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Abstract. We consider the approximation of the field of values of the inverse of a large sparse matrix,
without explicitly computing the inverse or using its action (i.e., accurately solving a linear system with this
matrix). We review results by Manteuffel and Starke and give an alternative that may be better approximations
in practice. We give connections with the harmonic Rayleigh–Ritz approach and also study the approximation
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1. Introduction. If we would like to numerically approximate the field of values

FOV(A) = {x∗Ax : ‖x‖ = 1},

where A is an n× n matrix and ‖ · ‖ denotes the two-norm, we may compute

1
2 λmax(eiαA + (eiαA)∗)

for a number of angles α as initially proposed by Johnson [6]. Hereby the equality

(1.1) max
z∈FOV(A)

Re(z) = 1
2 λmax(A + A∗)

is used for every angle.
In this paper we are interested in large sparse n×n matrices A. In this case eiαA+(eiαA)∗

is large, sparse, and Hermitian, and we may use the Lanczos method (see [7] and, e.g., [16])
to approximate the largest eigenvalue. This method generates a low-dimensional subspace
to approximate eigenpairs of possibly large matrices. In principle we can run a new Lanczos
process for every α in a chosen set; for each angle the largest eigenpair will be approximated
using a different Krylov subspace, generated by a different matrix of the form eiαA + (eiαA)∗

and an initial vector, for instance a random vector or the approximate eigenvector for a
previous value of α. We note hereby that since the Lanczos algorithm generally approximates
the extremal eigenvalues well, we can approximate the maximal eigenvalues for the angles α
and α+π simultaneously, realizing that λmax(ei(α+π)A+(ei(α+π)A)∗) = −λmin(eiαA+(eiαA)∗).

An alternative, computationally less expensive, approach is to use only one subspace for
all angles α as follows. We perform a single run of the Arnoldi process (see [1] and, e.g., [16])
on A (or on eiαA for any fixed angle α) and an initial vector u1 of unit length (for instance
a random vector). This gives the Arnoldi decomposition

(1.2) AUk = UkHk + hk+1,kuk+1e
∗
k = Uk+1Hk,
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where the columns of Uk form an orthonormal basis for Uk with u1 as its first column, Hk is
an upper Hessenberg matrix, ek is the kth canonical basis vector, and Hk =

[
Hk

hk+1,ke∗k

]
is a

(k + 1)× k Hessenberg matrix with an extra row.
As originally suggested by Manteuffel and Starke [8] one can approximate FOV(A) by

FOV(Hk), whereby we have

FOV(A) ⊇ FOV(U∗
kAUk) = FOV(Hk).

In particular, we know after k steps that FOV(A) contains the convex hull of the Ritz values,
which are the eigenvalues of Hk. Since k is assumed to be much smaller than n (which is the
main idea of a subspace method), determining FOV(Hk) is computationally very easy, for
instance by the method proposed by Johnson.

We note that this second approach, working with Hk, is in practice often very sensible.
While a different search space per α may often give a (slightly) better result (that is, a larger
maximal eigenvalue per angle and hence a larger approximate FOV which is still included
in the true FOV), both approaches give exactly or nearly the same approximation in the
following examples.

Example 1.1. Let A be an n×n tridiagonal matrix, and choose the initial vector b = e1

(the first canonical basis vector) for the Krylov spaces Kk

(
1
2(eiαA + e−iαA∗), b

)
for each α

(“first approach”), and for the Krylov space Kk(A, b) (“second approach”). Then it can be
checked that in general (that is, apart from some exceptional matrices such as the zero matrix)
all Krylov spaces are equal to span{e1, . . . , ek} and, as a result, the approximations to the
field of values will be exactly the same in both approaches. �

Example 1.2. As a second example, consider the 256 × 256 grcar matrix [9], which is
banded upper Hessenberg; this example is also used in [8]. The eigenvalues and FOV are
depicted in Figure 1.1(a). From Figure 1.1(b), we see that taking different Krylov subspaces
Kk

(
1
2(eiαA + e−iαA∗), b

)
for each of the 32 angles (“first approach”) instead of one Krylov

subspace Kk(A, b) for all angles (“second approach”) hardly improves the numerical approxi-
mation to the FOV, while the first approach is much more expensive. Here the initial vector
b is random. �
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Fig. 1.1. (a) Eigenvalues and FOV of the 256× 256 grcar matrix. (b) Approximations of the FOV using
different Krylov subspaces for each of the 32 angles (“first approach”), respectively one Krylov subspace for all
angles (“second approach”).

In the remainder of this paper we concentrate on the field of values and pseudospectra for
the inverse of a large sparse invertible matrix A. Hereby, we do not want to compute A−1
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explicitly, since this is often prohibitively expensive, but we also want to avoid the costs of
accurately solving a linear system of the form Ax = b, as well as computing the maximal
eigenvalues for a family of matrices, depending on an angle α as above.

