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INTRODUCTION .
!

i
i

General position for plecewise linear'maps is a tool whei‘eby

the geometric character of a map is sinmplified in order to make a
prcblem more susceptjble to geametric methods of solution. The
definition of general position varies greatly in the literature;
usually a map is said to be in general position if it satisfies the
conditions necessary to solve ‘the particular- problem far v which the

notion was defined. 'Ihese ad hoc defim.tions leave open the question\
of what precisely can and should be required of maps in general
position. rI’his ié the question considered in this papex, spec1f1cally

for maps of polyhedra ir}to Euclidean space.
T One way to‘appmc?ch the problem is to list a family of
conditions which should' be met. First of all, in order for a
definition to be useful , it must be attainable; specifically, one
should require that given any PL map £ there shou.’ld be a.nearby map
£1 in general position. Here the word "nearby" refers to a topology
on the space of maps of the polyhedron K into R N which we denote
PL (K,‘ 2 ). fThis restriction puts an upper bourd on the complexity of
the definition. .
Similarly, a lower bound for the definition comes immediately
from the geometric nature of the oonoept. The set of singularities,
or self-intersections, of a map £, denoted S(f), is the closure of the
double point set {xe K: £(x) = £(x'), some x'= x}. IfKis a k—oom—
plex, then in general S(f) is a subcomplex of dimension at least 2k-n;

this is because if s; and s, are"’ou'o k—-sfirrplexeé of K, £ is linear on sp



" One way to accompllsh thJ.s is to require that iE sl and S, are

—2-—

and s, and f(§l )nf(§2 )# #, then dim (£(s1)nf(s, ) )22%k-n by linear

2!
algebra. Thus a minimal definition for maps in general position
should include the condltlon that dim S(f)ﬁ"' k-n. .

There are some obv:Lous nef:.nenents that can be made to this last
condition. If S r(f) , ¥ any mteger greater than 1, .lS the closure of
the set {xeK: £71f(x) has at least r elerrente} we.may' require that
ailn S, (£)£xk~( ;:-l )n. If we assume k<n, this immediately implies

that £ is non-degenerate, that is, that it does not reduce dimension

anywhere. These conditions do not yet seem stmng enough, since if K '
1s an Jnhorrogeneous complex, so that at same pomt X% in K, K looks

1- dnmens:Lonal 1<k, then we would l:Lke S (f)"to be - smaller near X' . )
smplexes of same glven trlangulatlon of K, a nap £ should sat.lsfy
dJm(fs nfs )<d3_m s+ d_un s,-n. S:LmJ.larly, cne can generallze this to

17T %2

cons:.derat.lon of rl smplexes, r any :Lnteger. 'Ihus we may define a

r —————— e

map to be 1n general posn.tlon if for some triangulation of K any set
|
of s:.mplexes of K have their J.mages meet in minimal dimension. Of

course, it may then be necessary to txy to character:x.ze such J.nter-
!

sectJ.ons. ; ’i
The difficultiz of all of this is that one never knows when to
stop nnless he has ,already gone oo far. 'I'here is, however, another
approach to the prablem, and this is the notion of structural stsbility.
If £ and g are maps from KR n’ say that f is structurally
equivalent to g if there are Ilo:reormrphi;m P:K—3K and Q:R"—>R ® such
that Qf=gP. Whatever definition of Ageneral position we make, it must

be true that if £ is in general position and.g is structurally
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teda

equivalent to £ then g is in general position. A map is structurally
stable if it is stxructurally equlvalent to every map near it. Since
general position is dense, any such map must be in general p051t.1.on,

since some nearby map is in general position. Therefore, if we

consider all structurally s“table maps, these should be our models for

maps in general position. ,'
Structural stability, however, is not easily found in PL
topology. If PL (K,Rn) is given the usual (i.e., compact-open)

topology and dimk2l, then no maps at all are structurally stable.

This reflects the fact that the usual topology has a rzon;-geolrmetric

character. There is however another topology on PL(K, &Y, namely

the "smooth" or Cl—topology, which is an analogue of the smooth

topology in the differentiable category. . In this topology, the

structurally stable maps ,are dense, so that general position can be

achieved. ; /

|

There is aldanger,"in putting a new topology on PL(K,Rn) , namely
' : .

the danger that the topology will have so many open sets that
‘ :

_ structural stability wi]’;l be meaningless. We therefore verify that
s .

structurally stabie maplsis satisfy the geometric criteria expected of
maps in "general position". Furthenrore, since the topology described
above depends not merelly on the pleoerSe linear structure of E* but
on its linear structure, we must show that this "hybrid" topology

on PL(K, g ) yielos results in "pure" PL topology.

In section I, save basic and necessary facts about planes in

Projective space are indicated. In sectionv IT the concept of general

Le

R



position of points in Projective space is developed. In section III

general position for linear maps is defined. Here a linear map is in

general position if the images of the open simplexes meet in minimal

-~ dimension. This requirement on a map guarantees that all of the

geametric requirements referred to above are satisfied. Furthermore,
since the maps considered are linear, the cordition is more than
merely a dimensional statement, since it requires that simplexes
actually meet in convex l_mear cells rather than arbitrary subconplexes.
The set of such maps is shown to be open, and the results of sec‘c_lon
II allow us to ehow that such maps are also dense, +the crucial fact

we need in arder to know that this may be used as a criterion for

. -general position. Here denseness is considered for the space L(K ,Rn)

of linear maps of a complex K into 2 with the campact-open topology.
Structural stability is defined in IV and some of its properties
explored. In V we show that the structurally stable maps are dense

in L(K,Rn) _Since L(K g ) really has only one reasonable topology,

‘'we should expect any 'reasonable topology on PL(K,Rn) to J_nduce the\\'»

caompact-open topology on. L(K B? ) e 'Iheorem 5.1 therefore acts ‘as
an enoouragement that structural stability can be used as a technlque

in PL(X,R"). ' : i |
, o
Section VI| def:.nes the cl Topology and sectlon VII shows that

in fact structural stab:z.llty is a dense phenoxrepon. A corollary of
i

this is that the general p051tlon oefJ_nJ.txon of IIT is the co:r.rect

definition of oeneral pos:Ltlon, that 1s, the most \restrlcta.ve
I

defintion poss:.ble. ;’ '

|
1
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A corollary of this definition is derived in VIII, using the

' hotion of relative general position, It is shown that if X is in

relative general position with respect to ¥, then X meets Y nicely, ‘

i.e. transversely if X and Y are manifolds or, using the generalized

defintion of transversality of Armstrong, if X and Y are polyhedra

of codimension 3 in B . This shows that relative structural stability
is a refinement of the notion of ﬁransversality. P — :
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I PLANES IN PROJECTIVE SPACE

Real projective space B is the quotient space of E1-(0}

under the equivalence relation (xi', coerXpil) v (EXggee. ’txn+l) , ter-{0}.

. Denote by [xl, coe "xn+l_-} the equivalence class of (Xyseeer¥py) - | From

the observations that for (Xl";")ﬁrl-l) N (YqreeerYpyp) s Xg 7 O Lff

‘and a homecmorphism ¢i:Rr(1i) > B? _given by ¢; [Xqr-- .,xn_,_lj =
(x:L Rireoe 'Xi-l/xi’xi +l/xi’ oo erX rr!-l/xi).' The collection { (Rr(li) ,¢i)} T’l
is an atlas for P giving it the structure of a manifold.

We will view R® as a subspace of B! by the embedding ¢;_]I_'l:Hn-> B,
Although we will often view B® as a PL manifold living in BB, B does
not have a PL structure (with this atlas). Nevertheless, R isa" linear"
submanifold, in the sense expl:.catea below.

The Grassman Mam.fold _G_k’Rn) of k-planes through 0 in Rn has the

topology defined by the following neighborhood bases: N(Q,e) =

{Q'eGkRn :-):(Q,Q')< €} One can show that the map 6: Gy. R - ph

~defined by 0(8) = [XpreeerXyy] for 2= (X, ... %) [teR) is @

l
hamecmorphism.

. If AGER, Acghtl 1s Gefined by A=U {2:2e0 La)}. A subset
Q of B" is calleda .q - pZane if § is a (g+l)-plane in &%,

Now suppose Q Q: is a q—plane in }Pn

_\

PROPOSITION: En.ther Qnmn = ¢ or QnE® is a g-plane in R?, \

PROCF: View E% as 'a subspace of Rl by y:R? & Rn+l , given by

|




rod g

‘*’(Xll-- IX) (xlloo-lxnrl) We show ‘P(Qﬁmn) =éf\‘i’(Rn). If
aeQnEY, a = [x poee X ,I] for appropriate choice of Xjs««« X

Then Y(a) = (x l,...,x ,1)e0 (a)c'-Q Therefore ‘?(Qnmn)chW(Rn)

Conversely, if peQn‘i’(Rn), p = (x reoe ¥y ,1) and [xl,...,x ,l]eQ

Therefore, On¥ (BN < ¥(QnE). Now ¥(®") is an n-plane in 1 ang

d is a (g+l)-plane, so Qn¥ (B is either empty or a g-plane. Il
Conversely, suppose S is a g-plane in B}, Recall that if A and B.

are planes in B, AvB is the smallest affine subspace of B" containing

both A and B. -In part:Lcular, {0} V‘P(S) is a (g+l)-plane through 0 :Ln

ARn+l, consequently, there is a g-plane S in P® with § = {0}v¥(S).

n
SaR® =5, since ¥(EnEY) = Sny(®") = ¥(S). Thus we have established

. the notion that E® is a linear submanifold of y

If Ql and Q:2 are planes in En, define the span Ql\/Q2 to be the
intersection of all planes in " containing Ql and Q2. It is clear

A a AN
that le Q2 = le Qz. Similarly: Q:L I\Q

DEFINITION: 5((_2?_)_ is the Grassman Manifold of k-planes in 2,

topoipgized by the set isbrrorbhism A:(;]((]Eﬁ) + G, "(Rn+l) given by

Q~+ 0. Z leEn the topological (dlSjOlnt) union. |
We now use the homecmorphism ~, which comutes with span and

intersection, to derive sorr? facts about GE™.

PROPOSITION 1.1: If Q,Q'eGE", then @im (QvQ') + dim (Q~Q") =

dim Q + dim Q°'. Heredimvs=-lmeanss=

PROOF: Since Q and Q' are vector subspaoes of R" 1 , it follows

from linear algebra thathm (QvQ) +d:1.m (QnQ) —dlmé + dim 6'.

But dim (§) = dim (S) + J.VSEGEP. from which the result fonows.\u\



PROPOSITION 1.2: If Ql,...,QreGIEn, then dim (@, A« nQ) >

dyte ..+qr- (r-1)n for q; = dim Qi

PROOF: True for r = 1. Assume true for *x = 1. Then

dim ((an...nQr_l)ﬁQ) = dim (Q n...nQr_l) + dim (Qr)
- dim ((Q "l..ol\Qr_l)VQ)
'_>'_-g'l .";.+.E(r_'l - (=2)n + qn = ql+...+ - (r-.l)n.

' PROPOSITION 1.3: Let Q...,Q be planes in 2", Iet Q},.cesQp
_eG@n' such that Qi is close to Q.. Then )
S . — 3 ' T
(;_) If .dlI:ﬂ (Ql.-‘{...‘ VQr) - dﬂn (Ql V oo o V_Qr )l then
; .Ql‘v... er is close i:o* Qi':v VQ_{-_ .
(2) If dim (Q)n-.. nQ.) = dim (Qi n ..‘.nQ;__ ), then

- . ' ' !
_an ...nQr is close to Ql_” ...nQr .

. . -
In other words, if Vr:(GHEn)r» GIEn Gn}En and nr: (GR )r > GE® are -

the span and intersection maps, then Vrlvr-l (Ge"). and ﬂrlﬂr_l (Ge™)

-~ are continuous. - oy

PROOF: (1) Suppose dim (le... VQ ) = k. Choose vectors

vl,...,\h leu...uQ which spanQ v...er Since for veQ the

distance d(v,Ql) is cont:n.nuous in Q' and 0 at Q, it follows that for -

oo X
2.

Qi close to Qi we may f:'m@ {vi,...,vk} in Qlu uQJ':_ close to
{vl,. ..,vr}. Since VyresssVy 2T linearly independent, 3ée¢ if

a(vy, vi) < 8, 'vi,. ..,V are linearly indeperdent. By hypothesis,

{Vi,...,v}'{} mist span Qi ve..vQp.  Thus, invf)}'( must be close to

le o vék by linear algebra.

(2) Recall that since R G,R n+l ‘is a campact metxic

'
i
{

. : o . - .
- space, there is a Hausdorff metric on'compact sets in B defined by




o B -

setting d(C, D) = max {sup 2d (x, D) { xcc}, sup fd (C, ¥) | yc¢ D'}}
It is easy to verify that this is the same metric as the usual metric
on G B n.. Thus this becames a problem about ccmpact sets in a metric
' space. The result is now a oonsequenoe of the follmung lemma whose

proof is a straightforward exercise:

LEMMA: Iet Qs o oo Q be compact sets in a metric space M. For

€ >0 there exists 470 such that if Q; len (@, &)/ then @ o, . gt
CN (an. o 0Qps € ).

THEOREM 1.4t Let Qq, « « +s Qp € G B Mhere exists d'> 0 such that if
.1 )

Qv o o o Q are planes with d(Ql' 1) «d, then dim (Q Ve o .erl)
> 1

..dJm(le. . .er) and d.nn (Ql ne - NQrT) £ dim (an. % .nQr).

Note that for ¢ small, dim Qil = dim Qi, 7 i,

PROOF: It suffices in the first case to prove these results for
Quree o i ar Supposedlm QL v, . .vQ) = K. ILet {vl, o« or Yk
'. be vectors in Qlu. 5 .uQI which span le o o oV Qr' For Ql P .,Q 1
sufficiently close, we can find {vll,: . . ey Vkl% in Ql Ve o o uQr
sufflcnently close to {v ARy ’.) as to be linearly independent
(as in the proof of PROP. 1.3) 'Iherefore dlle Vs s vorl> k. -
The second statement follows immediately from the LEMMA®
preceding this theorem, since a large - dimensional plane can never be

in a small neighborhood of a small - dimensional plane. i

t
. -

. . |
THEOREM 1.5: Iet Ql’ . l, Qr € GB . Given any €>0 there exists Qil
with d(Q;, 0;1) <e such that aim (@ 'n. . .nQY) = AR I 8

- = (r=1) n, where (dim (Q . .nQr)<0meansQ;.n. .nQr=¢.

|
|
!

|
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PROOF: By induction on r, beginning trivially at x = 1. Assume

true for r = 1. Assume Qll . & .QJl:_l have been chosen such that

1 ” 1 - (e - -
d(Qi, Ql )< € ando.lm(Ql n. « nQ J} ql+ o e e +qr__l (r-2) n=g.

P | 1 1_4; 1y = o
I'etQ_Q_l n . 0 - Then w<=j- @st find Q sdim (Q"\Qr) q+q. -~ D
Thus the problem reduces to the case r = 2.
_Itsuff_ioestoshavthatgivena)arwiﬂldjma'=a=q+land
aimQ =& =q +1 given €> 0,30l 2a @, Oh<e and
) A A1y e N 1y - _A o S
dim (QnQy) _--C'i-l-ITI(QI\QI__)--q+c1r n+l—q+qr n+1).

B . A A A A . A A

Suppose dim (QnQr) =g+q. - (n+1) +k=4£. Then dim (Qer) =
n+1-%k (PROP. 1.1). = .

3 @oose vector»s Vir . e VI‘, vR+l' i % .,-va, W,Q+l" 5 . w&r
sSpanning 6v6r such that Vir o o 21 Vp spanﬁnﬁr, vl, o » wp vq span 6,

andVl, o o ey V‘e,w’e_i_l, e o oy W&r

Case 1. £ > k. Choose X1 X,Q 17 - 'Xf-k+1

that x, lfﬁvQ vixgdv. . .véxpl_*_l’jandd (x y v)<é‘ " small.

