, y, 0] can be thought of as a point at infinity, since it can be seen
to be a limit of points [Rx,Ry, 1] as R goes to infinity; such points are called
ideal points.

An invertible linear transformation of ℂ3 takes lines through the origin to
lines through the origin, so it gives what is called a projective transformation
of ℂP 2; the group of such transformations is P = PGL(3,ℂ), the projective
general linear group. It is convenient to represent an element of P as a 3 × 3
matrix, with the understanding that any scalar multiple of the matrix represents
the same element (since it has the same effect on any line through the origin.) If
the matrix has real entries, it gives a real projective transformation; for instance,
linear transformations of the plane, translations, and dilations are all projective
transformations. But in general, a projective transformation will take some
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finite points to ideal points, so it will not correspond to a transformation of the
ordinary plane.

Projective transformations of the Riemann sphere are Möbius transforma-

tions. Such a transformation T is represented by an invertible matrix

(
a b
c d

)
.

Using the identification of the complex plane plus infinity with the Riemann
sphere, the transformation can be viewed as

T (v) =
av + b

cv + d

Thus the Möbius transformations are also called the fractional linear transfor-
mations; they form a six real dimensional group, PGL(2,ℂ).

As much of our work will involve fixed points of transformations, it will be
useful to establish the following basic property of projective transformations.

Proposition 1.2. A Möbius transformation of the sphere can have at most two
fixed points if it is not the identity. If T is a projective transformation of ℂP 2

which is not the identity, then either T has a line of fixed points, or a line of
fixed points and one other fixed point, or it has at most three fixed points. If it
has exactly three fixed points, they are not collinear.

The first statement follows from the equation of a fixed point v = av+b
cv+d ,

which is quadratic. The remaining statements follow from linear algebra. Since
a point in ℂP 2 corresponds to a line through the origin in ℂ3, a fixed point of
T corresponds to an invariant line for the corresponding matrix M representing
T . Any nonzero vector in this line is then an eigenvector. If the eigenvalues of
M are distinct, then there will be three independent eigenvectors, so T will have
exactly three fixed points, which are not collinear. If two eigenvalues are equal,
then there will be a two-dimensional invariant subspace, which corresponds to
a (projective) line in ℂP 2. Either every vector in the space is an eigenvector
of M , in which case every point in this line will be fixed by T and there is one
other fixed point, or there is only one eigenvector, in which case T will have
only two fixed points. If all three eigenvalues are equal, then T will have one
fixed point or one line of fixed points, or it will be the identity. □

Now we extend the notion of curve to the projective plane, keeping in mind
that the extended notion is really two-dimensional. The term algebraic curve
was coined by Leibniz to describe the set of solutions in the plane of a poly-
nomial equation f(x, y) = 0. A polynomial equation of degree n defining a
plane curve C is extended to ℂP 2 by defining the homogeneous polynomial
F [x, y, z] = znf(x/z, y/z). Homogeneous polynomials of degree k satisfy the
identity F [¸x, ¸y, ¸z] = ¸kF [x, y, z]; consequently, if the equation F [x, y, z] = 0
holds for one set of projective coordinates of a point, it will for any other. Of
course, we can always recover the original polynomial by setting z = 1.

For example, a circle (x − a)2 + (y − b)2 − r2 = 0 is extended to complex
projective space by the equation (x−az)2+(y−bz)2−r2z2 = 0. It is important
to note that all circles pass through the circular points I = [1,−i, 0] and J =
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[1, i, 0]. In the case of the lemniscate, the resulting curve is given by the equation
(x2 + y2)2 +A(y2 − x2)z2 = 0.

