losed Elastic Curves and

Rods

111 Kirchhoff Rods

Elastic Energy

The Total tic & v of a framed curve is
aiven by

1 5 )
!-:(r):2_[{.1(mlj~+,,2(m2)?+ gm? ds

ending twisting

where oy, a0 and 3 are mali

Symmetric case: n =n] = aj

In this case, the bending energy is 5 [ &2 ds

Kirchhoff Elastic Rod

We consider a thin elastic rod with circular

cross-section and uniform density — the uni-

form symmetric (linear) Kirchhofl rod. The
configurations of the rod are described abstractly
using adapted framed curves:

I = {v(s); T. My, M2}
+(s) =(the centerline of the rod)

a unit speed curve in R3
(T'(s). M1(s). Ma(s))=the

a positively oriented orthonormal frame.

sy = T(=) the frame is adapied to the curve

(a) undeformed rod; (b) deformed rod.

The Darboux Vector

The rotation of the material frame can be de-
scribed by the D

Q=mT —moMy 4+ miM;

and the equations

I" = QxT = myMy  4moMy
Ui = QxM; = -mT +mMa
M, = QxMy = —maT —mify

Inertial Frames

Define an zrtial frame along a rod by the
equations:
=T T'= kol kgl

U= kot

V= —ksT

The frame has no twist, i.e., [ and V" "have no
T-component to their angular velocity.” (The
Darboux vector is 2 = —ksl/ 4+ k2V.) Assume
U(0) = My(0). Then we can measure the
twisting of the rod by locking at the angle f(s)
between Mq(s) and U(s).




Write My = Ucosé 4+ Vsinf. Then
m=M] -My;=8(-Usin# 4+ Vcos#)- M,
That is,

m=#

We can describe the rod by {+.k.#}. The en-
ergy is

E= ,1‘) [ux;? + 3(8)2 ds

Torsion and Twisting

Write N = U cos¢+ Vsineg

and B= -Using + Vcosa
B' = ¢'(—U cose—V sin o)+ (k2 sin ¢—k3 cos o)1
= 7N

Comparing, @ =7

Note: ks = kcosg and kg = ksinag

An elastic rod is an equilibrium configuration
for the energy with appropriate boundary con-
ditions (usually, having each end fixed in posi-
tion and clamped.)

Proposition. For a rod in equilibrium, & is
constant. Thus #(s) = ms, for some fixed m.

If instead of clamping the ends, we held them
in collars (so the ends could not change direc-
tion but were free to twist), then the energy
would be reduced by untwisting until m = 0.
This shows that an untwisted rod is a mini-
mizer of bending energy — an elastica.

MNow assume the rod is closed of length L, and
(for convenience)that the material frame M
satisfies M{0) = M(L). That is, we take a rod,
‘twist' it » times and weld the ends together.
The Frenet frame automatically closes up, but
the natural frame need not.

Let v+ = & — 8§ be the angle between the mate-
rial frame and the Frenet frame. Then our as-
sumption is that -0 s ap integer. This
leads to:

L, ,
T = PEY = (O = [U () — 6 (s)ds

= .l:' 7(s)ds — mL

We can also compare the inertial frame with
the Frenet frame., Let ¢(s) be the anale be-
tween N and U,

The previous calculation says that an elastic
rod centerline has total torsion _Fo;' T(=)ds given
by the quantity 2=n+mkL. Using this, it is pos-
sible to formulate a variational problem whose
solutions are exactly the elastic rod centerlines

Theorem. For a curve ~(s) define
Flv) =M [ff.* + 2z [ rds+ s [ w2ds

with » and v the curvature and torsion and
Az # 0. Then an extremal of F is an elastic
rod centerfine.

When As = 0, this is an elastic curve.




Integrating the rod equations

For a Kirchhoff elastic rod centerline ~, there
are two Killing fields: for constants a and o

— A

T4 kN 4 k(or — o) B

and

I =al 4+ akB

Theorem. For rod centerline ~ there is an
‘associated’ elastic curve g whose curvature
is k and torsion is v — 5., where k and r are
the curvature and torsion of ~.

Closed Elastic Rods

Recall the result for elastic curves:

Theorem. (Langer - Singer, 1983) There are
infinitely many closed elastic curves which are
nonplanar. All such elastica are embedded, lie
on embedded tori of revolution, and represent
(m,n) - torus knots, one for each m > 2n.

