lesed! Elastic Curves and
Rods

I: Euler’s Elastica

Classical Bernoulli-Euler Elastica
Consider regular curves
v [ay.as] — B3 ”'.-’| #0
Assume (geodesic) curvature k = 0

The Frenet frame {T", N, B} is orthonormal and
satisfies

V=ul T'=kN N=-kI'+rB B =-tN

The elastica minimizes the bending energy
F(X)= / K2ds

With fixed length and boundary conditions.

gINEanger, Case Western Reserve Univ.

gnuellBarnroes, Univ. of Granada, Spain
>0 clf Garay, Univ. del Pais Vasco, Spain

I ngpeirHuang, East China Normal Univ.
®=homas lvey, College of Charleston, S.C.
s-V/el Jurdjevic, University of Toronto, Canada
s Anders Linner, Northern Illinois Univ.
® Daniel Steinberg, Dim Sum Thinking

Bending Energy Functionals

Let
Q = {7](a) = ai.7/(a1) = o }
Q= {yeQl|y]|=1}

FA 2 — R is defined by

0 PR O W (1 H2

,r(.)_z_/_ + A ( 1) ds
Lagrange multiplier principle says a minimum
of F on €2, is a stationary point for F* for some

Als). (A(s) is a pointwise multiplier, constrain-
ing speed.)

Deriving the Euler Equations

If W is a vector field along ~
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Integrating by parts, 0 =
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Integrating by parts, 0 =
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The Euler-Lagrange Equations

The elastica must satisfy

E(y) =+" - .i“‘"’} =0
for some function A(s). .
Integrating,
V- Ay =

for J a constant vector,

0= [”" E(y)-Wds+ (7" - W' 4 (A =) W)
Jay |

g

This can also be derived from N&ether's Theo-
rem: If 5 is a solution curve and W is an infin-
itesimal symmetry, then " W' 4 (A~ =" W
is constant. Letting W range over all transla-
tions (i.e. W is constant), we get

Ay - =

for €' some constant field.

M Ay =J

0= /‘u: E(7) - Wds+ (4" - W' — J. ”_)I..._\

. lay

Use the Frenet Equations
Y =T1,9"=kN.v" = =k2T + K'N + k7B, so
M A = (2= AG)T N+ B =T

Differentiate J to get 0 = .J' =

(—=3kk" — AT (K k32— Ak—kr?) N+ (k742K B
From this it follows that A(s) = —3k7 + 3

for some constant A,

The Vector field J(s) = 537 4 1N 4+ k7B is
constant along the curve. Thus it is the re-
striction of a translation field to the curve.

From .J' = 0 we get the equations

and

Use Rotational Symmetry

az (a2
0 =[ E(y) - Wds + (" - W' — 1.17)]
ay laq
If W is a symmetry, we have
" W' = J. W = constant
Now let W be the restriction of a rotation field:
W=~yxW, W§g=0
EN T % Wo — J -~ x Wy = const

(AN x T — 0 x ). Wy = const

(AN x T — 0 x ). Wy = const
Since this works for any Wp, we get
kB4 Jxy=A

for A a constant vector. So the vector field

I=kB=A+~yx.

is the restriction of an isometry to the curve.




Killing Fields

A Killing field along a curve is a vector field
along the curve which is the restriction of an
infinitesimal isometry of the ambient space. If
~ Is an elastica in &3, then we have two Killing
fields along ~:

J(e) = ""“;'-"r' + EN 4+ ErB
and

I=kB=A+yxJ

where A and J are constant fields.

Conserved Quantities
Br=1.J=A.-J=¢
is constant, as is
AT = (k2 = 2)2 + 4k 4 422 = o2
Eliminating = and replacing k2 by u:
s iR e
" "
or
()2 = P(u)

for P a cubic polynomial.

Solving this differential equation gives

GO 2
R=u=t21-"sn2( % 43 ) kr=¢
: 0 (I w? 2 (2»' T

With sn(a, p) the elliptic sine with parameter
p, and with p,w, and kg parameters. g<p<w=<1

The parameters p, w, and kg are related to the
constants A and ¢ by

k2
o) = rrg(3u-2 -p2=-1)

53 - =
402 = “E;(l - rr'z)(n"' = pz)

Planar Elastic Curves

6
Er=c 42= ii{l — w?)(w? = p?)

A planar curve has r = 0, so ¢ = 0. Thus
either w = 1 or w = p. The parameter kg
determines the maximum curvature,

When w=p, 2= .‘-'% (l —sn? {;:’I‘- + 4, ;J))

so k= kpen {*2"\ +6.p)

The curvature oscillates between —kp and +kg.
We call such a curve a "wavelike" elastica.

hY

S U O

"wavelike” elastica

(™

When w =1, k2 = k3 (1 - p?sn? {5?.-“ +4.p))

s0 k= kpdn (.J;'.J"In +n.,u} (elliptic delta), and k is

nonvanishing. We call such a curve “orbitlike” .