The picture of the lemniscate suggests that the curve “passes through” the
origin twice. We may make this precise by defining the multiplicity of a point
on a curve. At an ordinary or smooth point (x0, y0) on such a curve, ∂f

∂x and ∂f
∂y

are not both zero, and the curve can be approximated by its tangent line; other
points on the curve are singularities. A singularity has order or multiplicity k if
all partial derivatives of order less than k vanish, but some partial derivative of
order k does not vanish. A line typically meets a curve of order n at n distinct
points. If the line passes through a point of multiplicity k then it will typically
meet the curve in n − k other points. We have to say “typically” because the
tangent line to a curve appears to meet the curve more than once at the point
of tangency. If we define the number of intersections to take into account the
possible tangencies, as well as the multiplicities of the singularities, then we
can say the line always meets the curve n times. For example, a line meets
a quadratic curve twice, though the intersections could coincide at a point of
tangency and could be imaginary or infinite.

The simplest singularities are of order 2, where the second order partial

derivatives ∂2f
∂x2 ,

∂2f
∂x∂y , and

∂2f
∂y2 do not all vanish. For instance, every line through

the origin meets the lemniscate at most twice other than at the origin. To see
this, solve the simultaneous equations ax+by = 0 and (x2+y2)2+A(y2−x2)z2 =
0 by eliminating y (unless b = 0). The resulting equation always has x = 0 as
at least a double root. But for the lines x = y or x = −y the equation has
x = 0 as a quadruple root. This identifies these two lines as being tangent to
the curve. Intuitively, the curve has two branches through the origin, each of
which has an inflection point, and each tangent line makes three-point contact
with one branch and crosses the other.

Typical order 2 singularities are nodes, where the curve has two tangent
lines, one for each branch, and cusps, where the curve has a sharp point with
one tangent line. The simplest example of the cusp is the origin for the curve
y2 = x3. There are many other more exotic singularities, as we shall see later.

We can see the node at the origin of the lemniscate, but in fact there are
two more nodes, one at each of the two circular points. This is the first clue
that the lemniscate has hidden symmetry, for we shall see that the curve looks
the same at all three of these points. Curves that have nodes at both circular
points are called bicircular quartics. As it also has a node at the origin, i.e., at
[0, 0, 1], the lemniscate is an example of a trinodal quartic.

If we can find polynomial functions x(t), y(t), and z(t) giving a map X(t) =
[x(t), y(t), z(t)] from the (extended) complex plane onto a curve C, one-to-one
except at finitely many values of t, we say that C is rationally parametrized and
is a rational curve. It turns out that any trinodal quartic C is a rational curve.
For example, in the case of the lemniscate this can be done explicitly by the
formula:

X(t) = [x(t), y(t), z(t)] = [
√
A(t+ t3),

√
A(t− t3), 1 + t4]. (1.1)
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Such a parametrization defines a map X : ℂ −→ C ⊂ ℂP 2 from the complex
plane to the curve C. The most straightforward way to include the point at
infinity is to use homogeneous coordinates in the domain; then we can extend
it to a map of the Riemann sphere to the curve. For instance, in the case of the
lemniscate this is given by the formula

X[v, w] = [
√
A(vw3 + v3w),

√
A(vw3 − v3w), w4 + v4]

which we get by replacing t by v
w and then clearing denominators. One can

check that this map is one-to-one except at six points, namely the origin [0, 1],
the point at infinity [1, 0], and the points [±!, 1] and [±!3, 1], where !4 = −1,
which map in pairs to the three nodes. We may therefore think of the lemniscate
in abstracto as a sphere, which sits in projective space with three pairs of points
glued together.

More generally, any irreducible algebraic curve is the image of a g-holed
torus under a map which is one-to-one except on a finite set of points; g is the
genus of the curve. (By irreducible, we mean that the equation of the curve
does not factor into a product of equations; we will assume henceforth that the
curves we examine are irreducible.)

This statement can be made more precise: the g-holed torus can be given the
structure of a Riemann surface, that is, a surface on which one can do complex
analysis. (This means one can put local complex coordinates on such a surface
and take complex derivatives of functions.) For curves with no singularities
other than nodes and cusps, it turns out that the genus of the curve can be
computed by a formula due to Clebsch (1864). If the curve has degree n, has ±
cusps and ¿ nodes, then

g =
1

2
(n− 1)(n− 2)− ± − ¿. (1.2)

For example, a nonsingular quartic has genus 3, while a trinodal quartic has
genus 0, as noted above. An important and basic theorem of algebraic geometry
is that a curve has genus zero precisely when it can be rationally parametrized.