Pad
span Q .
P _Qr

successively such

. 1

and{xvg+l, e o w&rg . Then we may make d(Qr, Qr )< €. Now
dim (6n6r) = dim (space spanned by Vir s e e V —k) ={-k

A A
"=qgq+q - (n+1).

r
Case 2. k=2 0 . Choose xg,,,_,xlas in Case 1 and define al by

the pla.rle Spanned by {Xl, ° ° L4 Xﬂ, WR_*_l, ° ° oy WI} Then We

have QnQ = 4.

!

COROLLARYlG If dim (Qn. - nQ) =qy+*..+q - (-1 0 then & HJd»o

- 3 if d(Q ,Q)/J‘ d.un(Ql...nQ)—ql+...+qr—(r-l)n.
!{ '

PROOF: By PROP. l!.2, the dimension cannot decrease. By

THEOREM 1.4, the d:i.mensionl will not increase for & small. . i
. ! '

_!
|



IT GENERAL POSITION IN B

Let Qpreeer Qo € G']Bn, the set of planes in P?. Iet dim Qs - d; e
l<i<xr. Forany X e B - L:}Qi we may define a transversal through
Xy QrreeesQp @S @ line g in P® which meets X, Qpseee/Qpe A proper
transversal’ is a line which meets X, Qps.«-/Qp in r + 1 .dgistinct
points. ‘

Iet 1. = the set of partitions of the set {1;e50sT)s 'ﬁue symbol

i“w.j, for 1<i, j<r, means i, j are in the same class of the partition w.

' Using this notation we may classify all transversals through X/Q1reeeQpe

bEFINITION: ‘The transversal set corresponding to m, denoted by

‘ Tn (x; Ql,...,Qr; P%), is the union of all transversals & through
X, Ql, cooy ‘
set T(Xi QqreverQpi PN) is the union of all proper transversals through

R such that 2 nQ; =2 O Qj iff i% j. The proper transversal

X; QJ_"“'Qr' Thus, if 7 is the discrete partifion ({1}, (2},...,{x}},

D Queee Rt BY) = TR QpeeeesQpi B)e |

The followi.ng‘facts are simple consequences of the above definitions:

1. For any w € I, ei@a 'Tn(x; Ql,...,Qr;'En) = ¢ or it is at
least one-dimensional. ‘

2. TEug v e My Ty(xi Qpreee Qs ED AT (67 Qpreees@pi B) ¢ {x}.
‘Equality occurs when both are non-empty.

3. For cem let Q = N Q.. Then T (x; Q reeesQi )=

_ iec
T (Xi QgqreeerQai En), for 7 = {CqseessCcls
1 cS 1 S

g, C. Zeeman, “"Unknotting Spheres", Ann. Math. 72 (1960), 350-361.

! "'11"

!
I
|
I
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Consider now the set %(x; Ql"-""Qr; ) = '61 ({x}in).
If ¢ is any transversal tﬁrough Ko QpreeerQpr th;; in particular
% meets x and Q; so & c({x}vQ,). Conversely, if p is any point in |
l'.'\["(x; QpreeerQi ") other than %, then the line ({x}Vv{pl}) C({x}in)‘ ¥ i
. Therefore | {x} v{p}) meets each plane Q ard is a transversal. Thus we

may call %(x: QreeesQi B the transversal plane of x, Q]_""’Qr’

1
‘Similarly, write %ﬂ (x; Ql,..._,Qr; Y = %(x; Qg : CET ; ).

. ")
It is clear that T;(x; Ql""’Qr7 En) o b e Ql,...,Qr; En).

PROPOSITION 2.1: F(xi Qureee Qi B) = VUTr(x5 QyeeesQi B & m e T

ﬁoﬁdéd %(x; QpreeerQpi Y # £x3.

PROPOSITION 2.2: Write = < ', for = and 7' partitions, if = refines ='.

" fThen T, (x; Q) renerQpi B > T +(x: Q

l,...,QI_;'an) if 7 <’

THEOREM 2.3: IE T(XiQyreserQ i ) #4, then Gim T(x; Q se++/Q 3 ) =
r

LN n
dim T(x; Ql""'Q s B ).
x

PROOF: We will show that T(x) = T(x; Ql-,-...',Qr; 2%) contains an
open set in T (x). (T(x) will not necessarily be open in "':f'(x) ;. because
in general x will be a boundary point of T(x).) Since T(x) # ¢ by
' hypothesis, let y # x e. T(x). Then the line [{x} v {y}] = 2 meets
Q; - ;} ., 1< i< rx. <If %' is any other line through x in ({x} Vv Qi)
maklné ; ;ufficiently small angle, say less than ¢;, with %, then

(LnQi) & @ - U Q.. Therefore, if &' is any line lying in

: 371 J
fl‘t {x} v Qi) = '\’i‘(x) , passing through X and making an angle less than

min ¢ with 2, , then g’ ¢ T(x). Thus an entire open cone of lines around

T . .
% in T(x) is contained in T(x). It follows that a neighborhood of y in

?f.‘(x) is contained in T(x). N )
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Unlike Tn (x; Ql,...,Qr; ]Bn) ’ "f‘n (x) is always a plane; in fact -
it is the plane N ({(x vQ, : Ce ). By PROP. 1.2, dim'}."“(x) >

Y (dim Qt 1) - (|7] = 1)n, vhere || is the mumber of elements of 7.
cem '

For notational purposes, let o = {Qi,.,,,Qr} and t;(0) = Y (dim Qc+ 1 -
. ' r A .
(|r] -1)n. In particular, write t{o) = ] q; + ¥ - (=-1)n.
2 . B 1 »

DEFINITION: Let X P®. We shall say that X, is in general position

with respect to 0 = {Ql,...,Qr} if xok Qv .'..uQr :

and dim T; (xo; o En) £ t,r (o) -fo.f_.gvexy T eﬂl‘[r.

COROLLARY 2.4: If X is m general position with respect to o and if

T, (x 7 0; ) # ¢, then &im T (x5 0 i B =din ' (x ;0 7 B = o).

PROOF: By THEOREM 2.3, dim T; = dim Tx. By hypothesis

GmT < tplo). ButdimT, > (o). Therefore, &im T_ = dim T =t (o).

" Remark: If Ty (xo; c; B) =¢, and X, 1s in general positicn with

respect to ¢, then dim %“ (X ; o5 En) may be ngeater than t_(¢). For
: : .0 :

example, let Ql, Q2'. Q3 be J.ines in ]23 which will all lie in one plane Q
and such that Q;n QZnQ3= {p}. Let X € 123 - Q. Then it may be easily
verified that Xb is in general position, since Ty (xo; G 123) = ¢ except
for = = {{1,2,3}}, in which case Tﬁv_(xo; o; 1123) is the line ({xo}v{“p} = fow

3 -
Now B(x ; o5 B) = sodim¥=1. Butt (6) =1+1+3-2(3) =0

THEOREM 2.5: Iet.o = {Ql,...,Qr} c GP.n, and let ¥ be the set of points
in " in general position with respect to 0. Then & is open and dense in

n
R.
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PROOF: By induction on n, beginning trivially for n = 0. We now
assume the result for projective space of dimension less than n and
prove ‘the result for n by induction on . .

If r = 1, then clearly ,5 = p - Ql; which is open and dense. Thus
we may assume the theorem is txrue for any r' < r.

Iet & * be the set of points in B such that for any ™ # |
({1}, (2,000 l2}}, Qi T (x o FY) < t;(0). Recall that T (x, 0; B) =
T(x., C En), for o = {Qc, cenland Q = j_QcQ'.' Now since lwl < r
we have by induction that the eet of points X satisfying dim T, (x, o; 2 <

t (o) = t(%) is open and dense. Thus A& * is the finite intersection of

open, dense sets and hence /& * is open and dense. It suffices to show,b

is open and dense in ﬁ*. Observe that x € ;b*&d.lmT(x, o; IE) <
txe H. | |

Denseness of ,27: If for any i # j QiVQj # En, then for any
XePR - QvQy T(Xi Qpreee i 2 ¢ T(x; Qy, Q33 B) = ¢. Then |
,Z7= 4 * ﬂ @ - inQj) is dense in )fJ *, So assume w.l.o.g. that .
inQj=lEnfof_i7£j. Let X, € & * and e> 0. We must £ind .

xe J > d(x, x5) < e

Let S = (ix,} v o). | | o
. n . )
Since in Qr = B and dim Qin Qr>_>_ =1; lny PROP." 1.1 g+ a.> n-1.
Therefore, again by PROP. 1.1, dim Qins = qi-i'- qr+ l-n> 0. Thus
Q-f\S # ¢. From this it follows that ({x }vQ.) NS = ({x }v(Q. ns)).

Therefore T(x : Ql,...,Q En) -T(x > Ql""’ S) for Q' —Q n S..

r—l ;

By induction on r if S = B® oronn:.fS;g‘-E (cbserving that S is a
projective space) we may assume I x'e'S > (1) d(xo, x1)<'¢ S ¢

(2) x' e A *, and (3) dim T(x'; 1

Q}reeesQl i )
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& Ediin+ (r-1) - (x-2) dim S
1 .

1
= z(q+a+l-n) + (xr-1) - (r—2)(qr+l)
1

r .
e e e (qi+ 1) + (r-1) (qr" n) + (x-1) - (xr-1) (qr+ 1)

o)

H

I (q + 1) - (r—l)n t(c)'.

P

IE T(x'5 QreenrQpi P?) = ¢, then x' ¢ H. If not, lets be a |
proper transversa; of Ql"'-' ,Qr'. ‘Since S = ({x'}v _Qr) , 2<€8S. 'I"ne:_:gf.or_e
L0Q < Q40 S = Qi ard 2 is a proper transversal of Qi""'Q;:—l in S.,

i LN
Shies T(x'; QfreeesQl 17 S) # &, Am T(X'7 QreeesQpi 8) =tl). By
the same ar t as hefore q'i‘(x" o} ' . S) ='\’.T'.‘(x'- Q ; E‘n)
gumen . ‘ i lp---;Qr_l: i ll"‘ler ¢ -

50 dim T(x'i Q)yee Qi B = dim B(x'; 0y,.-/Q 5 B = tlo). Therefore

x' e Y. This proves ¥ is denséin Ax,
Openness of ,§: ILet xje A . Suppose first that - "
’ . . N .
T(xo; Qlf""Qr; IEn) # ¢. Then dim 'I‘(xo) = dim T(xo) = t(g). This means
.that the planes ({ xo} v Ql) ,...,({xo} v Qr) have a minimal intersection.
By COROLLARY 1.6, any small perturbation of these planes will presexve
the dimension of intersection. If x is close to X s {x} v Qi) is close’
to ({x} v Q.). Therefore, if x is close to X, dim%(x; a; BN =t (9)
and X € /27
Assume instead that T(x } 95 En) =¢. We may assume d_'mens10n of
T(x s 03 B ) > 1, for othexwise the argument of the last paragraph apphes.
Since every transversal through X, and 0 is improper, PROP. 2.2 implies

'\ri'(xo; g; P = U{"‘i’TT (xo; o; }Bn) : |v] # r}. Since this is a union of
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Plancsra'ﬂ9%(X:0:E)—T(X,O,E) Chooseamaxjmalsuch

w. Then T (x ; o; BM) #¢; for lf it were we could repeat the 1dent1cal
argtmentandflndn'>1rwn.thT,—T" 'I’hereforedlm'r(x,o,m)
dm?fﬂ(xo; o; B%) = dim %y (x; 05 B) =t (o). For sufficiently small
€ if:d(xo, X)<e djmr\'l"“ (x; 03 En) =t (o) (by applying the previous

paragrach) . We may also quarantee, by THEOREM 1.4, that dim T _(x)}:< t_(c).

n n . n n N
But T (x)c T(x), so dim T(x; 07 B) = t;(0). It follows that Ty (x; o E")
T(x;o; EY. But this says every transversal is improper, so

T(x; 0; P = ¢. This proves x ¢ 4, and Ais open.

ADDENDUM 2.6: ILet xj be in general pOSlthI’l with respect to 0. Then
Je > 0 such that if d(x, x) < € ﬂ‘xendan (x; o; B ) —dJ.mT“(xo;c' En)

and dim T (x; o; En) = dimT“(xo; g; Rn) for all partitions w € Hr.

PROOF: Suppose 'I‘(xo; o; P*) =¢. Then the proof of THEOREM 2.5
shows that for x near X T(X; o; En) = ¢ and %(xo; o; P") has the same
dimension, t;(c), as %(.X?‘” Pn) for some ™ € Hr. Now suppose H a

proper transversal 2 of x, and . Then 2nQ; <Qj - N QJ for 1< i< r.
. J#L

If L' is any line ;sﬁfficiexitiy cloée to %, thenAR,' nQ; < Ql = (;lQ
(the intersection may be empty.) By the proof of THEOREM 2.5, ’
dim%(xo; o; ]Bn) = t(o). By part (2) of PROP. 1.3, if x is chosén close
enough to X, that dim "\D’(x; o; IEn) = t (o) then the plane "f'(xg o; IEn) is
close to %(xo; o; BY). We may therefore find a line 2' through x and
Q.---/Q, which is close to &. T 0 P #£0 = dimT(x; 05 B) =
t(o) = dim T(xo; o; En). ' .
Finally, 'I'" (x; o; }Bn) = T(x; o'; IEn) , so the above argurrent;s may

be repeatéd for T_ in place of T- A S I
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Remark: General position of x with i:espect to Ql’ o ,Qr is not
o * 4
an open condition on Qj,..-. 'Qr' Let Q) Q2' Q3 be 2-planes in B such
that QN Q, =a line and aner\ Q3 =¢ . Suppose x is in general
position with respect. to Ql' QZ' Q3' Then dim T(x; anQZ’ Qs 12 ) <.
. . . Y '
But since an Q2/'1Q3 =9, .we have T(x; an02,Q3: E4) =a line %.
Iet RannQé ={ y},% nQ3 ={z1} - Perturb Ql to Qi in 2% so that
dictates that dim T(x; Q) nQy Qa; PYy< 0+ 2+2-4=0. Thus x is not
in general position with respect to Qi, Q2, Q3.
. "It may be verified that if the planes Ql' . "’Qr interect m:.mmally

this phé.nomenon does not occur.

DEFINITION: ILet X, ,...,X_Dbe points in P®. ILet @ be the subset of

GE® consisting of all planes spanned by subsets of Xqy,... R -A pé:»int
x is in general position with respect to xi,...,x, if for evexy ‘subset o

of @ x is in general position with respect to 0. A set of points .
Xl”'f’}—gr is in (Projective) genmeral position if each point is in general

position with respect to the others.

THEOREM 2.7: The set Gy =1 (xl,...,xr)} € (mn)r[ X reeei¥y AT in

P i r
general position} is open and dense in @ .

LEMMA 2.8: Iet (Xy,....,X) ¢ ‘ér' Iet ¢ > 0 be given such that if
d(xi', xi) <e¢l< i< r, then (xj'_,...,g;:) € ,g - For any o € ?_Fl,...,r}

such that |a| < n let Q, QD" be the planes spanned by {xX; .21 ¢ a j

{xi: i ea} respectively. Then dim (Q
ay
and for small € Qo" N oeee nQo: is close to Q

1 S

Aeea0Q ) =dim (@'N +.onQ! )

s .
ﬂ-.."\Q °
[0

1 s



PROOF: Assume W.l.og . that x, = x; for i 5 1; that is,iterate
the process of noving one point to change successively from (xl,. .o ,xr)
to (x PR ,x ) to (xl, x2,...,xr) , etc. For notational convehience let

Qj(_l') =Q(l). Also assueW 1 o0 g . that l€°’-n cey®s but 1F Xaeqreee) ¥ o
ol .
i :

If t = 0 the lemma is trivial. Suppose t = s. let Q;* be the plane

spanned by ij : j ¢ f"? —{:3}, Then we have an P an =

(3 vo®) A n(fXﬁ vo*) = Tleis Q¥reee 0% B) and Q.. Q) =

T(x : Ql ,...,Q ; B ) Then ADDENDUM 2.6 followed by part (2) of
PROP. 1.3 yields the thecrem in this case. .

