THE RECTILINEAR CROSSING NUMBER OF CERTAIN
GRAPHS

DAVID A. SINGER

1. PROLOGUE

The attached paper was originally written in 1971, when the author was at
Cornell University. It grew out of discussions with Professor Herb Wilf of the
University of Pennsylvania, who brought the problem to the attention of the author.
Due to controversy at the time of its submission, it was never published, although
the results have been cited in various places over the years; see, e.g., [8]. See also
http://www.mathsoft.com/asolve/constant/crss/crss.html. Recently, the question
of the exact value of ¢(K1¢) was resolved [1] and other improvements to the results
in this paper were made [?]. In response to several requests in recent times, this
paper is now being made available to interested readers.
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ABSTRACT

The geometric character of rectilinear drawings of complete
‘graphs Kn 1s examined and estimates of the rectilinear crossing
numbers of such graphs are obtained. It is shown that thé recti-
-linear crossing number is distinct from the crossigg number at
least for the cases n = é and n = 10, thus verifying a conjecture
of F. Harary and A. Hill. 1In particular, E(K8) = 19 and
60 < E(Klo) { 63, the last inequality representing a new drawing
of KlO' Finally, a construction of a rectilinear drawing of Kn’

n large, is given and a new asymptotic upper bounds for E(Kn)/n4

is derived, namely 1imf€(Kn)/n4 { 5/312.
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If G 1is a graph, the crossing number c(G) is the minimum

number of crossings that occurs in a drawing of G 1in the plane

Rz. The rectilinear crossing number <¢(G) is the minimum number

- of crossings in a rectilinear drawing of G. .It’is immediate that

c(G) { c(@) for any graph G. In this paper, we will discuss the
'geometric nature of rectilinear drawings of G and describe some
estimates for ¢(G) in the case G = K,» the complete graph on n
vertices. In particular, we will show that c(Kh)'# E(Kn) at least

for n=8 and n = 10, and we give an estimate for Tim E(Kh)/nq.
oo n—>oo

‘Tﬁé.éutth wishes to thénk Professors Herbert_ﬁilf and

Albert Nijenhuis and Mr. Paul Vickers for many helpful discussions.

Definitions: i

A drawing of G 1is a map D:G > R2 such that no point in R
is the image of more than two points of G, which must not belong
- to the same edge of G and neither of which may be a vertex. A
point of R2 which is the image of two points of G is éalled a

_crdésing. k(D) 4is the number of cfossings of thevdrawing D.

A drawing is rectilinear if each edge of G is mapped linearly

to a straight line éegment. It is clear that every such drawing is

determined by its values at the'vertices of G.

If S is a set in .R2, the convex hull of S, denoted [S]

is the smallest convex.set containing S. For example, [pq] will
denote the line segment joining p to q.. S| will denote the
cardinality of S. If D is a drawing, a vertex of D is a point
dn R2 which is the image of a vertex of G. Edges of D are

defined similarly.
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Estimation Techniques for Crossings

In this section we consider a fixed rectilinear drawing D
of K . Let V Dbe the set of vertices of D. [V] 1is a convex
linear cell, and there is a unique subset A of V such that
[A] = [V] and every vertex of A 1is on the boundary of [V].
(Note that no three vertices are collinear.) Of the remaining
vertices, we may similarly choose B such that [B] = [WA] and
every vertex of B 1is on the boundary of [V\A]. Let C = VN(AUB).
Let |A|l =a, |B| =b, and |C| = c. We must have a » 3 and

at+b+c = n.

A set of points P c V 1is of type (p,q) if |P nA| = P

and |P| = p+q. Similarly, P is of type (p,r,s) if |P n A| = p;
P nBl =r and |P nc| = s.

We will be concerned with sets P with |P| = 4 and estimate
the number of such sets which must contribute crossings in the
drawing D.

Suppose P 1s a set of type (4,0). Then [P] must be a
quadrilateral and must therefore have a crossing.

If k(4,0) denotes the number of crossings of type (4,0)

then we have the formula
(1) k(4,0) = a(a-1)(a-2)(a-3)/2kL.

