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CHAPTER 10

Random Quantum States

The main goal of this chapter is to prove the following result. Consider a system
of N identical particles (e.g., N qubits) in a random pure state. For some k ď N{2,
let A and B be two subsystems, each consisting of k particles. There exists a
threshold function k0pNq which satisfies k0pNq „ N{5 as N Ñ 8 and such that
the following holds. If k ă k0pNq, then with high probability the two subsystems
A and B share entanglement. Conversely, if k ą k0pNq, then with high probability
the two subsystems A and B do not share entanglement.

If the Hilbert space associated to a single particle is Cq (e.g., q “ 2 for qubits),
the dimension of the system AbB equals q2k and the state ρ describing the AbB
subsystem is obtained as a partial trace over an environment of dimension qN´2k

(the remaining N´2k particles). If the global system is in a random and uniformly
distributed pure state, the state ρ is a random induced state as introduced in Section
6.2.3.4, where its distribution was denoted by µq2k,qN´2k . The central result of the
chapter (Theorem 10.12) answers the question whether a random induced state on
Cd b Cd with distribution µd2,s is separable or entangled. It relies on the volume
and mean width estimates from Chapter 9.

Section 10.3 contains results about other thresholds for random induced states:
for the PPT vs. non-PPT dichotomy (Theorem 10.17) and for the value of the
entanglement of formation being close to maximal or close to minimal (Theorem
10.16).

10.1. Miscellaneous tools

The first sections of this chapter contain an intermediate result (a quantitative
central limit theorem) about approximation of random induced states by Gaussian
matrices (Proposition 10.6). As a tool, we present some majorization inequalities
in Section 10.1.1.

10.1.1. Majorization inequalities. Majorization was introduced in Section
1.3.1. We first state a technical result that ascertains that “flat” vectors (i.e., vectors
with a large `1-norm and small `8-norm) majorize many other vectors. Since we
need to consider homotheties, it is natural to work in Rn,0, the hyperplane of Rn
consisting of vectors whose coordinates add up to 0.

Lemma 10.1. Let x, y P Rn,0. Assume that }y}8 ď 1 and }y}1 ě αn for some
α P p0, 1s. Then

(10.1) x ă p2{α´ 1q}x}8 y.

Proof of Lemma 10.1. By homogeneity, it is enough to verify that the con-
dition }x}8 ď 1 implies x ă p2{α ´ 1qy. Moreover, it is enough to check this for
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264 10. RANDOM QUANTUM STATES

x being an extreme point of the set A :“ tx P Rn,0 : }x}8 ď 1u, since the set
tx P Rn,0 : x ă zu is convex for any z P Rn,0.

Extreme points of A are of the following form: tn{2u coordinates are equal to
1 and tn{2u coordinates equal to ´1. In the case of odd n there is one remaining
coordinate, which is necessarily equal to 0. It is thus enough to verify that if x is
of that form, and if y satisfies }y}8 ď 1 and }y}1 “ αn, then x ă p2{α´ 1qy. This
is shown by establishing that an average of permutations of y is a multiple of x.

First, average separately the positive and the negative coordinates of y to obtain
a vector y1 whose coordinates take only two values, one positive and one negative.
Since the `1-norm of the positive and the negative part of y1 is equal and amounts
to αn{2, the support of each part must be at least αn{2 and at most p1 ´ α{2qn,
and the absolute value of each coordinate at least α{p2´ αq.

Assume now that n is even. Next, select a set of n{2 equal coordinates (positive
or negative, depending on which part has larger support) and average the remaining
ones. The obtained vector is a multiple of an extreme point, as needed. If n is odd,
select tn{2u equal coordinates (from the dominant sign) and average the remaining
ones to produce one zero and tn{2u equal coordinates. The resulting vector is also
a multiple of an extreme point. �

A simpler but less precise version of Lemma 10.1 can be obtained without any
hypothesis on }y}8.

Lemma 10.2. Let x, y P Rn,0 with y ‰ 0. Then

(10.2) x ă
2n}x}8
}y}1

y.

Proof. By homogeneity, we may assume that }y}8 “ 1 and the result follows
from Lemma 10.1. �

As a consequence, we obtain the fact that if two vectors from Rn,0 are flat and
close to each other, one is majorized by a small perturbation of the other one.

