
FOCI OF PLANE CURVESl

By Mo YEH

1. Introduction

A line whose slope is i or -i will be called an isotropic line, or simply an
isotropic [1]. Two isotropics of the same kind are two isotropics whose slopes,
ml and 1n2, have the same value, i or -i; otherwise, they are of different kinds.
A tangent to a curve which is an isotropic is called an isotropic tangent to the
curve. The finite intersections of the isotropic tangents to a curve are called the
foci of the curve, and a chord of contact of ,any two isotropic tangents through a
given focus is called a directrix of the curve corresponding to the given focus [2].
According to these definitions a focus or a directrix of a curve may be real or
imaginary .

2. Some Special Types of Curves

Given a line D as the y-axis and a point F (p,O), a conic is the locus of a point
P (x,y) such that FP=eMP, where MP is the perpendicular distance from P to
the line D, and e is a non-zero constant. Here F is the focus of the conic and D,
the corresponding directrix.

Now we consider the algebraic curve defined by

(1) (Fpl.)m=eMPn,

where m, n are positive integers such that n~ 2, n>m, and (m, n) = I, that is,
m and n are relatively prime. Equation (I) may be written as

(2) {(x-p)2+y2lm=exn.

If T=max (2m,n) then (2) represents an algebraic curve of order T.
Let us consider the isotropic

(3) y=i (x-p).

This line cuts x=O at the point (0, -ip). The translation

J y=y'-ip
x=x,

carries (2) and (3) into

(4) {X'2+y'2-2p (x'+iy')}m=ex"' .
and

(5) x'+iy'=O

respectively. Since n~2, n>m, the tenns of lowest degree in (4) with respect to
x', y' are given by { -2p (x'+iy')}m. Hence (5) is a tangent to (4) at the new
origin, and consequently (3) is a tangent tQ (2) at the poi~t (0, -ip). Similarly
we can prove that the isotropic

(6) ! ,y= -~ (x-p)

lThe author wishes to express his thanks to Drs. H. S. Zuckennan and D. B. Dekker for
numerous valuable suggestions.
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is a tangent to (2) at the point (O,ip). The point of intersection of (3) and (6)
is F(p, 0). The points of contact, (0,-ip) and (0, ip), lie on the line x=O. This

proves:
THEOREM 1. The point F and the line D are respectively a focus and a correspond-

ing directrix of the algebraic curve defined by (1).

A central conic is defined as the locus of a point P (x,y), the sum or difference of
whose distances from two given points, F (c,O) and F' ( -c,O) is a constant 2a.
Hence the equation is :t.F'P:t.FP=2a, and it is known that the points F and F'

are the real foci of the central conic.

Now we consider the algebraic curve defined by

(7) :tAF'P:t}£FP=a,

where A, }I. are two nonzero constants with absolute values both different from

a/2c. We may write (7) in the form

:f: AV(X+C)2+y2 :f:}1.( V x-c)2+y2=a.

After the radicals in this equation are removed by rationalization we get

(8) {(A2-}1.2) (X2+y2+C2)+2(A2+}1.2) cx-a2}2=4a2}1.2{(x-c)2+y2}.

If I A I ;e I }I. I ' (8) represents a quartic curve.

Let us consider the isotropic

y=i(x-c)(9)
A point of intersection of (8) and (9) is

a2
xl=4X2C , YJ=i( 4}.2C

a2
--c

and the translation x=x'+Xl, y=y'+yl, carries (8) and (9) into -

(10) {(>..2-IL2) (x'2+y'2+2xlX'+2ylY')+2(>..2+1L2)cx'}2=4a21L2 (y'-ix') (y'+ix'+2yJ

and

(11) y'=ix'

respectively. Since I A I ;O£a/2c, we have y1;O£0 and then the tenns of lowest degree
in (10) \vith respect to x', y' are given by 8a2IJ.2y1 (y'-ix'): Hence (11) is a tangent
to (10) at the new origin and consequently (9) is a tangent to (8) at the point