Next we consider sets P of type (3,1). Let v be a vertex

of VWA and Vi’vj vertices of A. Then the number of crossings

involving the edge [Vivj] and an edge [V Vv is determined by

]
counting the number of vertices of A which do not lie in the
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same side of [Vivj] as v. If we assume that v lies on the
"favorable" side of every edge [Vivj], it is easily seen that

the number of crossings is given by the formula:

ala-1)(a-3)/8 if a is odd

a(a—2)2/8 if a 1is even.

In fact, this minimum can be achieved by placing v 1in the
most central region of [A] if a 1is odd; if a 1is even, this
region is not unique due to the symmetric behavior of the main

diagonals of this polygon. [Figure 1]. In any event, we have the

inequality

(2) k(3,1) > |(n-a)a(a-1)(a-3)/8 if a is odd

(n—a)a(a—2)2/8 if a is even.

There are two ways a crossing of type (2.2) can arise: one
is if an edge of type (2,0) crosses an edge of type (0,2). However,
since no such crossings need occur, we have no lower bound for the
crossings of this type. To compute the crossings of two edges of
type (1,1), consider a polygon with a sides and two points v and
w 1Inside the polygon, each connected to the vertices of the polygon
by edges. We must determine how the stars of v and w inter-
sect, where the star of v means the edges emanating from v. It
can easily be shown that the minimum number of such crossings 1is
(a—l)g/M if a 1is odd or a(a-2)/4 if a is even. [Figure 2].

This gives the formula
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(3) k(2,2) > (a-l)2 (n-a)(n-a-1)/8 if a is odd

a(a-2)(n-a)(n-a-1)/8 if a is even.

Crossings of type (1,3) are the most complex type, and we
will only be able to give a partial analysis of them. First we
analyze the crossings of type (1,3,0). This problem may be
viewed in the following way: a convex cell [B] whose boundary
has b sides 1s contained in a convex cell [A] having a sides.
How many edges connecting a vertex of B +to a vertex of A nmust
pass through [B]?

By constructing examples one can see that if b = 3 there need
be no such edges, and thus there are no crossings of type (1,3,0).
For example, there 1s essentially one drawing of K6 for which

a =3 =Db and there are no crossings of type (1,3). (Figure 3).

Definition: Two triangles are concentric if the vertices of one 1lie

in the convex cell determined by the vertices of the other cell ahd
there are no crossings of type (1,3).

Now suppose b > 3. Suppose the drawing D minimizes the
number of edges of type (1,1) which pass through [B]. Then there
must be at least (b-3) such edges. For suppose three of the
vertices of B can be connected to the vertices of A Dby edges

none of which passes through [B]. Call them b,,b,,b,. There

1772”73

is a vertex al of A which lies on the same side of the line

through b2 and b3 as bl' Similarly choose as and a3. The



Figure la

Figure 1b
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Figure 2b
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six points bl,bg,b3 form concentric triangles, since

al:a2:a3)
no edge aibj passes through [B]. Now if by, is any other point
of B, 1t must lie in the annular region [alagaBP\[blb2b3], in
one of the three triangular regions bordering [blb2b3] (see
Figure 3). Then some edge [a;bu} crosses [B].

Suppose an edge of type (1,1) passes through [B]. Then it
must cross at least (b-2) edges of type (0,2) (and in general

many more). This yields the formula

(4) k(1,3,0) > (b-3)(b-2).

There are two types of crossings that arise from sets of
points of type (1,2,1). First, an edge of type (1,1,0) can cross
an edge of type (0,1,1). This will.occur whenever the edge of
type (1,1,0) passes through [B]. By the last argument, this

occurs at least (b-3) times, giving us an estimate:
(5) k(1,2,1); 2 (b-3)e.

The second type of crossing involves an edge of type (1,0,1)
and an edge of type (0,2,0). Given a vertex Cq of C, every
edge Joining cq to a vertex of A must intersect the boundary
of [B], giving at least one crossing. Suppose a4 and a, are
two vertices of A. Then the curve [alcl]U[cla2 partitions B
into Bl and B2, such that if bl is in Bl and b2 is in

the edge [blbg] crosses the curve and conversely, provided only

B2,

that [alcl] and [cla2] do not cross the same edge of the
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boundary of [B]. In that case the number of such crossings is
(B)(B,) 2 (b-1). Since there always exist vertices a; and a,

satisfying this condition, it follows that:

(6) k(1,2,1), > (atb - 3)c.