In Section 2 we first give some applications of the field of values of a matrix inverse. We
review an approach of Manteuffel and Starke and give relations with the harmonic Rayleigh–
Ritz approach. We also present an alternative approach that comes with no inclusion guar-
antee, but may work better in practice. In addition, we provide some analysis, extensions,
and several numerical examples.

Section 3 considers the pseudospectra of a matrix inverse: applications and four different
techniques, that are compared analytically and in a numerical experiment. We end with some
concluding remarks in Section 4.

2. The field of values of the inverse of a matrix. Suppose that we would like to
approximate the field of values of A−1 without explicitly computing A−1, or implicitly using
its action (that is, exactly solving a system of the form Ax = b). We first mention a few
applications where estimates for the field of values of A−1 may be useful.

2.1. Applications. First, we recall the definitions (see, e.g., [15]) of the inner numerical
radius

ν(A) = min
z∈FOV(A)

|z|,

the numerical radius

µ(A) = max
z∈FOV(A)

|z|,

and the the numerical abscissa

ω(A) = max
z∈FOV(A)

Re(z).

From (1.1) we know that ω(A) = 1
2 λmax(A + A∗); this quantity is also called the logarithmic

norm of A. We will now review some areas where it may be of interest to approximate the
quantities ν(A−1), µ(A−1), or ω(A−1).

The first area we consider is the study of the convergence of iterative methods for linear
systems. Consider the linear system Ax = b with x0 as initial guess, r0 = b − Ax0 as corre-
sponding initial residual, and the Krylov space Uk = K(A, r0) as search space. In minimum
residual methods, such as MINRES for symmetric A or GMRES for unsymmetric A, one
approximates x by

x ≈ xk = (AUk)+b := (U∗
kA∗AUk)−1U∗

kA
∗b,

where we assume that AUk is of full rank k. This choice minimizes the residual over the search
space: xk = argminyk∈Uk

‖b−Ayk‖. Eiermann and Ernst [4, Section 6.1.3], [3, Cor. 6.2] show
that for this minimum residual

‖rMR
k ‖ := ‖b−Axk‖

we have the upper bound

‖rMR
k ‖
‖r0‖

≤
(
1− ν(A) ν(A−1)

)k/2
.

Note in particular that the right-hand side is independent of the choice of the initial guess
and the resulting Krylov search space.
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Moreover, we have the following property. Since xk ∈ Kk(A, b) = span{b, Ab, . . . , Ak−1b},
we can write xk = qk−1(A) b for a certain polynomial qk−1 of degree k − 1, and rk = pk(A) b
for a certain polynomial pk of degree k. Then the zeros ζ of the GMRES polynomial pk satisfy
ζ−1 ∈ FOV(A−1), see [8] and also below.

In fact, these zeros are the harmonic Ritz values [10, 5]. The harmonic Rayleigh–Ritz
approach, which was introduced in [10], is is a popular tool for the numerical computation
of interior eigenvalues close to a given target τ . Note that these eigenvalues are exterior
eigenvalues of the shifted and inverted matrix (A−τI)−1, where I denotes the identity matrix.
For subspace methods it is often comparatively easy to compute exterior eigenvalues. Given
a search space Uk for the eigenvector, this suggests to determine (or extract) approximate
eigenpairs (θ, u), where u ∈ Uk, with the Galerkin condition

(A− τI)−1u− (θ − τ)−1u ⊥ Ũk.

Here Ũk is a test space; to avoid working with the inverse of a large sparse matrix the harmonic
Rayleigh–Ritz approach takes Ũk = (A−τI)∗(A−τI)Uk. In this case the subspace extraction
is determined by the projected (and hence low-dimensional) generalized eigenvalue problem

U∗
k (A− τI)∗(A− τI) Ukc = (θ − τ) U∗

k (A− τI)∗Ukc,

where we write u = Ukc, with c ∈ Ck. The pair (θ, u) = (θ, Ukc) is called a harmonic Ritz
pair. For eigenpair approximations, one is interested in the pair with the harmonic Ritz value
θ closest to τ , see, e.g., [13]. Given a harmonic Ritz vector u, the corresponding harmonic
Ritz value is given by

u∗(A− τI)∗(A− τI) u

u∗(A− τI)∗u
.

The roots of the GMRES polynomial are the harmonic Ritz values with target τ = 0 [10, 5].
By the equalities

FOV(A−1) =
{

x∗A−1x

x∗x
: x 6= 0

}
=

{
y∗A∗y

y∗A∗Ay
: y 6= 0

}
we see that the inverses of these harmonic Ritz values are in FOV(A−1). These equalities
may also be interpreted as: FOV(A−1) is the set of the inverses of all harmonic Ritz values
that may be obtained after one step of the Arnoldi iteration (see [15, p. 166] for a similar
statement about FOV(A) and Ritz values). We will come back to the relation of harmonic
Ritz values and the field of values in Section 2.3.