Suppose instead that 1= t < s. Let Qi* be as before for.lf i <€ £,
Then one easily ver:.fles that | |
{x}vQn...00)= ({xl}le*)f' n({x 3 ve )0 (3 Vv (Qt+1“"'“QQ)'
= T(x;: Q* ,...,Qt ¢ QM ee e NQgH 2% —-T,,(xl, Q% reee QL ,Qt_*_l,.f.,QsEn)

For # =§ §13 ..., {15 $ed, ft+l,... ,533. Similarly {xi{ viin...n Q;) =

~ . 0 r~ "
To (X]7 Q*reeesQF 1 QupgreeeiQgi P?). Again by ADDENDUM 2.6 dim T (x;) =

dm’T“,,(xl) = @im (@A ...nQ) + 1 =dim @ neeenQy) +1 and the theorem

now follows from part (2) of PROP. 1.3.

LEMMA 2.9: Let x € B" and Q) ,eee/Qp € G E'. For every « & PLIVPES

let Q= ﬂ Q Suppose X is in general position with xespect to
Ql' ceesQpe Then if. x' is sufficiently close to x and Q' is sufficiently
close to Q. such that dim QY = dim Qy VctéZfl"“'r; then x' is in

general position with respect to Qi. peoe ’QJ':'

PROOF: By choosing Q:!L sdbie??: to the hypothesis we may quarantee
by 1.3 that also Q) is close to Q« Ve« . For every partitionw ell . we

must verify that dim T,(x'ic'; B  tqle') = typlo), where ¢' = gQi,...‘,Q;:%.
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Suppose Tqr (x ¢ B ) = @¢. Then, as in the proof of THEOREM 2:5;

9 an\axaxnalir>1r}"i‘“ (%:0; " ) —Tw(xb", E) anddlmT,(x,c-H:)

= tq (0).

i

o wex’

g\larantee

B s B = ﬁ (fx}VQ.‘) and similarly Ty (x'; o‘" )

N (Ex? vQy ). If x is close to x' and Q.is close to Qr we may

by COROLLARY 1.6 that dim Ty (x' 165 2" ) =t (o). We may

also guarantee by THEOREM 1.4 ﬂuatdunﬁ", (x! ,G"° R )’-dnnTﬂ(x,G‘, " ) =

n (o) .

fx;0'; B ) =Ty (x' L mn) and To(x';0"; BT) = &

Suppose Tﬂ(x;d‘; En) # D Then meTr(x;o‘, ") = tx (cr)Aand by

. N e "
_the same reason:mg as above we can arrange that dim Tx(x';0'; B)

=ty (0?

. COROLLARY

il

2,10: Assume that general position of fewer than r points

in B® is an open and dense condition. Then the.condition "Xgs eeer X '

_are in general posﬁ:::.on and Xy is in general posn.tlon with respect to

Kai saap X is open anddense in (En)

PROOF: Given Xq, = « <1 %X and &>0 there exists xz', RS o

-such that d(xj, %;' )<€ and (xz', . =B xr')c.ﬂr_l. By THEOREM 2.5

we may find x;' such that d(xl' # xl)<€ and xl' is in general'position

with respect to X'y - - .,xr' ( we need only find x;' in general

position with respect to every family of planes spanned by x2 ,...,xr )

Thus the

oondJ.t:Lon is dense.

Suppose Xys o o %y satlsfy the condition. Then let Q be the

set of planes spanned by Xor eves ¥pe TEQus woev Q  are planes in® ,

then by LEMMA_Z.S if xz', . o o,Xp! are near Xy, o o .« 1Xy then -

dim an.

if xl is.

2[ L ° L 4

. NQg = dim Ql'n. . .DQS". Therefore by LEMMA. 2.9

close toxl andx2 s Xr close to

Xy then xll is in general position with respect |
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to x2', o o o xr‘. Thus the condition is open.

PROOF of THEOREM 2.7: By induction on r; Assume the theorem
for r - 1 points. Let (1) pe the set of r-tuples (Xp, - - e (@)
“such that %y, . - Xy g0 Kpqr oo - X AT in general position and x is®
in general pos:.t:.on with respect to Xy, - » P SERESTS AR .,xr Then
by COROLLARY 2.10 \9 (i) is open and dense in @T. Hence \8 ﬂ gr(l)
i=l
is open and dense.
THEOREM 2.11: Let Xi, « « «/% be points inh general position in B n,
1, cce/X .
Let Qg s - ..,Qckbeplanesmle suchthat ai,' '?andQc, is
L
the plane spanned by {x : j Ecl} 'I‘hen d c; ccl, 12ig k}QCin’“chk
= Q ﬂ . .nQCk. and the distinct planes anong QCi, ey Q"k' intersect

in the minimal dimensien predicted by PROPOSITION 1.2.

PROOF : To prove this theorem we need only show that if

dim (Qc ...'\Qck) >dJch R dJmQCK - (k-1)n, then

]
we may find cj 009'ch°- -00¢, = QCl'Q"AQCk and ¢ # C4'
for some i. Then J.teratlng this procedure until the J.ntersectlon is

m:m:unal ylelds the result.

General position requires that %5 C—. Q,. iff J.ch. By

renunbering, we may assume w.l.o. g.. that x; € ch, . @ .,ch , but
Xlercg+1' e o er Qger and that {4 k. Let c;* = cg - %l}for

1 :’;jf,Q . Then Qc. = {xi}vch* . Th{erefore Qcin...qu{ -

= (fx3 v Qo * )N NCER IVReF ) NQ gpyg P ee e MO

and x7 V(Q n...nQCk) = T (x17 Q c1 ceer Qco*r Qcptle ceer Qi 2™
for = éél} P ,EI} 241, «ous }S?}

We may assume Q. 41 intersect minimally; otherwise we may

reduce these planes by indication on the nurber of planes in THEOREM 2.11.
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L !Tmm
Then dim (Q n'...nQ’l = dim Q oot @imQ - (k- {-1)n. =>
o+l Fk c2+l qk' .
t'n(Qci.'c--,QcE. ':.-[Qc').<) = -dJ-In Qc1*+noo'*" dec‘-ﬂt
|

+dimQ, +...t dimQ - (k-f-1)n +9+]-fn= ¥ ~ (e
o4l . Ve ) 2 I'En 1Eldmol (k-1)n+l.

: k
By hypothesis dim (§x,3 V(Q_ n...nQ )) > Y dimQ - (k-l)n+l; that
i c S - (o]
1 . 1 1 i
is, dim Ty (x3) > ty. -Since x| is in general position with respect to

Q x re0,Q 0 10++,Q_ , we must have

c] c;, c1?+l R .
T'IT(X H Qci 7oce ’Qcii’ Qc2+l’ coe chk) = P’ anmd '
T,,(xl) (x ) for maximal 7' € Hr.

Forae ', let Ry =0 §Qux ¢ Jexh if ZQ+1,...,k'§*o<and if
3
E£+l,...,k3c.o< P R;=(\{Qg_‘: j =0, jGo(}*f\ Qpyh =2 N Q- T,,(xl) =

J
~ ~ : S .
T(xl; R“’l'”'R"‘s; En) , and T,(xl) = id:un R"‘i + s - (s~1)n. Suppose
each Ry has minimal dimension, namely Zd_un Qux ~ (lel= 1)n, and
Jex j
dlmp\’— ) dJch* s X dim Q, - (1£1=1)n. - Then dq_mT,.(xl)
jex 5 2+1 j
_ J<.Q.
s-1 k
=1 (Jaimo, - (Ia, l-l)n) v ] dimQ, » ] dimq, - (l«tl—l)n
i=1 jea j - Jea j 4+l j
S3<R
+ s - (s-1)n
k . : . ,
XdlmQ g7 zdich -kn+sn+s - (s-1)n
j= ] 41 3 '
X |
T F Z'dinQc - (k-1)n + s-%. Since ®'>> 7w, - s = I'rr'l<|1rl = 2+l

Therefore dim ‘\T‘n (Xl) <) dim Qc - (k-1)n+l, which is a cont:_radiction.
: j - ’
Thus some R, does not have minimal dimension.
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|
Suppose oL A f? N, ,k}. By induction we may find
| : .
JCCJ,]!::(,Wltth*=nQI.
- t Jea ;j ¢ Jea j
Then fx‘LBVQC n.fanciIs) = T(xl; R“ll.",R“s; R)
| I ‘ .
="i“ 1 . . 3 . 2 '
o (%5 {ch ?sﬁ, ny.'.,z}, gocj'. jeac}j, Qpreee Qi Y
cixIviingo, s skH Nna o i 5ead]
cddvll €00y 7 36D NN Qe jeal]
leS Vv (chn ceeh Qck), :
=> the inclusions are equalities and the planes Qo. have been reduced.
J_ .
‘I‘he case ® 3 ff+1,...,K} is handled similarly. il

DEFINITION: Iet éxl, ..,x:} be po:.nts in IEn spanning a plane Q. If

Q' is spanned by a subset of Q, say Q' is a face of Q; if Q' is spanned
by a proper subset, say Q' is a proper face. The intemier of Q is the
camplement in Q of all proper faces, denote this by Q. Then THEOREM 2.1l

may be restated:

THEOREM 2_.11': If fxl., . ,xr'} are in ge:neralv position and Ql" ..,Qk

~ are planes spanned by subsets of these points, then

dim (5ln...n(3k) < dj_le +...+dijk- (k-1)n. . H

DEFINITION: An r—paple (Xl"""xr) € (:HZn)r is in general positio.n
if it is in projective general position when &H* is'fliewed as a
subset of (B . Since (8% is open and dense in (@7, it follows
that general position is open and dense in (Rn)r.
One may transfer ail ‘definitions from projecti.ve space to Euclidean
space. For example, a (proper) transversal of X, Qpree "Qr in R is

a line ,f ‘through x sum that Lis a transversal (proper) of
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f
l
|

X, Ql' ..,Q in IB . X lS in general p051tlon with respect to

B S

Ql""’Q if dim Ta(x; Ql,..-,Q i B ) <t for all partl-tlonsﬂ of\\'

,.0.003. L !

. 2 2
EXAMPLE : Iet Q be a point in R, Q and QP parallel lines in R
.Wltthn(Q UQ)—%’ IetxleR2 bechosenon'chellnethrough
Ql parallel to Q2. fI’hen no line- through Xl in Rz passes through
Q1r Qpr and Q3. N_ever‘cheless, X1 is not in general position with '
) ; ! .. ~ O . bot ¥
respect to Qll QZI Q3l,'because T(xj_l Ql'EQZ N Q3: %9 ) # £ and it

should be. T i L



III GENERAL POSITION OF LINEAR MAPS
|
!

i

In this section K w:.ll denote a finite smtpllclal complex,

with dJ_m K= k<n L (K, Rn) is the space of l:Lnear maps f: K-%R

with the uniform topo_logy. Since every such nmap is characterized by R
:' B S
its values on the vertices of K, one sees easily that L(K, R ) is

naturally homeomorphic to 2, for q the nunber of vertices of K.
Amap £ EL‘(K, 2

|

Gy e Oy of T{ of dimensions Ayr eeer ar respectively, then

is in general position if, given simplexes

d_unfu’n ...r\fci‘ <al+ +a - (xr-1) n. Itis ocbvious that such
a map is nonaegenerate, that is, f£lo is 1 - 1 for any simplex 0" .

Lep X, D CL(K, BV ; is the subspace of maps in general positian.

1

THEOREM 3.1: Igp (K, &%) is dense in L(X,E").

PROOF: Let R " be viewed as a subspace of 2", as in section I.
For O a simplex of K, let [f (0‘)] be the plane in B spaﬁned by
the vertices of £ (o'). Then £ (&) C[f (0‘ )] . the interior of the
plane E‘E (v )] , providing F[o is non-degenerate. Suppose f maps
the vertices of K into general position in R De g . Then by
THEOREM 2.11', for simplexes U7, ..., Tr of K, we have
atm (£&0. . .hed ) g am (L8 @)ne - .n[f(cr)] ) = apt..ta_
- (r = 1) n. Therefore, if £ maps the vertlces of K into general

position, then f¢L (K, R . oo by THEOREM 2.7 Lp (s K is Gense. I\
THEOREM 3.2: Lgp(K, ¥%) is open in L(K,E" ).

LEMMA 3.3: Iet A,B, C be convex l:mear cells, w1th B a face of A,
in B, Iet [X]denote the plane spanned by X. I£ B A C # 8
(where B is the interior of B in [B:l , i.e., the manifold interior)

- 24 -
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. |
.and Bl vick 2*, then ané msit ;:5. and B A& ¢ m.
PROOF: let a € a. Then ([B] v{a})nA is a convex cell A',
zi'cg. Itsufficesto:sho«v;x' nc;é 2. 'lhuswemayassumewlog.
dim A = dim B + 1. Since [B]v[c] = gP »

dim ( (RI~[c]) = @im B +dim C - n>0, and dim (fA]n[cJ).

© = dim (BIalc]) + 1. Letx&BnC. Iet f be a line in

[A] r[C] [B]a @]through x (that is, £ - -{xy<@lak] - (B2 ).
) Slnoe xel andQC[C] E’OO >if x'e 4 and d— (%, x “Y<¢, x €C.\
Slnce xe B and B 1s a prlncn.pal face of A, A is a nelghborhood of x in

c)(oonponent of A in [A] L'B.'I ) = &Y. Then for € small, if

X! e,QnA"' andd (x', x)<€, x' €AnC. Hence Aoc#gd andBQCCAnC. ”
PROPOSITION 3.4: If fI‘SIGP(KR ) and f\r., - .nférr #8 , then

- dim (fG‘, hfc‘r) = d.lmql ooot dJ.mO‘ - (1) n.

LEMMA 3. 5 Iet feL (KR Dy and let G- 10 . .,G‘rbe simplexes of K such‘
that £630, .. nf O°'r = g but the lntersection becomes nenempty if any term

is deleted. If7=g n...nq, then £r= £ N... 10 £0 .

PROOF ; Let ‘Tl, — .,’Tibe faces of O-fl, . . .,U‘r'such that

£ E'Ll"' e e nf 75 @ . (If none exist, then both sides of the above
equation are empty.) We must show ‘Tl = e - « =T.. Suppose

T, = ’7’2 = s w5 =T < but 7 “r“ 1 for j»s<r . By hypothesis,

fDQ'lA. . th' # ;/5 Thus fo‘ln. 5 » nfO‘ is a convex linear cell A

with £ T, =B a face. By PROPOSITION 3.4, the hypotheses of LEMMA 3.3.
ere satisfied for A, B, and C= £T . a. . . NET (namely [B]v[Q)= 2,
By LEMMA 3.3, Xn8=f8~n. « EG NE T 40 - SAER # 8.
Iterating this argumrent we must either arrlve at all s:.mplexes being
equal or f 0‘1 « <« .nfé G B . 'Iherefore, eventually we find

T;C.Ointh "rl=...=4randf:iffwln;..nf¢r. -

—



—

| - 26 -
PROOF of THEOREM 3.2, Let fELGP(K,Iln). Let ¢y, .-G, be simplexes
of K. IFfa’ n. ..nfé’r # % . then din (£G n...0£G) =
((to Jn...n[ffar]) = d.uno‘l+ . 4dim 0. = (-1)n. By COROLLARY 1.6,

if £'(q;) is close to £(0y), the planes (fa],... Cfo— ] intersect

_minimally and therefore dim (£ G’l)ﬂ oo N(E g-r) ]Z. dim (T - (r-1)n.

