

Acknowledgements

- Joel Langer, Case Western Reserve Univ.
- Manuel Barros, Univ. of Granada, Spain
- Oscar Garay, Univ. del Pais Vasco, Spain
- Rongpei Huang, East China Normal Univ.
- Thomas Ivey, College of Charleston, S.C.
- Vel Jurdjevic, University of Toronto, Canada
- Anders Linner, Northern Illinois Univ.
- Daniel Steinberg, Dim Sum Thinking

Classical Bernoulli-Euler Elastica Consider regular curves $\gamma : [a_1, a_2] \longrightarrow \mathbb{R}^3 \quad \|\gamma'\| \neq 0$ Assume (geodesic) curvature $k \neq 0$ The Frenet frame $\{T, N, B\}$ is orthonormal and satisfies $\gamma' = vT \quad T' = kN \quad N' = -kT + \tau B \quad B' = -\tau N$ The elastica minimizes the bending energy $\mathcal{F}(X) = \int_{\Gamma} k^2 ds$

With fixed length and boundary conditions.

Integrating by parts,
$$0 =$$

$$\int_{a_1}^{a_2} -\gamma''' \cdot W' - (\Lambda\gamma')' \cdot W ds + (\gamma'' \cdot W' + \Lambda\gamma' \cdot W)\Big|_{a_1}^{a_2}$$

$$= \int_{a_1}^{a_2} \left[\gamma'''' - (\Lambda\gamma')'\right] \cdot W ds + (\gamma'' \cdot W' + (\Lambda\gamma' - \gamma''') \cdot W)\Big|_{a_1}^{a_2}$$

$$= \int_{a_1}^{a_2} E(\gamma) \cdot W ds + (\gamma'' \cdot W' + (\Lambda\gamma' - \gamma''') \cdot W)\Big|_{a_1}^{a_2}$$
where $E(\gamma) = \gamma'''' - \frac{d}{ds}(\Lambda\gamma')$

$$0 = \int_{a_1}^{a_2} E(\gamma) \cdot W ds + (\gamma'' \cdot W' + (\Lambda \gamma' - \gamma''') \cdot W) \Big|_{a_1}^{a_2}$$

This can also be derived from Nöether's Theorem: If γ is a solution curve and W is an infinitesimal symmetry, then $\gamma'' \cdot W' + (\Lambda \gamma' - \gamma''') \cdot W$ is constant. Letting W range over all translations (i.e. W is constant), we get
 $\Lambda \gamma' - \gamma''' = C$
for C some constant field.
 $\gamma''' - \Lambda(s)\gamma' \equiv J$
 $0 = \int_{a_1}^{a_2} E(\gamma) \cdot W ds + (\gamma'' \cdot W' - J \cdot W) \Big|_{a_1}^{a_2}$

Use the Frenet Equations $\gamma' = T, \gamma'' = kN, \gamma''' = -k^2T + k'N + k\tau B$, so $\gamma''' - \Lambda(s)\gamma' = (-k^2 - \Lambda(s))T + k'N + k\tau B = J$ Differentiate J to get 0 = J' = $(-3kk' - \Lambda')T + (k'' - k^3 - \Lambda k - k\tau^2)N + (k\tau' + 2k'\tau)B$ From this it follows that $\Lambda(s) = -\frac{3}{2}k^2 + \frac{\lambda}{2}$ for some constant λ . $J(s) = \frac{k^2 - \lambda}{2}T + k'N + k\tau B$

The Vector field $J(s) = \frac{k^2 - \lambda}{2}T + k'N + k\tau B$ is constant along the curve. Thus it is the restriction of a translation field to the curve. From J' = 0 we get the equations $k'' + \frac{1}{2}k^3 - k\tau^2 - \frac{\lambda k}{2} = 0$ and $k\tau' + 2k'\tau = 0$

Use Rotational Symmetry

$$0 = \int_{a_1}^{a_2} E(\gamma) \cdot W ds + (\gamma'' \cdot W' - J \cdot W) \Big|_{a_1}^{a_2}$$

