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Closed Elastic Curves and

Rods

111 Kirchhoff Rods

Kirchhoff Elastic Rod

We consider a thin elastic rod with circular
cross-section and uniform density — the uni-
form symmetric (linear) Kirchhoff rod. The
configurations of the rod are described abstractly
using adapted framed curves:

T ={~y(s); T, My, M2}
v(s) =(the centerline of the rod)

a unit speed curve in R3

(T'(s), M1(s), M>(s))=the material frame

a positively oriented orthonormal frame.

~'(s) = T(s) the frame is adapted to the curve




The Darboux Vector

The rotation of the material frame can be de-
scribed by the [D3

Q=ml —moMy +miM>

and the equations

i = QuT = miMy +molls
.U'rl = SIx M = mqT +melds
.‘U’é = Qx My = —myT —mM;

Elastic Energy

The Total | tic | ragyv of a framed curve is
given by

E(r) = ; /{'\l(ml)g -+ (\Q(Hig)g—f— Bm?2 ds

bending twisting

where a1, a5 and 3 are m: NS

Symmetric case: a = a1 = as

In this case, the bending energy is %f k2 ds




(a) undeformed rod; (b) deformed rod.

Inertial Frames

Define an inerti rame along a rod by the
equations:
A () =T T = koU 4k3V

U'= —kT

VIi= —k3T

The frame has no twist, i.e., U and V have
no T-component to their angular velocity. As-
sume U(0) = M1(0). Then we can measure
the twisting of the rod by looking at the angle
0(s) between Mq(s) and U(s).

/
m =0




We can describe the rod by {~,k,8}. The en-
ergy is

1
E =2 [n-ﬁ;g + (62 ds

An elastic rod is an equilibrium configuration
for the energy with appropriate boundary con-
ditions (usually, having each end fixed in posi-
tion and clamped.)

Proposition. For a rod in equilibrium, & is
constant. Thus 6(s) = ms, for some fixed m.

If instead of clamping the ends, we held them
in collars (so the ends could not change direc-
tion but were free to twist), then the energy
would be reduced by untwisting until m = 0.
This shows that an untwisted rod is a mini-
mizer of bending energy — an elastica.

We can also compare the inertial frame with
the Frenet frame. Let ¢(s) be the angle be-
tween N and U.




Torsion and Twisting

Write N =U cos¢ + Vsing
and B = —-Using¢ + V cosa¢

B' = ¢'(-Ucos¢—Vsine)+ (usin ¢ —vcose)T

= —7N

Comparing, o =T

Note: uw = kcos¢ and v = ksing

Now assume the rod is closed of length L, and
(for convenience)that the material frame M
satisfies M (0) = M(L). That is, we take a rod,
‘twist’ it n times and weld the ends together.
The Frenet frame automatically closes up, but
the natural frame need not.

Let v = & — 6 be the angle between the mate-
rial frame and the Frenet frame. Then our as-

sumption is that "'“‘)2;"'(0) is an integer. This
leads to:

L
27n = (L) —¢(0) = fo @' (s) — 60'(s)ds

[C. ()'I_ 1
= T7(s)ds — ml
. s)ds




The previous calculation says that an elastic
rod centerline has total torsion fd” 7(s)ds given
by the quantity 2an+4mL. Using this, it is pos-
sible to formulate a variational problem whose
solutions are exactly the elastic rod centerlines.

Theorem. For a curve v(s) define

F(y) = A /d,s+>\2 [ rds 4 A3 / w2ds

with v and v the curvature and torsion and
A3 #£= 0. Then an extremal of F is an elastic
rod centerline.

When A, = 0, this is an elastic curve.

Integrating the rod equations

For a Kirchhoff elastic rod centerline ~, there
are two Killing fields: for constants a and o:

2
J= %1‘ + ok'N + k(ar —0)B

and

=T+ kB

Theorem. For rod centerline ~ there is an
‘associated’ elastic curve ~g whose curvature
is k and torsion is T — 5, where k and T are

the curvature and torsion of ~.




Closed Elastic Rods

Recall the result for elastic curves:

Theorem. (Langer - Singer, 1983) There are
infinitely many closed elastic curves which are
nonplanar. All such elastica are embedded, lie
on embedded tori of revolution, and represent
(m,n) - torus knots, one for each m > 2n.

In the case of rods, there is an extra parame
ter, allowing for many more closed curves. For
rods, the result is:

Theorem. (Ivey - Singer, 1998) Every torus
knot type is realized by a smooth closed elas-
tic rod centerline. For any pair of relatively
prime positive integers k and n there is a one-
parameter family of closed elastic rods form-
ing a regular homotopy between the k-times
covered circle and the n-times covered circle.
The family includes exactly one elastic curve,
one self-intersecting elastic rod, and one closed
elastic rod with constant torsion.
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IV Hamiltonian systems




Geometric Hamiltonian Systems

E is an n-dimensional smooth manifold (C

guration Space).