For another area of application, we consider the linear differential-algebraic equation with
constant coefficients

Au′(t) = u(t), u(0) = u0.

If A is expensive to invert, this equation may be considered “effectively implicit” in the sense
that it is computationally not easy to explicitly express u′(t) in terms of u(t). The numerical
abscissa of A−1 determines the behavior of ‖etA−1‖ as t → 0 (see, e.g., [15, (14.2)]):

d

dt
‖etA−1‖t=0 = ω(A−1).

In fact, we also have ‖etA−1‖ ≤ etω(A−1) for all t ≥ 0 [15, Thm. 17.1].
We can also use FOV(A−1) for estimates for the norm of the matrix inverse and the

condition number. We have

µ(A−1) ≤ ‖A−1‖ ≤ 2 µ(A−1)
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(and a similar result for powers of A−1, cf. [15, (17.6)]). Combined with an estimate for
‖A‖, for instance using µ(A) ≤ ‖A‖ ≤ 2 µ(A), this gives an approximation for the condition
number; see also the following subsection.

Finally, the field of values of A and of A−1 may be used to determine inclusion regions
for matrix eigenvalues. Particularly, Manteuffel and Starke [8] mention the inclusion region

Λ(A) ⊆ FOV(A) ∩ 1
FOV(A−1)

.

We will comment on this inclusion in the examples in Section 2.3.

2.2. Bounds and relations. Before considering the practical approximation of the field
of values of A−1 in the next subsection, we look at some bounds for ν(A−1) and µ(A−1), and
their relations with the quantities µ(A), ν(A), ‖A‖, and ‖A−1‖. Eiermann and Ernst [3] note
that

(2.1) ν(A−1) = min
x 6=0

∣∣∣∣x∗A−1x

x∗x

∣∣∣∣ = min
w 6=0

∣∣∣∣w∗A∗w

w∗w

∣∣∣∣ · ∣∣∣∣ w∗w

w∗A∗Aw

∣∣∣∣ ≥ ν(A)
‖A‖2

.

Using the same reasoning we can also derive

ν(A−1) ≤ min
{

ν(A)
σ2

min(A)
,

µ(A)
‖A‖2

}
.

In particular, we have from this

‖A‖ ≤ (ν(A−1))−1 µ(A)
‖A‖

≤ (ν(A−1))−1

and therefore ‖A‖ ≤ min{2 µ(A), ν(A−1)−1}.
An expression similar to (2.1) for the numerical radius is

µ(A−1) = max
x 6=0

∣∣∣∣x∗A−1x

x∗x

∣∣∣∣ = max
w 6=0

∣∣∣∣w∗A∗w

w∗w

∣∣∣∣ · ∣∣∣∣ w∗w

w∗A∗Aw

∣∣∣∣ ≤ µ(A)
σ2

min(A)
.

From the same expressions we also get

µ(A−1) ≥ max
{

ν(A)
σ2

min(A)
,

µ(A)
‖A‖2

}
.

From a different perspective the bounds in this subsection, together with bounds such as
µ(A−1) ≤ ‖A−1‖ ≤ 2 µ(A−1), imply bounds for ‖A‖, ‖A−1‖ and the condition number
κ(A) = ‖A‖ ‖A−1‖ in terms of FOV(A) and FOV(A−1).

2.3. Two approximation methods. To approximate the field of values of A−1, note
that we have

FOV(A−1) ⊇ FOV(Ũ∗
kA−1Ũk)

for any n × k matrix Ũk with orthonormal columns that form a basis for a space Ũk. To
avoid matrix inversion of a large matrix, one idea is to take Ũk = AUk. We can compute the
resulting approximation efficiently as follows. If Hk = QkRk is the reduced QR-decomposition
of Hk, then AUkR

−1
k = Uk+1HkR

−1
k = Uk+1Qk has orthonormal columns, and

(2.2) FOV(A−1) ⊇ FOV(R−∗
k U∗

kA∗A−1AUkR
−1
k ) = FOV(R−∗

k H∗
kR−1

k ).

We note that Manteuffel and Starke [8] also suggest this approximation via a slightly dif-
ferent derivation. An advantage of expression (2.2) compared with [8] is that from (2.2) it
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is clear that this approximation to FOV(A−1) is itself a field of values of a low-dimensional
matrix R−∗

k H∗
kR−1

k . (In [8], this approximation is described as the intersection of strips in the
complex plane determined by the minimal and maximal eigenvalues of generalized eigenvalue
problems.)