Proposition 10.3. Let x, y P Rn,0. Assume that }x´ y}8 ď ε and }y}1 ě αn
for some α ą 0. Then

x ă

ˆ

1`
2ε

α

˙

y.

Proof. We use the following elementary property of majorization: if x1 ă λ1y
and x2 ă λ2y for some positive λ1, λ2, then x1 ` x2 ă pλ1 ` λ2qy. We apply this
fact with x1 “ y, λ1 “ 1 and x2 “ x ´ y. Lemma 10.2 shows that we can choose
λ2 “ 2ε{α, and the Proposition follows. �

Exercise 10.1. Provide an alternative proof of Lemma 10.2 by using directly
the definition of majorization.

10.1.2. Spectra and norms of unitarily invariant random matrices. A
lot of information about a self-adjoint matrix can be retrieved from its spectrum; for
example, all unitarily invariant norms can be computed if one knows the eigenvalues
(see Section 1.3.2). In contrast, computing the values of other norms or gauges (e.g.,
the gauge associated to the set of separable states) usually requires some knowledge
about the eigenvectors.

However, if the matrix is random and if its distribution is unitarily invariant,
it is possible to circumvent this difficulty. Heuristically, the principle we are going
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10.1. MISCELLANEOUS TOOLS 265

to establish and use is as follows: if A and B are two unitarily invariant random
matrices with similar spectra, then, for any norm or gauge } ¨ }, the typical values
of }A} and of }B} are comparable.

It is convenient to work in the hyperplane Msa,0
n of self-adjoint complex n ˆ

n matrices with trace zero. One says that a Msa,0
n -valued random variable A is

unitarily invariant if, for any U P Upnq, the random matrices A and UAU : have
the same distribution. Recall also that µSC is the standard semicircular distribution,
that µsppAq is the empirical spectral distribution of a self-adjoint matrix A, and
that d8 denotes the 8-Wasserstein distance. All these concepts were introduced
in Section 6.2.

Proposition 10.4. Let A and B be two Msa,0
n -valued random variables which

are unitarily invariant and satisfy the following conditions

(10.3) Ppd8pµsppAq, µSCq ď εq ě 1´ p and E d8pµsppAq, µSCq ď ε

for some ε, p P p0, 1q, and similarly for B. Then, for any convex body K Ă Msa,0
n

containing the origin in its interior,
1´ p

1` Cε
E }A}K ď E }B}K ď

1` Cε

1´ p
E }A}K

for some absolute constant C.

Proof of Proposition 10.4. Note that possible relations between A and
B (such as independence) are irrelevant in the present situation. Consider the
following function on Rn,0 (recall that Rn,0 denotes the hyperplane of vectors of
sum zero in Rn)

φpxq “ E }U DiagpxqU :}K ,

where U P Upnq denotes a Haar-distributed random unitary matrix (independent of
everything else) and Diagpxq is the diagonal matrix whose ii-th entry is xi. Unitary
invariance implies that

(10.4) E }A}K “ EφpspecpAqq

and similarly for B (see Exercise 10.2). Let E be the event td8pµsppBq, µSCq ď εu.
Assume for the moment that E holds, we have then (see Exercise 6.25)

}B}1 “ n

ż

|x|dµsppBqpxq ě n

ż 2

´2

p|x| ´ εq` dµSCpxq

ě n

ż 2

´2

p|x| ´ 1q` dµSCpxq “ αn,

α « 0.16 being a numerical constant. Applying Proposition 10.3 to the vectors
specpAq and specpBq, we conclude that (with C “ 2{α)

specpAq ă p1` Cd8pµsppAq, µsppBqqq specpBq.

Since φ is convex and permutationally invariant, it follows that

φpspecpAqq ď p1` Cd8pµsppAq, µsppBqqqφpspecpBqq.

Using the fact that d8pµsppAq, µsppBqq ď ε` d8pµsppAq, µSCq and taking expecta-
tion over A yields

EφpspecpAqq ď p1` 2CεqφpspecpBqq.
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266 10. RANDOM QUANTUM STATES

Recall that the above inequality is true conditionally on E. Consequently,

EφpspecpBqq ě EφpspecpBqq1E ě p1` 2Cεq´1PpEqEφpspecpAqq.

In view of (10.4) and since PpEq ě 1´ p by hypothesis, this shows that

E }A}K ď
1` 2Cε

1´ p
E }B}K .