We will later see that for b > 4, this minimum is achieved
at the expense of minimizing crossings of type (0,4), for the
number of crossings of type (0,3,1) is minimized by "centralizing"
the inner vertex, while the opposite is true for crossings of
type (1,2,1).

Finally we consider crossings of type (1,1,2). There need not
be any crossings involving edges of types (1,1,0) and (0,0,2).

On the other hand, for every pairiof vertices of C, there

€1-¢2
must be at least two crossings of edges of type (1,0,1) and

(O,l,l). For there must be two vertices bl’b2 of B such that

cy € [bleCl . Now Cy, can not be joined to every vertex of A

by an edge which crosses [blbg]' Therefore, some edge [cgal]
crosses an edge [b cl]. Reversing the roles of cq and Co gives
the desired result.

(7) k(1,1,2) ) c(e-1).

All other types of crossings are included in the previous consider-
ations by deleting some of the vertices of D.
It must be noted that on the one hand, these estimates are crude,
but on the other hand, each one individually is the best possible,
since any one estimate may always be achieved.

Now using these estimates we derive some statements about E(Kn).
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Facts About Certain Minimal Drawings
Proposition 1: Up to symmetry, there are exactly three minimal

rectilinear drawings of K7a

Proof: Let D be a drawing, and A, B, C as in the previous section.
Then |A| = a = either 7, 6, 5, 4, or 3. Using Formulas (1), (2), and
(3), if a > 4 it follows that k(D) > 13. Therefore, we may assume

a = 3. Then k(4,0) = k(3,1) = 0, and k(2,2) = 6 exactly.

Suppose b = 4. Then k(0,4) = 1. By (4), k(1,3) > 2. Thus
k(D) » 9. Furthermore, in order to achieve the minimum k(1,8) = 2
and k(D) = 9, there must be two concentric triangles and the seventh
vertex must lie in one of the three triangular regions bordering the
inner triangle in Figure 3. Thus by symmetry there is a unique
minimal drawing with b = 4.

Suppose b = 3. Then k(0,4) =0 and k(1,2,1), =3 by (6).
Therefore, if k(D) =9, it follows that k(1,3,0) = O, which means
that A and B form concentric triangles, with the seventh vertex
in the interior of [B]. This can be done in exactly two ways: either
two crossings of type (1,2,1) can involve the same edge of the

triangle B, or each edge of B is involved in exactly one crossing. ||
Theorem 1: E(KB) =19 > C(KB) = 18.
Proof: Using Formulas (1), (2), and (3), we observe:
IF a =8, k(D) = 70.
IF a =7, k(D)
k(D)
IF a =5, k(D)
k(D)

(

N

35 + 21 + 0 = 56.

IF a = 6,

N

15 + 24 + 12 = 51,

N

5 4+ 15 + 12 = 32,

IF a = 4, 1 +8 + 12 = 21.

NV



Thus we may assume that a = 3. Now 3¢ b<{ 5. Using (3),

=5, then k(O0,4) =5 and k(1,3) > 6 by Formula (4),

If b
so k(D) > 21. ‘

If b =4, then using Formulas (1) and (2), k(0,4) = 3, and |
k(1,3,0) > 2 by Formula (4). By Formulas (5) and (6), k(1,2,1) > 5.

So k(D) » 20.
Thus in order to get no more than 19 crossings we must have

a =b =3, c =2. Now using Formulas (3), (6) and (7), we have

k(2,2) = 10, k(~1,2,1)2 =6, k(1,1,2) > 2,

and k(O0,4) = k(0,2,2) = 1. Therefore k(D) > 19, and equality will
occur if and only 1f A and B form concentric triangles and the
vertices of C are placed so as to minimize k{(1,1,2). 1In particular
c(¥g) = 19. since it is well known that c(Kg) = 18, the theorem is

proved.
Theorem 2: In a minimal rectilinear drawing of Ké’ a=>b=c= 3.

Proof: Using (1), (2), and (3) we see that in a drawing D if
ay 5, k(D) » 49.