In the following we will assume that Hk is invertible. The eigenvalues of

H̃k := (U∗
kA∗Uk)−1U∗

kA∗AUk = H−∗
k R∗

kRk

are the harmonic Ritz values of A with respect to search space Uk and target τ = 0 (see [10]
and Section 2.1). It is not difficult to prove that the eigenvalues of this matrix are the inverses
of the eigenvalues of R−∗

k H∗
kR−1

k . Since the eigenvalues of H̃k are the harmonic Ritz values,
our conclusion is that after k steps we know that FOV(A−1) contains the convex hull of the
inverses of the harmonic Ritz values.

We now present a second, alternative, approach to approximate FOV(A−1):

(2.3) FOV(A−1) ⊇ FOV(U∗
kA−1Uk) ≈ FOV(H−1

k ).

To derive this approximation we rewrite (1.2):

A−1Uk = UkH
−1
k − hk+1,kA

−1uk+1e
∗
kH

−1
k ,

so that

(2.4) U∗
kA−1Uk = H−1

k − hk+1,kU
∗
kA−1uk+1e

∗
kH

−1
k .

Discarding the last term on the right-hand side gives the approximation U∗
kA−1Uk ≈ H−1

k .
In fact, the field of values of H−1

k is the field of values of a projected nearby matrix:

FOV(H−1
k ) = FOV(U∗

k (A−1+ Ek) Uk)

where the backward error

(2.5) Ek = hk+1,k(A−1uk+1)(e∗kH
−1
k U∗

k )

is a (hopefully small) rank-one update matrix. In particular ‖Ek‖, will be small if Uk is almost
an invariant subspace, which implies that |hk+1,k| is small. Or, in terms of a multiplicative
(relative) perturbation,

FOV(H−1
k ) = FOV(U∗

kA−1(Ik + Fk) Uk),

where

Fk = hk+1,kuk+1(e∗kH
−1
k U∗

k ).

We can be a bit more precise. From (2.4) we have

y∗H−1
k y = y∗(U∗

kA−1Uk) y + hk+1,k(y∗U∗
kA−1uk+1)(e∗kH

−1
k y)

from which we see that for all z ∈ FOV(H−1
k ) we have

dist(z, FOV(U∗
kA−1Uk)) ≤ |hk+1,k| ‖U∗

kA−1uk+1‖ ‖H−∗
k ek‖.

In other words: every point of FOV(H−1
k ) is at most |hk+1,k| ‖U∗

kA−1uk+1‖ ‖H−∗
k ek‖ away

from FOV(U∗
kA−1Uk), a projected field of values of A−1 which is included in the sought set

FOV(A−1).
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We point out that there is another way to derive the second approximation (2.3). Suppose
that in the first method (see (2.2)) one takes the QR-decomposition of Hk instead of that of
Hk. Then

FOV(A−1) ≈ FOV(R−∗
k H∗

kR−1
k ) = FOV(Q∗

kR
−1
k )

= FOV(QkQ
∗
kR

−1
k Q∗

k) = FOV(R−1
k Q−1

k ) = FOV(H−1
k ).

In summary, when we compare (2.2) and (2.3), the advantage of the former is that this
approximation is a proper inclusion. However, a strength of (2.3) over (2.2) is that this
method employs a projection that works solely with Uk: (2.3) approximation a projection of
A−1 onto the space Uk, and not onto the space AUk. The space AUk can be seen as biased,
as by the multiplication with A the smallest eigenmodes will have been (greatly) reduced.
Therefore, we expect that (2.3) may in practice yield the best approximation, especially if
|hk+1,k| ‖U∗

kA−1uk+1‖ ‖H−∗
k ek‖ is reasonably small.

We now continue with a few numerical examples. The first example shows another possible
advantage of the approximation FOV(H−1

k ) over FOV(R−∗
k H∗

kR−1
k ).

Example 2.1. In Figure 2.1(a) the eigenvalues and FOV (dotted) of A−1 are plotted,
where A is the 256× 256 grcar matrix and U is a 16-dimensional Krylov space generated using
a random starting vector. We also plot two approximations to FOV(A−1): FOV(R−∗

k H∗
kR−1

k )
((2.2), dash), and FOV(H−1

k ) ((2.3), solid). Although it is not guaranteed that FOV(H−1
k ) is a

subset of FOV(A−1), it is the case here; moreover, FOV(H−1
k ) is a much better approximation

to FOV(A−1) than is FOV(R−∗
k H∗

kR−1
k ).
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Fig. 2.1. (a) Data for A−1: eigenvalues, field of values, and the two approximations of the FOV given
by (2.2) (A−1|AU , dash) and (2.3) (FOV(H−1

k ), solid, which is an approximation to the FOV of A−1|U). (b)
Eigenvalues and FOV of A, and, in addition, 1/F , where F is the approximation to the FOV(A−1) according
to (2.2) and (2.3), respectively.