If W is a symmetry, we have

 $\gamma''\cdot W'-J\cdot W={\rm constant}$ Now let W be the restriction of a rotation field: $W=\gamma\times W_0,\quad W_0'=0$

 $kN \cdot T \times W_0 - J \cdot \gamma \times W_0 = \text{const}$

 $(kN \times T - J \times \gamma) \cdot W_0 = \text{const}$

 $(kN\times T-J\times\gamma)\cdot W_0={\rm const}$ Since this works for any $W_0,$ we get $kB+J\times\gamma=A$ for A a constant vector. So the vector field

$I = kB = A + \gamma \times J$

is the restriction of an isometry to the curve.

Killing Fields A Killing field along a curve is a vector field along the curve which is the restriction of an infinitesimal isometry of the ambient space. If γ is an elastic along π^3 , then we have two Killing fields along γ : $J(s) = \frac{k^2 - \lambda}{2}T + k'N + k\tau B$ and $I = kB = A + \gamma \times J$ where A and J are constant fields.

Solving this differential equation gives $k^{2} = u = k_{0}^{2} \left(1 - \frac{p^{2}}{w^{2}} \operatorname{sn}^{2} \left(\frac{k_{0}}{2w} s + \delta, p \right) \right) \ k^{2}\tau = c$ With sn(x, p) the elliptic sine with parameter p, and with p, w, and k_{0} parameters. $0 \le p \le w \le 1$ The parameters p, w, and k_{0} are related to the constants λ and c by

$$2\lambda = \frac{k_0^2}{w^2} (3w^2 - p^2 - 1)$$
$$4c^2 = \frac{k_0^6}{w^4} (1 - w^2) (w^2 - p^2)$$

Planar Elastic Curves $k^2 \tau = c$ $4c^2 = \frac{k_0^0}{w^4}(1-w^2)(w^2-p^2)$ A planar curve has $\tau = 0$, so c = 0. Thus either w = 1 or w = p. The parameter k_0 determines the maximum curvature. When w = p, $k^2 = k_0^2 (1 - \operatorname{sn}^2 \left(\frac{k_0}{2p}s + \delta, p\right))$ so $k = k_0 \operatorname{cn} \left(\frac{k_0}{2p}s + \delta, p\right)$ The curvature oscillates between $-k_0$ and $+k_0$. We call such a curve a "wavelike" elastica.

Cylindrical Coordinates
Choose coordinates in
$$\mathbb{R}^3$$
 so that
 $J = \begin{pmatrix} 0 \\ 0 \\ \frac{a}{2} \end{pmatrix}, \quad A = \begin{pmatrix} 0 \\ 0 \\ b \end{pmatrix}, b \ge 0$
The second equation is achieved by replacing
 γ by $\gamma - B$ for some B (translation).
Since $I = \gamma \times J + A$, we have
 $c = I \cdot J = A \cdot J = \frac{ab}{2}$
 $I - \frac{I \cdot J}{J \cdot J}J = I - A = \gamma \times J$

We have the coordinate fields

$$\partial z = \frac{2}{a}J$$

$$\partial \theta = \frac{2}{a}\gamma \times J = \frac{2}{a}(I - \frac{4c}{a^2}J)$$

$$\partial r = \frac{\partial z \times \partial \theta}{\|\partial z \times \partial \theta\|} = \frac{J \times B}{\|J \times B\|}$$
Writing $T = \frac{dr}{ds}\partial r + \frac{ds}{ds}\partial z + \frac{d\theta}{ds}\partial \theta$, we get
$$\frac{dr}{ds} = T \cdot \partial r \quad \frac{dz}{ds} = T \cdot \partial z \quad \frac{d\theta}{ds} = \frac{T \cdot \partial \theta}{\|\partial \theta\|^2}$$
and the equations for γ can be integrated explicitly.

The equation for r is $\frac{dr}{ds} = \frac{2k_s}{\sqrt{4k_s^2 + (k^2 - \lambda)^2}} = \frac{2kk_s}{\sqrt{k^2a^2 - 4c^2}}$ This integrates to $r = r_0 + \frac{2}{a^2}\sqrt{a^2k^2 - 4c^2}$ So r has the same periodicity and critical points as k. The elastica lies between two concentric cylinders (the inner one perhaps degenerating

to a line) around the z - axis. the maxima of the curvature occur on the outer cylinder and the minima on the inner cylinder.

