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Classical Bernoulli-Euler Elastica

Consider regular curves
~v i [ay,as) — R3 "\’H =0

Assume (geodesic) curvature k #= 0

The Frenet frame {1, N, B} is orthonormal and

satisfies

v=oI' T'"=kN N =—-kI'+rB B'=-7N

The elastica minimizes the bending energy
F(\) == / ,’.'Qrf.x'

With fixed length and boundary conditions.

Bending Energy Functionals

Let
Q = {y|y(ai) = a;,7'(a1) = 0, }

Qy = {AJ' = Q| ﬁff = 1}
FA:Q — R is defined by
N 17 1|2 [ 2
FNy) = 2/ I+ A (] - 1)“’”

Lagrange multiplier principle says a minimum
of F on €, is a stationary point for F for some
A(s). (A(s) is a pointwise multiplier, constrain-

ing speed.)




Deriving the Euler Equations

If W is a vector field along ~

- ‘:) 4
OFMNW) = :) FMy 4+ eW)|=o
[

0= ;;F /12 v 4+ ew)|* + A<y 4+ ewy||* s
= /02 AW N(s)y - W ds
ay

Integrating by parts, 0 =

f W (A Wds 4 (W A W)
4 1 -

@y

Integrating by parts, 0 =

o as
[ _'_:r__fff i l"f _ (A'_:f)f Ws + (';.-‘H . l"f + Ap:r__-l’ W )'
Jaq a]

(] > -
= [Tl =] wds +O" W (A =) W)
Sl

an
ay

as

= [ BG) - Wds+ (- W'+ (A =) - W)
J

ay

where E(y) =~+"" — ;—I(Aﬂ,")
as




The Euler-Lagrange Equations

The elastica must satisfy

i(/\«;’) =0

E(y) =" -
ds

for some function A(s).
Integrating,
V"= N(s)y = J

for .J a constant vector.

0= ["BG) Wds+ 6" W + (A =7 W)
lul

aj 1

This can also be derived from Noether's Theo-
rem: If ~ is a solution curve and W is an infin-
itesimal symmetry, then - W/ 4+ (A~ —~"") . W
is constant. Letting W range over all transla-
tions (i.e. W is constant), we get

/\"," - 'j.m e,

for C' some constant field.

A" N(s)y =

1) 1]
0= [ E() - Wds+ ("W = J-W)
Jaq aq




Use the Frenet Equations

''=T,4" = kN,~" = —k?T + k'N + k7B, so

N
V" — N(s)Y = (=k% = A(s))T + KN +krB=J

Differentiate J to get 0 = J' =
(=3kk" — AT+ (K" =k3~Ak—kr2) N+(k7'+2k'T) B

I

From this it follows that A(s) = _%;,2 +

for some constant A.

J(s) = ¥SAT 4 W'N + k7B

The Vector field J(s) = *‘32—'\'1‘+ K'N + kTB is
constant along the curve. Thus it is the re-
striction of a translation field to the curve.

From J' = 0 we get the equations

and
k' 4+ 2k =0




Use Rotational Symmetry

o

il
0= / E() - Wds+ (" - W' —J.W)
a1

ay

If W is a symmetry, we have

A" W' —J-W = constant

Now let W be the restriction of a rotation field:

W=~xWy Wj=0

kN -T x Wo — J -~ x Wo = const

(kN x T —J x )Wy = const

(EN xT —.J x~)-Wy = const
Since this works for any Wy, we get

EB+Jx~y=A

for A a constant vector. So the vector field

I=kB=A+vxJ

is the restriction of an isometry to the curve.




Killing Fields

A Killing field along a curve is a vector field
along the curve which is the restriction of an
infinitesimal isometry of the ambient space. If
~ is an elastica in R3, then we have two Killing
fields along ~:

J(s) = AT 4 1'N + krB
and

I=kB=A+~%xJ

where A and J are constant fields.