(X1,yJ. Similarly we can prove that the isotropics

y= -i(x-c), y= :ti(x+c)

are tangents to (8). These four isotropic tangents intersect at four points (c,o),

( -c, 0), (0, ic), (0, -ic). This proves:

THEOREM 2. The two points F and F' are two foci of the algebraic curve defined

by (7).
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The central conic has the remarkable property that the tangent to the curve at
any point makes equal angles with the focal radii drawn to that point. It is easy
to generalize this result as follows.

THEOREM 3. If

(12) )..F'P+IJ.FP=a

is the real part of the algebraic curve defined by (7) and if 8 and 4> are respectively the

angles which the tangent line to this part at an arbitrary point P makes with the lines

PF' and PF, then

(13) }.. cos 8+~ cos 4>=0.

Proof Let the inclinations of PF, PF' and the tangent line at P be respect-
ively Ti, T2 and T. Then

dy
tan T=~ ' tan Tl= :Y

--,, tan T2- X+C--Z-
x-c

and

(15) 8=T-T2.ItI=T-Tl,

Equation (12) may be written as

XV(X+C)2+y2 +Jl.V(x-c)2+y2=a.

Differentiating this equation we get

(X+C)+Y-#x (x-c)+y-#x =0
x V(X+C)2+y2 +~ V(X-C)2+y2

From (14) and this equation we have

l+tan T tan T2
~

V l+tan2 T2

l+tan T tan TI =0,

+J' V 1+tan2 TI

which can be reduced to

).. COS (T-T2)+P. COS (T-T2) =0.

By (15), this equation ~comes (13). The theorem is proved
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3. Conformal Transformation

Let

(16) x'=P(x, y), y'=Q (x, y)

be a con£onnal trans£onnation, where p and Q are two real, single-valued, contin-
uous £unctions with continuous partial derivatives 0£ the first order in the whole
plane except possibly at a finite number 0£ real points and P, Q are not constants.

We must have either

aQ=- ax
(17

or

(18)
aP

ax

[3].

The first set of conditions states that P+Qi is an analytic function of x+yi. As
for the second set, we can reduce it to the first by changing Q to -Q, that is, bya
reflection about the x'-axis. Hereafter we shall restrict our discussion to trans-
fonnations (16) which satisfy (17) only. Let us denote x+iy, x'+iy', x-iy, x'-iy'
by z, z', 'i, z'respectively. We can write (16) in the fonn z' =f(z) wheref(z) =P+Qi.
By the conditions we impose on P and Q, we know that f(z) is a single-valued
analytic function in the whole plane except possibly at a finite number of singular
points. We may call these singular p~ints, the singular points of the transfonnation

LEMMA 1. The conformal transformation (16) carries a given isotropic into an
isotropic of the same kind provided that the given isotropic does not pass through any
singular point of the transformation.

Proof. Let the given isotropic be

(19) x+yi=a+bi,

where a, b are real. Since it does not pass through any singular point of the trans-
formation, a+bi is not a singular point of!(z). Hence!(a+bi) has a definite value,

and (19) is carried into

(20) x'+iy'=!(a+ib)

by (16). Now we consider the isotropic

(21) x-iy=c-1'd

where c, d are real. By hypothesis (c,d) is not a singular point of the transforma-
tion; hence,!(c+id) has a definite value. Let the conjugate of!(z) be F(z), that is,
J(i5 =F(z). Then z' =F(z) and !~ =F(c-id). Therefore F(c-id) also has a

definite value and (21) is carried into x'-iy'=F(c-1:d), The lemma is proved.