In the 2-dimensional case (c = 0), the curve lies in a strip parallel to the z - axis. In this case the formula for r, the distance from the axis, simplifies to

 $r-r_0=\frac{k}{a}$

If $\triangle z$ and $\triangle \theta$ represent the change in z and θ over one period of k, then γ is a smooth closed curve if and only if $\triangle z = 0$ and $\triangle \theta$ is rationally related to 2π .

$$\Delta z = \int_0^{\frac{4w}{k_0}K(p)} \langle \partial z, T \rangle \, ds = \int_0^{\frac{4w}{k_0}K(p)} (k^2 - \lambda) ds$$

The closure condition may be written:

$$\Delta z = 0 \iff 1 + w^2 - p^2 - 2\frac{E(p)}{K(p)} = 0$$

There is one closed planar curve (besides the circle): It requires

$$w = p \quad 2E(p) = K(p) \iff p \approx .82$$

Finding Closed Curves

The second condition for closure is that the θ coordinate be periodic. Let $\Delta \theta$ denote the increase in the θ coordinate in one period of the curvature function. Then it is necessary that $\Delta \theta$ be a rational multiple of 2π .

Theorem. (L - S., 1983) $\triangle \theta$ is monotonically decreasing from π to 0 along $\triangle z = 0$. Thus there are infinitely many closed elastic curves which are nonplanar. All such elastica are embedded, lie on embedded tori of revolution, and represent (m, n) - torus knots, one for each m > 2n.

Riemannian Geometry

 $M \text{ is a smooth Riemannian manifold} \\ \text{metric } g(X,Y) = < X,Y > \qquad \text{covariant derivative } \nabla_X Y$

For vector fields
$$\boldsymbol{X}$$
 and \boldsymbol{Y}

$$\nabla_X Y - \nabla_Y X = [X, Y] = XY - YX$$

Ex: If $X=\frac{\partial}{\partial x},$ and $Y=x\frac{\partial}{\partial y}$ in local coordinates, then

$$\nabla_X Y - \nabla_Y X = \frac{\partial}{\partial y} - 0 = \left[\frac{\partial}{\partial x}, x \frac{\partial}{\partial y}\right]$$

The curvature tensor ${\boldsymbol R}$ is given by

 $R(X,Y)Z = \nabla_X \nabla_Y Z - \nabla_Y \nabla_X Z - \nabla_{[X,Y]} Z$

Curves in M

 $\gamma(t)$ is an immersed curve in M with velocity vector V=vT and squared curvature

$$k^2 = \|\nabla_T T\|^2$$

For a family of curves $\gamma_w(t) = \gamma(w,t)$ we will write

$$W = W(w, t) = \frac{\partial \gamma}{\partial w}$$

$$V(w,t) = \frac{\partial \gamma}{\partial t} = v(w,t)T(w,t)$$

(So V is velocity and v is speed)

Some Useful Formulas

 $\begin{aligned} 1. & 0 = [W,V] = [W,vT] = W(v)T + v[W,T] \\ & \text{So} [W,T] = -\frac{W(v)}{v}T = gT \\ 2. & 2vW(v) = W(v^2) = 2\langle\nabla_W V,V\rangle \\ & = 2\langle\nabla_V W,V\rangle = 2v^2\langle\nabla_T W,T\rangle \\ & \text{So} & W(v) = -gv, \ g = -\langle\nabla_T W,T\rangle \\ 3. & W(k^2) = 2\langle\nabla_T \nabla_T W,\nabla_T T\rangle \\ & + 4gk^2 + 2\langle R(W,T)T,\nabla_T T\rangle \end{aligned}$