The other inequality follows by symmetry. �

If ε is large (2 or larger), the hypothesis d8pµsppAq, µSCq ď ε does not prevent
A from being identically zero. However, an isomorphic version of Proposition 10.4
can be similarly obtained under the hypothesis that the spectra of A and B are
reasonably flat.

Proposition 10.5 (see Exercise 10.3). Let A and B be two Msa,0
n -valued ran-

dom variables which are unitarily invariant. Assume that

(10.5) Pp}A}1 ě c1nq ě 1´ p and E }A}8 ď C2,

and similarly for B. Then, for any convex body K Ă Msa,0
n containing the origin in

the interior,
C´1 E }A}K ď E }B}K ď C E }A}K

with C “ p1´ pq´1p2C2{c1q.

Exercise 10.2 (Retrieving unitarily invariant distributions from the spec-
trum). Let A be a Msa,0

n -valued random variable which is unitarily invariant. Recall
that DiagpspecpAqq is the diagonal matrix whose diagonal entries are the eigen-
values of A arranged in the non-increasing order. Let U P Upnq be a Haar-
distributed random unitary matrix independent of A. Show that the random matrix
U DiagpspecpAqqU : has the same distribution as A.

Exercise 10.3 (All flat unitarily invariant distributions look alike). Prove
Proposition 10.5.

10.1.3. Gaussian approximation to induced states. We are going to in-
vestigate typical properties of random induced states, in the large dimension regime.
Their spectral properties where discussed in Section 6.2.3, and are described either
by the Marčenko–Pastur distribution (when s is proportional to n) or by the semi-
circular distribution (when s " n).

However, we are also interested in properties that cannot be inferred from the
spectrum (the main example being separability vs. entanglement on a bipartite
system). In this context, it is useful to compare induced states with their Gaussian
approximation. Indeed, the Gaussian model allows to connect with tools from
convex geometry, such as the mean width.

It is convenient to work in the hyperplane Msa,0
n and to consider the shifted

operators ρ ´ I {n, which we compare with a GUE0 random matrix (see Section
6.2.2). The following proposition compares the expected value of any norm (or
gauge) computed for both models.

Proposition 10.6. Given integers n, s, denote by ρn,s a random induced state
on Cn with distribution µn,s, and by Gn an nˆn GUE0 random matrix. Let Cn,s be
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10.1. MISCELLANEOUS TOOLS 267

the smallest constant such that the following holds: for any convex body K Ă Msa,0
n

containing 0 in the interior,

(10.6) C´1
n,sE

›

›

›

›

Gn
n
?
s

›

›

›

›

K

ď E

›

›

›

›

ρn,s ´
I

n

›

›

›

›

K

ď Cn,sE

›

›

›

›

Gn
n
?
s

›

›

›

›

K

.

Then
(i) For any sequences pnkq and pskq such that limkÑ8 nk “ limkÑ8 sk{nk “ 8, we
have limkÑ8 Cnk,sk “ 1.
(ii) For any a ą 0, we have suptCn,s : s ě anu ă 8.

Remark 10.7. We emphasize that the quantity E }Gn}K appearing in (10.6) is
exactly the Gaussian mean width of the polar set K˝. Indeed, the standard Gauss-
ian vector in the space Msa,0

n (equipped with the Hilbert–Schmidt scalar product, as
always) is exactly a GUE0 random matrix. In view of (4.32), we could have equiva-
lently formulated Proposition 10.6 using the usual mean width: if C̃n,s denotes the
smallest constant such that the inequalities

(10.7) C̃´1
n,s

wpK˝q
?
s

ď E

›

›

›

›

ρn,s ´
I

n

›

›

›

›

K

ď C̃n,s
wpK˝q
?
s

,

are true for every convex body containing 0 in the interior, then the conclusions of
Proposition 10.6 hold for C̃n,s instead of Cn,s.

Proof. It is easy to check that (10.6) holds for some Cn,s ă `8 if n and s
are fixed (see Exercise 10.4). Moreover, we know from Theorem 6.35(i) that, for
every fixed n,

(10.8) suptCn,s : s P Nu ă `8.