In fact, by PROP. 1.3 we may guarantee that f'o‘ln Y o B a'r # ¢, so

that dim (f' 0‘ n...nf'o‘) —d3m0‘1+...+d1.m0 - (r-1)n.

Suppose fOin hfo~ ¢ . We show that if £' is close to £,

£? 0‘ln nf' [rr - 4 . ’I'hus it suffices to prove this for 07j/,-«-/0,

satlsfyn_ng the hypothes:.s of LEMMZ—\ ‘3.5, Then fUln e nfO‘ =£7

- ——

(1 poss:.bly empty) . . I f(i'l eeo NEC. = 5:5 then by compactness_if £’

. \
isclosetof f'o: n...nf'r=;ﬂ. If 7 # $ then £'Gyn ... nE' 0.3 £'7.

l
By assumptlon fa*zn va #¢ ,and - £' clese to £ implies that

[=]

o~

£'6,n... nfo- ;ﬁ yﬁandfls close to fozn...hfa. S:Lnoe

£ n(fozn ...nfc-) ¢ and smcefo-ln(fvzn...ﬂfcrr) = £7, there

'is a minimal anglee between line segments £ < £0. and £'< £0,a ... N£0,

1 2

such that Rand 2 each :mtersects £ pe:cpendlcularly at the same point.
|
But then if £' 1s close to £, the m:l.m_mal angle will remain positive, so

' — T~
falnfd”zn...nro- £f'7.
Thus if £' is close to £, the condition of general position is

I

presexrved.



+ IV STRUCTURAL STABILITY

Iet X,Y be topological spaces and Mep (X,Y¥) a collection of

continuous maps from X to Y. Two maps f,ge Map (X,¥Y) are cailed

structurally equivalentl if there are hameomorphisms j:X+ X, ki¥Y> ¥

and a commutative diagram
. . o

j¥ g +k

X - X

The maps are strongly s—ﬁr'*ucturaZZy equivalent if k can pe chosen

=le} that 3 = 1os the identity map on X. :
Suppose now that Mep (X,Y) has a topology. A map f € Map (X,Y)

“— is structurally stable if there is a neighborhood N of £ in Map (X,Y)

and a commtative diagram 4 | . ok

. ]_N x £ B " ; . » —
NxX +NxY¥
je + Xk

reda.

NX;X +NxY
. .

such that 1. E(f‘l,x) (fl fl(x)) .
2. FOI'GVQIYf'IleN there ex.1.5t hcmeomorplusns J 13 x> X
" . == = 1 =
and Kle—xY ;uch that Jf lx, Kf lY’ and JE 1,%)
€1, 3 (0) and XELy) = (Eh KaW)).
Amap F is strongly structurally ‘stable if J can be chosen to

be the identity on N x X.

i =
I

|

f i

l

lSee Levine, "Slngulara_tles of leferentlable Mapplngs : P 41 for

the differentiable analogue. '

! ! - D7
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The following are simple consequences of these definitions:

4.1 If £ and g are strongly structurally equivalent ‘they are struct-
urally equivalent. - If £ is strongly structurally stable, it is
structurally stable. ! |

4,2 If f is (strongly) structu.rally stable, there is a nelghborhood of

£ in Map (X,Y) such that it e N, £ and fl are (strongly) struct-

urally equivalent.
PROOF: J:f.l, Rl sati‘sfy the definitiox;x. |
4.3 If N is a "structurally stable neighboxhood" of ‘£, i.e., if it
satisfies the definition, and if fle I?I , then N is a structurally
stable neighborhood of £l
PROOF: Define Jl: N x X» N x X by 3% (g,%) = (g,J-f."l =) .

& 7[ -
e @nd _Kl: N x ¥» N.x Y,,by_,Ki_(_g_QQ = '(g,Kfl"l(y)) .

The diagram ‘-", yields - .
‘ ; f s :
| " 5

Y
Kfel

X
J£l
+ £y
X » Y

f
' f oJJfl ]L/K 1 lof 1. x> Y.
'I'herefore, Kl o(ly x£ 1y (q,x) = Kl(gf lyy = (g,Kfl lf'l(X))

l
| | = (g, £0471 ) = 1y x £ (g.Ia171X))

|

We now have a commutative diagram

;=1Nxfo‘Jl (grx Ve

N x X -+ NxY

ate ¢ K
Jogl| NxX . NxY |Kogb
g ¥K |

NxX Nx;{

s
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the outer rectangle of which establishes the proposition
if N is a neighborhood of £ ; that is, if fle N. ||

COROLLARY 4.4: Structural stability is an open condition on Map (X,Y) .

e

If the spaces X,Y have structure’, we may require in the
definitions that homecmorphisms J g:X+ X and.Kg:Y.—r Y are stxucture-
preserving. In our applications, these maps will be reqnﬁ.red to be

piecewise linear. I | |
PROPOSITION 4.53 Let v s I})Map (X,Y) be a path with v (t) stxuct-

urally stable ¥V te I ~ Then there is a diagram of level pre-
serving homeomorphi sms - B
Ixx> IxY .  vhere E(t,x) = (&, )} (),
(l Xy (0)) | : ‘
Jy +K g
IxK=> IxY
E !

PROOF: For each tz—: I, there emsts a structm:ally stable
nelghborhood N of v (t) :Ln Map (X,¥Y) and maps Jt’ Kt' For each t,

there exists E-r such that v (t—-¢€ t' t+ € t) Lo Nt We may therefore,

by conpactness, choose 0 = to< Ty <eees tn _and” Ny veer-Nn. such that

——

B S

vl tl, tiq o g -3 1911 +1 and N; is a structurally stable nelghborhood of

v (ti) . Thus there are dlagrams

l XV (t]_)
N, X X -+ N Y
i s ‘ ’
ST Ji+ | o “"+Ki S

which yleld ,

Forxv(yg -1
[t—l,t] XX—*T.t-l,tj %X
Jil=Jio:(vxl)+. +Ko (vxl)—Kl_.
Eo (vx1)

L& = ]xx+{t—l,t] xY.
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1

For tel t; - 1, ty) define. J° (8) & X» X and KL () :¥sy
1l

by Jil ) (x) = Jil (t,x) and Kil () (0 =K1 (£x.
R

Now define J: I x X» I x X by

I (£ = (& K 1 (o KgLy (£, 1) weeo kL (£) (0)

i-1
for te [tj_l,t ] and similarly K: I xY¥+ I X Y. These are
well defined since J 1 (¢, -l) =1y and Kj L (ELd = Lye

The diagram

1xwv (to Yy
IxX+IxY is the desired one.
J+ ¥K
E -

IxX->IxY - . N
COROLLARY 4.6: Iet v : I+ Map (X,Y) be'a path with v (t) strongly
structurally stable, ¥ te I. Then the diagram of 1.5 can h;ve
J =11 x x- ! R
COROLLARY 4.7: Suppose anjlsotopy E of embeddings 'of X into Y can be
realized by a path vz I~ Map (X,Y) with each exrbeddlng strongly
. structurally stableg. Then there is an isotopy of hcmeomorphisms H

of Y realizing thlS isotopy; i.e., there is a commutative dlag‘ram

le
IxX ~ |IxY
\f 1H
E j_IXY

s

~ s s D EECy I
' S

This is the isotopy emtensW

DEFINITION: A map F: N x A > N x B is a Fiberwise map if
|

pryoF (é,a) = g. It is a Fiberwise embedding if also

pr, o Fl{g} % A is an enbedding for each g ¢ N. It is a

Fiberwise. homeomorphzsm if pr2 F|{ g} x A is a homecmorphism. -
THEOREM 4.8: If x is locally compact, locally oconnected, and Hausdorff .

then a szennse homeomorphism J 3 N x ¥» N x X is a homeamor-
i i

phism.
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PROOF: Iet C( X, X) be the set of continucus maps from X to X,

with the compact - open topology. ILet A (X) be the sub-

space of homecmorphisms of X. Since the map pryo J: N x X» X

is continuous, the associated map J*: N>C (X, X) given by .

[0* (F)] (x) = pryo J (F, x) is continuous. By hypothesis

J* (N) C A (X).
ETHEOREM (Arens) If X is locally canpact, locally connected

rd

and Tz, inversion is continuous in A(X), ]
The map J.]':.Nf A(X) given by gl (@) =Jd* (g9 1is con-
tg'_.m;ous. S:Lnoe X i; campact and Ty, the associated map
K: N x X + X given by E_((g,x). =L Jl(g)] (x) is continuous.
But K - pr,o J"l, and pry0 31 is clearly continuous.’

.o, 5t is continuous. | |

FRATS : . S5
(S . . )
‘




V STRUCTURAL STABILITY in L(K,I&)

The objective of this ‘section is to prove the following
THEOREM 5.1: If £ € Lk, 1Y) maps the vertices of K into gcneral
position, then £ is structurally stable. That is, there is a neigh~"~

borhood N of f inL (k, B?) ard a commitative diagram

E
NxK - F(N xK)-rNan
A’ YA YA
1x£

NxK o~ Nxf(K)—rNan
such that ’A, X are Fiberwise homeomrphlsns, and the maps
Ag K—*Kand,\g. R—arglvenby
% (g, ¥) = (g .?x'g (x) and Alg, ¥) = (g/ Agly)) are PL hcmecmorphisms.
COROLLARY 5.2: The structurally stable linear maps of ¥ into E® are
dense and open in L(K, &Y.

PROOF: The set of maps in L(K, B") sending the vertices of K
into general pos'ition' is dense in L(K, ). The corollary now follows
from THEOREM 5.1 and COROLLARY 4.4. 1l o

Recall that L(K, Rn) is naturally homeorrorph:\.c to RRS for s
the number of vertices of K. Gn.ven f as in THEOREM Sely chose €> 0
such that if d(g, f)<e , g maps the vertices of K J.nto general posi-
tion in B, Iet N=N (f,e ). We will prove the “theorem for thJ.s
cho:.oe of N, for small € ‘.

For the duration of ’chls section, we will adopt the following

l
|

notation:
) {Vl, .oy Vglare 1_:he vertices of K. We may assume s> n, since
otherwise the result is tr:ivial.

,a" = the set of subsets of {vl, , vs} of order<n. '

j/

'f “ 3.

1l

the set of subsets of {Vl, veer Vg} of order n.
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View K as a subset of ES by extending linearly the embedding
V+ (0, eees Ly eoeos 0)y 1 in the ith place.

a will be a generic name for an element of J, ad , for a subset of 4.

 og = simplex spanned by { Vi 3 Visa} for qeg. Note that @im. n-1

ard that Oq need not lie in K.

p§ = plane spamned by the points { g(Vj) : Viea} in {9} X -3y
N x B, If o, K, this is the plane'spa.nned by
F({g) X oy )e |

B gJP%CNXR. ) .

View R D ph, Every p - plane in B® extends unlquely to a p—plane

J.n_IE .

plane in {g} X e N x B determined by R(x;,a cd
, = ﬂvPS" c{g} x B2 , where vc.,J .

N é)n Pv'gCNxE_.

ol ol
Q

’

PROPOSITION 5.3: For any aeds | ﬂ;é.
PROOF- By decreasing. 1£1ductlon 211 |a| , the cardinality of 4.

If ]a] = n, then the equallty is trJ.v1al. If l {< n, then since s,

there exist at least two po:.nts Vi V3 not in o . Then by general

position of {g(V): Eau{ i,vj}} inp , P;u{\/;} P;‘U{VJ}-P‘;

" Applying induction to the left side of this equation, the result . '

follows easily.

PROPOSITION 5.4: For any Vicj, there existsy le gt such that

?v,g=§§) ,g forall gfE N.

PROOF 3 ThlS follows dlrectly from 5.3.

i
i
|
I
|
!
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LEMMA 5.5: dim P v,g = dim P ¢ for vve S, g e N

e l

PROOF: Iet \Y = {all " o ‘7',“(!@ }o 'Ifh-ell P 'f = glﬁ e o .n—P—%e

por pPoL=
f n- e o hpf

= "°‘°lddmp;r‘n...npf—dim‘§°‘l ... d&mPE - (c-1n

By THEOREM 2.11, there exists o/ y Co i such that P

f £ £
= §(la’l-l)—(c—l) n.

1 c ;
By PROPOSITION 1.2, d:unPgl n... nch > (..‘I'-ec-’ [. - 1 - (c - )n
3¢ i
for all g € N. S:mce g 15 Pg for 1<ic<ec it follcws that
1 -
=0 mC 0 4y _ - - -
d.unP g>dJ.mPgl n...nPg _z(lail 1)- (c - 1)n
dJmPvf,nmbysyImetrybetweenfandg,de f>dlmP |

1

'PROPOSITION 5.6: Let v,v cj'such that P 23 P,i,g- Then there ex:.sts

I

] 4 — v — -
v” <3’ such that Py g Bilg © Pyl ,g and dim Pvlllg = de ng + 1.

PROOF Since Pyyy! = Pv gn_l;vl,g = Py ,gr We may assune’
1 "1
w.l.0. g that vov . Hence there is someaav -v~ such that

P v,g < P\) U{ } g 7'5 P 1’g- ,P\) U{a}lg P\)l, 'g n P ° By

PROPOSITION 1.2t d:.mPv u{a} .>__'di_mi>'\,l g+d1mfg—n=

’

d'Lm P\)llg + (n -1 -n dlm P\)l g " 1. Since Pvlu{a’}'g 7 P\) -19’

n. _l
dim P, v{a}lg-—d.lml?\,

g~ L S?_‘”“ '.=““{°=}- S

1
COROLLARY 5.7: Given ved , let vy , « « . |V r be all the subsets

’ * e c — — e W
of 4’ such that P 3, g # P, ,g+ -Then BV g~ OP

IP, . g is a disj‘oint

union of open convex célls in P g
. vege

PROOF: By 5.6, there are v-', . s e vr' such that

. g .
U— v
1 Py v; 'g " Vl g

= din Py g - 1. But the
complement of a family of hyperplanes’ (planes of codimension 1) in

Lngl,gandemP

B is a disjoint union of open convex cells. - I

|
i
i

}

;

i

!
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THEOREM 5.8: Let P -1 P be hyperplanes (codimension 1) in P2,

1 -
Let F: N° (%'I'Pi) —N x B be a Fiberwise embedding with N a disc, such
that . , dI ' . -

1. ¥vx € N, 15ifx, F (ﬁx}xPi) is ahyperplaneingx}.xmn
and RS S —— A_Hﬁ,,_" ’

2. Fi&ed x EgPi is the in¢tlusion map into ,{xo} x B,
Then F can be extendedto a Fibe'zm.)ise homeomerphism H:N x B2 N x B
such that H [fx) x B is the identity map. ' .