A projective transformation of ℂP 2 which takes a rational curve C to itself
can be pulled back via the parametrization to a Möbius transformation of the
sphere. This is not an obvious fact, but rather is a consequence of the fact
that the projective transformation preserves the complex structure of C, that
is, it is holomorphic. The automorphisms or one-to-one holomorphic maps of
the Riemann sphere onto itself turn out to be precisely the Möbius transfor-
mations. So given a a rational parametrization X : ℂP 1 −→ ℂP 2 of C and
projective transformation T of ℂP 2 taking C to itself, there is a unique Möbius
transformation F such that T ∘X = X ∘F . For general algebraic curves, we get
automorphisms of a Riemann surface. But for surfaces of genus greater than 1,
it is known that there are only finitely many such automorphisms.

We define the symmetry group of a curve to be the group PC of projective
transformations which take the curve to itself. Such a transformation can be
recognized by the fact that it leaves the equation of the curve invariant. Using a
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parametrization of the curve we may think of this group as acting as symmetries
of the sphere (or more generally the surface of genus g). In this way we may
view the group as a subgroup of the group of intrinsic symmetries of the curve,
that is, the automorphisms of the Riemann surface that parametrizes the curve.

In determining the symmetry group of a curve, it is very useful to make use
of the following:

Remark 1.3. If C is an algebraic curve and T is a projective transformation,
then the symmetry group PC′ of curve C ′ = T (C) is isomorphic to the symmetry
group PC . In fact, each symmetry S′ in PC′ is just the conjugate S′ = STS−1

of a an element S of PC . We may think of T either as moving the curve to a
new position or as changing the coordinates of the curve. A particularly useful
example is the transformation

[u, v, w] = T [x, y, z] =

[
x+ iy√

2
,
x− iy√

2
, z

]
(1.3)

which fixes the origin [0, 0, 1] while taking the circular points to [1, 0, 0] and
[0, 1, 0]. The new coordinates u, v, w are called isotropic (or conjugate) coordi-
nates in the literature.

Because any Euclidean planar symmetry of a real curve extends to all of ℂP 2,
it is obvious that a lemniscate has at least fourfold symmetry. For instance,
the horizontal mirror symmetry of the figure eight is achieved by taking real
point (x, y) to (x,−y). The corresponding projective transformation can be

represented by the matrix

⎛
⎝

1 0 0
0 −1 0
0 0 1

⎞
⎠. This flips the real points of the

lemniscate, and it also moves around the nonreal points, for example exchanging
the two nodes at the circular points.

A circle obviously has a continuous group of symmetries and, less obviously,
an ellipse does as well; in fact any (nondegenerate) conic can be transformed
to a circle by a projective transformation. (In projective geometry a hyper-
bola, a parabola, and an ellipse are all the same!) Not only that, every Möbius
transformation of the circle (which has genus zero) extends to a projective trans-
formation of ℂP 2. Thus such curves have maximal symmetry.

2 In search of the octahedron.

The octahedron is the Platonic solid with eight faces, each of which is an equi-
lateral triangle, and six vertices. A simple model of the octahedron is a subset
of ℝ3 with vertices at the six points (±1, 0, 0), (0,±1, 0), and (0, 0,±1). The
group of rotations of ℝ3 which carry this polyhedron to itself is the octahedral
group O; it consists of 24 elements, given by the 24 matrices of determinant
+1 having three nonzero elements each of which is ±1. We may view O as a
subgroup of the projective group P = PGL(3,ℂ) using this matrix representa-
tion. As an abstract group, it turns out to be isomorphic to the group S4 of

6



permutations of a set with four elements. (This lovely fact can be demonstrated
by looking at the four line segments joining the midpoints of opposite faces.)
For future reference, we observe that it has two nontrivial normal subgroups:
the alternating group A4 of even permutations, and the Klein Four group V .
The latter group is made up of the identity and the three permutations which
swap four elements in pairs. It is (up to isomorphism, of course) the unique
noncyclic group of order four.

