CHAPTER 2

The Mathematics of Quantum Information Theory

This chapter puts into mathematical perspective some basic concepts of‘quan-
tum information theory. (For a physically motivated approach, see Chapter ) We
discuss the geometry of the set of quantum states, the entanglement vs. separabil-
ity dichotomy, and introduce completely positive maps and quantum channels. All
these concepts will be extensively used in Chapters

2.1. On the geometry of the set of quantumstates

2.1.1. Pure and mixed states. In this section we take a closer look at the
set D(H) (or simply D) of quantum states on a finite=dimensional complex Hilbert
space H. By definition (see Section [0.10)), we have

(2.1) D(H) ={p€ Bsa(H) : p=0,Trp=1}.

If # = C¢, the definition simply says that D(C?) is the base of the positive
semi-definite cone PSD(C?) defined by the hyperplane H; < M¥ of trace one
Hermitian matrices (cf. (I.22)). The (real) dimension of the set D(C?) equals
d? — 1: it has non-empty interior inside H;. (This follows from PSD(C?) being a
full cone.)

A state p € D(H) is called pure if it has rank 1, i.e., if there is a unit vector
1 € H such that

p = )Xl

Note that |1)(%| is*the orthogonal projection onto the (complex) line spanned by
1. We sometimes use the terminology “consider a pure state ¢” (such language is
prevalent in physics literature). What we mean is that ¢ is a unit vector and we con-
sider the corrésponding pure state [¢))(1)|. We use the terminology of mized states
when we.want to emphasize that we consider the set of all states, not necessarily
pure,

Let1p, x be unit vectors in H. Then the pure states [)){t| and |x){x| coincide
if and only if there is a complex number A with |A| = 1 such that y = \). Therefore
the set of pure states identifies with P(#), the projective space on H. (See Appendix
note that the space P(C?) is more commonly denoted by CP4~1.)

The set D(H) is a compact convex set, and it is easily checked that the extreme
points of D(H) are exactly the pure states (cf. Proposition and Corollary .

It follows from general convexity theory (Krein—Milman and Carathéodory’s
theorems) that any state is a convex combination of at most (dim #)? pure states.
However, using the spectral theorem instead tells us more: any state is a convex
combination of at most dim A pure states |1; }{1;|, where (1;) are pairwise orthog-
onal unit vectors (cf. Exercise . A fundamental consequence is that whenever
we want to maximize a convex function (or minimize a concave function) over the
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32 2. THE MATHEMATICS OF QUANTUM INFORMATION THEORY

set D(H), the extremum is achieved on a pure state, which significantly reduces the
dimension of the problem.

As opposed to pure states, which are extremal, the “most central” element in
D(H) is the state I /dim #H, which is called the mazimally mized state, and denoted
by ps when there is no ambiguity. We also note that the set of states on H which
are diagonal with respect to a given orthonormal basis (e;);c; naturally identifies
with the set of classical states on I.

EXERCISE 2.1. Describe states which belong to the boundary of D(H).

EXERCISE 2.2 (Every state is an average of pure states). Show that every State
p € D(C%) can be written as 5 (|1 )] + -+ + [¢a)(¥q]) for some unitrveetors

U1, ..., g in CO.

2.1.2. The Bloch ball D(C?). The situation for d = 2 is very special. Let
p € M$?, with Tr p = 1. Then p has two eigenvalues, which can bewritten as 1/2— A
and 1/2 + A for some A € R. Moreover, p > 0 if and only if. |\ <1/2. On the other
hand, we have

lo = palus = V2IAl.

Therefore, p is a state if and only if |p — ps|ns < 1/v2. What we have proved
is that, inside the space of trace one self-adjoint ‘operators, the set of states is a
Euclidean ball centered at p, and with radius,1/ v/27 This ball is called the Bloch
ball and its boundary is called the Bloch sphere. Once we introduce the Pauli
matrices

(2.2) o = [(1) (1)] Ty = [? Oi]’ 7 [(1) 01]’

a convenient orthonormal basis (with respect to the Hilbert—Schmidt inner product)
in M$* is
( 1 I 1 1 1 )

— 1, —=0y, —=0y, —=0 ).

\/5 I \/5 X \/5 \/i z

A very useful consequence of D(C?) being a ball is the fact—mentioned already

in Section that the cone PSD(C?) is isomorphic (or even isometric in the ap-
propriate sense)\to the Lorentz cone £4. A popular explicit isomorphism, inducing
the so-called “dpinor map (see Appendix |C)), is given by

(2.3)

Oy,

t+2z x—1y

4 = —
(2.4) R*sx = (t,z,y, 2) [sc+iy PR

}—XeMga.

The formula for X can be rewritten in terms of the Pauli matrices (2.2)) as

(2.5) X =tl+zxo, +yo, + 20,

and so a convenient expression for it is X = x-0, where o is a shorthand for
(I,04,04,0;), and “” is a “formal dot product.” Since {I, o, 0y, 0.} is a multiple of
the orthonormal basis (2.3) of M2, it follows that the map given by ([2.4)) is likewise

a multiple of isometry (with respect to the Euclidean metric in the domain and the
Hilbert—Schmidt metric in the range). Next, it is readily verified that

1
(2.6) 3 TrX =t det X =2 — 22 —y? — 2% = ¢(x),

where ¢ is the quadratic form of the Minkowski spacetime, which confirms that
X € PSD(C?) iff x € £4. The isomorphism x + x-0 will be useful in understanding
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automorphisms of the cones £, and PSD(C?), and when proving Stgrmer’s theorem
in Section

When d > 2, the set D(C?) is no longer a ball, but rather the non-commutative
analogue of a simplex. Its symmetrization (see Section

D(C%)g = conv (D(C?) U —D(C?)) = {Ae M$* : ||A|; <1},

is Sf’sa, the unit ball of the self-adjoint part of the 1-Schatten space (see Section
1.3.2).