(i) Assume that n “ nk and s “ sk, with nk and sk{nk both tending to infinity, and
denote Ak “

?
nspρn,s ´ I {nq and Bk “ Gn{

?
n. Consider the random variables

Xk “ d8pµsppAkq, µSCq and Yk “ d8pµsppBkq, µSCq. We know from Theorem 6.23
and Theorem 6.35(iii) that Xk and Yk converge to zero in probability. We also
claim that limEXk “ limEYk “ 0; this follows from the fact that Xk ď 2` }Ak},
Yk ď 2 ` }Bk} and from Proposition 6.24 and Proposition 6.33. Part (i) follows
now from Proposition 10.4.
(ii) Let Ak and Bk be as before, but now we only assume that sk ě ank for some
a ą 0. We argue by contradiction: suppose that Cnk,sk tends to infinity. We
know from (10.8) that the sequence pnkq cannot be bounded, so we may assume
limk nk “ `8. Similarly, using part (i), we may assume that sk{nk is bounded,
and therefore (by passing to a subsequence) that lim sk{nk “ λ P ra,8q. We
know from Theorem 6.35(ii) and Theorem 6.23 that µsppAkq and µsppBkq converge
in probability towards a nontrivial deterministic limit, and therefore satisfy the
hypotheses of Proposition 10.5 for some constants p, c1, C2. �

Exercise 10.4. Let X and Y two Rn-valued random vectors with the property
that, for any θ P Sn´1, we have 0 ă E |xX, θy| ă `8 and 0 ă E |xY, θy| ă `8.
Show that there exists a constant C (depending on n,X, Y ) such that, for any
convex body K containing the origin in the interior, we have E }X}K ď C E }Y }K .
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268 10. RANDOM QUANTUM STATES

10.1.4. Concentration for gauges of induced states. We present a con-
centration result valid for any gauge evaluated on random induced states.

Proposition 10.8. Let s ě n, let K Ă DpCnq be a convex body with inradius
r, and let ρ be a random state with distribution µn,s. Let M be the median of
}ρ´ I {n}K0 , with K0 “ K ´ I {n. Then, for every η ą 0,

P

ˆ
ˇ

ˇ

ˇ

ˇ

›

›

›
ρ´

I

n

›

›

›

K0

´M

ˇ

ˇ

ˇ

ˇ

ě η

˙

ď expp´sq ` 2 expp´n2sr2η2{72q.

Proof of Proposition 10.8. We know that ρ has the same distribution as
AA:, where A is an n ˆ s matrix uniformly distributed on the Hilbert–Schmidt
sphere SHS. Consider the function f : SHS Ñ R defined by

(10.9) fpAq “

›

›

›

›

AA: ´
I

n

›

›

›

›

K0

.

For every t ą 0, denote by Ωt the subset Ωt “ tA P SHS : }A}8 ď tu. The function
f is the composition of several operations:
(a) the map A ÞÑ }A}K0 , which is 1{r-Lipschitz with respect to the Hilbert–Schmidt
norm.
(b) the map A ÞÑ A´ I {n, which is an isometry for the Hilbert–Schmidt norm,
(c) the map A ÞÑ AA:, which is 2t-Lipschitz on Ωt (see Lemma 8.22).
It follows that the Lipschitz constant of the restriction of f to Ωt is bounded by
2t{r. We now apply the local version of Lévy’s lemma (Corollary 5.35) and obtain
that, for every η ą 0,

Pp|f ´M | ě ηq ď PpSHSzΩtq ` 2 expp´nsr2η2{8t2q.

If we choose t “ 3{
?
n, then PpSHSzΩtq ď expp´sq (apply Proposition 6.36 with

ε “
a

s{n) and the result follows. �

Remark 10.9. Taking t “ 1 in the argument above, one obtains that the global
Lipschitz constant of f is bounded by 2{r. This implies (see Proposition 5.29) that
any two central values for f differ by at most C{pr

?
nsq.

10.2. Separability of random states

Assume now that we work in a bipartite Hilbert space, and for simplicity con-
sider the case of Cd b Cd where both parties play a symmetric role. Throughout
this section we write Sep for SeppCd bCdq and consider random induced states on
Cd b Cd with distribution µd2,s.

10.2.1. Almost sure entanglement for low-dimensional environments.
Since the maximally mixed state lies in the interior of the set of separable states, and
since the measures µd2,s converge weakly towards the Dirac mass at the maximally
mixed state (see Section 6.2.3.4), it follows that µd2,spSepq tends to 1 when s tends
to infinity (d being fixed). Conversely, the following result shows that random
induced states are entangled with probability one when s ď pd´ 1q2.