Call an algebraic curve C ⊂ ℂP 2 octahedral if it has genus g = 0 and
octahedral symmetry. That is: a) C is the continuous image of a sphere (one-
to-one, except at finitely many points) and b) the subgroup PC of the projective
group P taking C to itself is isomorphic to the octahedral group.

Remark 2.1. We should note that if one does not insist on the curve being (the
image of) a sphere, there are other octahedral curves. In particular, the Bolza
curve, given by the equation y2 = x5 − x, is a curve of genus 2 (a two-holed
torus) that has such symmetry. (See [7]).

Curves of degree one, that is, complex lines, have too much symmetry, PC

being isomorphic to PGL(2,ℂ), the full Möbius group of intrinsic symmetries
of C as a Riemann sphere. Nondegenerate curves of degree 2, i.e., conics, also
have the full group of symmetries as already noted.

Nonsingular cubic curves have genus one, so they are not under considera-
tion here. It is known, however, that any such curve has nine inflection points,
which must be preserved by any symmetry. These points form a tactical config-
uration, from which it can be shown that the curve admits a group of exactly 18
symmetries. (see, e.g., [3, p. 298].) A singular cubic, which has genus 0, must
have exactly one singularity, which must be fixed under any symmetry. Using
projective transformations such a curve can be put into one of two standard
forms:

A) y2z = x2(x+ z), and B) y2z = x3.

In case A, the curve has a node at the origin, and the symmetry group
has order two. In case B, the singularity at the origin is a cusp, and there
is a large symmetry group, as is easily seen. Namely, the curve is invariant
under transformations [x, y, z] 7→ [ax, by, cz], where a3 = b2c and abc ∕= 0.
Interestingly, this means the group of symmetries is isomorphic (as a curve) to
the curve (minus two points)!

The next simplest place to look is among quartic curves. In fact, higher
degree curves present serious difficulties. As the degree of the curve grows, the
number of singularites present in a curve of genus 0 grows. By the Clebsch
formula 1.2, a genus zero curve of degree n with no singularities other than
nodes or cusps has ±+ ¿ = (n−1)(n−2)/2 singularities. The number ±+ ¿ = 3
for quartics is just right, since we expect the 3 singularities to correspond to
6 points on the Riemann sphere—potential vertices of an octahedron—which
would need to be permuted. By the same token, the number ± + ¿ = 6 for
quintics would appear to be too large already, although we have not found an
elementary proof of this.
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Now let us consider quartic curves with three nodes and/or cusps, the main
type of quartic curve of genus zero. We are seeking a copy of the octahedral
group living in the projective group P = PGL(3,ℂ) and a curve invariant under
this group. More precisely, we seek a faithful projective representation of the
group O, or equivalently, of the symmetric group S4.

Remark 2.2. While the machinery of representation theory will not be required
to solve the stated problem, it is worth noting that there are at the outset two
candidates for such a projective representation. First, since the octahedron is a
subset of ℝ3 with vertices at the six points (±1, 0, 0), (0,±1, 0), and (0, 0,±1),
we obviously can choose as our representation the 24 matrices of determinant
+1 whose entries are 0 and ±1. This gives us a unitary representation of O. (A
unitary matrix has transpose conjugate equal to its inverse. The real unitary
matrices are orthogonal matrices.)

On the other hand, there is also a representation associated with the double
group 2O, which is the double cover of O. (For information about this group, as
well as projective representations, see [1].) Namely, the linear transformations

(x, y, z)
s7−→

(
1+i
2 (x+y), 1−i

2 (y−x), z

)
and (x, y, z)

t7−→
(

1+i√
2
x, 1−i√

2
y, z

)
satisfy

s3 = t4 = (st)2 = −Id; so the corresponding elements of the projective group
satisfy s3 = t4 = (st)2 = Id, a standard presentation of O = S4. But this
defines only a projective representation, not an ordinary matrix representation,
since the corresponding group of matrices generated by Ms and Mt consists of
48 matrices in 24 pairs.