One way to quantify the fact that the set D(C?) is different from a ball when
d > 2, is to compute the radius of its inscribed and circumscribed Hilbert—Schmidt
balls. The former equals 1/4/d(d — 1) while the latter is 1/(d — 1)/d (the same
values as for the set A;_; of classical states on {1,...,d}, and for the same reasons).
In other words, if we denote by B(ps,r) the ball centered at p, and with/ Hilbert—
Schmidt radius r inside the hyperplane H; = {Tr(-) = 1} < M3?, we have

(27) B <P*, d(;l)) C D(Cd) c B <p*, El;—1>

and these values—differing by the factor of d — 1-—are-the best possible.

EXERCISE 2.3 (The Bloch sphere is a sphere): Show that the matrix X given
by (2.5) has eigenvalues 1 and —1 if and only if ¢t = 0 and 22 + y? + 2% = 1.

EXERCISE 2.4 (Composition rules for Pauli matrices). Verify the composition
rules for Pauli matrices. (i) 02 = I (ii) Tf-asb, ¢ are all different, then 0,0, = ico.,
where ¢ = +1 is the sign of the permutation (x,y,z) — (a,b,c); in particular, if
a # b, then o,0, = —0p0,.

2.1.3. Facial structure.

PROPOSITION 2.1 (Charactérization of faces of D). There is a one-to-one cor-
respondence between nontrivial subspaces of C* and proper faces of D(C?). Given
a subspace {0} € E & €4, the corresponding face D(E) is the set of states whose
range is contained, in. K-

D(E) = {peD(C’) : p(C’) < E}.

In particular, (pure states (extreme points, i.e., minimal, 0-dimensional faces) cor-
respond-tosthe case dimE = 1. In the direction opposed to a pure state |x){x|
lies a face ' which corresponds to all states with a range orthogonal to x; these are
maximal proper faces.

REMARK 2.2. All faces of D(C?) are exposed (as defined in Exercise since
D(E) is the intersection of D(C?) with the hyperplane {X : Tr(XPg) = 1}.

PROOF OF PROPOSITION 2.1l Denote by range(p) = p(C?) the range of a state
p € D(C?). We use the following observation: if p,s € D(C?) and A € (0, 1), then

(2.8) range(Ap + (1 — A)o) = range(p) + range(o).

We first check that, for any nontrivial subspace E < C?, D(E) is a face of
D(C?). For indeed, if p € D(E) can be written as Ap; + (1 — \)ps for p1, po € D(CY)
and A € (0,1), then implies that range(p;) € E and range(ps) c E.

Conversely, let F' = D(C?) be a proper face. Define E = | J{range(p) : pe F}.
It follows—from and from the fact that F' is convex—that E is actually a
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subspace and that F' contains an element p such that range(p) = E. We now claim
that F' = D(FE). The direct inclusion is obvious. Conversely, consider o € D(E). For
A > 0 small enough the operator 7 = 125 (p—Ao) is a state. Since p = Ao+ (1—N)7,
we conclude that the segment joining ¢ and 7 is contained in F'; in particular
oeF. (]

EXERCISE 2.5. Show directly (i.e., without appealing to Proposition that
any ezposed face of D(C?) has the form D(E) for some subspace E < C9.

2.1.4. Symmetries. We now describe the symmetries of D(C?). This is
closely related to the famous theorem of Wigner that characterizes the isometries
of complex projective space as a metric space. Recall (see Appendix that-[¢]
denotes the equivalence class in P(C?) of a unit vector ¢ € Sga.

THEOREM 2.3 (Wigner’s theorem). Denote by P(C?) the projective space over
C?, equipped with the Fubini-Study metric . A map f ¥P(€Y) — P(CY)
is an isometry if and only if there is a map U on C* which Yis-either unitary or
anti-unitary such that, for any unit vector 1,

(2.9) f(]) = [U@)]-

A map U : C? — C? is anti-unitary if it is the composition of a unitary map
with complex conjugation.

PRrROOF. We outline the proof of Wigner/stheorem for d = 2. Since the projec-
tive space over C? identifies with the Bloch sphere, its group of isometries is given
by the orthogonal group O(3), and splits into direct isometries (rotations, or SO(3))
and indirect isometries.

Let f be a direct isometry of'tle-Bloch ball. It has two opposite fixed points [ ]
and [p2], with 1 L @9, and is atotation of angle 6 in the plane {[%(gpl +et%p9)]
a € R}. One checks that is satisfied when U is given by U(p1) = ¢1 and
U(ps) = €?py. Note that U is determined up to a global phase. In particular,
if we insist on having \U e SU(2), we are led to the choice U(py) = e /2,
and U(ps) = €%, involving the half-angle. (We point out the isomorphism
PSU(2) < SO(3), sée Exercise [B.4])

The complex, conjugation with respect to an orthonormal basis (11,2) in C?
induces on-thé.Bloch ball the reflection R in the plane {[cos 811 +sin6v5] : 6 € R}.
Since any. indirect isometry of the Bloch ball is the composition of R with a direct
isometry;-the result follows.

The case d > 2 can be deduced from the d = 2 case; we do not include the
argument here (see Notes and Remarks). O

When P(C?) is identified with the set of pure states on C%, the isometries from
Theorem act as p — UpUT or p > UpTUT for U € U(d). Here p” denotes the
transposition of a state p with respect to a distinguished basis (since p = pf, p7 is
also the complex conjugate of p with respect to that basis).

THEOREM 2.4 (Kadison’s theorem). Affine maps preserving globally D(C?) are
of the form p — UpUT or p v UpTU for U € U(d). In particular, they are
isometries with respect to the Hilbert—Schmidt distance.