In the case of rods, there is an extra parame-
ter, allowing for many more closed curves. For
rods, the result is:

Closed Elastic Curves and
Rods

IV Hamiltonian systems

Theorem. (Ivey - Singer, 1998) Every torus
knot type is realized by a smooth closed elas-
tic rod centerline. For any pair of relatively
prime positive integers k and n there is a one-
parameter family of closed elastic rods form-
ing a regular homotopy between the k-times
covered circle and the n-times covered circle.
The family includes exactly one elastic curve,
one self-intersecting elastic rod, and one closed
elastic rod with constant torsion.

Geometric Hamiltonian Systems

E is an n-dimensional smooth manifold (

1 S0 )
H 17K — R is a smooth tfunction on the
cotangent bundle (or Fh Space); H is the
milt
In canonical coordinates (pl,..., Pt q)
H defines a Hamiltonian system:
G aH aH
g =_— [F=-—
apt iyt

V. Jurdjevic, Integrable Hamiltonian Systems
on Complex Lie Groups, Memairs of the A.M.S_,
v. 838 is an excellent reference for this lecture.




Poisson Brackets

If F,G :T*E — R, then the Poisson bracket is
N AP O O A
(F.Gy = Z .(..”".(}fr. B “”-i}[’
: 1 dgtipt dptig
fo Il =s~tre lilba a Aavivasivas
1= I} acts like a derivative:

{FG, H} = F{G, H} + G{F, H}

In terms of the Poisson bracket, Hamilton's
equations are

i'=1{d. H}y =}

We may identify E with the Lie Group G of
isometries of M.

M | E=gG | Matrix description
B3| E@3) (} g).r' c B3, R € 50(3)
[ | 1000
; 0100
g3 ] AMa=7=
S S50(4) Ata=l1 0010
0001
-1 000
H2 | SO(3. ATJA=JJ= 0 100
H* | SO(3,1) | A JA T 0 010
0 001
E — S0(3) The right action F x SO(3) — E

(rotation of frames} defines

M tangent to fibers of «

Principal Bundle  (nfinjtesimal generators of the action)

If 4(t) = (p'(t).4'(t)) is a solution curve, then
we can differentiate any quantity along - by
dE = {F,H}. In particular, If {F, H} = 0, then
I is a conserved quantity along +, or a f

of H.

H is | 1 if there are functions
Fysisy Fy with all {F, Fi} =0.F, = H. The F;
f T t The
Liouville-Arnol'd theorem says that the trajec-
tories of H can be found by quadratures.

The Lie Algebra so(3)

o 0 0 0 10
letay=| 0 0 1 az=|[ -1 00
0 -10 00

(353

[o1, 2] = ag, [a2, 3] = ay, and [as, 0] = as

I
-

=00
[=R=N=]
(= N=]

Then

Now let M = R3, 83, or B3,

Let E = F M be the space of positively-oriented
orthonormal frames f = (X; f1. f2. f3) on M.

It is helpful to think of f as a linear map from
R? to the tangent space at X, taking the stan-
dard orthonormal basis (eq, €2, e3) to the ortho-
normal vectors (f1. f2. f3). where f3 = f1 x fa.

So configuration space F is a 6-dimensional
manifold.

The group S0(3) of rotations acts on E on
the right: If g : B* — R?® is a rotation, then
(f.9) — fog= Ry(f).

R3LR3L

Each o; gives rise to a one-parameter sub-
group of SO({3) and by the right action a one-
parameter group of diffeomorphisms of E with
infinitesimal generator A,

The vectors A1(X), As(X ). Az(X) span the ver-
tical subspace V(X)) of the tangent space at
each point X of F.

Ay, Ap, Ag




The Riemannian metric defines the harizon-
tal subspace H(u) of the tangent space at X.
A t B(£) is a horizontal field
(using the Riemannian connection) such that
= (f)B(E)) = [(£), where £ is any vector in
E3. In particular, let B; = B(e;).

Eauivariance property of

(Ry).B(&) = Blg™ ().

FACT: A. B; are left invariant vectorfields on

-
ir.

(Reference: Kobayashi and Nomizu, Founda

tions of Differential Geometry, Vol. 1)

Lie Bracket Formulas

+—— Lie Algebra of 50(3)

w

&

&
I

=ik = +1 depending on the sign of the permu-
tation of {1,2,3}, 0 if two are equal.

More generally, if G is the isometry group of
a Riemannian manifold A, then G acts on the
space & of orthonormal frames on the Jeft. If
T is an isometry, then dI(x) @ My — M, is an
isometry of the tangent space at x, and takes
frame f to dZ(x)o f.