. . n n
PROOF: Iet 7 : S—B be the double coverlng of progect.lve )

space by the sphere. ILet Sin L= T -1 (Pi) . We have a dlagram

r n
éx_o} x U 'Sin’lc_,a xS

AES

o nel
N x USin --3Nx8?
i+ 1 S 4XT
1xT xr F \Ln
N X "UPi--————-f?NxIB
1

Since {x°} x US n-l ig a defomatlon retract of N x US n-1
we can lift F to F* with F* | €x<,3 X US n-1 the inclusion map. It
suffices to extend F* to a Fiberwise ?Jz.omeomorph'z,sm H* of N x 7

which sends antipodal points to antipodal points.
~ The carplement of L:J‘Sin_'l in S:&1 is a disjo:;Lnt union of convex
linear célls C LC._:_.] , 1L £ 3 2q wﬁere C _:*]_ and C 2 are ant.lpodal
Given a peint X € C _I*l_ ', every point of é 3_ can be joined to x by '
a unique geodesic in c.l(C._j;_ ). The corresponding statemenﬁ is false
in 2", |

Suppose first that r=1. Iet C i be one of the cells in

s - g nl

1 - Ietw be the center point of Ci (the unique point



| | -3

f

farthest fram Sln'l. Then we may define Fl . N--S® to be the unique
1
continuous map such that F (xo) = v and Ft (x) is the center point

of a camplementary domain of F ( $x3 x Sln 1) . (One way to see

that F! exists is to define G : N—P" and lift to s7). Define:
.H.* | 3 x cI(C_::-_ ) as the join of F [ {x}.x Sln":L and the map.
v—F' (x). Define H* | §x3} x (C 1) to be the antipodal map to
u* | §x3 ch(Ci). ' | |

o s s 2
Now assure r » l. Foranyoellc_::_,leta,,b,écJ

303 %
which lie on different spheres S jln-l ;S jzn_l' Iet v be the
midpoint of the geodes:l.c jOlnlng aJ and bJ (Since aj and b, carnnot

J

be antlpodal, there is a unlque such point and VJ € C 3) Define
F.jl N—>S" by F jl (x) the midpoint of the geodes:Lc joining
F* (x,a) and F* (x,b) in éx? x s™. SJ_nceF*le fa } and
F* | N x ébj? are continuous, so is FJl. Defme H* | ix} b4 c.i(C )
as the join of F* [ {x} x C 3 and the map vJ v>FJ (%) « Def:.ne
B* | fx3 x c[(C 3 ) to be the corresponding map antipodal to this.
Note that since S" and Sjn ~1 are orlentabla, we may ooas:.st-
ently distinguish the regions of ¢x3 x sP-F ( §xy x Sjn—l) , cal-
ling one + and the other - . In this way each open convex cell in
st = M_Eﬁsjn_ll is identified by a collection of s:Lgns For any vj
' chosen above, the construction guaranﬁees ﬁlat Fj (%) has the same
signs assigned to it as.vj, since it .;'LS easin varifiad that Fj (%) .
can never lie on F ( éx} X Sin"l ). Therefore, the map H* de- .
fined above gives a well-defined homeamorphism extending F* .

H* : N x S" -9N x s™. R

' A
PROOF of THEOREM 5.1: If P €G_PR%, then P € G R ol

Let Q € G y_1 B D be the plane such that § € G, B ™ is.the
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- —m e ‘___\\
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|
| —_
|
A

| orthogonal conplement to P. Call Q = PL the orthogonal complement
of P. Ifx¢« E ! - Q, fchere is a unique point 7i(x) ¢ P closest to x;
thus there is a natural pmjectlon map Trp: D -qQ—p. If
” 1 € q{mnandPlQEn-Q, then —r lP :P1 —P is easily seen to
be a homeomoxphlsrél. ‘ ' . .
Recall that F maps the vertices of K into general pos:x.t.lon in
R0 e 2D, Choose €0 such that if d( g, F)< € , then
1. g maps .the vertices of K into general position,: and
2. i£Ve3, thenPr, (Fy,g) CEP-px, '(Fu’f )L
That 2. can be satisfied follows from PROPOSITION 1.3, together
with LEWA 5.5. e L ; | '
Iet N=N (f£f,€). Observe tlmatN*:'Lshareonorthictoadiscl , o,

of dimension ns.

For any V¢4, define a Fiberwise homeomorphism ¥.,. -ﬁ,v’,ﬁN x Ev £
by ¥,(g, x) = (g, 'n;,;”,;(x)) The family of maps ¥, v<§ are not campat—

ible; that is, if P 3 ch ‘£ then {Jw’Pv N;é W. We w:.ll nod.lfy
7

these maps 1nduct1vely so that they are cmpat:ble.

By PROPOSITION 5.4, it .suffices to consider vecd! If dim I’-\) £= 0,
. 14

let V= Yy: ’P-v-,-g)N x P v £ Suppose now that ‘P, is defired 'for'
14

allvecd’such that dim P < x, such that ifV,€Y), then ‘1’9 IPD“N = fo, -

Y f
We will construct ‘Pv for ved’ WJ.th dJm P y £ =T

Let U = § V% \)cvcglandd.unp\, f<r}Let ol= fvieo]
dmP yre =x - 1} .- By PROPOSITION 5.6, Uogv:g =Ugga‘1>v,’g-
' each v’e, there is a cozmutatlve diagram '

|

C._._->P

v, )
VAN ) Ve
—> N X P
v,’f e; b If

Z

ol

N x
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. § ot :
where O)% ¥, % is a level preserving embedding. The statement
that the maps Yy’ are conpatible for V/€g translates into the state~

ment that the above dlagrams yield a comutative square

RUBREE VHo" ?v’,NC—%‘-* Py, ~\ . |
: jU % j"'\.'uv ' T

NxU Py, 5NxD,,
N e Sy - _ -1
Namely, if \);DD; €0, !e v‘ = \Vp 4 \fu, = f‘f’vd( (P\)). , PVuN )

-

i / ) = GVQINXF\’"P °

‘the hypotheses of THEOREM 5. 8, so ﬂmere is
l - -~

an extension of 6\, to a szemzse homeomorphzsm of N x P.\,' £e

Oy is a map satlsfylng

Define i . --->Nva b .'=G"'°Y’.
. ‘Pv P V"(,N . V,£f y Sa ! g v » . .
Then for any v’ov, ! ' ) :

f,1 5 ,’N; 0, %IP on = OV E o
By induction, we have made the maps Yy oompatlble. Now we repeat
the process one last time: |

Conblm_ngthemaps PoiNxP —F <nx2®toa

v £ v ,N

Fiberwise embeddmg Y N x U5 P yE>Nxp?" s -and reapplying

THEOREM 5.8, we get a Fiberwise homeomorphzsm ‘f N x: R——)N X E .
-1
such that (¢¥™) ‘f is con'patlble w1th the ¥y 's. ¥/P Vi

= t‘}DV=P\,,N NxP, g

The homeomorph_lsm Y was not constructed usmg the llnear
structure of- R ; but rather that of E ¢ SO 1t must be modified to
pProve the theorem.
Let C be an open convex cell in {g} % §V'f - gg} X U Pvr,f.
Then Gv}E is the join of Sv[C and a map of a point to a pomt. If

_ n
C ng} XR and %-:(c) Cig}xR and *f’v-:lc is PL ¢ We may



f
f . S I

replaoe ¢ -t{C by the PL map whlch is the join of ‘Py [C and the map
v [§3= ¥, Vo0, i) USllng the linear structure of R to define

the join. ' ; '
| n

Let Q denote the convex linear cell in $g2x R spanned by

g
the points g (v),...,g(v) Bytheconstructior}of‘lp,it
is clear that ‘F ( 293 X Q ) =Q . Using the preceding argument
g

inductively on the skeleta of Q we see that the map ¥~ '/ NxQ
£

: N x Qf——-)sU Q ‘can be taken to ‘be a szerwv,se PL- homeomorphzsm. \\'
(Note The oonstructlon of L really was a skeletonwise construct.lon
of the cell complex gg} x B ? " us:Lng the cellular subd:.msmn dlS"
played by the planes P\,’l,g .) ' | N o |
Let V: N-|~>U Q be a szerwzse embedding such that V(qg) € Q o o
" There is a hcmeomorphlsrln ' : f9) x R -—-)fg; X R " defined as the
join of the map ‘P"[{g} X Q £33 x Q -—;Q and the map
fg'} X f\) (f)} —Afv(g)} - This is well deflned, since Qg is con-
vex and is hence starllke from any point in its J.nterlor. ThJ.s
_gives two Ftber'mse homeomorphz,sms which are PL:
‘f"INxQ : NXxQ —UQ , and
PN x 'ﬁn":'é_f‘ N xfB_.-——\Qg%U (ﬁn—*g)
which agree on N x Qf . Cambining them, 'we get a .PL hcmeonorphiem
(fiberwise) A7l : NxRB—5y x g P .
2!, like P~ + has the property that ’}‘;-l (N x f (k) ) =
F((NxK). We carplete the theorem by defining 37} N x K. ILet
'Tbeasmplexofk Deflne,z ig} XT = ( lef’rl) oA oF
Then the commutative diagram of THEOREM 5. 1 is completed.
The PROOF of THEOREM 5.1 shows that the deflnltlon of general

positicn is really a projective space definition. For what has been
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actually proved is a structural stability thecrem for points in pro-
Jjective space: |

fadta

THEOREM 5.9: Iet (xl, . lo sy X. ) €"3r c (B n) . Then there exists

neighborhood N of (xl, . .y xr) in 2 ™ and a Fibersise homeomorphism
A: N x PRoN x 2 P such that -
1. l(n,xi)'= (n, n; ) , where n= (nl, o o oy Ny) ; and
- 2. A takes the plane spanned by Xivg o o oy X to the plane
P " .

|
spanned by Ns, o o o, N.- o
:?_'l 7 ls

T

[ ’
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VI THE C TOPOLOGY’

n
In this section R will be viewed as a normed lmear space, K

a finite SlmpllClal ccmplex embedded in R = the nunber of vexrtices
of K, as in section V, and inheriting the metric froam R S.. Thus K

" is endowed with a metric which is "linear" on each sinplex of K. .We
will assure dim K = k< n.
Iet o be an r - sinplex, and let £ : T—R ™ be a linear

map. For any beU, define d £ 10>k P by df, (x) = £ (%) - £() . ...

-

- Similarly, if f: K—R " is a lJ_near map, then for bea-e K, we
may define dfb : St ((5‘, k)'—>]R bydfb (%) —f (x) -f(b), where

St (T, =U{TeK Cisa face of the (closed)surplex 3.

DEFINITION: Iet £, g : J:-—-}R ? be PL maps, where J is a subconplex

.
= 4

of same Eheliéean'spece 2. Ford >0, say that\gls a (uxufonn)\"

oo
ltofl'if ‘

d - approximation

1. £ @) -g .(:b)H:’J ¥b €7.
n . )
2. 1 gt is a subdivision of J such that £ and g are linear
with relspect ,to.J:L ; then deb (x) - dgb @) £z -bpll

o sn e A ,

forallbeJandallmet (b,J ) =st (v, Y for
b ¢t ' s \_'
Note that ll Al represents the appropriate Euclidean space norm.
The definition is Ieasil:y_ seen to be independent of the choice of sub- -
division J l. The definition of d{’- approximation deoe.nds on the
"PL metrlc“ on J in the following sense: If l - | 1 and | ‘ 2 are
two llnear metrics on a t - sinplex @, that is ' metrics induced by

e

t
linear embeddings of G 1nto R , then there exists: % F>0 such that

1
Munkres, p. 83.
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{x-bl <‘ilx blzandlx—blzplx—b) for all x, b €0 ..

" Hence, if g :n‘-}R T is a dJ - approximation to a PL map F:03R n

with respect to | then it is a max (J, J«) - approximation

lll
with respect to | |,. Thus for any finite camplex K, the embedding of
K into large - dimensional Euclidean space is irrelevant. Similarly,

it is irrelevant which linear norm Il Il is placed on R n,

- DEFINITION: PL (K, R n) is the space of piecewise - linear maps of K

into R ™ with the topology induced by taking for a neighborhood basis
at £ N (f,e) = $g €Pi‘4 “(k,_}Rn) | g is ane- approximation to £3 ,
€>0 . ' , , .

Given £, g€PL (K, R "), o ,B€R , define «f + Bg : KR "

by (x£+Pg) (x) =o" £ (x)+ B-g(x). Iffaﬁd'garelinear

©  with respect to Kl, a subdivision of K, then «f +pBg is linear w.r.t.

Kl. Say (Ifll =4 £ j“ f(x)jsf¥vxeKad [[£ (x) -£

2 Jdllx=Dbll YbeK ad x:e St (b, Kl), where £ is linear with respect

to &1, but the inequality is violated for any ¢ '<d .

. , ' ,
With the above definitions, one may verify that PL (K, R n)

'lS a real normed llnear space. Observe that f and g are d- approximations

b0 each other If £ ”f- gll<d.

The remainder of this section is concerned with some of the

 properties of d- épproxinations of PL maps.
- l

PROPOSITION 6.1: ILet f : R k—-v\R be-a-PL-map,-k < nﬁ g is a

\
&~ approx1mat3.on to £, 1'hen INE(x) = £ (b) ) - (g x) - g (b))”

< 8lx - bll forallb, c rK,

PROOF : Let J be a trlangulatlon of R k such that both £ and g

are 1mear with respect to J. Let [b x] be the l:.ne seg:n‘ent in
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R X joining b to xX. Then fb, x] is broken up into line segments
b, v, b bl s« . [b 3, x] , each of which lies in a
single simplex. Then we have

(£ ~£®G)~-(gx-gm)I
=[l( £ (x) —f b ) +Efm _J)-£ (o) +r o o o £(b3) - £ (b))
- [ g <x>-g<b_>+...+g<bl>-g<b>>n'.
£llafoyy () -dgop g ([l + . . .+ (ldfp by ) - dgb by )
2 &1 Hx-bn_l[ iy =B I+ .. +Ubl—b'll
= Slix=-bl . i

- THEOREM 6.2: Let ¢ be an r - sinplex, [v] the r - plane spanned

by @ in same Euclidean s.pace.. Ietf;0>R % be a non - degenerate
linear map, r < n, and let T be the linear extension of £ to o] .

‘ Then for every ¢ >0 thére ex.lsts §>0 such that if g ;U->R n
is a PL §'- appro>dmation to £, then g extends to a PL €~ approximation

g :L]>k ™ o E. |

LEMMA : Iet m, n be vectors in Euclidean space, and let 7- ¥,
béﬂ;le anglebemeenmandn Then {m+n]>s:Ln (‘p') ( Im} + [n| ).

If |mj = (n{ .. this becomes an equallty

)

PROOF: We have Im+n[ = |m/ - + (ni 2 .-' 2 lml‘{nJ cos Y, .
(lml+lnl) -2lmllnl(l+cos\°,)
Then lm+nl 2 sin 2 (‘P:/2 ) = ( Imj+ tn| )

= (1/sin 2 (¥/2) —11) (lml + Inl ) -2 (1+cos?) . \milinl
' sin 2 ¥, /2

if0<Y <.,

Thus (Im + nl 2/sux (‘?/2)-(lml+lm )

. = e ———— \

.= (_2_ - l ) ( l‘ml + (ny ) -4 (1+ COEV'_)‘,‘m] lnl‘\\
1 - cosf, | (1 - cos¥r) | —
. | : . | |




"
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Il

(l+cos.‘{’.) [(lml+1nl)2 - 4 mlin]
1l - cosY,

(1+ cos¥/1l = cos,) [lml - |nﬂ2>0

I‘quallty occurs if |ml = [n].
2
We conclude that Im + nj 2 2 ( (m] + Inl ) sin2 (% /2)
or Im+nl2( Iml + n)) sin (¥, /2).

if Y, = 0, the lemma is of course trivial. |

COROLLARY 6.3: If 4(m , n) =7 -Y% and ¥(m+n, p) = 7 - fa,

then Im+ n+ pl2sin (% /2) sin (%/2) I(m+nl .

PROOF: Im+n +pl 2sin (%/2) (Im+nl +1pl) ' =

>sin (%:/2 ) (Ilm+ nl) ésin % /2 sin $/2 (i + l'ﬁl_).

PROOF of THEOREM 6.2>: T.riangulete [t by J such that

l. g is a smplex of K.

2. If « is a face of 0, then («¢]is a subconplex of J.

3. If xT is a surplex of J w:.thf_xa face of o and T disjoint
from ¢ , then Ila - tll21 for ¥ ae«, {:e'?‘.

For al, a,cfo¢ and t<7, let O;( ajs ag, E) _be the smaller angle

2
between the line [al, azj " and the l'ine [al, t] . This angle is

positive. If a, and t are kept fixed and a, varies, then & varies

1 2
continuously with a,. Since the values of G, are all determi_ned by

the values on a small sphere about a; in o, min 9: >0 by compactness. ’
By two more applications of compactnessy-we- sZcze#’cailIat\ ©. achieves a

nminimm value for al,' azg! & and t € T. Therefore, definﬁ\
O, («7) =min @, ( a,, az;, £ > 0.