But we need not dwell on such subtleties, owing to the value of geometric
argument. For the problem at hand, we appeal to Remark 1.3 to transform
the curve into one in a ‘standard form’. Specifically, we can choose a new
coordinate system [u, v, w] in which the nodes and cusps of C are located at the
standard points [1, 0, 0], [0, 1, 0], and [0, 0, 1]. The reason is that a projective
transformation may be found taking any given triple of noncollinear points to
any other. (We can in fact take four points, no three of which are collinear, to
any other such four points.)

Assume that we have a subgroup G of the group of projective transforma-
tions isomorphic to the octahedral group, acting as symmetries of a quartic C
with nodes (and/or cusps) at the three vertices. Since a symmetry of C must
take singularities to singularites, it must permute the three singularities; this
means that there is a homomorphism from G, a group with 24 elements, to the
permutation group S3, a group with six elements. The kernel of this homomor-
phism, which must have at least four elements, consists of those transformations
that fix all three vertices of the fundamental triangle. Since those transforma-
tions are represented by diagonal matrices, they form a commutative normal
subgroup of G. The only such subgroup is (isomorphic to) the Klein Four group
V . Since the transformations in V have order 2, the corresponding matrices
are diagonal matrices whose squares are multiples of the identity. Therefore,
they may be scaled to have ±1 along the diagonal; there are precisely four such
projective transformations. Thus the homomorphism from G is surjective, and
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the symmetries must achieve all permutations of the three vertices. This shows
also that the three singularities are either all nodes or all cusps.

Now let us pause to ask what quartic polynomials give trinodal (or tricuspi-
dal) curves, and which of these curves are invariant under the action of V . The
fact that there is a node or cusp at [u, v, w] = [0, 0, 1] implies that the lowest
order terms in u and v must be second order, or equivalently, the highest power
of w must be 2. Similarly, this must also hold for u and v. This leads to the
following form:

F [u, v, w] = Av2w2 +Bu2w2 + Cu2v2 + (Du+ Ev + Fw)uvw = 0. (2.1)

Here ABC ∕= 0, otherwise the equation reduces to cubic.
The Klein four group acts by changing the signs of the variables, and invari-

ance therefore implies D = E = F = 0. It will be seen that we are thus left with
a family of projectively equivalent curves. Specifically, we may use the diagonal
transformation [u, v, w] 7→ [au, bv, cw] to put the equation in the form

F ′[u, v, w] = b2c2Av2w2 + a2c2Bu2w2 + a2b2Cu2v2 = 0, ABC ∕= 0

in which the choices

a2 =

√
A

BC
b2 =

√
B

CA
c2 =

√
C

AB

yield the canonical form

Φ(u, v, w) = u2v2 + (u2 + v2)w2 = 0.

The reader should not be surprised that this curve is just a version of the
Bernoulli lemnisicate. In fact, moving two nodes to the circular points and
leaving the third node at the origin, the above canonical form may be regarded as
the equation in isotropic coordinates for the lemniscate (x2+y2)2+4(x2−y2)z2 =
0.

However, the advantage of the canonical form may now be easily appreciated:
Since Φ is symmetric in the variables u, v, w and quadratic in each, it is obvious
that Φ is O-invariant, where O acts in the standard way on triples [u, v, w] (as
in the first representation of O described in Remark 2.2).

How can we be sure that we have found the full symmetry group PC of the
curve? By looking at the corresponding symmetries of S2. For PC may then be
regarded as one of the finite subgroups of the Möbius group M = PSL(2,ℂ),
and it is known that the only such groups are ℤn, Dn, A4, S4 or A5.