Conserved Quantities
Rr=1-J=A-J=c
is constant, as is
411J)1% = (k2 = X)? + 4K"? 4 4k?72 = o?
Eliminating 7 and replacing k2 by wu:
(u')2 N 402 _ .2
)

L uw

(u—N)?%+
or
('u.")g = P(u)

for P a cubic polynomial.




Solving this differential equation gives

With sn(x,p) the elliptic sine with parameter
p, and with p,w, and kg parameters. 0 <p<w <1

The parameters p,w, and kg are related to the
constants A and ¢ by

k2
2\ = %(3::'2 —p2—1)
w

k
4(‘.2 =

.6
= -0(1 —w?)(w? —p3)
e

Planar Elastic Curves

k6
k?r =¢ 4c? = u_%(l - “"2)(“"2 - 1)2)

A planar curve has 7 = 0, so ¢ = 0. Thus
either w = 1 or w = p. The parameter kq
determines the maximum curvature.

L o
When w = p, k2 = kg (1 —sn? (2_5;“ -+ é.p))
so k= kgcn (g?}.‘n‘ + 4, -p)

The curvature oscillates between —kg and +kg.
We call such a curve a "wavelike" elastica.




e

"wavelike'" elastica

When w =1, k? = Fs:g (1 —p2sn? (égs + 4, g)))

so k = kg dn (g—}:;s + 4, p) (elliptic delta), and k is
nonvanishing. We call such a curve “orbitlike" .

The borderline case, p = w = 1, has nonperi-
odic curvature:




Cylindrical Coordinates

Choose coordinates in R3 so that

0 0
J=|0], A=1|0|,b=0
. b

The second equation is achieved by replacing
~ by v — B for some B (translation).

Since I =~ x J+ A, we have

e=1-0=A.0="2
2

I—uJ:I—A:ﬁ.-xJ
JoJ

We have the coordinate fields

2
Oz =-J
L
2 2 4
90 = "y x J="(1-"50)
a a a
. dz x 00 Jx B
dr = =
|0z x 96| — |7 x B

Writing T = % or 4+ %292 4+ %90, we get

dr . dz - df T .00
=1T-0r =T 0z =
ds ds ds  ||ag]|?

and the equations for 4 can be integrated ex-
plicitly.
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The equation for r is
(f"-" . 2-17.'-; . 2;\:;1'3
ds \[ak2 + (K2 - N2 /K22 - 42

This integrates to r = rg + %\Hn?k? — 402

So r has the same periodicity and critical points
as k. The elastica lies between two concentric
cylinders (the inner one perhaps degenerating
to a line) around the z - axis. the maxima of
the curvature occur on the outer cvlinder and
the minima on the inner cylinder.

In the 2-dimensional case (¢ = 0), the curve
lies in a strip parallel to the z — axis. In this
case the formula for r, the distance from the
axis, simplifies to

r~r‘0=;

Non-planar elastic curves

The non-planar solutions satisfy 0 < p < w < 1.
For p = 0 we get

k= !'\'0
the helices.

In other cases, 0 < k < kg and the curve has
nonvanishing curvature and torsion.

When is the curve closed? Its curvature is al-
ways periodic, except for straight lines and the
borderline elastic curves (p = 1). We need the
coordinates of v to be periodic.
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A little bit of elliptic integrals

The complete elliptic integrals E(p) and K(p)
are given by:

5 1
K(p) = / ‘ do
J0 \jl—yjrzSir'IQ(,-’)

and

E(p) = /Oj \/1 — p?sin? ¢ do

The elliptic function sn(x,p) is an odd func-
tion with sn(z 4+ 2K (p).p) = —sn(z.p). So the
curvature of an elastica is periodic with period
4wk (p)/kg.

If Az and A#@ represent the change in z and @
over one period of k, then ~ is a smooth closed

curve if and only if Az = 0 and A# is rationally
related to 2.