S:unllarly, 1et e;(oc’r) be the minimum over all a;r a Eot, _

2
.l' t‘,2 €T, of the angle between the plane Ea ' 2y tzj and the line

E
I
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[tl'.tz:] " 92 (LF) 2 0. Iet Oi = minimun over all choices of
d,’l\'.Of Si (x7) . Then 6i> 0.

Let § = € sin ©,/2 sin §,/2.

Iet g:g-»R " pe a PL J™- approximation to f s linear with respect

to the triangulation Ll of G . Let gl be a subdivision of J which ex~

tendsLlaIxiaddsnoverticestoJ—O‘. Extend g to a linear map

g: ghsr P by
| g =g (V)' if v is a vertex.of e
| | £ (v) ifvisavertexofkl-Ll.
We will show that g is an €— approximation to f.

r : 1 ,r..1 1 1 ‘e
Let»LTbeasmplexofJ ®CL”, Tc g -1 I.etb,x€°4 .

Wemaywrlteb—ﬁal +(l B)tlandx—-')(az + (1= ?() tp, for -

at ated”, by, b, T, ana 0<% ps1. I.etb =pal+ 1 -pit,
X =Kalt (1-2) t,. '

) Since £ and g are linear on we have for l.nstance
-“F(b)= f(al)-*'(l F‘)f(tl). .
Mo llg @) - F @) = lggia )+(1-}3)f(t)-}3f(al)
-(1—;3)%‘(t)!/ =plls (al)-f(a )]<pP =T <€ |

Next, dgb (x) = g(x) - g (b) = -
[5 oY —g(b)? + [s6) -5 (b)] + [30x) - 56)
= @ -p)Ttey - Fep] -+ (X-f) [olayh - f(tz)]
+7([g(a)—g(al)] .
similarly, d%, () = 1-p)[F(t,) - f(tl)] o ) [£ @b - f(tz)]
| + x[f(a Y - £ 1] . ‘
Hence dgy, (x) - df (x) —., (X-R) [g(al) - £ (all)]
| +x[ d;;all (3,1 - atal (a)1)].

L T

| \
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So we have ffdgb (x) -df, il £ (X—?-lJ-e— %((azl— all”J .

On the other hand, x - b = (b - b) + (x -bh) + (x - xY
= (1-8) (ty=t)+ (X-B) (& Lot + % (a 1-ah.
By COROLLARY 6.3, _
lx -bll = [1—5) (t, - tp] + [X-B) (art - e ]
+[7<<a - ay )] Il
2 (1 (X B) ()t - t,_)ll # [ Xa," - &Y Il )sin¥i/2 sin%/2
2(x-p) +7(}/a Il) sin %/2 sin %/2.
Here 1~ ¥, is the angle between the vectors (a21 - a; Yy ana (al - t,)
" while T - 502 is the angle between the vectors (t2 - tl) and
‘(x-p.) (al:L - t,) +'x(a21 - all) . It follows that ‘P.z-e, and' ‘&364 .
We conclude that

1185, 6o - & 6|l < x-8] +Z]] a;" - 2D
| ‘ = ( ’X/-BI'*'Z”azl - al]-” )6Sin 61/2 sin93/2
< (IX-pl+.X lla,k - aj 1) €sin ¥/2 sin%/ 2)

{A

<llx-b .

Thus g is an €~ approximation to f.

n

THEOREM 6.4: Let i: BesR ™, k<n and let g: B“>R  be a

* J- approximation to i. If d<1, then g.is a closed embedding. Further-
more, if 7: R p—-}Rk is the orthogonal projection map, then

Tlg R . g R k—Rr K is a_:PL homecmorphism.

PROOF: By PROPOSITION 6.1, |[[g (x) =g (b) = x+ bll <&l - bl)

For any b, x& B . Then ifg (x) = g), _lIx-bU-‘-J‘llx—b”
: f
=2 x=b. Hence g is l—,'l. since |[g(x) -xli<1 VxeRk,
l' , . Ll
g is a closed enbedding. |
|

i



- 47 -

By the sine law, H(g(x) =g (b)) - (x - b)f/
{x - Dbli

= sin¥ (g(x) - g), x - Db)
sin ¥(g(x) - g() - x + b, g(x) - g(b))
Therefore, sin ¥ (g(x) - g(b), x - b) < 4

and ¥ (g(x) - g(b), x - b) € sin_ cJ‘<-rr/2.
Hence ﬂ‘[gmk is 1 -1, and sinoe”n‘é (x) - xH:J’VXGRk,'ng is onto, -

so nlg R ¥ is onto. Thus we have shown w[g R Kisa PL homecmorphism.

COROLLARY 6.5: If € is suff1c1ently small, then in THEOREM 6.2
§= l—-RkR%is a closed enbedding. _ ‘
PROOF: There exists M such that Ix - bl gMiF (x) - 'f;(b)ll- Vb, x
€ [gls since f is linear and ﬁon singular. Then if 6; /M,
Ig(x) -gb) -Fx) +Em) Il <ellx-pll< MIE(x) - Sl =
SIEx) - Tl for F=em<1.,

- THEOREM 6.6: Let £, g: R I-L\R n be PL inaps such that f is aryl -~ approxi-
mation to lppn- and ‘g is a d,- apprommatlon to 1. Then
1. Lof is a (4, +§;+ §; 4y ).~ approximation to an
2. If S,<l then fl R25rPisa §/1 -4 - approximation to
i |
3.. If his a ds- gpproximation to F, then h is a J+d}- approxi-

mation to lIR n*

PROOF: 1. éor xeR" . llg £ (x) - xll € “ gf (x) - f(x)l[ +
llf(xj - xlI€d+ 3,8+ I, + &d; . For be B ™, x close
to b, W(gf(x) - gf (b)) - (x —- b)) 'I
£ lvl(gf‘(X) - gf®)) - (£(x) - £(b)) 1y + g - £(d) )
= - b)f” =qlEx) - £o) + & llx - bl ' '
;.5 SMEX) - f(ﬁ) - X + bll.+&llx - bll +§ [ x-Dbll

f‘ §(S.J;+J;,+S,') ”x"b”o
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2. IFY (%) - xll = g1 -££71 (oll28. € /-4, .
~_ (Note that f_l is a homeomorphism by 6.4 )

-

£ (x) = £ O = [l x=bl = [[£(x) - £(b) -x + b Il

> (L-38) Ul x-n0bl
so st =il > (@-&) 1 £l - £hLlu

Hag "H(xl) -dl; (x' )N =
e tedy - e lely ) - eel @l - g1 by i
P F e o I e |
£4/1 - gl * - bl |
3. lihx - xll s ([hx - £xll +(1£x - xll £ 8+ . |
II( hx = hb) - (x =b) Il 2 I (h(x) -h () ) - (£(x) - £b) )
SUE () - £ ® ) - (x=b)l |
< Syllx - bl + Bl - bl
= (5 +4) [x-bil .

‘Q.E.D.



VII STRUCTURAL STABILITY FOR PL (K, R n)

Since this section is concerned with Fiberw‘ise maps, it will
be convenient to review some facts about @(X,Y) , ths space of con-
tinuous functions fram a space X to a space Y with the corrpéct - ope.n
topology. . - R

If X is locally campact and Hausdorff, and if A is any space,
then a function ¢:A—€(X, ¥Y) is continuous iff the corresponding
map P: A x X—Y defined by ${a, x) = ‘P(aj (%) is.conti_nuous.

If alsa X is locally comnected, then % (X) <C(X,X) , the group of
homearorphisms of X ) is a topological group. |

If £; IR " is a PL map and > 0, then N (£,d") is the
~set of ali PL J- approximations to ¥. Denote by N* (f,d) the
set N (£f,d) endowed w1th the campact-open topology. N (f,§ ) will

L

have the C- topology. The "identity" map N (£,8 )=dN* (£, §) is

' autamatically continuous.

THEOREM 7.1: Iet P, Q be planes in R n such that dim PnQ)
=dimP+dimQ-n>0. Ieti: PQRn, 33 QL)Rn, k: PnQQRn
be the inclusion maps. ILet €20 be given. Then there exists §> 0
‘anda continuous map. O: N* (1,8) xN* (j,8)9N* (k,€) -such that

O£, g0 (PnQ) =£Pnx.

PROOF: Iet §<1 and let £ € N (i,.9). By THEOREM 6.4, the ~
~ orthogonal projection 7: R n-> P gives a hdrreorrorphism TTIfP ﬂ’—:fP.
Let P (f) = (wlep ) : p—y £P. -

Define a map G: N* (i,cg ) & n) as follows:

for fe N* '(i,S), define G(£f) -: R B—p " by G(£) (x);= X=T (X) + £7 (%)«

Y
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G(f) is PL and G(E) [ P = f.
For X€ R n A6 (£) %) - xil =1l £ T(x) —W(x)HSJ'. For
n . :
any.b, xeR ' 4G (f)b (x) - a1 )|l |
= l(x=-T(x) +£7(x) )~ (-7 +£fwb) ) -x+bll

= £7(x)- £T(b) ~7Tx) +w®HUsT Nrx wbll<PUx bl .

Thus G (f) €N* (Ln,8) , and since §<1 G (£) must be a homeonorphism.

Suppose G (£f) € N* (1,d) and letB70 and let C be a campact sub-
Iet £1 e n* (1, J) such.t:hlid-; | £ (%) -f’l x) <@ wxemc)co.
Then for any y € C, 1[G (f) (y) - G (fl) §%9]/
=y -ny+frny -y+ny - fl'ny i
=Hf‘l‘rry -fnyll «B . This proves G is con-
tinuous. Iet H (f) = G (f) =1, Then THEOREM 6.6 inplies that
H () N* (L, d/1-J ). Therefore, if §/1-§ <1, thereisa

continuous Imap .H: N* (i,é’ )—? N* (an ’ 5‘/1 -d ) such that

for any £ N* (i,d) , H (/fp =f71:fP—P.

If g& N (j, ), then by THEOREM 6.6, for any £ €N (i,8),

S H(Hog:Q—R™® isa (§+S/1-3+8/1-8)= 28/1 -8 -approxi-

mation to the inclusion j: QR %, since composition of maps is
continuous in the 6ompact open topoiogy, the map

NE(1,8) XN (5,8) —a NX (L L 9/1-8) x N (5, 8)

R b

N* (5, 2d/1-d )
giyen by X (£, g0 = H (f) og is contj_nuous.
Suppose we can find a contir}uous function Y: N* (3, 2 S/l -d)

—>»N* (k, ¢ ) , for e’arbitrary and J sufficiently smail, such. that

if g2 QPR j5 2 2d/1 ~J'~ approximation to j:QoR P
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then ¥(g) is a honecmorphism of PnQ onto PN gQ. Then we get a map

WoX : N* (i,J) x N* (j,d)—->N* (k,€)
such that[Yo X (£,9) ] (PnQ) =Pal (flog Q.
The map § 3 N* (i,d) x N* (j,d)=>N* (lgn, Jd)
defined by ®(£, g) is continuous. Therefore, we may define 0 by the
diagram . - |

: o X
N* (1,5) x N* (j,d) f&)_}n* (1,d) x N* (k,€ )

J/o
_ i N* (k, €’ +d+ €°d )
That is, (£, g) = [G(f)] o[¥@E (Do g)] . We have '
[ccHr] o [YE (Bog)] @na = [6 (5] PrE (DogQ)

= G (f) (P) NG (f) H () g =£'Pn Q.

Therefore, Let €’=min (1, €/3). Choose d <min (1, €/3)

such that Y exists (this is yet to be proved). Then €+Jd+ €'F£€

and @ satisfies the theorem.
Thus we are reduced to the following situation: Given
g:0 R P approximation to j: QLR I, &’ sufficiently small,

we must find an embedding ¥ (g) : Pn Q >R ? which is an €’-approximation

to k: P nQoR  such that Y(g) (PnQ) =Pag.

CLAIM: We may assume w.l.0.g. that Q is orthagonal to P.

| PROOF: We may certainly assume w.l.o.g. that 0€ QNP, so that
Q and P are actually linear subspaces of R n Let Q* be the plane
of the same dimension as Q passing through PARQ and orthogonal to P.
let L: R & " be a linear autcamorphism of R N which keéps P ..

pointwise fixed and maps Q* to Q.
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Ietw = J|L|| be the norm of L, and likewise let n =HL_1” o

Suppose g € N(j,J‘_’) .‘ Then letting d= max ( nd, an"),.
= . ' w . . n
1 g (LiIQ*) : Qx—R P is a &' approximation to j* : Q*<R .
For given x € Q%,

it gL - x M =l (@ 0 - L )

.‘.n”gL.(x) -L (x)ljsnd’.
If b, x€Q*, then 1T gL (x) — L1 gL (0) - x + Dbl

= nz (@ ) -gL () -1 +L B

in

nllgl-(x)-gh (B) ~L (x) +L M)l
<nd’ HL (x) - L (b)fl's md“:-’ux'-'bu .
- secondly, L1 qu (9*)nP =171 gQAP: .-
* =t onrt e =1t (0P = @ne.
- Finally, if g, gt eN* (3,99 and Illg (x) - gl x)|l<p ¥ x€ C,
then Il gL (v) -l gl < alle (» - g'L W € np
vy rlc. 'I’hus'thexlnap w: N - (Grd’ )N* (3%,07)
 given by g —»L ! gL is continuous. If we can £ind

Y N*- (j*,é‘")—'-}N* (k., €’), then Yoo :is the desired map.

Q.E.D. CLAIM

- Now we prove the theorem assuming Q is orthogonal to P.
We are given €’» 0 and must construct Wi N* (3, d7)—>N* (k, e )
for &7 sﬁficimﬂy small, such that ¥(g) (PnQ) = PAgQ. |
Iet 7T: R n—-—?Q‘be orthogonal projection. If §'<1and
g € N (j,J’) , then 7gQ : gQ —Q is a Pl homeamorphism.
Let p(g) = (w[g))~1 . Define ¥(g) = P(9) | PnQ. since
P =PnNnQ, |9QAn Pmaps gQnNP homeonorphic_ally toQn P.

(Here is where we need the condition dim (P N Q) =dimP +d4dimQ - n,
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in order that T (x)€ P N Q, if and only if X € P). Therefore,
P(g) : PN Q=P N Q.

We will show that W(g) € N* (k, 9//ui=F9) for g € N* (j,947).

AS in THEOREM 6.4, if x, b€ Q then ¥-.(g (x) - g (B), x - b) < sin™+J”,

for any x € Q, let xl be the point such that mg (xl ) = X. Then '

'g (xl ) =P (x). Since the vector p (%) - x is perpendicular to the

plane @, 10 () = x 1l € Up&) -x 1l = [lg ") -dusd .