In Figure 2.1(b) we take the inverses of the sets determined by (2.2) and (2.3) and
also display the eigenvalues and FOV of A. Recall the eigenvalue inclusion region Λ(A) ⊆
FOV(A) ∩ 1

FOV(A−1)
. In Figure 2.1(b), the approximations (2.2) and (2.3) suggest that Λ(A)

should be on the outside of the dashes, respectively solid line. We see that this is correct for
the approximation based on (2.3) but incorrect for the one based on (2.2). Therefore, the
approximation FOV(H−1

k ) to FOV(A−1) may also yield better spectral inclusion regions. �

Example 2.2. The next test case, which we denote by randcolu, is generated by the
Matlab command A = gallery(’randcolu’, 300). This is a random 300 × 300 matrix
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with columns of unit two-norm, with random singular values whose squares are from a uniform
distribution. The initial vector is random from which we generate a Krylov search space U of
dimension 30.
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Fig. 2.2. (a) FOV(A−1) where A is the 300 × 300 randcolu matrix and approximations (2.2) and (2.3)
based on a 30-dimensional Krylov space. (b): Zoom-in of (a), also showing the eigenvalues of A−1.

In Figure 2.2, we see FOV(A−1) as well as the approximations (2.2) and (2.3). The (b)
figure zooms in on part of (a); we see that (2.3) is considerably better than (2.2), in particular
(2.3) includes most eigenvalues of A−1 in contrast to (2.2); however, both approximations are
a significant underestimation of FOV(A−1). �

Example 2.3. In the final example we consider the tolosa matrix [9] of dimension 1090.
We take a 50-dimensional Krylov space starting with a random initial vector.
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Fig. 2.3. (a) FOV(A−1) where A is the 1090 × 1090 tolosa matrix and approximations (2.2) and (2.3)
based on a 50-dimensional Krylov space. (b): Zoom-in on (a), also showing the eigenvalues of A−1.

In Figure 2.3(a) we show FOV(A−1) and the approximations (2.2) and (2.3). Figure 2.3(b)
zooms in on part of the (a) figure and also show the eigenvalues of A−1. We see that in this
case (2.2) seems a better approximation than (2.3). In fact, (2.3) is a crude overestimation
while (2.2) is an underestimation. �

2.4. A corrected approximation. Inspired by the relation (2.4) between U∗
kA−1Uk

and H−1
k , we can also approximation FOV(A−1) by computing the FOV of the “corrected

matrix” H−1
k − hk+1,kU

∗
k ỹk+1e

∗
kH

−1
k , where ỹk+1 is an approximation to yk+1 := A−1uk+1.
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We may approximate A−1uk+1 by a second Arnoldi process. For instance, this may
be a sensible idea when the search space Uk reaches a dimension so that further expansion
of the space would become computationally unattractive because of basis vectors storage or
orthogonalization costs, or when H−1

k reaches a size so that the computation of its FOV can no
longer be considered cheap. We will discuss a few more details on a corrected approximation
in Section 3.4 in the context of pseudospectra computation.

3. Approximating the pseudospectrum of a matrix inverse. We now switch our
attention to the pseudospectrum. This valuable tool for understanding the behavior of non-
normal matrices has also been used to study convergence of iterative methods. We recall the
definition of the ε-pseudospectrum [15] for ε ≥ 0:

Λε(A) = { z : σmin(A− zI) ≤ ε }
= { z : ‖(A− zI)−1‖ ≥ ε−1 }
= { z : (A− zI + E) singular for an E with ‖E‖ ≤ ε }
= { z : (A + E) x = zx for ‖E‖ ≤ ε and ‖x‖ = 1 }.

(Note that in contrast to [15], but in line with earlier publications, we prefer the “closed set”
definition.) Computing the smallest singular value for a large number of (grid points) z ∈ C
values is a very expensive task. Therefore, motivated by

U∗
k+1(A− zI) Uk = Hk − zI,

for all z ∈ C, where I denotes the identity with an additional row of zeros, Toh and Trefethen
[14] and Wright and Trefethen [17] approximate σmin(A− zI) by σmin(Hk − zI), where

σmin(A− zI) ≤ σmin(Hk − zI).

This means that for all ε ≥ 0

Λε(Hk) ⊆ Λε(A).

We are now interested in approximating the pseudospectrum of A−1. First, we look at some
applications where such information may be useful.

3.1. Applications. Pseudospectra are a popular tool for understanding the behavior
of nonnormal matrices, as well as estimating norms of matrix powers, matrix polynomials,
and more general matrix functions. Recall the Dunford–Taylor integral representation for a
matrix function (see, e.g., [15, (14.9)])

f(A) =
1

2πi

∫
Γ

f(z)(zI −A)−1dz

where Γ is the boundary curve of a piecewise smooth, bounded region containing the spectrum
of A, assuming that f is analytic in the region and continuous on its closure.