K (p) K (p)

; (92, T)ds = / oM (k2 — A)ds
Jo

The closure condition may be written:

E
A::=O<:>-l—|—rt'2—p2—2 _(P) =0
K(p)

There is one closed planar curve (besides the
circle): It requires

w=p 2E(p)=K(p) = p=~ .82

12



The Figure-Eight elastica

Finding Closed Curves

The second condition for closure is that the
¢ coordinate be periodic. Let Af denote the
increase in the # coordinate in one period of
the curvature function. Then it is necessary
that A# be a rational multiple of 2.

Theorem. (L - S., 1983) A# is monotoni-
cally decreasing from =« to 0 along Az = 0.
Thus there are infinitely many closed elastic
curves which are nonplanar. All such elastica
are embedded, lie on embedded tori of revo-
lution, and represent (m,n) - torus knots, one
for each m > 2n.

13
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"Closed Elastic Curves and
Rods

Il: Elastica in a Space Form




Riemannian Geometry

M is a smooth Riemannian manifold

metric g(X,Y) =< X,Y > covariant derivative VY

For vector fields X and Y

VxY -VyX=[X,Y]=XY -YX

Ex: If X =4, and Y = :% in local coordi-
nates, then
‘) () 73
VxY —VyX = = - 0= |—,z—
’ dy dr dy

The curvature tensor R is given by

R(X,Y)Z =VxVyZ -VyVxZ-Vxy|Z

Curves in M

~(t) is an immersed curve in M with velocity
vector V =T and squared curvature

K = ||V7T||?

For a family of curves ~u,(t) = ~(w,t) we will
write
1')'_\.
W = W(w,t) = il

ow

)~y
V(w,t) = ({H = v(w, )T (w,t)

(So V is velocity and v is speed)

15



Some Useful Formulas
1. 0= [W,V] = [W,eT]) = W()T + v[W, T]
So W, T] = W = g1
2. 20W(v) = W(v2) =2(VwV.V)
=2(VyW, V) =202 (VyW, T)
So W(v) = —gv, g= — (VpW.T)

3. W(k?) = 2(VyVrW, ViT)
+ 4gk? + 2 (R(W, T)T,VoT)

Proof of (3)

W (k?) = 2 (Vy VyT, ViT)
=2(VypVwT + VT + ROW.T)T, V7 T)
=2 (v-j-v]-n' + V(gT) + VgrT
+R(W,T)T, VyT)
= 2(VpVpW, VyT) 4 2 (R(W, T)T, VT)
+4g (VpT, VT)

R(X,Y)Z =VxVyZ -VyVxZ -Vixy|Z

16



~:[0,1] — M is a curve of length L. Now for
fixed constant A let

1 L 1 L
F\y) = = [0 k? + Ads = = ([O k2ds + AL)

Ll i
=2 [ UV2TI? + o)
2.Jo
For a variation =, with variation field W we
compute
d

dw

1
Fow) =5 [ W) = (2 + Ngds

1
= fo (Ve W, VT + 2gk2

1
+ (R(W, T)T, V4 T) — 2(&-2 + N)gds

Now integrate by parts, using g = — (Vo W, T)

{ 1
CFN ) = f (VoY W, VpT) — (YW, 2k2T)
dw 0

+ (R(W, T)T,VT) + % (Vo W, (k2 + \)T) ds

= L "B Wy ds
+ [(V—;‘I-i-"’. VoT) + (W, —(V7)T? + AT)] é
where
E = (V)3T — Vo (AT)+R(V4T. T)T

A —3k2
A=" 2
2

and
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When M is a manifold of constant sectional
curvature &, the formula for £ can be simpli-
fied to

E = (V)3T — Vp(AGT)

where

A—20 — 3k2
Ng=—"—F"—
2

\—2G — 3k2
E=Vyp (V;-k-N - “.-*‘)

Euler-Lagrange Equations

A\ —2G — 3k2
FE = V; (V’;‘L:;\" — ’ )