Suppose a = 4. Then 3¢ b< 5. Using (1), (2), and (3)
k(4,0) = 1. k(3,1) = 10. k(2,2) > 20.

Suppose b = 5. Then k(0,4) =5. By (4), k(1,3) > 6.

Therefore, k(D) > L42.

Suppose b = 4. Then k(0,4) =3, k(1,3,0) > 2. By (5) and
(6), k(1,2,1) > 6. So again, k(D) > 42.
Finally, suppose b = 3. Then k(0,4) = 3, k(l,E,l)2 = 6, so

k(D) > 40.
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Consequently, we may assume that in a minimal rectilinear
drawing D, a = 3. Then k(2,2) = 15.

Suppose now b = 6. Then k(0,4) =15 and k(1,3) > 12 by (4).
Thus k(D) > 42. |

Suppose b = 5. Then using (1) and (2), k(0,4) = k(0,4,0) +k(0,3,1)
> 10. k(1,3,0) > 6, k(1,2,1) > 7 by (4), (5), and (6). Thus
k(D) > 38. o
Suppose b = 4. Then k(0,4) = k(0,4,0) + k(0,3,1) + k(0,2,2) > 7,
k(1,3,0) > 2, k(1,2,1) > 10, and k(1,1,2) > 2. Thus k(D) > 36.

Suppose k(D) = 36. In order to have k(0,2,2) = 2 there can
be no crossing involving edges of types (0,2,0) and (0,0,2). This
means that both vertices cq and Co of ¢ must lie in the same
quadrant of [B] determined by the diagonal edges of the quadrilateral.
Let bl and b2 be the unique points of B having the property
that [Clb 1, [Cle]’ [cgb ], and [c2b2] do not intersect the
diagonals of [B]. Now since k(D) = 36, k(l,2,l)2 = 8 exactly.

Therefore there are two vertices a of A such that

1 and 8y
[clal], [cla2],,[c2al] and [cgag] all intersect the edge [blbg]'
Assume without loss of generality that ¢y is not in [c2blb2]
(since otherwise c, 1is not in [clblbg])° Then [cqa,] and
[clag] must each cross either [Cgbl] or [cgbg], But this would
imply (see the derivation of (7)) that x(1,1,2) > 3 and k(D) > 36,

which is a contradiction.

Thus we can conclude that a = b = ¢ = 3.

Remark: There are many different minimal drawings of Ké, and it 1is
not true that the three triangles A, B and C need be pairwise

concentric. However, we can show the following:
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Addendqm: In any minimal drawing of K9, the outer two triangles

are concentric.

Proof: The statement of the addendum is equivalent to ﬁhe foilowing:
If. D is a minimal drawing of KQ’ a, any point of A, then
[V\{a }] is bounded by a triangle.
Let the vertlces of A be 8158552 32 those of B De bl,bg,b3.
Let V\{a } = v*; replacing V with V* we may define sets
A*, B¥, and C*. The notation (p,q)* will mean P points chosen
from A* and g from B*. Now we apply our estimation techniques
to the drawing of K8 with vertices V* 1in order to compute k(D).
Stuppose  |A*| =5; i.e., A* = {ae,a3,bl,b2,b3}. Then A* forms
a convex pentagon and B* = C a triangle. Furthermore, since the
vertices of B* 1lie in [bl,bg,b3], no point of B* 1lies in the
"central" region of [A*]. Thus k(3,1)* > 18 instead of 15.
k(4,0)* =5, k(2,2)* > 12. Since every edge [a,C4] crosses the
boundary of [B*], k(D) > 38. Therefore [A*| # 5.

Suppose [A¥| = L4; i.e., A* = {a }. Then x(4,0)* =1,

3’ 3
k(3,1)* = 8 and k(2,2)* > 12. 1f [B*| = 4, then k(1,3)* > 2 and
E(O,4)r = 1. 1r [B¥| = 3, then |c¥| =1 and k(1,2,1)% ) k.