Let m ∈ N. From the integral representation

Am =
1

2πi

∫
Γ

zm (zI −A)−1dz

we get, if we take the boundary curve of the ε-pseudospectra Λε(A) for Γ,

‖Am‖ ≤ `(Λε(A))
2πε

ρm
ε (A)

for every ε > 0 (cf., e.g., [15, (14.10)]), where the ε-pseudospectral radius is given by

ρε(A) = max
z∈Λε(A)

|z|
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and `(Γ) denotes the arc length of the curve Γ.
We now give another bound using the pseudospectra of A−1. If the region bounded by Γ

does not contain the origin, we have

Am = (A−1)−m =
1

2πi

∫
Γ

z−m (zI −A−1)−1dz.

Taking the boundary of Λε(A−1) for Γ, we get for every ε > 0 such that 0 6∈ Λε(A−1)

‖Am‖ ≤ `(Λε(A−1))
2πε

max
z∈Λε(A−1)

|z|−m.

An extension for matrix polynomials p is given by (cf., e.g., [15, (14.10)])

‖p(A)‖ ≤ `(Λε(A))
2πε

max
z∈Λε(A)

|p(z)|.

We can also derive a bound in terms of Λε(A−1) as follows. Let m be the degree of p and let
p̃ be the polynomial such that p(z) = zmp̃(z−1). Then from

p(A) = Am 1
2πi

∫
Γ

p̃(z) (zI −A−1)−1dz

we get the bound

‖p(A)‖ ≤ `(Λε(A−1))
2πε

‖Am‖ max
z∈Λε(A−1)

|p̃(z)|.

If the region bounded by Γ does not contain the origin then

p(A) = Am 1
2πi

∫
Γ

p̃(z−1) (zI −A)−1dz

from which it follows that if 0 6∈ Λε(A) then we have

‖p(A)‖ ≤ `(Λε(A))
2πε

‖Am‖ max
z∈Λε(A)

|p̃(z−1)|.

Here, ‖Am‖ may be bounded from above by 2 (µ(A))m [15, (17.6)].
Finally, we mention that Λε(A−1) gives information about the behavior of ‖etA−1‖ (see

[15, Ch. 15]): for all t ≥ 0 and ε > 0 we have

αε(A−1)
ε

≤ ‖etA−1‖ ≤ `(Λε(A−1)) etαε(A−1)

2πε
.

3.2. A relation. Naturally, we have the relation Λ(A−1) = (Λ(A))−1 between the spec-
tra of A and A−1. We now give a extension of this statement for the pseudospectra of A and
of A−1.

Proposition 3.1. Let A be invertible and z 6= 0. Then we have the following implica-
tions:

z ∈ (Λ(σmin(A)/|z|) ε(A))−1 ⇒ z ∈ Λε(A−1) ⇒ z ∈ (Λ(‖A‖/|z|) ε(A))−1.

Proof. We will use zI −A−1 = zA−1(A− z−1I). Suppose z ∈ Λε(A−1). Since

σmin(zI −A−1) ≥ |z|σmin(A−1) σmin(A− z−1I) = (|z|/‖A‖) · σmin(A− z−1I)

we have σmin(A − z−1I) ≤ (‖A‖/|z|) σmin(zI − A−1) ≤ (‖A‖/|z|) ε and therefore z−1 ∈
Λ(‖A‖/|z|) ε(A). For the first implication we use the inequality

σmin(zI −A−1) ≤ |z|σmax(A−1) σmin(A− z−1I) = (|z|/σmin(A)) · σmin(A− z−1I)

from which follows that if z−1 ∈ Λ(σmin(A)/|z|) ε(A) then z ∈ Λε(A−1).
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3.3. Three approximation methods. Let us consider approximation methods for
Λε(A−1). First, note that the condition number of a simple eigenvalue λ−1 of A−1 is the
same as that of the corresponding eigenvalue λ of A:

κ(λ−1) = |y∗x|−1 = κ(λ),

where κ stands for the condition number, and x and y are the right and left eigenvectors,
respectively, corresponding to eigenvalue λ−1 of A−1 (and to eigenvalue λ of A).

Hence, if all eigenvalues are simple, we can expect that for ε ↓ 0, the pseudospectrum
Λε(A−1) consists of disks of radius ε κ(λ) around the eigenvalues λ−1, just as Λε(A) asymp-
totically consists of disks of radius ε κ(λ) around the eigenvalues λ. However, this is only
an asymptotic statement; the pseudospectrum for any chosen ε > 0 may generally be much
less simple than the union of these disks, in particular if A has multiple eigenvalues or if
A is (highly) nonnormal. Therefore, it may be of interest to approximate Λε(A−1) without
computing A−1, or its eigendata, first. This amounts to approximating σmin(A−1− zI), for a
large number of grid points z.