PROOF. Let ® be an affine map on M5* such that ®(D(C%)) = D(C?). Then
® preserves the set of faces of D(C?), which are described in Proposition In
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particular, ® preserves the set of minimal faces, which identify with pure states.
Therefore ® induces a bijection on P(C?). We claim that ® is an isometry with
respect to the Fubini-Study distance (B.5]), which is equivalent to

Tr (D(|)W1) - 2(l0XeD) = Ko, o)

for 1, € C4. If [¢)] = [¢], this is clear. Otherwise, let M = C? be the 2-
dimensional subspace generated by ¢ and ¢. By Proposition the set D(M)
canonically identifies with a (3-dimensional) face of D(C?). Consequently, ®(D(M))
is also a face, which identifies with D(M’) for some 2-dimensional subspace M’ <
C4. Since D(M) and D(M’) are Bloch balls, the map ® restricted to D(M) must
be an isometry (affine maps preserving S? are isometries). We may now apply
Wigner’s theorem: there is U € U(d) such that either ®(p) = UpU' whenever p is
a pure state, or ®(p) = UpTUT for all pure states p. Since ® is affine; one of the
two formulas is valid for all p € D(CY). O

Although for d > 2 the set D(C?) is not centrally symmetric; we may argue
that the maximally mixed state p; plays the role of a centerx In.particular, we have

PROPOSITION 2.5. Let p e D(C?) be a state which is fized by all the isometries
of D(C?) (with respect to the Hilbert-Schmidt distanee)>,Then p = ps.

ProOF. We have UpU' = p for every unitary matrix U. Since U(d) spans My
as a vector space, p commutes with any matrix; therefore it equals a1 for some
a € C, and the trace constraint forces o = 1/d. g

One consequence of Proposition is that p is the centroid of D(CY). Kadi-
son’s theorem also implies that D has enough symmetries in the sense of Section
(see Exercise . Another“consequence of Kadison’s Theorem is a char-
acterization of affine automorphisms.of the cone of positive semi-definite matrices,

which will be presented in Proposition [2.29]

EXERCISE 2.6. Show that the affine automorphisms of D(C?) form a group
which is isomorphic {0 O(3).

EXERCISE 2.7-Show that the affine automorphisms of D(C?) form a group
which is isomorphic to the semidirect product of PSU(d) and Zs with respect to
the action of‘Zy on PSU(d) induced by the complex conjugation.

EXERCISE 2.8. State and prove the real version of Wigner’s theorem.

EXERCISE 2.9. Let p be a state which is invariant under transposition with
respect to any basis. Show that p = p.

2.2. States on multipartite Hilbert spaces

2.2.1. Partial trace. A fundamental concept in quantum information theory
is the partial trace (for a physically motivated approach, see Section . Let
H = H1 ® Ho be a bipartite Hilbert space. The partial trace over Hs is the map
(or the superoperator, see Section Try, : B(H1) ® B(Hz2) — B(H1) defined as
Idp(3,)®Tr. Its action on product operators is given by

Try,(A® B) = (Tr B)A

for A e B(H1), B € B(H3). Similarly, the partial trace with respect to #H; is defined
as Try, = Tr®IdB(H2).
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In particular, if p is a state on H1 ® Ha, then Try, p is a state on Ha, and Try,
is a state on H;. Note also the formulas Try, (p1 ® p2) = p2 and Try, (p1 ®p2) = p1
for states p; € D(H1), p2 € D(H2).

We sometimes write Try for Try, and Try for Try,. The definition of partial
trace extends naturally to the multipartite setting: if H = H; ® - - - ® Hy, then for
1 <9 < k we denote by Try, or Tr; the operation

IdB(’Hl) ®--- ®IdB(H7:—1) ®Tr®IdB(H7:+1) ®--- ®IdB(7'[k) :

2.2.2. Schmidt decomposition. We recall the singular value decomposition
(SVD) for matrices: any real or complex matrix A € My 4 can be decomposed. as
A =UXV', when U and V are unitary matrices of sizes k and d respectively; and
Y = (%) € Myg4 is a “rectangular diagonal” (i.e., such that X;; = O-whenever
i # j) nonnegative matrix. Moreover, up to permutation, the “diagonal” elements
of ¥ are uniquely determined by A and are called the singular values of A. We
often denote the singular values of A by 51(A4) = -+ = Spin(k,a)(A). The singular
values of A coincide with the eigenvalues of (AA")Y/? when k. < d, and with the
cigenvalues of (ATA)Y/2 when k > d. Note that, in any case,”AAT and ATA share
the same nonzero eigenvalues.

An equivalent presentation of the SVD is as(follows: there exist orthonormal
sequences (u;) (in R* or C*, depending on the context) and (v;) (in R? or C?), and
a non-increasing sequence of nonnegative scalars (s;) such that

(2.10) A= Zsi|ui><vi\.

When translated into the language of tensors (see Section , the singular value
decomposition becomes the Schimidtdecomposition, which is widely used in quan-
tum information. We note that;-besides the bipartite situation, there is no analogue
of the Schmidt decompositien, in multipartite Hilbert spaces.

PROPOSITION 2.6 (easy). Let ¢ be a vector in a (real or complex) bipartite
Hilbert space Hy1 ® Ha, with dy = dimH; and dy = dimHy. Set d := min(dy, ds).
Then there exist nonnegative scalars (A\;)1<i<d, and orthonormal vectors (Xi)1<i<d
in Hi and (1<i<d in Ha, such that

d
(2.11) Y= 2/\1')(1‘®<Pi-
i=1
The-nambers (A1, ..., q) are uniquely determined if we require that \y = -+ = Ay

and gre called the Schmidt coefficients of 1.

Note that A? + -+ A2 = [4)|2. We may write \;(¢) instead of \; to emphasize
the dependence on 1. The largest r such that \.(¢)) > 0 is called the Schmidt rank
of 9. If ¢ € C* ® C¢ is identified with a matrix M € My, 4 as in Section [0.§] then

(2.12) Trea [W)p| = MMT.