Since the vector x - b is the orthogonal projection of p(x) - O ()

: Onéo éle plane Q, ¥ (Px) —P B), x-b) £ ¥ (P -0 (b), V) for
any vector v in Q. Let bt = g"1P(g) b and xt =gl p (g) x. Then
X (p) -PB), x-Db) £ (P& ~p®), x = bL)
= (g &) -goh, x-bh £ sinld”.
Therefore, since the vector (O(x) =0 (b) ) - (x - b) is perpendicular
to the vector x - b, wé have '
(o) -p®) ) -~ x=-bll = llx-bl tan ¥ (Px) =P ®), x = b)
. | < fix - b Il tan (sin"14")
- - &/rra llx-bll .
This shows that P = @(g) is a f_’/_f,':.th - approximation to
| j : Q>R . Therefore, by -restriction choosing d7//i=r1 < €7,
we have Y¥(g) € N* (k, € ). |
Finally, we .must' show W: N* (j, d7) N* (k, é;) is
continuous. ILet g N* (j, d’) and h = ¥ (g). Let«>0 and
C campact ¢ PN Q be given. CLAIM: If [jgb () -g (01l & %/2+€”
o v gl (@ (© ,gtent (35,8, then | ¥(@H @ -HW Il S«

Yy Co

PROOF: Iety e C. Sinoeh(y)ég(Q), there exists Z2¢€ Q &

g (z) =h (y). We have
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vty ) - nw)ll £1¢Gh ) - g@l +ig (z) - hep ]
1
=fl?’<gl) (y) - g1 (2) +llg”(z) - g2l . -
By hypothesis, z=g th (y) =g 1 (p(@T) h () = g 10(g) yeglL(g)C.

Therefore, |lgt(z) - g(z)]] £ ®/spe’ . Since Ti: Rn——;»g‘is :
oru{ogonal projection, Il gl-(é) ~tiglz)[l £ «/2 +e’ . Since
Tg (2) =Twh (y) = Y, we have (hgl (z2) -y M€ /2 +€° . We
have already shown that O(gh) : Q= gt Q is an €'~ approximation
to : QR M. This>impli_.es that |
lpigh [1ghz] - Pat)Ey] -ngt@ +y I < €lngl(a) - y Ui
= loEh 7 et ) - o Wil £ a +e'>ungl(z) - y IS +€)%/(2+€/) ~

. Nowwe get that [¥(gD) (v) - byl

: ‘ 1
< I¥YEH »-g@ll + g @ -h wf
= llph @ pghngd@ Il +1gt@ - g (@
¢ (1+6€”) w2 +e€) +¥2+€ =o(.

This proves ¥ is continuous.

COROLLARY 7.2: Let Py, P & wp Ps be planes in R % such that

dim (Pyn. . .AB) =dimPy + ...+ dmP - (s~ 1)w2> 0. Then, if

is% PjL;Rn are the inclusive maps and k : P

n
5 . .nPSQR

n.
i §

is the inclusion, and €>0, there exists J>0 such that if

n. L] .hPSQR n

fj eN (lj, &) , there is amg_?_(fl, . . .fs) :,Pl

suduthaf _ A
1. G(ﬂ, « « o, £)€N (k,€) , and
s
| 2. S(fl, « oo £) (Plh. . .nps) = £P

1 _
more, O: N* (i,d) x . . X N* (i, d) N* (k,€) is con-

. £P . 'E\Jri-her—
S s

tinuous.
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PROOF: By induction and 7.1l. Since dim ( (Pln. . .I\PS ’n Ps)
=1

> . . - > o
Z dim (Pln. . .nPS_l) + d.LmPS n _dLmPl

+ dim Ps-n | '
(since Pln. : .nPS # @) , it follows tha‘; dim (Pln. . .nPs__l)

=dJmPl+. . .+dJ.mPs_l

define O’ N* (i1, 6) x . . xN¥ (is , I ) N* (k*, )

- (s = 2) n. By induction, we may

for any ', if d’is small, where k* : P

n
. n ~> " THEOREM 7.1
ln nPS__l R By » REM 7

if J is small we may find
Q“: N* (k*,J) x N¥ (is,J)—-aN* (k,€). This gives a map
N* (13,9 x . . X N* (1,4)—N* (k, €) defined by
e(fl,'. - er £) f'e"(e' (£17 « « o fs_l), £).
Furthermore, G(fl, < e apf s) (Pln. : .nPs)
=[O, e £ ) pa. _.nps_lﬂ nf _ P

? o .
DEFINITION : ILet C be a campact set in R n s USSR , J 2 J—>R

the inclusion map. Then N (j, d, C)

=$g €N (3,8) [clfxig (x) #3 3} cintc}

ADDENDUM 7.3: In COROLLARY 7.2 , O(N* (i, J, C) X « « « x'N*(is,J‘, Q)
14

< N* (k,&, Q).
PROOF: This follows directly from the construction of ¥ in 7.1.

xr

LEMMA 7.4: Iet Pl”' e &3 'Pr be (n - 1) - planes in }Rn, and i:ka;

= JoR ® the inclusion map. Let C-be a convex linear n - cell in R s
Given 1> €>0, there exists §>0 and a map H: N* (i,d, C )=>N*(1z,,¢,C)

with H (i) = lpg and H (£)] J = £.
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n : ;

PROOF: R - J is a disjoint union of open convex cells
Dl' « o o4y Dge ILet E; = DinC. Then Ei_*is either empty or z?. convex
linear n - cell (open). Assume Eyr o o oy Esl are nonempty. Let ;¢ Ei’
l1<if< si. Then Ei is a closed convex linear cell and El = g Ei’

the join of x; and the boundary of Ei' Let q; = mingnxi - bll l be Ei}.

Then qi>0 . lLet Oi = the mlmmum angle between line segments [xi, bj

and [b, c] , where béEJ:_ and [b, cJ is a line segment contained in Ej.

Then ©.> 0 . Iet d. = sin( ©i/2) min (€ ,€q, ). Let J=min J" ..
. i L - L o

1£5,c & , then Ej= D; € J. Define H (£) | B, to be the join
of the map f: Biﬁm?‘ and the map x; —rxj. If Eiﬂc # @, define
H (f) ] E':i f\-(:: to be the identity ( which we may do since f | Dlr*é is the
identity map by hypothesis). Now define H (£) | 'ﬁi to be the join of
H () :'r::i./;mn and the map x, »¥, . Define H (£)\ 2™ - C to '
be the identity. '

Now H (£f) has been defined on R . It is clear that H (£) | J = £
and that H (f) is continuous. It is also clear that H: N*' (i, §, Q)

— @™ » P is continuous. So we need only verify that

wH(f)eN(an,e,C).

Ieta,befi. 'I‘hena=°<xi+(l-o&) al,and.

L

b= pxi-i— (l—-B)bl,wherea,blﬁ' El Leta*=_(3xi+(l—f3)a1.

5 (® () -all = flax, + 1 -4) £ (al) —ex, = (1 -«) atll

(1 -«) Hf(a)-a < (l~c()d‘<<{' < €.

Il

H (f) (@) ~H (f) (b) =H (f) (a) - H (f) (a¥) +H () (a*) - H (£) (b*)
(¢x; + (1 -¢) _f(al) ) = (px; + (1 -§) £(al) )

F(px + (1-p) £@h) ) - (pxg + (1-B) £D) )
(el = P) (x; -f<a1>>+<1 -B) (f(a) —f<b) R

'Ihusl[H (f) (a) - H () (b) —a+bll.

I
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for all g € N* (£]L, d').
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I B Gy - £@D )+ (=P (£@h) ~£mh - ©- B Gx; - &
- @-p) (& -phll
< la-gl llat - £@HI + 1 —pl' @Y - £mY) - al + bl
la-p)d, + 1L-BId I al -pl/ .
Consider the vectors a - a*, a* —b. Since a - a* =
(2=B) (x; - a%) and a* -b £ (1-B) (a' - bl), the angle between
L = o ol o = Ty 5 A ST 5 T BEERE (x; - al) and (al - bY),
and therefare it is greater than O,. By 6.2, '
"Slla-bil = ¢ [lta-a*) + (a* - b)) > Csinby/2(la - a*} +lla* - bu)
a —651n 9:/2 lla = a*il + € sin ©;/2 [l a* - bil
2¢sin 6;/2  l«-plg; +€ sin6y/2 u-;al lal - pli
2 =gl + h-pd [1al - B
2jm (f)(a) - H (B (b) -a+bll.
This proves that H (f) is an €- approximation to lmn Sinoe
by construction H (f) (x) = x¥ X .Rn—C, H (f) N* (l ,€i Q).
By an identical argument to the precedn.ng one, we have the

follaﬂ:l_ng appmmatlon lerrma

LEMMA 7.5: Let f:o‘—_—?Rn be a linear map‘of a k- sinplex.
Let b be the barycenter of ; let g = min $1x - bl !xeé'};

let § = minimum ¢ between lines [b, xJ and [%, y] for any x, Yy €T

’

T a face of T . Given €>0 with €<1, let d= sin ©/2 min (€ ,€q).

‘Then if g:é‘»—-}Rn is an J - approximation to fleo , the join of g

with f]%b}is an € - approximation to f.

n
COROLLARY 7.6: Let L < K (finite) be a subcanplex, and let f£f: K—R
be a linear map. Then given 0<€< 1, there exists J >0 such that

there is amap O: N* (fl L,d)~—>N* (£,6) such that 8(g)| L =g
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'PROOF: Given any map g € N* (£/ L, J) we may canonically extend
. | )
|
g to K skeletonwise onl'the simplexes of K - L using LEMMA 7.5, where
d is small enough to satisfy the ILemma. . The extension g clearly varies
gh I _

continuously with g. {l
We are now ready to prove the main theorem of this section.

THEOREM: Iet K be a finite simplicial complex of dimension k < n.
Iet £: K—R ™ be a linear map which sends the vertices of K into

general position. Then there is a §>0 and a diagram of Fiberwise

maps
. S
N(f,;)Xk* —i\'N(fICY)XR
A, 2
N(,5) xk TXF N(5d) xrD
where E (g, x) = (g, g{x) ) énd‘;\,i\'are f‘ibemise homeomorphisms.

Furthermore, the map A: N (£, &) —9%(R D) cOrresponding to
A (i.e., A(g, y) = (g,'./\ (g) (y) ) ) has its image contained in
N* (lgn, € , C). Here € may be made small by choosing J small, and

C is a convex linear n- cell containing £(K) in its interior.

COROLLARY: The set of structurally stable maps is dense and open in-

PL (K, 2™ .

PROOF ‘of: COROLLARY: Iet £€PL (K, B n) and €>0 be arbitrary.

Let f be linear with respect to a subdivision kl. Iet g be an

_ € - approximation to f sending the vertices of kL into general posi-

tion and linear with respect to k. Then g is structurally stable.
This proves denseness, and openness is an automatic property of

structural stability. _ ' : | B
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PROOF of THEORLM We will adopt the same notation as that .
used in V; this w:Lll be made more e>cp11c1t shortly.

First we assert: ﬂlat the theorem will follow if, given 0<€< 1,

wecanflndamap./\* g N* (£, J)——PN* (1 n’€ ’ C), for J‘andC

i

approprlately chosen, such that for any simplex g of K and g€ N* (f, £ ) PR
A= o) (g (o-) ) = f (0‘) Then the associated map

A: N (£, 5‘)~9N* ( IRn' €, C ) given by AN(g) =A* (g) is autcmatically

contmuous. let A: N (£, d‘) x &N (f, d) xR be the assoc1ated

map to A. Define A": N (f,d’) xk’—->N (£, J) xk as fOllOWS‘

Given 0 a surplex of kK, £ I (f)(o*)—-}U' is defined since f is non - de--

generate Define: XN (£, J) X0 tobe the map ( 1 x £ l) oAo P,

Then ~[N (£, ) ) xo‘ is a Fiberwise homeomorphwm and hence, so is ,
A’ Also (1 x f)eo’ '= AE by oonsi.:ruct.‘iolxhi. _ | |

Next we cbserve "chat we may assume K to be the (n - 1) - skeleton
of an (s - 1) - simplex; Assuire-fvl, o o oy vs} are the vertices of k
and that ¥ is embedded linearly.iriRs, as in V. Letkbe the (n- 1 -

skeleton of the (s-l) —smuplex sparmedbyv roe e er Vg J.nR .

1
Suppose there is a map AN* s N* (f,o’")-—%N*( lmn’ , C), where £ is

. A . )

the linear map on K which extends f. By COROLLARY 7.6, there exists
&’ and a map N* (f,4")—=N* (f, d'). The composition of these two naps

is the desired map A*: N* (£, &) > N* (1,,€,C).

NOTATION: ,X is the set of subsets of gvl, s 5 §F vsg of order < n.
J’ is the set of subsets of gvl, & % ey VS; of order n.
U is the simplex spanned by éfvi: iéd; for ol<j. |

P%is the plane in R S spanned by {vi: ieoc} .

The map £ extends by linearity to J = q\é) JP* in a unique way.

~
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Tnangulate J such that

T

l._ Each plane P"(_, is a subcomplex of J. T

TTT——
: —

2. Each plane pvf is triangulated as in the PROOF of THEOREM 6.2 o
Then given any g € N* (f d)y , d sufficiently small, g can be extended
toaPLr?apprommatJ.ontof g—r " and_themap N* (1K, d) |
»N* (£ 143, é") lis continuous. Furtherrrore, if C is a convex‘ linear
n - cell in " such that the simplicial neighborhood of £ (0"q) in
f(P-"‘) 15 oontalned in ‘C, then each such extens:.on g: J -9R D has the
property g (x) =.f(x) v x>f (erRD-C.
Now we define P:‘; = gl B* ),«e.g, g€ N(ET). Pueg
= f‘\{Pg, ,acv)for vef.
The remainder of the argument reqm_res J to be chosen small s ,
enough so that a certa.ln flm.te murber of theor@ns hold. A funct:Lon
€ of 4 will be written generlcally as€= R () if l:Lm€ 0. The
composn.tlon of two functions of g each of which is L (J)
is again &(d‘). Then we need only oonstruct/\*' N* (£,$) —= - -
N* (lnlrﬂ(f),C).
. Applying 2.11 followed by 7.2, we may construct maps
.Gy: N* (£,J) - N* (1v,&<ﬂ ) for iy v,fcam such that
&,(g) By, g = Pv’,g and 6(9)/ P 'f: - C = 1. However, these
maps are not campatible, in that if vw/cy , and thus
V£, O,d9) | Pv,f 7 Qv(g)-
Define Yy : N* (£, §)—>N* (iy ,d(J) ) inductively as follows:

)4 C P

v,t

Assune w.l.o.g. that vl 1If dJm P y,f = VO, define ‘-Pv = @V.'

Now suppose Y, is defined for all v<§such that dim P v £ < X,

[4

such that if v,cv, then H"p, (! Pv.”f = ‘20\); (@ -
. ;
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Iet Vi, o o o ,\Js‘be ‘the subsets of 4 containing V such that
dimP , o=xr- L Then by induction, we may define a map
[ 4 .
£ 4 s, n
Y* : N* (f£,3)=>N* (1, 9(J) ), where i: P v, EU- .LP valfL,R

by ¥* (g)}P\)f ‘:ov,(g) Since@(g):Pv E‘?‘Rnisan&(d‘)"ap‘
prolenatlon to the J.nclu51on, e\,(g) lTPv —g——-—)P 'f cr?® _is an '

&(J) - approximation to the inclusion, and Sy(9) “loyx (g) is

§

an Q(J&) - aoproxn.matlon to the inclusion P vy, rgbe .uPu ?Pv,f'
7

By LEMMA 7.4, extend Gv(g) 105"* (g) to a homecmorphism of PV £
4

which is an c,ﬁl(cj‘)l— approm.mat.lon to l‘!2

o if This gives a map
sJ N* (f a‘)*-m* (1p f, 2(J) ). Now follow this by Oyand get a
map Y,: N* (£, T )Pv‘N* ( iy r€) with ¥u(g) —Gv(g) ° Yy (@ .
Then $y(g) (By, ) =P, and e | Pog £ = Ovia) o Oyl L4y

= Yvi (a) - Lastly, cbsexve that all of these maps leave points in
R™ - C fixed. This conpletes the induction.
Amalgamating the maps ‘10\1,\7('- 3, we get a map -
Y: N* (£,d)—N* (i, J(d‘), C ) vhere 1.\813 'fL-)R .
Applying LEMMA 7. 4 once more now extends this map to

N*: N* (f:d")'%N* (lgn, K (J) :C ).
THEOREM : Iet f : k—r % be an embedding. Then f is strongly
structurally stable. That is, there exists J'>0 and a diagram of

Fiberwise maps

| . '
N (£,J) xK—>N (£,) xR "

I

o N(fJ’)xR

where F {g, x ) = (g, ‘g (x) ) and X is a honeourorphis'm;
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COROLLARY: If H: KxI R " x1isa Cl - isotopy; that is H is
an isotopy and the associated function h: I-»PL (K, R n) is con-

tinuous, then H may be extended to an ambient isotopy of R ™ x 1.
( See 4.7 for proof ). 'l

. ' w » n
PROOF of THEOREM: Subdivide K to k1 such that f: ks r
is linear. Extend Kl to a triangulation J of R D such that K¥ =N (l-(l, J)

the simplicial neighborhood of E(l in'g ;is**a'regular neighborhbod. _
By COROLLARY 7.6, if &< 1 is given, there exists 970 and a contimious

function ©: N¥ (f,d")->N* (i,€) for i: K*5R D the inclusion.