1
2

k2 — X+ 2G
—v, ( 2+ :

I'+ keN + kT B)

_ 2kss + k2 — Mk + 2Gk — kT

5 N+ (2kst+k7e)B

The equation E = 0 for the elastica becomes:

2kes + k3 — N +2Gk —kt2=0 and 2kt +krs=0




ks + k2> =M +2Gk— k=0 and

2kst + k1 =0

The second equation integrates to

k2T = ¢

Eliminating = from the first equation and inte-

grating:

2

k4 A c
k24— + (G- Dk +
e + ( 2) 2

=A

Letting u = k2 this becomes

A
u? 4+ ud +4(G - 5)142 —4Au+ 4 =0

Solutions

1. u = k2=constant, r=constant

2. k= ko sech(50s),7=0

(11

3. k=kgcn (%sp) . 7T=20

4. k=kodn (5%s,p).7=0

2 2_ 3.2
where 4G — 2\ = £0(1+£2 2

and 0 <p<w<1
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Killing Fields

Prop.: Let M be a (simply-connected) mani-
fold with constant sectional curvature ¢, and
let v be an elastica in M. Then the vectorfields
J = *'22 AT+ kN +4krB and [ = kB along ~ ex-
tend to Killing fields (infinitesimal isometries)
on M.

Idea of proof: Verify that when W = I or
W = .J, then W preserves arclength parame-
ter, curvature, and torsion of ~. For arclength,
one checks that (VyW,T) = 0. For curvature,
use the formula for W (k). For torsion, use the
formula:

k.

H"'(Tz) =2 <%(vr)3n_' _ A_S(VT)QH_F

(_,' " !\'_q i
(I 4 ;‘-) VW — 5GW, TB>
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Elastica on the 2-sphere

The Killing field J = A7 4+ kN is the re-
striction to ~ of a rotation field. By choosing
coordinates =,y of longitude and latitude on

the sphere, we may assume that

)
.L = a.J
Ox

where a is a constant chosen so that .J has unit
length on the equator.

(!cQ -A)

J|%2 =
11 -

2 22
+k2=A+ 4 Gk?

;'.4 A o2
e (G- = A
R SR L LS B

(K2 - X))
4
The norm of J is maximized where &k is mini-
mized. So if k = kgcn (é'g,.s,p), then k vanishes
at the maxima. Since (N,J) = ks &= 0 when
k = 0, the curve ~ is transverse to the coor-
dinate curves y = const. at these points. It
follows that the curve is crossing the equato-
rial curve y = 0 at the inflection points. The

2 )\2
17?2 = +k2=A+ o Gk?

L. . . 2
normalizing constant a is precisely \/A - AT'

Theorem. If v is a wavelike elastica on a
two-dimensional space-form, then the inflec-
tion points of v all lie on a geodesic (the “axis"
of the curve).

21



Wavelike elastic curves on the

Classifying wavelike elastic curves
on the sphere

The wavelength A of an elastica is the amount
of progress it makes along its axis in one com-
plete period of k, as measured by arclength
along the geodesic.
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Alp) _ enAg(¥,p) (4G —4Gp® — 1) /1 — (1 - p’) sin’ ¥ sin ¥K(p)

2 VG 26 -1))/G

where K(p) is the complete elliptic integral of the first kind, A ('Y, p) is the Heumann
lambda function, and ¥ and ¢ are given by

sin ¥ = 2)/4G* — 2GL /1 — 2p*/[4G(1 — p*) — 4],

e — (G — NAGH — 1.
= . P~ 1

Theorem. (L-S, 1987) Let X be a fixed con-
stant with 0 < ?,G. Then for each pair of pos-
itive integers m.,n with

m <1 \/ﬁ

2n VAG — 2A
there is a unique elastica ’}'?}e.n (up to congru-
ence) which closes up in n periods while cross-
ing the equator m times.
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