Via this identification, Schmidt coefficients of ¥ coincide with singular values of M,
and the Schmidt rank of ¢ coincides with the rank of M. States of Schmidt rank
1 are exactly product vectors. The largest and the smallest Schmidt coefficients of
1 € H1 ® Ho are also given by the variational formulas

(2.13) A1 () = max{|[(h, x ® )| : x € Hi,0 € Ha,|X| = |¢] = 1},
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often referred to as the maximal overlap with a product vector, and

2.14 A = min ma , X ® .
(2.14) a) = min = max K¢ x®¢)

The above are fully analogous to the (special cases of) Courant—Fischer variational
formulas for singular values of a matrix.

2.2.3. A fundamental dichotomy: separability vs. entanglement. We
now introduce a fundamental concept: the dichotomy between separability and
entanglement for quantum states. Let H be a complex Hilbert space admittinga,
tensor decomposition

(2.15) H=H® - QH.

Recall that since 1-dimensional factors may be dropped, we may—and usually will—
assume that all the factors are of dimension at least 2.

DEFINITION 2.7. A pure state p = |x){(x| on H is said to be pure separable if

the unit vector x is a product vector, i.e., if there exist unit'wectors x1, ..., xx such
that x = x1 ® - - - ® xx. In that case,
(2.16) p=Ixal ®- - @ )l

Extending the definition of separability to mixed states requires to consider
convex combinations (we study in detail the corvex hull operation A — conv(A) in

Section [1.1.2)).

DEFINITION 2.8. A mixed state p = |x){x| on H is said to be separable if it can
be written as a convex combination of pure separable states. We denote by Sep(H)
(or simply by Sep) the set of separable states on H. We have

(2.17)  Sep(H) = conv{|x1 ®. @ x#)X1® - @ xk| : X1 € Hi1,..., Xk € Hi}.

States which are not separable are called entangled. Since pure states are the
extreme points even of the larger set D(H) (Proposition [2.1), it follows that the
pure separable states((i-¢-; those given by ) are exactly the extreme points of
Sep(H). Since there are vectors that are not product vectors, the set Sep(H) is a
proper subset ‘of D(H). A schematic representation of the inclusion Sep ¢ D and
of the corresponding extreme points can be found in Figure

An alternative description of the set Sep(#) is the following: it is the convex
hull of product states.

(2.18) Sep(H) =conv{p1 ®---®pr : p1 € D(H1),...,pr € D(Hi)}.

It is noteworthy that Sep(#) and D(7{) have the same dimension. This can
be seen from the following observation. Let Vi,...,V, be real or complex vector
spaces and, for each i, let F; be a family of linear independent vectors in V;. Then
the family

RFi={/i® - ®fx : ficF}
is linearly independent in (X) V;. We apply the observation with V; = B (H,;) and
with JF; being a basis of B%(H;) consisting of states. This way, we obtain a family
of (dim H)? linearly independent product states which are elements of Sep(#). This
shows that Sep(#) has dimension (dim#)? — 1. Note that this argument uses the
fact that the field is C: in real quantum mechanics, the set of separable states has
empty interior (cf. Section .
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pure states

D = conv{pure states}

p = conv{pure product states}

O
O

pure product states

FIGURE 2.1. The sets of states (D) and of separable states {Sep)
on C?®CHY. Pure product states have measure zero inside the set of
pure states; however both convex hulls have the same dimension.
The picture does not respect convexity of Sep, but.it\is-supposed
to reflect the relative rarity of separability.

A deeper result asserts that, in the bipartite case, not only do Sep and D have
the same dimension, they also have the same inradius. This may look surprising
since Sep is defined as the convex hull of a very.small subset of the set of extreme
points of D. This remarkable fact was discovered by Gurvits and Barnum and will
be proved later (see Theorem .

It is often useful to consider the cone

SEP(H)=A4Xp = A =0, pe Sep(H)}

of separable operators; we will return to this in Section

We emphasize that the notion of separability depends crucially on the tensor
decomposition of H. As a concrete example, consider a tripartite space H =
H1®Ho®Hs. There are several different notions of separability on H: separability
with respect to the\tripartition H; : He : Hs, and separability with respect to
each of the three bipartitions Hi : Ho ® Hs, Ho : H1 ® Hz and Hz : H1 ® Ha or
combinations-thereof. Moreover, some authors introduce the concept of “absolute”
properties.~For example, a state p € D(H; ® -+ ® Hy) is absolutely separable if
UpUT is-separable for any unitary operator U on H; ® - - - ® Hj,. However, in this
book we.will focus primarily on the setting in which all partitions are fixed.

Although the extreme points of Sep are very easy to describe (as noted earlier,
they ‘are precisely the pure product states), there is no simple description of the
facial structure of Sep available (compare with Proposition which describes all
the faces of D). The complexity of the facial structure of Sep can be related to
the fact that deciding whether a state is separable is known to be, in the general
setting, NP-hard. This makes calculating some parameters of Sep highly nontrivial;
we will run into this problem in Chapter |§| (see, e.g., Theorem . Finally, in view
of the dual formulation of the problem of describing faces of a convex body (see
Section and particularly Proposition , characterizing maximal faces of
Sep is essentially equivalent to describing extreme points of the object dual to Sep
(see ), which are well understood only for very small dimensions. (Appendix
discusses closely related issues.)
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EXERCISE 2.10 (The length of separable representations). (i) Using Cara-
théodory’s theorem (see Section , show that any separable state on C? @ C?
can be written as the convex combination of at most d* pure product states. (ii)
Using a dimension-counting argument, prove that there exist separable states on
C? ® C? which cannot be written as a convex combination of less than cd® pure
product states, for some constant ¢ > 0.