Example. The conformal transformation
, (X-1)2- (y-1)2 2(x-1) (y-1)

x'= [(x-1)~(y-1)2]2 +X2-y2, y'=2xy- [(X-1)2+(y-1)2j2

carries the isotropic x-iy=2 into the isotropic x'-iy'=4-li.
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LEMMA 2. The conformal tran.s:formation (16) carries an isotropic tangent at (Xll yJ
into an isotropic tangent to the conformal transform of the given curve at the point
P(XlI yJ, Q(Xl, yJ, provided tlwt P(xIy), Q(x,y) and the partial derivatives Pl(x,y),
Ql(X,Y) exist at (Xl,YJ and

(22) ~ (Xl,YJ+Q~ (xl,YJ~o.
Proof Let a curve C with equation ljI(x,y) =0 be carried by (16) into the curve C'

with equation "'(x' ,y') = 0. Let (19) be an isotropic tangent to C at (Xl,YJ. Then
xl+iyl =a+bi. If (a,b) is a singular point of the transfonnation, then f(a+bi) is
not defined. But

f(a+bi) = f(Xl+iyJ =P(xl,YJ+iQ(Xl,YJ,

SO there is a contradiction to our hypothesis. Therefore (a,b) cannot be a singular
point of the transfonnation and (19) is carried into (20) by (16). Let x~ =P(Xl,YJ
y~ =Q(x},yJ. We need only prove that the curve C' has the slope i at (x~,y~). The
equation l/I(x',y') =0 may be obtained from <t>(x,y) =0 and (16) by eliminating x,y.
Let us consider x as a parameter. We find

dy
d ' Ql(X,y)+Q2(X,y) -ax-

y -
""dX'-

(!J.)
=i in this equation we haveSetting X=Xl1 Y=Yl

(-
dY'. ) = Ql(XllYJ+Q2(Xl,yJi
dx' 1 P 1 (Xl,YJ + P2(Xl,yJi

By the aid of (17) and (22) this equation becomes

.dy'- ) = Ql(Xl,yJ+P1(Xl,yJi =i .
" dx' 1 P1(Xl,yJ-Ql(Xl,yJi

Hence (20) is an isotropic tangent to C'. A similar proof holds for the case when
the isotropic tangent to C is of the form (21). The lemma is proved.

We may note that the Jacobian of (16) is

I iJP iJP .iJP IiJQ

1 -ax
J(x,y) = ..!!Q

~I=I::

=(~)2+
.aQ-

) 2

aX .

lox oy ! ox -ax I

Therefore the condition (22) is equivalent to J(XloYJ~O.

Since the point of intersection of two curves is preserved by a confonnal trans-
fonnation, from lemmas 1,2 we immediately have the following important theor~m.

THEOREM 4. The conformal transform of a focus of a given curve is, in general, a
focus of the conformal transform of the given curve.

The confonnal transfonnation (16) carries real points into real points. Hence
under this confonnal transfonnation, a real focus is carried, in general, into a
real focus.
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Example. Under the confonnal transfonnation x' =X2-y2, y' =2xy, the parabola
y2=2x is carried into the curve

Hence an inversion is a confomlal transfomlation which satisfies (18) and its
singular point is the center of inversion. From theorem 4 we deduce:

COROLLARY. The inverse of a focu.~ of a given curve is, in general, a focus of the
inverse of the given curve.

In particular we can prove easily that a real focus is carried into a real focus by
an inversion provided that the real focus is not at the center of inversion.

Example. The parabola y2=4ax with focus (a,O) is carried into the cissoid

'Y2y2=4ax (X2+y2) with focus ( f ,0) by the inversion (23). Here ( f ,0) is ob-

viously the inverse of (a,O).
The focus of a parabola has a remarkable property that the tangent to the curve

at any point bisects the angle between the focal radius and the diameter through
that point. By an inversion with the center of inversion at the vertex of the para-
bola we deduce the following interesting property of a cissoid.

THEOREM 5. If a circle passing through the real focus and the cusp of a cissoid and
another circle tangent to the axis of symmetry of the cissoid at its cusp intersect at
another point on the cissoid, then the cis.\"oid bisects the angle between the two circles
at this point.