0 f daT(x)
R L g3 Ly, W,

This diagram shows how the isometries of A
act (on the left) and the rotation group SO(3)
acts (on the right). The two actions commute.

Hamiltonians on E

If V' is a vectorfield on E, then the Hamiltonian
My T°E — R is defined by Hy-(p) =p(V), p
any covector.

This defines six linear Hamiltonians A;. B3; from
AL B

General Formula: {Hy, M} = —Hpn

In particular:

{Ai, A} = —gdy
{Ai. Bj} = —e;i. B
{Bi, B} = —=C A

Symmetries simplify!

Putting together the action of SO(3) on the
right and the action of the isometry group G
on the left:

Gx ExS50(3) —E. (I.fg)—dIofog

We see a nine-dimensional group G x S0(3)
acting on E, so there are lots of chances to
reduce equations using symmetry.

The functions Ay, Aa. Az, By, B5. B3 are the gen-
erators of the T r T

L4, An element is a polynomial in six
variables. We can add, multiply, and take Pois-
son brackets,

Key fact: 'geometric’ variational problems on
curves give rise to left-invariant Hamiltonian
systems.




Frenet Equations

The (generalized) Frenet equations for a framed
curve are

Y =T = kol Fk3V
U'= —kaT +hy vV
VI= —kqT —kyU
Frenet — ki=7 hka=k k3=0
Inertial = k=0

1. Lift (FS) to get a time-dependent Hamil-
tonian on T*FE (depending on control(s))
and subtract® the cost functional £

2. Maximize H with respect to choice of con-
trols k;(t) (for each fixed f. This is done
by solving ﬁl’lr for controls and eliminating
them,

This gives a time-independent Hamiltonian.

IF F(1) = (4(1);7,U,V) is a curve in E, then
the Frenet equations become:

(F5) U = By(9) + k1 41 (9) ~ k3 A2(F) + k2 A5(F)

This defines a t : k(t) are con-
trols; given f(0) we get a unigue framed curve
satisfying (F'S). Then we may seek controls
satisfying the condition that the ‘cost"

c= f Lky. ko, k3)ds
is minimal.

Example: :1, [ k2ds(ky = 0) (Elastic curves)

L fea(k3 + k3) + erhids (Kirkhoff rods)

Example: The Kirchhoff Rod

Hpi k1, ko, k3) = By + kpAy — kaAz + kaAa

aives

Pontrjagin Maximum Principle

Given control system and cost functional, pro-
duce a left-invariant Hamiltonian system on
T*F whose trajectories project to solutions of
the optimal control problem;

1. Lift (FS) to get a time-dependent Hamil-

tonian on T*FE (depending on control(s))
and subtract® the cost functional £

df R
(F8) = B1(f) + k1A1(f) — k3A2(f) + k2A3(S)

H(p: ki) = B1(f) + k1 AL(f) = k3A(f)

+hoA3(f) — L(F1, k2. k3)

*This is a simplified description!

Liouville —Arnol’d Integrability

The quadratic Hamiltonians
P = A181 + AoBo + Azba
Q=05{+B3+B3+G(AT+ A3+ A3)
are in the center of £G. That is, {P.H} =0
and {Q. H} =0 for all H in £G.

(We only need check on the generators 4; and
B; because of the product rule).

Let RG be the algebra of right - invariant Hamil-
tonians; it is generated by the lifts of right-
invariant vector fields. If M € £6 and X € RG,
then {H.K} = 0. (This is because left and
right actions commute, so the vector fields
commute).




So if H € £G, then by choosing Ry and Ra
to be linear right-invariant Hamiltonians with
{R1,R2} = 0 [which can be done in any of the
three space-forms] we have five independent
Hamiltonians in involution:

H, P, @ Ry, and Ra.

To prove a given H is integrable, we need one End Of Pa t 4

more integral,

tic

il

od is Liouville integrable.

More Examples
Example: ky =0  L(ko.ka) = 1(k2 +43)

Note that since VT = kUl + k3l = kN, this
functional gives rise to elastic curves (using
inertial frames).

H=08+ A3 again commutes with 4;, so
the Euler elastica is integrable.
Example: £(k, 7)=

7 leads to
H = By + Az Ay
Let € = A7+ A3 + A3 — 44;F3 — 4G4,

Then {C,H} = 0 (check this yourself!); so this
defines an integrable system.