KO

The borderline case, p = w = 1, has nonperi-
odic curvature:




Cylindrical Coordinates

Choose coordinates in B3 so that

0 0
J=1]0], A=]|0].b>=0
; b

The second equation is achieved by replacing
+ by v — B for some B (translation).

Since I =~ x J 4+ A, we have
[ ab
ce=[.-J=
2
I-J
= J=1—-A==x.
1 7 I—A ®

We have the coordinate fields

d: = QJ
a
00 =2yxJ="2( —4;1)
a ¢
] Jx B

ir= =
|8z x a8|| ||F = B

Writing 7" = :fr;,-;,. 4 :‘;;U: 4 ;Frj"m, we get
oy dz . dfi 1 - a8

=T i =T- -8z =
s s : s || 2

and the equations for 4 can be integrated ex-
plicitly.

The equation for » is
dr 2k, 2kky

ds Vak2 + (k2 — 2)2 = Vi2a2 — a2

This integrates to » = g+ “?“.-"..21-2 — 42
So r has the same periodicity and critical points
as k. The elastica lies between two concentric
cylinders (the inner one perhaps degenerating
to a line) around the = - axis. the maxima of
the curvature occur on the outer cylinder and
the minima on the inner cylinder.
In the 2-dimensional case (¢ = 0), the curve
lies in a strip parallel to the =z — axis. In this
case the formula for », the distance from the
axis, simplifies to

i

iy a

Non-planar elastic curves

The non-planar solutions satisfy 0 < p < w < 1.
For p =0 we get

k=kg
the helices.

In other cases, 0 < k < kg and the curve has
nonvanishing curvature and torsion,

When is the curve 7 Its curvature is al-
ways periodic, except for straight lines and the
borderline elastic curves (p = 1). We need the
coordinates of ~ to be periodic.

A little bit of elliptic integrals

The complete elliptic integrals E(p) and K(p)
are given by:

. 3 1
K(p) =f e b
0 /1 -p?sin?g

and

E(p) = [0 V1—p2sin2 e do

The elliptic function sn(r,p) is an odd func-
tion with sn{x + 2K (p).p) = —sn(x,p). So the
curvature of an elastica is periodic with period
dwk(p)/kq.

If Az and A0 represent the change in =z and ¢
over one period of &, then ~ is a smooth closed
curve if and only if Az = 0 and A# is rationally
related to 2x.

ok

.
5 (&~ A\ s
0 40 ) :

The closure condition may be written:

o BB - W

K

There is one closed planar curve (besides the
circle): It requires

w=p 2E(p)=K(p)+=p=.82




The Figure-Eight elastica

Finding Closed Curves

The second condition for closure is that the
# coordinate be periodic. Let A# denote the
increase in the # coordinate in one period of
the curvature function. Then it is necessary
that A8 be a rational multiple of 2=,

Theorem. (L - S., 1983) A# is monotoni-
cally decreasing from # to 0 along f= = 0.
Thus there are infinitely many closed elastic
curves which are nonplanar. All such elastica
are embedded, lie on embedded tori of revo-
lution, and represent (m,n) - torus knots, one
for each m > 2n.

III: Elastica in a Space Form

Riemannian Geometry

M is a smooth Riemannian manifold

metric g(X.Y) =< XY > covariant derivative VY

For vector fields X and Y
VxY =Vy X =[X,Y]=XY-YX

Ex: If X = 45, and Y = a. in local coordi-

art

nates, then

. - i a a
VY —-VyX=—-0= [r ]
hy Ay

The curvature tensor R is given by

R(X.Y)Z =VyxVyZ-VyVxZ—VyyZ

Curvesin M

~(t) is an immersed curve in A with velocity

vector V = vT" and squared curvature
2= ”V'r'THQ
For a family of curves ~,(1) = v(w. 1) we will
write
. . iy
W=Ww,t) =—
chur

Viw,t) = :: = v(w, )T (w,t)

(So V is velocity and v is speed)




Some Useful Formulas
1. 0= [W,V] = [W,vT] = W{u)T + v[W,T]
So [W.T] = W F"".f'=_q'}'
2, 2oW(p) = W) =2 (Vy V. V)
=2{(Vy W, V) =202 (V4 W, T)
So W(v) = —gu. 9= — (VoW 1)

3. WD) =2(VpVeW, ST
+ 4gk2 4+ 2 (R(W, TYT, V4T)

Proof of (3)
W(k?) = 2(Viy VT, ViT)
=2(VyVuT + VT + ROW.TYT. 94 T)
= 2(VpVplV + Up(eT) + VT
+R(W.TYT,VT)
= 2(VyVrW, VT + 2 (R(W, T)T, V¢ T)
+ag (V4 T, VyT)

R(X.Y)Z=VxVyZ-VyVyZ-Viyy)4

v :10,1] — M Is a curve of length L. Now for
fixed constant A let

gyl fhon T e
,F(.)_Qfoi. +,\rf._2(fof.d'.+)\!.