EXERCISE 2.11 (Edges of Sep). Let dy,ds > 2. Show that Sep(C% ® C?) has
a face (as defined in Section [1.1.3) which is 1-dimensional.

2.2.4. Some examples of bipartite states. We now present some examples
of states on C% ® C% that are widely used in quantum information theory.

2.2.4.1. Mazimally entangled states. A pure state on C? ® C? is.called mazi-
mally entangled if it has the form p = [1)){3p| with

1 d
(2.19) = %i;ei@ﬁ,

where (e;)1<i<a and (f;)1<i<a are two orthonormal bases inC?. Such a vector v is
called a maximally entangled vector.

In the special case of d = 2, i.e., for systems formed of 2 qubits, the maximally
entangled states are called Bell states. Many quantum information protocols, such
as quantum teleportation, use Bell states as a_fundamental resource.

If we identify vectors and matrices as explained in Section [0.8] the set of all
maximally entangled vectors on C?® C? (or, more precisely, on C¢® C?) identifies
with the unitary group U(d) M.

EXERCISE 2.12 (Maximally\ entangled states and trace duality). Let @ be
the maximally entangled state given by , with (e;) and (f;) both equal to
the canonical basis (|i))1<i<dy and let p = [¢))(¥)|. Show that Tr (p(X ® Y)) =
L Tr(XY7T) for any X,Y.€ B(C?).

EXERCISE 2.13,(Maximal entanglement and the distance to Seg). Let ¢ be a
unit vector in CY®@C%and Seg = Scagca the set of unit product vectors (see (B.6).
Show that |1){%] is maximally entangled if and only if dist(¢), Seg) is maximal. For
extensions to. the multipartite case, see Section

2.24:2 Isotropic states. Isotropic states are states which are a convex (or
affine) combination of the maximally mixed state and a maximally entangled state.
They have the form

(2.20) 05 = BlUXW] + (1 — B)—

ﬁv
where 1 is as in (2.19)) and —ﬁ <pB <1
2.2.4.3. Werner states. Consider the flip operator F € B%*(C? ® C?) defined
on pure tensors by F(z®y) = y ® 2 and extended by linearity. Its eigenspaces are
the symmetric subspace
Sym, = { e C*'®C" : F(¢) = ¢}

and the antisymmetric subspace

Asym, = {¢ € CcteC? . F(y) = —¢}.
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The corresponding projectors are Psym, = 3(I+F) and Pagym, = s(I-F). We
need to know that the symmetric and antisymmetric subspaces are irreducible for
the action U — U ® U of the unitary group.

PROPOSITION 2.9 (see Exercise . Let E < C¢® C? be a nonzero subspace
such that for every U € U(d) and ¥ € E, we have (U U)y € E. Then either
E =Sym, or E = Asym,.

Note that dim Sym,; = d(d+1)/2 while dim Asym; = d(d—1)/2. The symmetric
and antisymmetric states are defined respectively as
2 2
Tg = MPSymd and 7, = mPAsymd'
For A € [0,1], consider the state wy (called the Werner state) obtained{asa convex
combination of these two projectors
(2.21) wy = Ams + (1 — A\)7g.

Another equivalent expression is

1
2.22 =——(I—aF
( ) w)\ d2 7da( « )7
where
1 +d(1-2)N)
(2.23) ~ivdoa ot

When d = 2, the space Asym, has dimension one, and Werner states are then a
special case of isotropic states.

EXERCISE 2.14 (Polarization formulas in Sym, and Asym,). Prove that Sym, =
span{r @ v : x € C?} and Asymy =span{r @y —y®z : x,y € C}.

EXERCISE 2.15 (Irreducibility of Sym, and Asym,).
Denote by &7 = span{U ® U~ U € U(d)}.
(i) Prove that for every\subspace E = C¢, Pp ® Pg € .
(ii) Show that for every nonzero vectors ¢, € Symy, there is V € & such that
(plVIY) #0.
(iii) Show that for every nonzero vectors ¢, 1 € Asym,, there is V' € & such that
{plV[p) # 0.
(iv) Deduce Proposition

EXERCISE 2.16 (The twirling channel and Werner states).
(1):Show that a state p € D(CI®C?) satisfies (VRV)p(VRV)! = p for all V € U(d)
ifiand only if it is a Werner state.
(i) Show that if U is chosen at random with respect to the Haar measure on U(C?),
then for any p € D(C?®CY), E(UQ®U)p(U®U)" = wy with A\ = Tr(pPsym,). (The
map p— E(UQU)p(U®U)' is called the twirling channel.)
(iil) Show that if ¢ € Sga is chosen uniformly at random, then E [ @y} ¢ @| = .
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2.2.5. Entanglement hierarchies.
2.2.5.1. k-extendible states. Consider a bipartite Hilbert space Hi ® Ho and
k=2 Forie{l,..., k}, we denote by

Tran but i - B(H1 @ HE®) — B(H1 ® Ha)
the partial trace with respect to all copies of Hs, except for the ith. A state

p € D(H1 ® Hs) is said to be k-extendible (with respect to Hs) if there exists a
state pr € D(H1; @ HS") with the property that e

Tral but i Px = P

for every i € {1,...,k}. The state pj is called a k-extension of p. The main result
regarding k-extendible states is the following theorem.

THEOREM 2.10 (not proved here). A quantum state on Hq, ® Hais separable if
and only if it is k-extendible for every k = 2.

The “only if” direction is easy (see Exercise , while the“if” direction relies
on the quantum de Finetti theorem and is beyond the scope“of’this book.

EXERCISE 2.17. For k = 2, denote by k-Ext the set of k-extendible states on
Hi1®Ho. Show that k-Ext is convex and check the inclusions Sep < I-Ext ¢ k-Ext
for k <.