H : T"E — R is a smooth function on the
cotangent bundle (or FPhase Space); H is the
|‘: - -

In canonical coordinates (pl,....p". ¢t ..., ")

H defines a Hamiltonian system:

s OH OH
g = —— i
! opt

gt

V. Jurdjevic, Integrable Hamiltonian Systems
on Complex Lie Groups, Memoirs of the A.M.S.,
V. 838 is an excellent reference for this lecture.

Poisson Brackets

If G :T*E — R, then the Poisson b

(F.G} = " ﬁ oG  OF 0G

1 Oqtopt  Op'dg
{e,II} acts like a derivative:
{FG,H} = F{G,H} + G{F,H}
In terms of the Poisson bracket, Hamilton's

equations are

i ={¢,H} p ={p H}




If v(t) = (p'(t).4'(t)) is a solution curve, then
we can differentiate any quantity along ~ by
% = {F,H}. In particular, if {F,H} = 0, then
" is a conserved quantity along ~, or a first
ntegral of H.

 int if there are functions
Fyogamsy F, with all {F}, F}-} =0,F,=H. The F;
are f motio nvolution. The
Liouville-Arnol'd theorem says that the trajec-
tories of H can be found by quadratures.

Now let M = R3, S3, or H3.

Let £ = F'M be the space of positively-oriented
orthonormal frames f = (X; f1. f2, f3) on M.

It is helpful to think of f as a linear map from
R3 to the tangent space at X, taking the stan-
dard orthonormal basis (e, es.e3) to the ortho-
normal vectors (f1, f2. f3), where f3 = f1 x fo.

So configuration space F is a 6-dimensional
manifold.
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We may identify E with the Lie Group G of
isometries of M.

: M| E=g Matrix description
R3| E(3) (} ??).zreR3.Re.S'O(3)
1 00O
3| « i s |0 X6 e
s3 | s0(4) ATA=I=|, 051 o
0001
-1 000
3| g AT _ 0O 100
H3 | 50(3,1) [ATJA=JJ0=| § o1 o
0O 001
E — SO(3) The right action £ x SO(3) — E
i (rotation of frames) defines
“ fundamental vectorfields A, Ap, A3

M
Principal Bundle

tangent to fibers of =
(infinitesimal generators of the action)

The Lie Algebra so(3)

0 0 O 0 10
Letey =| 0 0 1 a=| -1 0 O
0 -1 0 00
00 -1
az=| 00 O
150 Q9
Then

[a1,a0] = a3, [az,a3] = a1, and [a3,a1] = as

11



The group SO(3) of rotations acts on E on
the right: If ¢ : R3 — R3 is a rotation, then
(f.9) — fog= Ry(f).

R3 L R3 L,

Each «a; gives rise to a one-parameter sub-
group of SO(3) and by the right action a one-
parameter group of diffeomorphisms of E with
infinitesimal generator A;.

The vectors A1(X). A>(X), A3(X) span the ver-
tical subspace V(X)) of the tangent space at
each point X of E.

The Riemannian metric defines the horizon-
tal subspace H(u) of the tangent space at X.
A basic vectorfield B(¢) is a horizontal field
(using the Riemannian connection) such that
m(f)(B(&)) = f(&), where ¢ is any vector in
R3. In particular, let B; = B(e;).

Equivariance property of B(¢):
(Rg)«B(¢) = B(g~1(€)).

FACT: A;, B; are left invariant vectorfields on
G.

*(Reference: Kobayashi and Nomizu, Founda-
tions of Differential Geometry, Vol. 1)
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More generally, if G is the isometry group of
a Riemannian manifold M, then G acts on the
space £ of orthonormal frames on the left. If
T is an isometry, then dZ(z) : M, — M, is an
isometry of the tangent space at x, and takes
frame f to dZ(z)o f.

R3 L R3 L pp, @, g,

This diagram shows how the isometries of M

act (on the left) and the rotation group SO(3)
acts (on the right). The two actions commute.

Symmetries simplify!

Putting together the action of SO(3) on the
right and the action of the isometry group ¢
on the left:

GxExSOB)—E, (@.f.g)—dIofog

We see a nine-dimensional group ¢ x SO(3)
acting on F, so there are lots of chances to
reduce equations using symmetry.