Proof of (3)

$$\begin{split} W(k^2) &= 2 \left\langle \nabla_W \nabla_T T, \nabla_T T \right\rangle \\ &= 2 \left\langle \nabla_T \nabla_W T + \nabla_{[W,T]} T + R(W,T) T, \nabla_T T \right\rangle \\ &= 2 \left\langle \nabla_T \nabla_T W + \nabla_T (gT) + \nabla_g T T \right. \\ &+ R(W,T) T, \nabla_T T \rangle \end{split}$$

$$\begin{split} &= 2 \left< \nabla_T \nabla_T W, \nabla_T T \right> + 2 \left< R(W,T)T, \nabla_T T \right> \\ &+ 4g \left< \nabla_T T, \nabla_T T \right> \end{split}$$

 $R(X,Y)Z = \nabla_X \nabla_Y Z - \nabla_Y \nabla_X Z - \nabla_{[X,Y]} Z$

$$\begin{split} \gamma: [0,1] &\to M \text{ is a curve of length } L. \text{ Now for fixed constant } \lambda \text{ let} \\ \mathcal{F}^{\lambda}(\gamma) &= \frac{1}{2} \int_{0}^{L} k^{2} + \lambda ds = \frac{1}{2} \left(\int_{0}^{L} k^{2} ds + \lambda L \right) \\ &= \frac{1}{2} \int_{0}^{1} (\|\nabla_{T}T\|^{2} + \lambda) v(t) dt \\ \text{For a variation } \gamma_{w} \text{ with variation field } W \text{ we compute} \\ &\frac{d}{dw} \mathcal{F}^{\lambda}(\gamma_{w}) = \frac{1}{2} \int_{0}^{1} W(k^{2}) - (k^{2} + \lambda) g ds \\ &= \int_{0}^{1} \langle \nabla_{T} \nabla_{T} W, \nabla_{T} T \rangle + 2g k^{2} \\ &+ \langle R(W, T)T, \nabla_{T} T \rangle - \frac{1}{2} (k^{2} + \lambda) g ds \end{split}$$

Now integrate by parts, using
$$g = -\langle \nabla_T W, T \rangle$$

$$\frac{d}{dw} \mathcal{F}^{\lambda}(\gamma_w) = \int_0^1 \langle \nabla_T \nabla_T W, \nabla_T T \rangle - \langle \nabla_T W, 2k^2 T \rangle$$

$$+ \langle R(W,T)T, \nabla_T T \rangle + \frac{1}{2} \langle \nabla_T W, (k^2 + \lambda)T \rangle ds$$

$$= \int_0^L \langle E, W \rangle ds$$

$$+ \left[\langle \nabla_T W, \nabla_T T \rangle + \langle W, -(\nabla_T)T^2 + \Lambda T \rangle \right]_0^L$$
where
$$E = (\nabla_T)^3 T - \nabla_T (\Lambda T) + R(\nabla_T T, T)T$$
and
$$\Lambda = \frac{\lambda - 3k^2}{2}$$

When ${\cal M}$ is a manifold of constant sectional curvature ${\cal G},$ the formula for ${\cal E}$ can be simplified to

$$E = (\nabla_T)^3 T - \nabla_T (\Lambda_G T)$$

where

$$\Lambda_G = \frac{\lambda - 2G - 3k^2}{2}$$

$$E = \nabla_T \left(\nabla_T k N - \frac{\lambda - 2G - 3k^2}{2} T \right)$$

Euler-Lagrange Equations

$$E = \nabla_T \left(\nabla_T kN - \frac{\lambda - 2G - 3k^2}{2}T \right)$$

$$= \nabla_T \left(\frac{k^2 - \lambda + 2G}{2}T + k_s N + k\tau B \right)$$

$$= \frac{2k_{ss} + k^3 - \lambda k + 2Gk - k\tau^2}{2}N + (2k_s \tau + k\tau_s)B$$
The equation $E = 0$ for the elastica becomes:
 $2k_{ss} + k^3 - \lambda k + 2Gk - k\tau^2 = 0$ and $2k_s \tau + k\tau_s = 0$

$$2k_{ss}+k^3-\lambda k+2Gk-k\tau^2=0 \quad \text{and} \quad 2k_s\tau+k\tau_s=0$$
 The second equation integrates to