Proposition 10.10. Let d, s be integers with s ď pd´1q2. Then µd2,spSepq “ 0.

Proof. Let S Ă Cd b Cd be the range of ρ. The random subspace S is
Haar-distributed on the Grassmann manifold Grps,Cd bCdq. We use the following
simple fact which is an immediate consequence of the definition of separability: if
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10.2. SEPARABILITY OF RANDOM STATES 269

ρ is separable, then S is spanned by product vectors. The Proposition now follows
from Theorem 8.1: when s ď pd´1q2, S almost surely contains no nonzero product
vector. �

Problem 10.11. For which values of d, s do we have µd2,spSepq “ 0?

Exercise 10.5. Let d, s be integers with s ě d2. Show that 0 ă µd2,spSepq ă 1.

Exercise 10.6. Let d, s be integers such that µd2,spSepq ą 0. Show that
µd2,tpSepq ą 0 for every t ě s. (Cf. Problem 10.14.)

10.2.2. The threshold theorem. From the two extreme cases, s ď pd´ 1q2

and s “ 8, we may infer that induced states are more likely to be separable when
the environment has larger dimension. As it turns out, a phase transition takes
place (at least when d is sufficiently large): the generic behavior of ρ “flips” to the
opposite one when s changes from being a little smaller than a certain threshold
dimension s0 to being larger than s0. More precisely, we have the following theorem.

Theorem 10.12. Define a function s0pdq as s0pdq “ wpSeppCd bCdq˝q2. This
function satisfies

(10.10) cd3 ď s0pdq ď Cd3 log2 d

for some constants c, C and is the threshold between separability and entanglement
in the following sense. If ρ is a random state on CdbCd induced by the environment
Cs, then, for any ε ą 0,

(i) if s ď p1´ εqs0pdq, we have

(10.11) Ppρ is entangledq ě 1´ 2 expp´cpεqd3q,

(ii) if s ě p1` εqs0pdq, we have

(10.12) Ppρ is separableq ě 1´ 2 expp´cpεqsq,

where cpεq is a constant depending only on ε.

As a corollary, we recover the result mentioned in the preamble of the chapter:
given N identical particles in a generic pure state, if we assign k of them to Alice
and k of them to Bob, their shared state suddenly jumps from typically entangled
to typically separable when k crosses a certain threshold value kN „ N{5. We state
the result for qubits only, but both the statement and the proof easily generalize
to D-level particles for D ą 2.

Corollary 10.13 (see Exercise 10.8). Given an integer N , there is kN „ N{5
with the following property. For some integer k ď N{2, decompose H “ pC2qbN as
Ab B b E with A “ B “ pC2qbk and E “ pC2qbpN´2kq, and consider a unit vector
ψ P H chosen uniformly at random. Let ρ “ TrE |ψyxψ| be the induced state on
Ab B. Then

(1) for k ă kN , Ppρ is entangledq ě 1´ 2 expp´αN q,
(2) for k ą kN , Ppρ is separableq ě 1´ 2 expp´αN q,

where α ą 1 is a constant independent of N .

Proof of Theorem 10.12. The inequalities (10.10) are a direct consequence
of Theorem 9.6.
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We next present a detailed proof of part (ii). Let ρd2,s be a random state
with distribution µd2,s. Denote Sep0 “ Sep ´ I {d2. Consider also the function
fpρq “

›

›ρ´ I
d2

›

›

Sep0
and the quantity Ed,s :“ E fpρd2,sq.

Fix ε ą 0, and let s, d be such that s ě p1` εqs0pdq. Appealing to Proposition
10.6 (in the version given in Remark 10.7), we obtain

(10.13) Ed,s ď C̃n,s
wpK˝q
?
s

ď
C̃n,s
?

1` ε
,

where C̃n,s is the constant appearing in (10.7). The constants C̃n,s tend to 1 as d
and s tend to infinity under the constraint s ě p1` εqs0pdq.

Let Md,s be the median of fpρd2,sq. We know from Proposition 10.8 (the
inradius of Sep being Θp1{d2q, see Table 9.1) that

(10.14) P
`

fpρd2,sq ąMd,s ` η
˘

ď expp´sq ` 2 expp´csη2q.