We present three approximation methods by means of projection onto subspaces; each
method makes a particular choice for the right and left n× k projection matrices Vk and Wk

with orthonormal columns in the inequality

σmin(A−1 − zI) ≤ σmin(W ∗
k (A−1 − zI)Vk).

Hereby, we bear in mind that we would like to avoid an action with A−1.
As in the previous section, let Hk = QkRk be the reduced QR-decomposition of Hk.

First, we may choose Vk = AUkR
−1
k and Wk = Uk to get

σmin(A−1 − zI) ≤ σmin(U∗
k (A−1 − zI)AUkR

−1
k )

(3.1)
= σmin((Ik − zHk)R−1

k ).

Second, we may take Vk = Wk = AUkR
−1
k to get

σmin(A−1 − zI) ≤ σmin(R−∗
k U∗

kA∗(A−1 − zI)AUkR
−1
k )

(3.2)
= σmin(R−∗

k H∗
kR−1

k − zI).

Finally, we may choose Vk = Wk = Uk. Since U∗
kA−1Uk is not practical we approximate

σmin(A−1 − zI) ≤ σmin(U∗
kA−1Uk − zI)

(3.3)
≈ σmin(H−1

k − zI).

Let us now analyze the quality of (3.3) in some more detail. First, making use of backward
error (2.5) we can show as in the previous section that H−1

k − zI can be considered as a
projection of a perturbation of A−1 − zI. Moreover, using (1.2) we get

Ik = (U∗
kA−1Uk+1) Hk.

From this equality, and using

U∗
kUk+1Hk = Hk,

we get

Ik − zHk = (U∗
k (A−1 − zI) Uk+1) Hk,

or

H−1
k − zIk = (U∗

k (A−1 − zI) Uk+1)
[

I

hk+1,ke∗kH−1
k

]
.
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We can compare the minimal singular values of H−1
k − zIk and U∗

k (A−1− zI) Uk+1 as follows.
On the one hand, we have

σmin(H−1
k − zIk) ≤ σmin(U∗

k (A−1 − zI) Uk+1) σmax

([
I

hk+1,ke∗kH−1
k

])
≤ σmin(U∗

k (A−1 − zI) Uk+1)
√

1 + |hk+1,k|2 ‖H−∗
k ek‖2.

On the other, we have

σmin(H−1
k − zIk) ≥ σmin(U∗

k (A−1 − zI) Uk+1) σmin

([
I

hk+1,ke∗kH−1
k

])
≥ σmin(U∗

k (A−1 − zI) Uk+1).

So if |hk+1,k| ‖H−∗
k ek‖ is small, then we conclude that σmin(H−1−zI) is a good approximation

to σmin(U∗
k (A−1 − zI) Uk+1). Similar to the comparison of (2.2) and (2.3) in the previous

section, an advantage of the approach (3.3) over (3.1) and (3.2) is that it approximates a
projection of A−1−zI onto the space Uk instead of onto the space AUk. Therefore, (3.3) may
practically give the best approximation, as long as |hk+1,k| ‖H−∗

k ek‖ is not too large.
We note that the methods presented here are in some sense the opposite compared to

[14, Section 5], where Λε(A) is approximated by an Arnoldi process on A−1; in this paper we
assume that this is computationally unattractive. See also Simoncini and Gallopoulos [11] for
approaches based on rational Krylov.

In addition to the three methods presented in this subsection, we will consider a corrected
scheme in the next subsection, which employs a second Krylov space.

3.4. A corrected approximation. We now present another approximation method for
Λε(A−1) inspired by work of Bekas, Gallopoulos, and Simoncini [11, 2], who worked directly
with a projection of (A − zI)−1 to get a better approximation to the resolvent norm, and
hence the pseudospectra. For our situation, note that

(A−1 − zI)−1 = (I − zA)−1A.

We start with

(3.4) (I − zA)−1AUk = (I − zA)−1UkHk + hk+1,k(I − zA)−1uk+1e
∗
k.

Since

(I − zA) Uk = Uk(I − zHk)− hk+1,kzuk+1e
∗
k

we have

(I − zA)−1Uk = Uk(I − zHk)−1 + hk+1,kz (I − zA)−1uk+1e
∗
k(I − zHk)−1.

Substituting this into (3.4) gives

(I − zA)−1AUk = Uk(H−1
k − zI)−1 + hk+1,k(I − zA)−1uk+1e

∗
k(z(H−1

k − zI)−1 + I).