EXERCISE 2.18 (2-extendibility of pure states). (i) Let p € D(H; ® Ha) be a
state such that Try, p = || for some ) eH;. Show that p = [){¥| ® o for
some o € D(H2). (ii) Let x € H1 ® Ha be a unit vector. Show that |x)(x| is
2-extendible if and only if x is a product vector.

2.2.5.2. k-entangled states. A _quantum state on H = H; ® Ho is said to be
k-entangled if it can be written as a convex combination

Z i [V i

where each unit vector ip; € Hq ® Hs has Schmidt rank at most k. Note that
separable states are.exactly l-entangled states.

2.2.6. Partial transposition. Let H be a complex Hilbert space, and let (e;)
be an orthonormal basis in H. We can identify B(H) with the set of n x n matrices
by associating a matrix (a;;) with the operator

D aijleie;l.
¥

Once the basis is fixed, it makes sense to consider the transposition T : B(H) —
B(H) with respect to that basis, defined as

T(Zaij|€i><€j|) = Zaij|€j><ei|-

We will sometimes use the alternative notation A7 = T(A). Note that T is not
canonical and depends on the choice of the basis in H. The standard usage in linear
algebra refers to the transposition with respect to the standard basis ()25 *.

We now define the partial transposition: if H = Hi ® Ho is a bipartite Hilbert
space, and if T denotes the transposition on B(H;) (with respect to a specified
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basis) and Id is the identity operation of B(#Hz), then the partial transposition (or
partial transpose) is the operation

I'=T®Id: B(H1 ®Ha) — B(H1 Q@ Ha).

The partial transposition of a state p € D(H; ®Hz) is denoted by pI' = I'(p). What
we have defined is actually the partial transposition with respect to the first factor.
The partial transposition with respect to the second factor is defined by switching
the roles of H; and Hs.

Partial transposition applies nicely to states represented as block matrices (see
Section [0.7): if p € D(H1 ® Hz) corresponds to the block operator (A;;), with
A;; € B(H2), then p' corresponds to the block operator (Aj;;). Similarly, par-
tial transposition of p with respect to the second factor corresponds, te-the block
operator (A;";) We illustrate this by computing the partial transposition of the
(maximally entangled) Bell state: if ¢ = \%(|OO> +|11)), then (assuming transpo-

sition is taken with respect to the canonical basis of C2)

224)  |uxXvl =g X =G

As for the usual transposition, the partial transposition depends on a choice of
basis. However, we have the following result\

PROPOSITION 2.11. The eigenvalues of the partial transposition of an operator
do not depend on a choice of basis.

PROOF. Let (e;) and (¢e}) be two orthonormal bases in H;, and T" and T” denote
the transpositions with respect.to-each basis. Let U be the unitary transformation
such that e} = U(e;). We claim that, for every operator X € B(H1),

(2.25) T'(X) = ViT(X)V,
where V' = UT(U). By linearity, it is enough to check (2.25)) when X = [e})(e’], in
which case T'(X) = |€})(ej|. On the other hand, since X = Ule;){e;|UT, we then
have

T(X) =FU)e;Xe:|T(U) = TUNUT|es X JUT(U) = T(U) Ul Xef | UT(U),

as claimed. This shows that the partial transpositions with respect to the two bases
are conjugated via the unitary transformation V ® I, and the claim follows since
uhitary conjugation preserves the spectrum. (I

Partial transposition naturally extends to the multipartite setting: if H =
H1® - ® Hy, then for any i € {1,...,k} we may define the partial transposition
with respect to the ith factor as

[ i=1dpp)® - ®@ldp,_) T @ldp,,,)® - ®ldp,) -

EXERCISE 2.19 (Eigenvalues of the partial transpose of a pure state). Find
all eigenvalues of the partial transpose of a pure state in terms of the Schmidt
coefficients of that state.
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EXERCISE 2.20 (Partial transpose and the flip operator). Let ¢ = ﬁ Z;jzl e®

e; be a maximally entangled state on CY®@C? and assume that partial transposition
is computed with respect to the basis (e;). Show that [¢))(¢|" = 1F where F :
T ®y — y & x is the flip operator.

EXERCISE 2.21. Find an error in the following argument that purports to mimic

the proof of Proposition 2.11] to show that the partial transpose of any state is
positive.
If X € B®*(H1), then T(X) (with respect to some fized basis) has the same spectrum
as X and so there is a unitary operator V such that T(X) = VIXV. This shows
that the partial transpose with respect to the same basis is given by conjugation
by the unitary transformation V ® 1. Since such conjugation preserves Spectra, it
follows that the partial transpose of any state is positive.

2.2.7. PPT states.

DEFINITION 2.12. A state p € D(H; ® Hz) is said to have a positive partial
transpose (or to be PPT) if the operator p!' is positive. We denoté by PPT(H,®Hs2),
or simply PPT, the set of PPT states (note that this set is convex).

Proposition implies that the definition of\PRT states is basis-independent.
Similarly, we do not need to specify whether we apply the partial transposition to
the first or the second factor; one passes from one to the other by applying the full
transposition, which is a spectrum-preserving operation.

Let p be a state on H1 ®Hs. Since the partial transposition preserves the trace,
we have Tr p!' = 1, and therefore p is PPT if and only if p!" is a state. Geometrically,
the set of PPT states can therefore be.described as an intersection

(2.26) PRT.= D ~ (D).

The map I' is a linear (map which preserves the Hilbert—Schmidt norm, and
therefore behaves as an isometry (see Exercise 2.22). This map is not a canonical
object and depends on the choice of a basis. However, the intersection D n I'(D)
does not depend on the particular basis used.

The next“proposition lies at the root of the relevance of the concept of PPT
states to quantum information theory.

PROPOSITION 2.13 (Peres—Horodecki criterion). Let p be a state on Hi ® Hs.
If p is separable, then p is PPT. In other words, we have the inclusion

(2.27) Sep(H1 ® Ho) € PPT(H1 ® Ha).