Remark 10.9 implies that |Md,s ´Ed,s| ď Cd{
?
s. It follows then from (10.13)

that there is an η ą 0 (depending only on ε) with the property that Md,s ` η ď 1
for all d large enough and s ě p1 ` εqs0pdq. The inequality (10.12) follows now
from (10.14) and from the obvious remark that a state ρ is entangled if and only if
fpρq ą 1. Small values of d can be taken into account by adjusting the constants if
necessary. Note that the argument yields a priori a bound C 1 expp´c1pεqsq, possibly
with C 1 ą 2, but the bound (10.12) follows then with cpεq “ c1pεq{ log2 C

1.
The proof of part (i) goes along similar lines, particularly if we do not care

about the exact power of d appearing in the exponent of the probability bound
in (10.11); this is because Proposition 10.8 yields an estimate parallel to (10.14)
for P

`

fpρd2,sq ăMd,s ´ η
˘

. There are some fine points which emerge when s is
relatively small, but they can be handled using inequalities from Exercise 10.7; see
[ASY14] for details. See also Remark 10.15. �

The fine points in the proof of part (i) of Theorem 10.12 would disappear if the
answer to the following natural problem was positive (cf. Exercise 10.6).

Problem 10.14 (As environment increases, entanglement decreases). Fix an
integer d ě 2. Is it true that the function s ÞÑ µd2,spSepq is non-decreasing?

Remark 10.15. An alternative and simpler argument to prove part (i) of Theo-
rem 10.12 is sketched in Exercise 10.9. That argument also has the advantage that
it produces explicitly an entanglement witness certifying that the induced state
is entangled. However, the argument works only in the range s ď cd3 for some
constant c ą 0; while this does not cover the entire range, it handles the case of
relatively small s that does not readily follow from Proposition 10.8.

Exercise 10.7 (Partial results on monotonicity of entanglement). Set πd,s :“
µd2,spSeppCd b Cdqq .
(i) Show that the function d ÞÑ πd,s is non-increasing for any integer s ě 1.
(ii) Show the inequality π2d,s ď πd,4s.

Exercise 10.8 (Proof of the N{5 threshold result). Prove Corollary 10.13 by
combining Theorem 10.12 (applied with ε “ 1{2) and Exercise 10.7.

Exercise 10.9 (The induced state is its own witness). Let ρ be a random state
on Cd b Cd with distribution µd2,s, and W “ ρ´ I {d2.
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(i) Show that TrpWρq is of order 1{s with high probability.
(ii) Show that for any unit vector x P Cd b Cd and 0 ă η ă 1, we have

P
´

ˇ

ˇxx|W |xy
ˇ

ˇ ą
η

d2

¯

ď C expp´csη2q.

(iii) Conclude that with high probability, suptTrpσW q : σ P Sepu ď Cd´3{2s´1{2.
(iv) Conclude that in the regime s ď cd3, with high probability, W witnesses the
fact that ρ is entangled.
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272 10. RANDOM QUANTUM STATES

10.3. Other thresholds

10.3.1. Entanglement of formation. Theorem 10.12 settles the “entangle-
ment vs. separability” dichotomy for random induced states. In the generic entan-
glement regime, we could be more precise and ask about quantitative estimates:
how strongly is a random state entangled?

To address the above question we need a method to quantify the amount of
entanglement present in a quantum state. The approach from the preceding section
allows to use the value of the gauge

›

›ρ´ I{d2
›

›

Sep0
as a measure of the strength of

entanglement. In this section we will work with invariants that are more “native”
to quantum information theory.

For a pure state ψ, the entropy of entanglement Epψq was introduced in (8.1).
A possible way to extend this definition to mixed states is to use a “convex roof”
construction. For a state ρ on CdbCd, define its entanglement of formation EF pρq
as

(10.15) EF pρq “ inf
!

ÿ

piEpψiq : ρ “
ÿ

pi|ψiyxψi|
)

,

the infimum being taken over all decompositions of ρ as convex combinations of
pure states. Equivalently, the entanglement of formation is the smallest convex
function which coincides with the entropy of entanglement on pure states.

Entanglement of pure states was studied in Chapter 8. In particular, for a
random pure state ψ (which corresponds to the case s “ 1), we typically have
EF p|ψyxψ|q “ Epψq “ log d ´ 1

2 ` op1q; see Lemma 8.13. Here is a statement
describing a “behavior shift” which takes place as s increases.

Theorem 10.16 (Entanglement of formation for random induced states). Let
ρ be a random state on Cd b Cd with distribution µd2,s.