 $k^2\tau=c$

Eliminating τ from the first equation and integrating:

$$k_s^2 + \frac{k^4}{4} + (G - \frac{\lambda}{2})k^2 + \frac{c^2}{k^2} = A$$

Letting $u = k^2$ this becomes

$$u_s^2 + u^3 + 4(G - \frac{\lambda}{2})u^2 - 4Au + 4c^2 = 0$$

Killing Fields

Prop.: Let M be a (simply-connected) manifold with constant sectional curvature G, and let γ be an elastica in M. Then the vectorfields $J = \frac{k^2 - \lambda}{2}T + k_s N + k\tau B$ and I = kB along γ extend to Killing fields (infinitesimal isometries) on M.

Idea of proof: Verify that when W = I or W = J, then W preserves arclength parameter, curvature, and torsion of γ . For arclength, one checks that $\langle \nabla_T W, T \rangle = 0$. For curvature, use the formula for W(k). For torsion, use the formula:

 $W(\tau^2) = 2\left\langle \frac{1}{k} (\nabla_T)^3 W - \frac{k_s}{k^2} (\nabla_T)^2 W + \left(\frac{G}{k} + k\right) \nabla_T W - \frac{k_s}{k^2} G W, \tau B \right\rangle$

Elastica on the 2-sphere

The Killing field $J = \frac{k^2 - \lambda}{2}T + k_s N$ is the restriction to γ of a rotation field. By choosing coordinates x, y of longitude and latitude on the sphere, we may assume that

$$\frac{\partial}{\partial x} = aJ$$

where a is a constant chosen so that J has unit length on the equator.

$$\begin{split} \|J\|^2 &= \frac{(k^2 - \lambda)^2}{4} + k_s^2 = A + \frac{\lambda^2}{4} - Gk^2 \\ k_s^2 &+ \frac{k^4}{4} + (G - \frac{\lambda}{2})k^2 + \frac{c^2}{k^2} = A \end{split}$$

$$||J||^2 = \frac{(k^2 - \lambda)^2}{4} + k_s^2 = A + \frac{\lambda^2}{4} - Gk^2$$

The norm of J is maximized where k is minimized. So if $k = k_0 \operatorname{cn} \left(\frac{k_0}{2w}s, p\right)$, then k vanishes at the maxima. Since $\langle N, J \rangle = k_s \neq 0$ when k = 0, the curve γ is transverse to the coordinate curves $y = \operatorname{const.}$ at these points. It follows that the curve is crossing the equatorial curve y = 0 at the inflection points. The normalizing constant a is precisely $\sqrt{A + \frac{\lambda^2}{4}}$.

Theorem. If γ is a wavelike elastica on a two-dimensional space-form, then the inflection points of γ all lie on a geodesic (the "axis" of the curve).

 $\frac{\Lambda(p)}{2} = \frac{\epsilon \pi \Lambda_0(\Psi, p)}{\sqrt{G}} - \frac{(4G - 4Gp^2 - \lambda) \left| \sqrt{1 - (1 - p^2) \sin^2 \Psi} \sin \Psi K(p) \right|}{(2G - \lambda) \left| \sqrt{G} \right|},$ where K(p) is the complete elliptic integral of the first kind, $\Lambda_0(\Psi, p)$ is the Heumann lambda function, and Ψ and ϵ are given by $\sin \Psi = 2 \left| \sqrt{4G^2 - 2G\lambda} \sqrt{1 - 2p^2} \right| \left| 4G(1 - p^2) - \lambda \right|,$ $\epsilon = (4Gp^2 - \lambda) \left| \sqrt{4Gp^2} - \lambda \right|.$ Theorem. (L=S, 1987) Let λ be a fixed con-

stant with $0 \le \frac{8}{7}G$. Then for each pair of positive integers m, n with

$$\frac{m}{2n} < 1 - \frac{\sqrt{G}}{\sqrt{4G-2\lambda}}$$

there is a unique elastica $\gamma_{m,n}^{\lambda}$ (up to congruence) which closes up in n periods while crossing the equator m times.