We have

z (H−1
k − zI)−1 + I = (H−1

k − zI)−1(zI + H−1
k − zI) = (H−1

k − zI)−1H−1
k = (I − zHk)−1.

Our conclusion is that

U∗
k (I − zA)−1AUk = (H−1

k − zI)−1 + hk+1,kU
∗
k (I − zA)−1uk+1e

∗
k(I − zHk)−1

= (Hk + hk+1,kU
∗
k (I − zA)−1uk+1e

∗
k)(I − zHk)−1.
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Let yk+1(z) be the solution to (I − zA)−1uk+1. The key idea is now that yk+1(z) can be
approximated by a second Krylov procedure, and that for z 6= 0 the Krylov spaces Km(I −
zA, uk+1) are identical and equal to Km(A, uk+1), while for z = 0 we get yk+1(0) = uk+1 .

This suggests another approximation to the pseudospectra of A−1 by considering the
pseudospectra of

(3.5) U∗
k (I − zA)−1AUk ≈ (Hk + hk+1,kU

∗
k ỹk+1(z)e∗k)(I − zHk)−1,

where ỹk+1(z) is an approximation to yk+1(z), for instance one determined by the Full Or-
thogonalization Method (FOM):

ỹk+1(z) = Vm(I − zGm)−1e1,

where AVm = VmGm + gm+1,mvm+1e
∗
m is a second Arnoldi decomposition of dimension m to

form a basis for Km(A, uk+1). We call (3.5) a corrected approximation since it involves for
every z ∈ C a different rank-one update, that is computationally feasible since we only have
to generate one extra low dimensional Krylov space Km(A, uk+1).

Example 3.2. In Figure 3.1, we compare the different approaches with the true pseu-
dospectra of A−1 for A the 100× 100 grcar matrix.

−1 0 1

−1

0

1

Λε(A
−1)

Real(z)

Im
ag

(z
)

−1 0 1

−1

0

1

Λε(H
−1)

Real(z)

Im
ag

(z
)

−1 0 1

−1

0

1

Λε(U
*A−1(AUR−1))

Real(z)

Im
ag

(z
)

−1 0 1

−1

0

1

Λε(A
−1⏐

AU
)

Real(z)

Im
ag

(z
)

Fig. 3.1. Λε(A) and various approximations for the 100 × 100 grcar matrix: (3.3) (top-right), (3.1)
(bottom-left), and (3.2) (bottom-right). In all subfigures, the eigenvalues are also indicated.

In addition to comparing the figures by sight, we take∑
z∈grid

∣∣10 log(σmin(approximation(z))− 10 log(σmin(A−1 − zI)))
∣∣ / #gridpoints
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as an error measure. This error indicator is approximately 2.2 · 10−4 for (3.1), 3.1 · 10−4 for
(3.2), and 2.1 · 10−4 for (3.3). �

4. Concluding remarks. We have approximated the field of values and pseudospectra
of the inverse of a large sparse matrix by subspace methods, in particular the Arnoldi process.
To this aim, we extended and gave alternatives for methods proposed by Manteuffel and Starke
[8] for the field of values, and of Toh and Trefethen [14] for the pseudospectra.

The Arnoldi procedure can be used to give an approximation to the field of values and
pseudospectra of A and of its inverse. As the Ritz values of A with respect to search space
Uk are always in FOV(A), the inverses of the harmonic Ritz values are guaranteed to be in
FOV(A−∗). As we can use the Ritz matrix Hk = U∗

kAUk to approximate FOV(A), we can use
the harmonic Ritz matrix, H̃k = (U∗

kA∗Uk)−1U∗
kA∗AUk, of which the harmonic Ritz values

are the eigenvalues, to approximate FOV(A−1). However, H−1
k , an approximation to the

projected inverse matrix U∗
kA−1Uk may give more promising results.

We note that in principle we can use any search space Uk in the approximations. For
instance, we may use the Jacobi–Davidson method [12] instead of the Arnoldi method. Of
course, the analysis that makes use of (1.2) no longer holds but without further details we
mention that one can derive similar results using U∗

kAUk instead of Hk and the residual matrix
Rk = AUk−UkHk instead of hk+1,kuk+1e

∗
k. However, Jacobi–Davidson generally focuses on a

selected region in the complex plane of interest, which implies that the resulting approximate
field of values may globally be of lower quality.

Related to this is the following comment. In [17] the Arnoldi procedure from [14] to
approximate matrix pseudospectra was combined with an implicit restarted version of the
Arnoldi process. This combination results in a high quality approximation of both a portion
of the eigenvalues and the corresponding pseudospectra. On the other hand, the computations
are generally (much) more time consuming and the resulting approximate pseudospectra
may be locally excellent, but globally disappointing. The corrected schemes for FOV and
pseudospectrum approximation as presented in this paper may be viewed as some sort of
alternative to a restart.
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