Thus the nuﬂber of crossings in D not involving aq 1s at least
2. FEach edge [alv], v in B* or C*, crosses a boundary edge of
[A*], accounting for &4 crossings. Now we show that there are at

- least 9 crossings not counted. We consider two cases, depending on

whether or not [albl] crosses [b, b3]. [Figure 4.]
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Suppose s0; let v and w be any two vertices among

{b1’°1’°2’°3}' Since ¢15CnsC3 lie in the triangle B, we know
that [alv] and [alw] cross [b2 b3]. Now the configuration of
[A* U {v,w}] is either that displayed in Figure 2b or in Figure 2c.
in the former case, either [élv] crosses two edges of the form
A[a*w],va* a vertex of A*, or [alw] crosses two edges of the form
[a*v], or one crossing of each of these two types occurs. In the
latter casé, either [alv] crosses one edge [a*w] or [alw]
crosses an edge [a*v]. Also in the latter case, there is a croésing
of type (2,2)* not counted in our estimate of k(2,2)*. Thus
éﬁe}y pair {v,w} gives two crossings not counted. This gives 12
néﬁ-cfdésingé in all. |

f.iSuppose [albl]‘ does not cross [b2b3]. [Figure 4b.] Assume
w.1.0.g. that [aibl] crosses [ab,]. If v and w are as in
the last péragfaph, then there érettwo uncounted érossings involving
| %hem (jointly) prbvided [a;v] and [a;w] Doth cross [a2b2] or
5éfh cross [b2b3]. If however they cross different edges, analysis
. gimilar to that in the last paragréph yields only one new crossing.
Of the six pairs in {bl’cl’02’03}’ at least two can be found in whiech
the edges [alv]_ and [alw] both cross [b2b3] or both cross
[aebz]. Therefore, at least 8 new crossings have been found. We need
only Worry_further 1f exactly two such'pairs oceur. But in that case,
1efi,x and y be chosen from {bl,cl,c2,03} S0 tﬁat [alx] crosses

[b2b3] and '[aly] crosses [agb Then the loop

2]'
[a;x] U [xy] U [a,¥y] must cut the edge [bn.a.], giving one more
1 1 . 273

crossing not yet counted. This completes the proof of the addendum. ||
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Theorem 3: 60 ¢ EKKiO) < 63.

Proof: There is a recdhilinear drawing of Kid with 62 crossings,

constructed in the following way: Arrange nine points a a

1’ 27 83
bl’ b2, b3, Cqys c2, c3 in three pairwise concentric triangles A, B,
. C, with vertices having the same subscript close together (thus ass
bi’ c;. are almost collinear). .Arrange further that the edges

alcl and a2c2 do not cross blbz’ Then a tenth vertex is placed
outside the triangle [C] close to the barycenter of the edge
[clcg]; it can be joiﬁed to the other nine vertices adding only‘26.
crossings to the 36 already given.' [Figure 5.] This drawing provides
-a clear warning about the asymmetric nature of mihimal rectilinear
drawings.. | B | | |

. Suppose some drawing of KiO had 60 crossings. Since

E(Kg) = 36, it follows that deleting any one vertex leaves at least
36 crossings. Since thé average number of crossings deleted is

60 x 4/10 = 2, it follows that deleting any vertex would leave a
minimal drawing of Ké. By Theoremve, any such drawing 1ooks like a
triangle enclosing a triangle. In order for ten points to have such
a pfoperty, they would have to be érranged in three trianglgs A,
B, and C with 'A and B concentric and B anc € concentric.
The tenth point v would have.ﬁo be in the region [C] or in one of
thé three triangular regions bordering [C] ({es in Figure 3). Now
there are 36 or more crossings involving the first-nine points; 6
cressings of type (2,2) involving v; 6 crossings of type (o,4)
involving v. If v is in ¢ there are at least 12 crossings of
"type (1,3) involvihg edges [ai v], a, in A. If v isnot in

C there are at least 11 such crossings. Finally, for each vertex

Cy of C +there is a vertex bj of B and a vertex g of A
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such that [bj v] crossed [ak ci]. Thus there are at least 62

crossings in any such drawing, contrary to the assumption. Il

This proof is very close to showing that E(Klo) = 62. By the
same method used in the addendum to Theorem 2, it can be shown that
A and B are concentric in any minimal drawing of Kio. However,
if B and C are not concentric the above arguments do not work.
Since minimal dréwings of Ky exist in which B and C are not

= 62.

concentric, it is not obvious that E(Klo)
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Asymptotic Behavior
We present here a construction of a rectilinear drawing of
Kn’ n = 3k which has the property that, among all constructions
using concentric triangles, it minimizes the number of crossings.