(1) If s ď cd2{ log2 d, then with high probability EF pρq ě logpdq ´ 1.
(2) If 0 ă ε ă 1 and s ě Cε´2d2 log2 d, then with high probability EF pρq ď ε.

Proof. Assume s ď d2. If S denotes the range of ρ, then S is a random Haar-
distributed s-dimensional subspace of C2 b C2. We use the following relaxation

EF pρq ě inftEpψq : ψ P Su.

We then conclude using Theorem 8.15 that, with high probability, EF pρq ě logpdq´
1 provided s ď cd2{ log2 d.

For the second part, denote by a the smallest eigenvalue of ρ and consider the
convex combination

ρ “ pρ´ a Iq ` a I “ p1´ d2aqσ ` d2a
I

d2

for some state σ. Using the convexity of EF and the obvious facts that EF pσq ď
log d and EF pI {d

2q “ 0, we obtain EF pρq ď p1 ´ d2aq log d. However, we know
from Proposition 6.36 (or Exercise 6.43) that a ě 1

d2 ´
C
d
?
s
with large probability.

It follows that as long as s ě C2ε´2d2 log2 d, then

EF pρq ď
Cd logpdq
?
s

ď ε. �

Exercise 10.10. Check that EF pρq “ 0 if and only if ρ is separable.
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10.3.2. Threshold for PPT. The machinery developed in this chapter can
be applied to any property instead of separability and allows to reduce the estima-
tion of threshold dimensions to the estimation of a geometric quantity (the mean
width for the polar set).

One natural example is the PPT property. Since PPT “ DX ΓpDq, where Γ is
the partial transpose, it follows easily (arguing as in the first part of the proof of
Proposition 9.8) that w

`

PPT˝0
˘

ď 2wpD˝0q » d. The threshold s1 appearing in this
approach satisfies then

s1pdq “ wpPPT˝0q
2 “ Θpd2q.

However, we know that the spectrum of large-dimensional partially transposed
random states is described by a non-centered semicircular distribution (see Theorem
6.30). A more precise estimation of the threshold follows (note that the distribution
SCpλ, λq appearing in Theorem 6.30 has support rλ ´ 2

?
λ, λ ` 2

?
λs, which is

included in r0,`8q if and only if λ ě 4).

Theorem 10.17 (Threshold for the PPT property). Define s1pdq “ 4d2. Let ρ
be a random state on Cd b Cd with distribution µd2,s. Then

(i) if s ď p1´ εqs1pdq, we have

Ppρ is PPTq ď 2 expp´cpεqd2q,

(ii) if s ě p1` εqs1pdq, we have

Ppρ is PPTq ě 1´ 2 expp´cpεqsq.

Here cpεq is a constant depending only on ε.

The comparison between Theorems 10.12, 10.16 and 10.17 is instructive: if s
is sufficiently larger than d2, but sufficiently smaller than d3, random states are
typically PPT and entangled (in particular they cannot be distilled, see Chapter
12), but have an amount of entanglement extremely small when measured via the
entanglement of formation.

Exercise 10.11. Explain the presence of expressions of the form Ωεpd
2q and

Ωεpsq in the exponents in Theorem 10.17.

Notes and Remarks

Theorem 10.12, as well as the preliminary results from Section 10.1, are from
[ASY14]. A high-level non-technical overview can be found in [ASY12]. In partic-
ular, the existence of a separability threshold around the value s “ d3 was proved
in [ASY14]; previously only the cases s ď d2 or s ě d4 were covered (see e.g
[HLW06]).

The answer to Problem 10.11 is known for qubits: we have µ4,2pSeppC2bC2qq “

0 and µ4,3pSeppC2bC2qq ą 0. As explained in section 7.1 of [ASY14], this follows
from results of [RW09] and [SBŻ06], respectively.

The entanglement of formation is only one of the many possible ways to quantify
entanglement of mixed states. However, other measures are harder to manipulate.
For a survey of the subject of entanglement measures see [PV07].

The threshold for the entanglement of formation (Theorem 10.16) is essentially
from [HLW06], and the threshold for the PPT property (Theorem 10.17) is from
[Aub12] (see also [ASY12]).
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Other thresholds functions have been computed or estimated: for the realign-
ment criterion [AN12], for the k-extendibility property [Lan16], and for still other
properties [CNY12, JLN14, JLN15] (including the absolute PPT property and
the reduction criterion).