1 2
= ;[0 (17712 4+ Nu(t)dt
For a variation =, with variation field W we
compute

o

B L
FMAw) = W{k2) = (k2 4+ A)gds
S FMw) =3 [ W) — (k2 + Mo
L 2
=[ (Ve W, T + 29k
Jo

1
+ (R(W.T)T,V1T) — 2(5-3 + Ngds

Now integrate by parts, using g = — (VoW T)

¢
i

duer

FMyw) = /'1 (VyorW, VT — (W, 2621
J Tw) = fo SO SLERS e o S W L

1, y o\
+ (R(W,T)T,VyT) + 3 Vi, (4N ') ds

L
=, [ (B, W)ds
Jo
+ [(VrW, 95T) + (W, —(T)T2 + AT)]
where
E = (V)3T = Gp(ANT)+R(V4T. T)T

A—3k2
2

and A=

When Af is a manifold of constant sectional
curvature ¢;, the formula for £ can be simpli-
fied to

E = (V)3T — Vp(AeT)

where

A—26G — 342
E=Vy (v, kN — 'r)

2

Euler-Lagrange Equations

A—20G - 342
E=%y (v-,-;-.\' : 5 ';')

k2 —-x426
=Vq ( + d

'+ ksN + F-'r!})

Fss + k3 = M 4 26k — k2
= 20as ¥ : F2 N+ (2he7+k7) B

The equation £ = 0 for the elastica becomes;

higs 4+ k2 = Ak +2Gk -kt =0 and 2ka+hkr=0




e+ k2 =M +2Gk-kr?=0 and ko 4hkr.=0
The second equation integrates to

k2r =

Eliminating r from the first equation and inte-
grating:

i3 A &
K2 G- )2 =4
M 2 =+ ( 2) + 2
Letting u = k2 this becomes

A

2).’12 —4Au+ 42 =0

u? 4+ 4G -

Solutions

. u = k2=constant, r=constant
k A
. k = kg sech [2’.'“] T=0
k= kgcn (£1~ p).T=0
k= kodn {é:’ 8, p) T=D
K] / ke
k? =k3 ( 1- 5502 (50 _\,p})

where 4G — 2\ = 4P —3u7)

and 0<p<w<l

Killing Fields

Prop.: Let M be a (simply-connected) mani-
fold with constant sectional curvature ¢, and

let + be an elastica in M. Then the vectorfields
] = ¥5AT 4+ kN + k7B and | = kB along v ex-
tend t;:; Killing fields (infinitesimal isometries)
on M.

Idea of proof; WVerify that when W = [ or
W = J, then W preserves arclength parame-
ter, curvature, and torsion of 5. For arclength,
one checks that (VyW,T) = 0. For curvature,
use the formula for W (k). For torsion, use the
formula:

W) = 2<:_(v-,-)3u' = t;(v,-)ﬁti'+

(i + J.-) VW — :50!1'.;—!.!)

Elastica on the 2-sphere

The Killing field J = *"2'-";'+ ks is the re-
striction to < of a rotation field. By choosing
coordinates x,y of longitude and latitude on
the sphere, we may assume that

¥ =y

ir
where a is a constant chosen so that J has unit
length on the equator,

“.2 = /\)2
4

2 A2

52 = - GK?
+E=A+

1% =

154 A, 5, ic?
k2 G — 2)k2 -
P E- I+ =4

k2 =)
2= 2
4

2 . A2
+2=A4+— -Gk
a4
The norm of J is maximized where k is mini-
mized. Soif k= kgcn G‘E»,u} then k vanishes
at the maxima., Since (N.J) = k. = 0 when
k = 0, the curve « is transverse to the coor-
dinate curves y = const. at these points. It
follows that the curve is crossing the equato-
rial curve y = 0 at the inflection points_ The

PR " . / 2
normalizing constant a is precisely /A + '}, .

Theorem. If ~ is a wavelike elastica on a
two-dimensional space-form, then the inflec-
tion points of 4 all lie on a geodesic (the "axis"
of the curve).




Wavelike elastic curves on the

Classifying wavelike elastic curves
on the sphere

The th A of an elastica is the amount
of progress it makes along its axis in one com-
plete period of k, as measured by arclength
along the geodesic.

2 Ve 26-|/G
where Kip) is the complete elliptic integral of the first kind, AW, p) is the Hewnann
lambea function, and ¥ and ¢ are given by

sin ¥ = 2468 — 2G4 |1 — 20" /4G(1 — p*) — ],

&= (4Gp* — DMUGP — ).

Theorem. (L-S, 1987) Let A be a fixed con-
stant with 0 < ?(". Then for each pair of pos-
itive integers m,n with

m <1-— \.-"(_.'

2n VAaG — 2X
there is a unique elastica f.;},_,, (up to congru-
ence) which closes up in n periods while cross-
ing the equator m times.