PROOF. Since the set PPT is convex, it suffices to show that the extreme points
of Sep(H1 ® Hz) are PPT. The extreme points of Sep(H; ® Hz) are pure product
states, i.e., states of the form

p = |11 @2 )(P1 @ 2| = [Ph1){¥h1| & [1p2){¥2]

for unit vectors ¥; € Hi, 12 € Ha. The partial transpose of such a state is

Pt = || T @ |tha)(wa| = [h1){¥1| @ |1h2)(eba],

where 1); is the vector obtained by applying the complex conjugation to each coor-
dinate of 1. It follows that p' is positive, hence p is PPT. O
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PPT = DNI(D)
Sep

I'(D)

FIGURE 2.2. An illustration of the inclusion Sep < PPT =
D n I'(D). The inclusion is strict if and only if dim H;'dim Hs > 6,
see Theorem [2.15] The set Sep is not a polytope} but the set of
its extreme points is much “thinner” than those of D and of PPT
if the dimension is large.

The Peres—Horodecki criterion (or the PPT ) criterion) is shown in action in
, where it certifies non-separability ‘of\the Bell state: the partial transpose
|3 (9)|F is clearly non-positive. However, positivity of p' is, in general, only a
necessary condition for separability of p as, without additional assumptions, the
inclusion is strict. Still, there are two important cases where PPT states are
guaranteed to be separable: pure.states and states in low dimensions, specifically
in C?®C? and C?® C3.

LEMMA 2.14. A pure state is PPT if and only if it is separable.

PROOF. Let p =(4¢1)| be a pure state, and let ¢ = > \;x; ®1; be a Schmidt
decomposition. If\we.compute the partial transposition with respect to a basis
including (x;), we obtain

(2.28) Pl = Nl ®@ vidx; ® vil.
i

Suppose-there exist two non-zero Schmidt coefficients (say, A; and \; with ¢ # j).
Then one checks from that the restriction of p' to span{y; ® Vi, X; @i} is
not positive. It follows that p is PPT if and only if only one Schmidt coefficient
of 9 is nonzero, which means that v is a product vector and, consequently, p is
separable. (See Exercise for a complete description of the spectrum of pI'.) [

THEOREM 2.15 (Stgrmer—Woronowicz theorem, see Section for the 2®2
case, the 2 ® 3 case is not proved here). If H = C2® C? or H = C3® C? or
H = C2Q®C3, then every PPT state on H is separable.

Examples of entangled PPT states are known for any other (nontrivial) pairs
of dimensions.

Besides pure and low-dimensional states, another family of states for which
separability and the PPT property are equivalent are the Werner states. We have
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PROPOSITION 2.16 (Separability of Werner states). For A € [0,1], let wy be the
Werner state on H = C¢® C? as defined in . The following are equivalent
(i) wy is separable,

(i) wy is PPT,
(iii) TrwyF > 0,
(iv) A= 1/2.

PRrROOF. The equivalence (iii) <= (iv) is a straightforward calculation (we have
TrwyF = 2X—1). To show that (ii) <= (iv), we compute the partial transpose of
Werner states in the form ([2.22)) to obtain (see also Exercise [2.20))

wE = I—ad|x><x|),

d? — dao (
where x is the maximally entangled vector in the canonical basis {|t))7<i<a. It
follows that wl > 0 <= a < 1/d <= X > 1/2 (see for"the second
equivalence). It remains to prove that (iv) implies (i); since Sep.is convex, it is
enough to establish that w; and w;/y are separable. The separability of w, = 7y is
clear from part (iii) of Exercise To show that wy, is separable, we proceed
as follows. For j # k and a complex number ¢ with.hodulus one, denote vt =
|7> £ &|k). Next, think of £ as a random variable uniformly distributed on the unit
circle. The operator E [v™ )}vt|® [v™ v~ | belongs to the separable cone SEP. We
compute

E v o7 ) v v | = [55)<G] + [kk)XkE] +15R)GE] + [ki)Xki] — 1k)kj] = [ki)}<kl,

where we omitted the symbols ® to reduce the clutter. Summing over j # k, we
obtain that

A= 2d Y )G @ [T 2 D) 1) © [k)k| - 2F € SEP.
J j#k
The separability of wy /, follows now from the identity

1 1 A
- V-F) = —— (24 @1 e
Wi = g ) = gy (3 D 3 Wale k).
where the first. equality is just (2.22)) (note that A = 1/2 implies & = 1/d by
223)). 0

EXERCISE 2.22 (Partial transposition as a reflection). Find a subspace E
B (H1®Hs) such that T' = 2Pg —1d, where Pg denotes the orthogonal projection
onto F.” Geometrically, I" identifies with the reflection with respect to E.

EXERCISE 2.23 (Separability of isotropic states). For —ﬁ < B <1, let
ps € D(C? ® CY9) be the isotropic state as defined in (2.20). Show that pg is

separable if and only if 8 < ﬁ.

EXERCISE 2.24 (The realignment criterion). The realignment A% € B(C% ®
Cd2,C% @ C%) of an operator A € B(Ch ® C9) is defined as follows: the map
A A is C-linear, and |ij )} (kIR = |ik){jl|.

(i) Let p € D(C™ ® C?%) be a separable state. Show that ||pf|; < 1. (The trace
norm | - ||; is defined in Section [I.3.2).

(i) Let p € D(C% @ C?%) be a pure entangled state. Show that |p||; > 1.

The condition ||p®[; < 1 is usually called the realignment criterion. Just as for
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the PPT criterion, this is a necessary (but generally not sufficient) condition for
separability.

2.2.8. Local unitaries and symmetries of Sep. Let us state an analogue
of Kadison’s theorem (Theorem [2.4), which characterizes affine maps preserving
the set Sep. This can be seen as a motivation for the study of partial transposition.