This theorem suggests that any curve which is the conforma) transform of a
conic should itself possess interesting focal properties.

4. The Position of Foci

It is well known that for any nondegenerate conic any focus must lie on an axis
of symmetry and the corresponding directrix is perpendicular to the axis [4]. Does
this set of facts hold for any curve ? First, there are curves which have axes of
symmetry but have no foci. For example, the degenerate conic x2-y2=O has axes
of symmetry, the x- and y-axes, but its foci are not defined. Second, there are
curves which have foci but have no axes of symmetry. For example, the curve

y=ez has an in~nite number ~f real foci which are given by( -1, ~ ). where

k is an arbitrary integer. but it has no axis of symmetry .In order to establish a
theorem for any curve, we must assume that the curve has an axis of svmmetrv
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and a focus. But even so the conditions are still not sufficient to prove a theorem
such as the one we stated for the conics. We may illustrate this by an interesting

example.
Consider the curve xy2=4a3. Its axis of symmetry is the x-axis. Its foci are the

nine points given by

x= -+ a(tIJ"+tIJm), y=+ ai(tIJ"-tIJm),

-l+iVTwhere n=O, 1,2; m=O, 1, 2; "'= 2- .We observe only three of the nine

foci, namely: ( -3a,0), ( -3a",,0), ( -3a<112,0), lie on the axis of symmetry of the
curve. The other six foci can be put into three pairs, each pair consisting of two
points symmetric to the axis of symmetry. The directrices of the foci ( -3a,0),
( -3a",,0), ( -3a",2,0) are the lines x= -a, x= -a"" x= -a<II2, respectively, which
are perpendicular to the axis of symmetry .However, we can prove the following

theorem.

THEOREM 6. If a curve has at least one axis of symmetry and at least one focus, then
with respect to each axis there is at least one focus situated on it and one of the corre-
spond~ng directrices is perpendicular to it; and any remaining foci are situated sym-
metrically with respect to this axis.

Proof. Let us consider one of the axes of symmetry. We choose this axis as the
x-axis. Let the equation of the curve be

(24) .f(x,y) =0.

Since the curve is symmetric with respect to the x-axis, we have

(25) f(x,y)= :l:f(x,-y).

If a focus (a,O) of the curve lies on this axis, then two isotropic tangents, y=i(x-a)
and y= -i(x-a), passing through this focus, will touch the curve at (xo,Yo) and
(xo,-Yo) respectively. Hence a directrix of the focus (a,O) is the line x=xo, which is
perpendicular to the x-axis. By hypothesis the curve has at least one focus. If all
the foci of the curve lie on the x-axis, the theorem holds obviously. Otherwise we
may assume that the curve has a focus (Xl,YJ with Yl~O. It is the intersection of
the isotropic tangents

(26) Y-Yl=i(x-xJ,
(27) Y-Yl= -i(x-xJ.

The reflection x=x', y= -Y' carries (24), (26), (27) into

(28) f(x',-y') =0,
(29) Y'+Yl= -i(x'-xJ,
(30) Y'+Yl=i(x'-xJ,

respectively. Since tangency is invariant under a reflection, (29), (30) are isotropic
tangents to (28). By the aid of (25) we prove that

(31) Y+Yl= -i(x-xJ,
(32) Y+Yl=i(x-xJ
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are two isotropic tangents to the curve (24). The point 0£ intersection 0£ (31) and :j
I(32), that 0£ (26) and (31), and that 0£ (27) and (32) are (XI, -yJ, (xl+iyl, 0), and ,~

(xl:-iyl, ~), respectiv~ly. ~e £ocus (Xl,-!J is a point symmetric to (XI, yJ. The, .,~ t
£OCJ (Xl+~yl, 0), (Xl-~yl, 0) he on the x-axlS. 4 !
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