Remark 2.3. Projective transformations give rise to holomorphic, hence
orientation-preserving, symmetries of C. The full 48-element group of sym-
metries of the octahedron, which includes 24 mirror symmetries, can only be
achieved if we extend the notion of symmetry to allow orientation reversing
transformations of ℂP 2. Consider the operation of complex conjugation of co-
ordinates: (u, v, w)

¾7−→ (ū, v̄, w̄). This is an involution of ℂP 2 that fixes points
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of the real lemniscate, swapping the two “halves” of C created by removing
the former. On the standard octahedron, this involution should be pictured as
reflection in one of the planes of symmetry not containing any octahedral edges.
This kind of symmetry is characteristic of real curves, that is, curves given by
polynomials with real coefficients.

3 Curves with degenerate singularities

We have given almost the complete proof of the Main Theorem. It remains to
consider rational quartics with fewer than three singularities. There are several
special cases; for each one we will show that such a curve lacks some symmetry
that would be present if the automorphism group were the octahedral group O.
A full discussion of the the singularities of quartic curves can be found, e.g., in
[2] or [6]. A modern treatment can be found in [4, pp. 272–276].

Such a curve must have at least one singularity that is more complicated than
a simple node; we may locate it at the origin. It may have two singularities,
one of which is an ordinary node or cusp and the other a tacnode or rhamphoid
cusp. These singularities can merge to form a single singularity, an oscnode or
a tacnode cusp. Or the curve can have one of three types of triple point, i.e., a
singularity of order three, and no other singularity.

To understand the wide variety of singularities occurring even for curves of
degree four, it is helpful to keep in mind the picture of a sphere being mapped
to the curve, one-to-one except at the preimages of the singularities. The curves
we have considered so far have had three singularities of order two. It is possible
to have two of the three merge into a single singularity, still of order two but
more complicated, and then the curve will have only two singularities. Two
nodes merge to form a tacnode (Figure 2 a); a node and a cusp merge into a
rhamphoid cusp, which is an asymmetrical curve feature. Any symmetry of the
curve would take this point to itself, and would then have to be the identity
near that point, and hence everywhere.

Or all three singularities can merge into a single singularity, either of order
three (a triple point) or, and this is most remarkable, order two. Classically, the
order of a point is described by looking at lines through the point and seeing
how many times they meet the curve elsewhere. Thus a line through a triple
point only crosses the curve at one other place. However, the number of points
on the sphere that map to a triple point may be less than three. Likewise, a
node has two preimages, while a cusp has a single preimage. We will consider
and illustrate the possible singularities below.

First consider quartics with two singularities A and B. For example, the
curve (x2 + 2y2 − 3x)2 − 4x2(2 − x) = 0 has an ordinary double point and a
tacnode—see Figure 2a. The tacnode is evidently a double point with a double
tangent, meeting each branch of the curve twice at the double point.

Suppose a symmetry T of such a curve had order 3. Then it would need
to take each of the two singularities to itself. (Otherwise, its cube would swap
the two!) Let X : S2 −→ C be a parametrization of the curve C. Then the
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automorphism of S2 induced by T can only swap preimages of each double
point. That is, if X(p) = A then X(F (P )) = A, where F is the induced
transformation of the sphere, and likewise for B. But then T 2 must fix the
preimages, of which there are more than two. ( So T cannot have order 3, since
a Möbius transformation which fixes at least three points must be the identity.

Figure 2: a) curve with tacnode; b) trifolium.

If the curve has a triple point, then it can have no other singularity. Assum-
ing it is located at the origin, then the lowest order terms in x and y are order
three. Lines through the point meet the curve in at most one other point. If it
has three tangent lines, then any transformation T of even order must permute
at most two of the tangent lines; then of necessity T 2 = Id, since all three
preimages of the singular point will be fixed. So T cannot have order four. The
classic example is the trifolium (x2 + y2)(x2 + y2 + x) − 4xy2 = 0, shown in
Figure 2 b, which has obvious S3 symmetry.