Usging these drawings, we prove
N Lo,
Theorem 4. 1im C(Kn)/ﬂ { 5/312.

That this limit is known to exists follows without modification
from the proof that 1lim c(Kn)/nLL exists; this may be found in [2].

2 for n = 3q, for which

We will give a drawing D,: Kﬁ - B
the sequence k(Dn)/n4 converges to 5/312.

Assume inductively that Dr has been constructed for r = 3q—l.
(Induction begins at q = 1). n = 3r. The vertices orf Dn will be
partitioned into sets Sl’Sg’ and 83 with ISi] = r.

By an affine transformation of R2, we may assume that Dr
takes Kr to thelupper half plane with no two vertices of Dr
having the same y-coordinate. The linear transformation

(x,y) » (ex,y) for e suitably - small takes D to a drawing having

two essential properties:
1) the new drawing has the same number of crossing as Dr’
2) although no three vertices are collinear, the set of vertices

is almost collinear; that is, the line determined by any
two vertices is almost parallel to the y-axis.

Construct D3r by arranging three copies of the above drawing,
one "along" each of the half lines § =0, § = 2r/3, and § = L /3

(polar cocrdinates). The vertices of Sl are near the line

8 = 2r/3, etc. If two vertices are chosen in, say, S the line

l)
through them separates § from S

2 3"
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If two vertices are chosen from each set Si’ the six points
form two concentric triangles. The standard drawings of K6 and
K9 have this property.

Now we compute k(D3r)' Suppose P 1is a set of vertices with
|P| = 4. 1If there is at least one point from each set S;, there is
no crossing. Suppose two points are chosen from each of two sets.
Then there is always a crossing. There are 3(;)2 such crossings.

Suppose three points are chosen from one set Si' Then choosing
the fourth point from another set will either always give a crossing
Oor never give a crossing, depending on which side of the line spanned

.by the.inner and outer points the middle point of the three lines.
Thus there are 3r(§) crossings of this type.
Finally, there are 3K(Dr) crossings arising from choosing four

points from the same set Sic We have

k(DBr) = 12 (r-1) (5r-7) /b + 3k(D,) S

li

5/6 ¢+ Q(r) + 3k(D,)

where Q 1is a polynomial of degree 3.

n

Let b = k(Dr) - Br'/312 (r a power of 3).
Then "
by -3b, = k(D )-3k(D,) -5.81/312 ¢
+ 5.3/312 I‘LL

= 5/4 o + Q(r) -5/ =

= a(r)
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Thus we have the relations

k(Dr) = br + 5/312 rLL r a power of 3.
(9) k(D3) =0
b3r 3br = Q(r)
It can then easily be shown that lirnn_>oo br/rLL = 0 and thus

. 4 _
lim k(Dr)/r = 5/312.

In fact, one can easily solve the difference equations (9) to get

(10) k(D ) = 1/312 (EnLL ~39n3-+91n2 -57n). ]

The construction above may weil be a minimal arawing for n a
power of 3. It 1s reasonable to believe that a minimal drawing of
Kn utilizes concentric triangles, and among drawings of K r a8 a
family of pairwise-~concentric triangles the above drawing iz optimal.
If n 1is not a power of 3 it is‘likely that this technique will not
work to give an QXplidit construction. We summarize then with two

conjectures:

Conjecture 1: E(Kn) = l/312(5nu -39n3 +9ln2 -57n), for n

a power of 3.

Conjecture 2: JL,i_m"c‘(Kn)/nLL = 5/132 > 1lim C(Kn)/na.

Conjecture 1 implies Conjecture 2 by Theorem 4. Conjecture 2
might be verified independently by showing that for large n there
is a minimal drawing of Krl which employs concentric triangles except
for allsmall number of points which may be anywhere. The addendum to
Theorem 2 suggests that this may happenvéven if the drawings

‘described are not minimal.
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