By construction, G (g) l;' Q. (K*) is the identity. Therefore, extend
©(g) by the identity on R B _ i6% to an €'~ approximation to IRn' which
’ ) : . ) o ] e I
=7 " by THEOREM 6.4 isi therefore a homeomorghism. This gives
. ; ‘ ! : :
- * * ! = 3

- !

. -
- H

L¢
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VIII RELATIVE GENERAL POSITION, RELATIVE STRUCTURAL

STABILIIY and TRANSVERSALITY
With some small modifications, the results of sections II
and VII can be generalized‘ to relative versions, in which maps
in PL (K,R ) which all agree on a subcomplex L can be compared.

A 'speedy‘corollaxy of this will be a transversality theorem.

DEFINITION: ILet X1 oo - . X, Yir + « -1 Yg be points in B®. The

r
points Xys o o4 X are in relative general position with respect to
Y1s - + +» Yg_ if each point x; is in general position with respect

tO tl]e pOintS Xl, e o oy ‘}{i_l, Xi+l, e o op ><r, yl, e e o'\y‘sh;\ NOt'B\

that if s = 0 this is the usual definition of general position of

Xie o o or X . The points Yir « » -+ Yg should be thought of as

fixed and the poiﬁts X1ef oo o K. @S variable. .
| .

" NOTATION: If X is any swbset of 1, . . ., r and B any subset of

|
él, . . oo s} with [u[+[B/<n, then Q «,g is the plane spanned

by Fx;: ieo(}U‘zyj Iep}
i |
LEMMA 8.1: Let X;, . . ., X, be in relative general position (R.G.P.)

with respect to Y1r + « «r Ygr and assume that if d(xi, xi'_)<€, i=
s o o op X4 xi', . & wip xr.' are also inR.G.P; w.r.t. yl, e o or Ygo
Lethl’ 1r 0 e e Q"’?-,'Pg be any planes 'spa.r'med by Xir o o .,xr,

Yys o « «s¥g and Q"zl,m ) e e et Q’“i-,B;. the corresponding planes for
X1's o . .,xr', Yir o o o1 Ygo Then dim (Q,,Ué'ﬂ. s .ﬂQu,,“g,q‘)

= dim ©Q 'a.,é?' e oNQ o’;.,“g% ) and the two planes are close together for

small.

-e3-
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PROOF: This is identical to LEMMA 2.8, and the proof carries
over without modification, since we need only know that each point

X, is in general position wi‘ch respect tO XyseeerXjagr Xiyqs oo .,xz':, Yiee-Yge

LEMMA 8.2: Assume relative "general position of fewer than r points J.n
2" with respect to Yir e o ; -+ Y, is an open and dense condition. Then
the condition, " Xor v o , X. are in R.G.P. with respect to Yir o o .,y
ard X1 is in general p051t.10n WJ.th respect to Xor o o erXpg Yy0 o o Yg"

is open and dense in (Erf)
i

PROOF : 'nﬁis follows from LEMMA 2.9 exactly as the proof of
|

COROLLARY 2.10.

THEOREM 8.3: ’I‘hesetofpo:.nts E(x ;e e ey xr)é'(mn)r I x R .,x:_.
. are in relative general posﬂ:.xon W.r.te yl, T Y- is openand\.
dense in (2 MT. - [ '
]
PROOF & For r = l, this follows from THEOREM 2.5. The inductive

g
case follows from LEMMAS 8.1 and 8.2 exactly as in the PROOF of

THEOREM 2.7. lr S S
|

|

It ds :necessa;ryi now.to have an’ analogue of THEOREM 2.11,
Which is in. a sense the key lemma for structural stablllty Iet
Q« <, P be a plane as before and consider the face Q @ 8 of Q » P

{1,...,5}

If \.":LS any subse; of 2 let Q¢"vdenote ﬂ{Q¢,B. Be v} o
let Qu,vy =Qu,p V Q4,y - We must consider a plane Qu,v to be
a face (as in 2.11) of Qu- y’ whenever « cw’, and Q4,v < Q,g,y .
Note that ifV=§g), V' =17 and g<f’, this is the old definition.

Call any face which is not of the old type a pseudoface.
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THEOREM 8.4: (Compare with 2.11) If xl, e o .y X are in R.G.P. with

respect to iyl, .« s .,.-;ys? and Qu,,pr «  or Qu,p aXE planes spanned

by these points, then there exist planes Q;", . . .Q ' such that Q;

'is a face or pseudoface of Qo.“,B:' Q.,»,'g,ﬂ. o «NQuyp, = Ql'n...th',

and the distinct planes among the Qi' have minimal intersection.

PROOF: This differs very little fram the proof of 2.11, bﬁt
we will repeat the pi:oof in order to display the full detail..

In order to aﬁply an il;lductive argument, we ‘prove a slightly
nbre general theorem. Let"!Q.g,,v,, “ o ey Qg,',w be planes of the type
described above, and suppose dim (Qe,,w»N. . .0 Q*‘m?f) |

> Z dim Qd - (t = 1n. We show that we’ may replace these planes

“by faces or pseudofaces such -that the distinct cnes meet minimally.

Now we use a reduction argument exactly parallel to that of

2.11, except that there afe "many more cases.

CASE 1: '( = o e o —&f ¢ Repla% Qp’\}o ° .Qﬁ,v, by Q¢,\J’u. e sUVH

CASE 2:o§, = .,.- . '-'&’+74=¢ Assume w.l.o.g. that 1 € X,. " '

Let ' = @ - §1} <posslbly empty) . Then Qu,s + M Qu,vs |

~o
= (X3 VQur,v, )0« . n(xvad,v,) = T (%5 Qur « « o1 QusVriBM).
L
Since dJmT(xl)*’lg(dJ_m (Qus,+) +1) - (£ -1) n<?T (x1) by '

- hypothesis, and since Xl’ is in general position, we must have

|~

T (x3) =4 and T (Xl) |= Ty (x For c<%, let
v | cen

V-

R, = ﬂle v; . BAs in THEOREM 2.11, we must have that R, does not

|
havethemlrumaldlmenmon £dlrﬂ(Q-LV) —(ICI-l) n.

icC

' By induction, replace Qu,v:by Qa;,n; a face or pseudoface .

so that the distinct planes among Qa;,n; » 1 € C, meet minimally,
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and such that M Qu,v%=NQa;,n; o
188 1eC
Then

Qu v-..nQa,,v,—T(xl gR:can IRy

j“[x vinRenv: )] n [xvinaia; )]
- d#c . ' :
C Qu,v.¢ + » Quay,vy - Thus the containments are equalities

"and the planes Qu.v: have been reduced.

CASE 3: Other poss.ibi-lity. "This case is identical to -the one

‘treated in ~2.I-Ll>,”so the argument will not be -repeated. L . -

DEFINITION: Iet K be a finite sinplicial camplex,-L a subcomplex oOf
K, and £€PL (K, B T). Let h = £ [L. Denote by PL (K, ® % h)

the subspace fg<PL (K, R gL = h} . Then we' say £ is
structurally stable relative to L there is a neighborhood N of

finPL (X, R ®; h) and afccmmtative diagram of Fiberwise maps

|
E R ,
NXK—>NxR" . : with ? and A" homecmorphisms

o ._lz_' | La
’ lxf

NxK-——-—————}NxR e
' \»\\

THEOREM 8.5: The set of maps in PL. (K, , h ) structurally o

stable relative to L, for h: L—g any-nondegenerate map; is dense in

PL (X, R ; h).

|
- PROOF : ’Ihe pecul:.arlty of 8.4 is the pseudoface. If this

|
ooncept had not appeared , the proof would proceed as in section VII.

However, here we have to go through a few preliminary contortions, whose

P
Y
i
i
I
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purpose will soon be apparent.

. Let g: KR T pe such that glL =h. Suppose K' subdivides
K and g: 'K'--—;\m % is linear. Iet K'' be the first barycentric sub-

division of K' mod L. Then g: K''-—>R ™ is linear. Perturb the

~vertices of K'' - L slightly so that they are in relative general

position with respect to the vertices of L. If we show that any such

‘map £ is structurally stable relative to L, this will prove the theorem.

Using COROLLARY 7.6, we may assume that XK' is the (n~- 1) -
skeleton of a simplex and that K'' is the first barycentric subdivision
mod L. This makes K'' a honogéneous (n = 1) - complex and we may
assume f: K''—=R 1 maps all the vertices Qf K'' = L into general posi~
tion w.r.t. the vertices of L. Enbed K'' linearly in some large di-~
mensional Euclidean space R +S oo that the vertices Vie « = or Vg .
of K'' - L and Wy, « « o Wy of Lspan an r + § - l~simp1ex..

If ¢ is & sinplex of K'', then f extends by linearity to the

plane [o] . Triaﬁglllate each such plane to satisfy THEOREM 6.2.
Then we may consistently extend PL maps g: K''—R % t5 the planes '
[s] so that if g is a J - approximation to £, then the extension of g
is an J(&) - apprbximé.tioﬁ to the extension of £, which agrees with f
outside some fixed ccmpact; neighborhood of K''.

The outline of the proof now follows section VII. Let

=g ([0'7) If O'l, . .;.,0‘2 are sn_mplexes of K'' and V=§6, . . .,0:3, .

let ng F{}ng . We construc‘. maps from P s _to P, v ‘g‘“ln-the same

cancnical way as in VII modlfy them to make them oonsr:tent, and
then extend the Cermed maps to all of R . All of this works

provided we know t;uat as'g varies in a neig‘nborhood of £, dim Py, 3'
|
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remains constant and THEOREM 7.1 can be applied.
If Tis a face of two sinplexes ¢, and ¢; and g is any
J - approximation to £, then (g ) [&J) (L= (giCaI) I [7].
But if Q is a common pseudoface of P‘Z." and }%6,-* then in general
gl (Elwen™ o# g (£106:1) ™ @, since these two planes are
distinct in the domain.
A sinple exanple of this type of difficulty is the following:
et K = [O, l] and triangulate K with vertices at 0, 1/2, 1.
Iet L = {O, l} . Define. a linear map f£f: K—R 2 by :
£ (0) =£ (1) =(0,0) , £(1/2) = (1, 0). Clearly £ méps
the vertex of K - L into relative general position with respect
to L. But this map, while being linearly structurally stable
relative to L, is certainly not structurally stable relative to L.
This difficulty is traced to the fact 1;_hat the lines (£ (0) v £ (1/2) )
and (£ (1) vE (1/2) ) meet in more than a minimal diﬁension, but
they are identical when viewed as the pseudoface (£ (0)n £ (L))VE (1/2).
This is precisely the reason for taking a barycentric sub- ‘
division. Iet & =k, gl anld G = k202 be simplexes of .K' ' with
fl,?z inLandki, k, ini{;L. If v is ac:ormon.vertex',ofkl
and k,, then of ‘course v can be joined to both ?l and 172 in K*v,
But this implies. by the nature of barycentric subdivision mod L,
ﬂuat ’?l and 92 are common faces of a simplex f of L, and therefore
fInEl2,]= £[4 %] . This remark shows that the reduction
process of THEOREM 8.5 alx?vays yields faces and not pseudofaces in
this situation, and that ;he technique of CHAPTER VII works with no

further modification. Note wt;i“-z;?At-tﬁi;1"»1A<=;‘ab‘o§’\}é‘is\fé';'\l‘se'*_if -h-is degenerate. :
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A corollary of THEOREM 8.5 is a transversality result for
n 2

PL maps into R .

DEFINITION: ILet M" be a closed PL manifold, m<n . By embedding

M in some Euclidean space we may assume M has a metric which is

linear on each simplex of some triangulation K. Thus we may define

PL M, R™) =PL (XK, R™). Iet E (M, B ™) be the subspace éf enbeddings
‘of M into R n’ and let IF (M, R n) be the subspace of locally flat

embeddings.

PROPOSITION 8.6: E (M, R ) is opeh in PL (M, R ™), and IF (M, B'™)

is open ard closed in E(M, Rn) .

PROOF: Since embeddings are strongly strticturally stable, any
enbedding F: M-R ? has a neighb;Drhood N consisting of embeddings
strongly structurally equivalént to F. This immediately gives the
firstl assertion, while the second follows from the observation that
” strongly structurally equlvale.nt embeddlngs are either both locally

 flat or both non—locally flat.

- S - i
FR R, . - -

THEOREM. Beds: Let' P be a cawplete submanifold of B ®. Then almost
all efrbeadings fé ILF M, R 'n) map M transverse to P, That is, the

set of maps which fail to do so are nowhere dense.

_REMARKS.: l. The condition that P be complete Ire:ce‘ly ass;Jr.es that

i | M awedas hitting ﬁue "boundary" of P. ‘ |

2. It is false to say that transversallty is an open
condlt.lon. For let P = %(x, y)< r2Ix=0, v20

or x20, y ,:0} _
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Let M= [-1, 1] and define £ by £ (t) = gct, 0) if £< 0

(t, £t) if £t 2 0.

Then £ maps M transverse to P but a elight perturbation of £ to £°',

where £'(t) = £ (t) + (€, 0), € >0, destroys this. Observe that

there are honeorrorphisrre of R 2 which would change the picture of

M and P to a structurally stable one.

PROOF: The key idea here is' to use the t - shift of E.C. Zeeman

to verify that a map is already transverse. Suppose f€.LF M, R D)
such that the map fui: MuP;&Izn is structurally stable relative to P,
where fui(x) =(£(x) if xeM | |

| % X if xeP '.

(If P is noncompact, we need only consider the portion of P lying in

a large n - cell conta_}'lu'ng £(M) well within itsinterior.) I claim:

f must map M transverse to P. To see this, let K be a triangulation

of M for which £ is simplicial to a triangulation of B ® such that P

_ appears as a subcorrplex..l Assume we have verified that f is transverse

to P except on the t - skeleton, 0 <t‘ k. ILet x€ (0‘) o P, a
1
t - simplex of K. Zeeman and Armstrong show that an a:cblt:carlly small

t - shift performed relative to G us:Lng the linear structure of R

" will achieve transversality in a neighborhood of T. But a t - shift

isacl- pertu.rbation of f. Since f is structurally stable relative

to P, it follows that £vi followed by a small t - shift is structura.lly

' equlvalent to f LI, Therefore, £ must already be transverse to P at x.

|
THEOREM 8.8: ILet X, Y be campact polyhedra, dim X, dim ¥ < n - 3.

If YCR B, then the set of PL maps £: X-R" mapping X transverse to Y

1
i

lArmstrong and Zeeman, p. 453.
: : I

|
|
|
[
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in the sense of Arnstrongl is the complement of a nowhere dense set.

PROOF: The same as 8.7, referring this time to the paper by

Armstrong. .

COROLLARY B.9: Sizuctural stablility ©of X relative %o Y is a gensr-

alization of transversality.

lAJ_ﬁ*nstrongf, p. 175.

2 ‘ _
Armstrong, p. 186. j :