The second type of triple point occurs when there are only two tangent lines
at the point, and there are two preimages. An example of such a curve is given
by x4 + y4 − x2yz = 0 (Figure 3a), which has a triple point at the origin. The
line x = 0 is a double tangent, while the line y = 0 is an ordinary tangent.
This can be seen simply by ignoring the fourth order terms, or we can use the
following rational parametrization of the curve: x = t, y = t2, z = 1 + t4.
The origin has two preimages: t = 0, t = ∞. Note that any symmetry of such
a curve would of necessity preserve the two tangent lines; hence the Mobius
transformations corresponding to any symmetry fix 0 and ∞. Corresponding
to the transformation t 7−→ it, this curve admits the order four symmetry:
X = ix, Y = −y, Z = z.

A more degenerate type of triple point may have just one tangent line and
one preimage, resulting in a large symmetry group. An example is the curve
x4 = y3z, which admits all symmetries of the form [x, y, z] 7→ [ax, by, cz], where
a4 = b3c (and abc ∕= 0.
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Figure 3: a) Exotic triple point b) Curve with oscnode.

There may also be a lone double point, either a tacnode cusp (which is
asymmetrical) or an oscnode. In Figure 3b, the curve (y− x2)2 + x2y2 − y3 = 0
displays an oscnode. Note that lines through the singularity meet the curve in
two other points. The two branches of the curve at the origin have the same
osculating circle. The curve has only two-fold symmetry.

So we have seen that in each case, the symmetry group of a curve of degree
four with degenerate singularities does not possess octahedral symmetry; this
concludes the proof of Theorem 1.1.

4 Rational Bicircular quartics

We have seen in the previous section that if the Klein Four group V acts as
symmetries of a trinodal quartic keeping the nodes fixed, then the curve has
octahedral symmetry. Consider, the Lemniscates of Booth, also known as the
Hippopedes, given by the equation (x2+y2)2+8y2z2 = 8k(x2+y2)z2 (Figure 4).
For all k, these curves are trinodal, bicircular quartics. Note that for k = .5,
the Booth Lemniscate is the Bernoulli lemniscate, while for k = 1 the curve is
made up of two tangent circles.

This family of curves also generalizes the Bernoulli lemniscate as Watt
curves, which are curves traced out by three-rod linkages. The Hippopedes
would even appear to be as symmetrical as Bernoulli’s lemniscate, but in fact
they fail to have octahedral symmetry, as we may easily see. In isotropic coor-
dinates [u, v, w] (formula 1.3), the Booth lemniscates have the equation

4u2v2 − 4u2w2 − 4v2w2 + (8− 16k)uvw2 = 0

and thus are part of the family described in equation 2.1. They are not invariant
under the octahedral symmetry [u, v, w] 7→ [−u, v,−w], for example. On the
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other hand, the equation has symmetries

⎡
⎣
0 1 0
1 0 0
0 0 1

⎤
⎦ ,

⎡
⎣

0 −1 0
−1 0 0
0 0 1

⎤
⎦ ,

⎡
⎣
−1 0 0
0 −1 0
0 0 1

⎤
⎦

which (together with Id) give (a homomorphic image of) the Klein four group
as the symmetry group of the Booth lemniscate; there are no other projective
symmetries, except in the case of the Bernoulli lemniscate. So what can we say

Figure 4: Booth Lemniscates, including Bernoulli’s.

about the symmetry of other such curves?

Proposition 4.1. For any p and q, consider the curve C given by Pp,q(u, v, w) =
p(4u2v2 − 4u2w2 − 4v2w2) + q(2uvw(iu − iv + w)) = 0. Then C is invariant
under the action of the matrices

T3 =

⎡
⎣

0 0 i
−1 0 0
0 i 0

⎤
⎦ and T2 =

⎡
⎣

0 −1 0
−1 0 0
0 0 1

⎤
⎦

These generate a copy of the permutation group S3.

In rectangular coordinates, the curves described above are given by the equa-
tions:

p
(
(x2 + y2)2 − 4(x2 − y2)z2

)
+ q

(
(x2 + y2)(

√
2yz + z2)

)
.