13



Lie Bracket Formulas

1. [A4;,A;] = pA, — Lie Algebra of SO(3)

2. [.4[,'7 B!] = EUK‘BL‘

3. [B!'_. BJ] = E‘,"“..C;AI{‘,

Eijk = +1 depending on the sign of the permu-
tation of {1,2,3}, 0 if two are equal.

Hamiltonians on E

If V' is a vectorfield on F, then the Hamiltonian

Hy : T*E — R is defined by Hy(p) =p(V), p
any covector.

This defines six linear Hamiltonians A;, B; from
A;, B;.

General Formula: {Hy. Hw} = —Hy

In particular:

{A,-"lj} - — —fglf,{,-/'lf.
{A;, Bj} = —<iju By
(B Bj} = —eijuGiA

14



The functions A1, Az, Az, By, B2, B3 are the gen-
erators of the algebra of ft-invariant f

s LG. An element is a polynomial in six
variables. We can add, multiply, and take Pois-
son brackets.

Key fact: ‘geometric' variational problems on
curves give rise to left-invariant Hamiltonian
systems.

Frenet Equations

The (generalized) Frenet equations for a framed
curve are

V() =T T = ko +k3V
U' = —kT +kV
VIi= —ksT —kU
Frenet — ﬂ']_:‘r !\Q—A k3=0
Inertial = kq{ =0

15



If f(t) = (v(¢);T,U,V) is a curve in E, then
the Frenet equations become:

(F$) D = Bi(H) + k141(1) — k3A2(]) + ko As(f)

This defines a control system: k;(t) are con-
trols; given f(0) we get a unique framed curve
satisfying (F'S). Then we may seek controls
satisfying the condition that the “cost”

Cc — / f.(f\'-l. J"\Q. J'r\'3)ff.~\'

is minimal.

Example: é‘;' k2ds(ks = 0) (Elastic curves)

L [ ea(k2 + k3) + c1kZds (Kirkhoff rods)

Pontrjagin Maximum Principle

Given control system and cost functional, pro-
duce a left-invariant Hamiltonian system on
T*E whose trajectories project to solutions of
the optimal control problem:

1. Lift (FS) to get a time-dependent Hamil-
tonian on T*E (depending on control(s))
and subtract® the cost functional L

o
(F$) U = Bi(p) + k1 A1(7) ~ ksAo(f) + kaAs(1)
H(p; ki) = B1(f) + k1A1(f) — k3A2(f)

+hoAs(f) — L(k1, k2, k3)

*This is a simplified description!
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1. Lift (FS) to get a time-dependent Hamil-
tonian on T*FE (depending on control(s))
and subtract® the cost functional £

2. Maximize H with respect to choice of con-
trols k;(t) (for each fixed ¢t. This is done
by solving j‘;?f for controls and eliminating
them.

This gives a time-independent Hamiltonian.

Example: The Kirchhoff Rod

'.:L{_(Jr.i; k1, ko, :‘f3) = B]_ + .‘\'1,41 — }'\'3,4'12 —+ ffz.;i]lg

2
:)):f =0= A1 — Bk
jﬂz =0= A3 — aksy
:;z =0= Ay —aks
gives
H =B+ A%;Ag + “;;

17



Liouville —Arnol’d Integrability

The quadratic Hamiltonians
P = A1B1 + Ax2B> 4+ A3B3
Q = B + B3 + B3 + G(AT + A3 + A3)
are in the center of £G. That is, {P,H} =0
and {Q,H} =0 for all H in LG.

(We only need check on the generators A; and
B; because of the product rule).

Let 'RG be the algebra of right - invariant Hamil-
tonians; it is generated by the lifts of right-
invariant vector fields. If H € £G and K € RG,
then {H,K} = 0. (This is because left and
right actions commute, so the vector fields
commute).

So if ' H € LG, then by choosing R1 and R»
to be linear right-invariant Hamiltonians with
{R1,R2} = 0 [which can be done in any of the
three space-forms] we have five independent
Hamiltonians in involution:

H, P, Q, Ry, and Ro.

To prove a given H is integrable, we need one
more integral.

A2 A2 2
Example: H = By + '4?;'43 + “;g commutes with

Ai. The other Hamiltonians also commute
with it automatically. So the Kirchhoff elas-
tic rod is Liouville integrable.
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More Examples

Example: k1 =0 L(ko. k3) = 3(k3 + k3)
Note that since V4T = kU + k3V = kN, this
functional gives rise to elastic curves (using
inertial frames).

; A3+ A2 , :
H=81+ 5 again commutes with A1, so
the Euler elastica is integrable.

Example: L£(k,7) = k27 leads to

H = By + A3\/A;
Let C = AT+ A3 + A3 — 44,/B3 — 4G A,

Then {C,H} = 0 (check this yourself!); so this
defines an integrable system.
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End of Part 4
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