For special values of the parameters, the curve is degenerate: four lines or two
circles. One can show that this linear family of curves is essentially unique
among trinodal quartics, in that any trinodal quartic with S3 symmetry is part
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of a family projectively equivalent to this. This can be seen by looking for
trinodal quartics with a symmetry of order three. Among the curves in the
family are the well-known limaçon and cardioid. The limaçon has two cusps
and a node, while the cardioid has three cusps

Figure 5: a) limaçon; b) cardioid.

5 Riemannian symmetry

There is another natural geometric notion of symmetry for an algebraic curve.
Namely, one may use the canonical Riemannian metric defined on ℂP 2, the
Fubini-Study metric. (See, e.g., [8, p. 160].) This metric is invariant under
the subgroup of P corresponding to unitary matrices. We may restrict the
allowable symmetries of the curve to this subgroup of P . If we then consider the
Riemannian metric (possibly with isolated singularities) that the curve inherits
from the Fubini-Study metric under inclusion, the symmetry group acts by
isometries.

When restricted to the real projective plane, this is a metric of constant
positive curvature. To visualize it, put the plane at z = 1 in ℝ3, then radially
project from the origin onto the upper hemisphere of the unit sphere. While this
is a very natural metric, it does not behave well under Euclidean translations.
Circles centered at the origin look round, but as they are translated they get
more and more distorted. Likewise, the complex circles centered at the origin
turns out to be round spheres, while other circles are not.

Examples: Any complex line is a sphere(!) with constant Gaussian curvature
2. The unit circle x2 + y2 − z2 = 0 has constant Gaussian curvature 1; it is
“round”. Likewise, the parabola y2 + 2xz = 0 and the hyperbola 2xy − z2 = 0
have constant Gaussian curvature 1; they too are“round.” Most conics are not
round, however, in this sense.
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Figure 6: Left: the curvature of the lemniscate Right: level curves.

There is a general formula for the Gaussian curvature at a nonsingular point
of an algebraic curve F (x, y, z) = 0, due to Linda Ness ([9]).

Theorem 5.1. Let C be an algebraic curve of degree d > 1 defined by the
homogeneous polynomial F (x, y, z). Let ∥ ∥ denote the usual norm in ℂ. The
Gaussian curvature at a nonsingular point p of C is given by

K(p) = 2− ∥p∥6 ∣HessianF ∣2
(d− 1)6 ∥gradF∥6 .

Now we can identify a lemniscate which has octahedral Riemannian symme-
try. One can check that the lemniscate (x2+y2)2−4(x2−y2)z2 = 0 is invariant
under the transformations of [x, y, z] given by the matrices:

S =

⎡
⎢⎣

1
2

i
2

i√
2

− i
2

1
2 − 1√

2

− i√
2

− 1√
2

0

⎤
⎥⎦ T =

⎡
⎢⎣
− 1

2
i
2 − i√

2
i
2

1
2

1√
2

− i√
2

1√
2

0

⎤
⎥⎦ ST =

⎡
⎣
0 i 0
i 0 0
0 0 −1

⎤
⎦ .

Note that S2 = T 3 = (ST )4 =Id, so these (unitary) matrices generate a
copy of the octahedral group. Parametrizing the lemniscate as in formula 1.1,
we can plot the Gaussian curvature in the complex t-plane; Figure 6 shows the
resulting plot. The five peaks, where the curvature is exactly 2, correspond to
five of the six vertices of the octahedron (the sixth being at t = ∞). Although
the vertices are singular points of the curve, we note that the curvature is finite
at such points. The curvature has eight minima, and these points together with
the six maxima give the vertices of a triangulation of the lemniscate as a tetrakis
hexahedron. Each triangle has one positively curved vertex and two negatively
curved vertices. The entire curve can be assembled from 24 congruent copies
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of this Riemannian triangle. Question: does this triangle embed in Euclidean
three-space?
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