THEOREM 2.17 (not proved here). Let H = Ch ® --- @ C% be a multipartite
Hilbert space. An affine map ® : B¥*(H) — B%*(H) satisfies ®(Sep) = Sep if and
only if it can be written as the composition of maps of the following forms:

(i) local unitaries

p=(U1® - @Up)p(U1 @ @Uk)'
fOT‘ Uz € U(dl),
(#) partial transpositions
PO ®pi® ®pp = 1@ ®p; ®: R pw,
for someie{l,...,d},
(iii) swaps
PO Qpi® - Qpi® - Qpg—>p1Q LRP)D - @pi Q& P,

for some i < j such that d; = d;.
All these maps are also isometries with respeet to the Hilbert—Schmidt distance.

Although Sep(#) has a much smaller-group of isometries than D(#), the con-
clusion of Proposition [2.5]still holds for Sep: the only fixed point is ps. This implies
for example that p, is the centroid of Sep.

PROPOSITION 2.18. ConsiderH = H1 ® -+ ® Hy, and let A € B¥*(H) be an
operator which is invariant under local unitaries, i.e., such that

A=H®  QU)AUL®---@Uy)!

for any unitary matricesU; on H;. Then A is a multiple of identity. In particular,
if A is a state, then A= py.

ProoF. We.use the following elementary fact: an operator A; € B(H,;) which
commutes with any unitary operator actually commutes with any operator and is
therefore asmultiple of identity. We can write A as a linear combination of product
operators

A=Y A ® @4y,

where Ag.i) € B®*(H;). Let U = U; ® --- ® Uy, where (U;) are random unitary
matrices, independent and Haar-distributed on the corresponding unitary groups.
By the translation-invariance of the Haar measure (see Appendix , the opera-
tor E UjAg-i)U jT commutes with any unitary operator on H; and therefore (by the
preceding fact) equals «; ; I3, for some a; ; € R. By independence, it follows that

EUAUY = Y GE(U1AYU] @ @AY U))
_ , Dy g ... (@) 7t
= D GERAVT) @ @ (BULAU])

(3
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(el

Since UAUT = A, the conclusion follows. O

However, the group of local unitaries does not act irreducibly: there are non-
trivial invariant subspaces which are described by the following lemma.

LEMMA 2.19 (not proved here). Let H = Ch ® -+ ® C¥* be a multipartite
Hilbert space, and

be the group of local unitaries. For 1 < i < k, write My} = Vi ® V2, where V1
denotes the hyperplane of trace zero Hermitian matrices, and V2 =R I

A subspace E < B%*(H) is invariant under G if and only if it.can. be’decomposed
as a direct sum of subspaces of the form

‘/i?l®.'.®‘/ilsz

for some choice (ay,...,a) € {1,2}F.

2.3. Superoperators and quantum channels

We now turn our attention to maps acting-between spaces of operators, whence
the name superoperators. Other terms-that will be used to describe these objects
are quantum maps and quantum operations. The crucial observation is that with
any such map one can naturally associate usual operators acting on larger Hilbert
spaces.

2.3.1. The Choi and Jamiolkowski isomorphisms. As usual, let H; and
H, denote complex (finite-dimensional) Hilbert spaces. Recall (see Sections[0.4]and
the canonical isomorphisms (H; ® Ha)* < HFf @ HE and

(2.29) HY @ Ha < B(H1,Ha).
It follows that there is a canonical isomorphism
B(H1,H2)* « B(Ha, H1).

This isomorphism can be seen more concretely via trace duality: a map S €
B(Hb5¢H7) is identified with the linear form on B(H1, Hs) defined by T — Tr ST.
By iterating (2.29)), we deduce that there is a canonical isomorphism

J : B(B(Hl),B(HQ)) g B(HQ ®H1)

(both spaces being canonically isomorphic to H; ® Hf @ Ha ® HE), which is called
the Jamiotkowski isomorphism. A concrete representation of the Jamiotkowski
isomorphism is as follows: fix any basis (e;) in H; and denote by E;; the operator
lei)e;j| € B(H1). Then J is described as

(2.30) J: B(B(H1),B(Hs)) —  B(H:®H1)

,J
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It turns out that there is another related isomorphism, called the Choi isomorphism,
which is often more useful. Once a basis in H; is fixed, the Choi isomorphism is
the C-linear bijective map

(2.31) C: B(B(H1),B(H2)) —  B(H2@Hi1)
i,j

We call C(®) the Choi matriz of ®. Note that the Choi isomorphism is basis-
dependent, whereas the Jamiotkowski isomorphism is not. The relation between
the isomorphisms J and C' is given by the partial transposition: if I' denotes the
partial transposition on Ho ® H;1 with respect to Hq, then C =T o J.

Here is a simple lemma which identifies the elements in B(B(H; ), B(H2)) that
correspond to rank 1 operators under the Choi isomorphism.

LEMMA 2.20. Given A, B € B(H1,Hs2), consider the map ®xB(H1) — B(Ha)
defined by
d(X) = AXB!
for X € B(H1). Then C(®) = |a)b|, where a = vec(A) and b = vec(B) are the
vectors in Ha ® Hi associated to the operators A and B (see Section . Note
also that A has rank 1 if and only if a is a product.wector.

ProOF. By C-linearity it is enough to consider A = |¢)){e;| and B = |x){e;|
for some 1, x € H2 and some basis vectors e;,¢; e Hi. A simple computation shows
that then C(®) = [¢)(x| ® E;j;, while a = ®e€; and b = x ® ¢;, and the Lemma
follows. O

Finally, let us mention a connection with the notion of realignment defined in
Exercise If & : B(C%) 5.B(C*®) is a superoperator, the matrix of ® with
respect to the bases (Ej;)1< j<d;, and (Exi)i<k,i<d, 15 given by the realigned Choi
matrix C(®)%.

2.3.2. Positive-and completely positive maps. A map @ : B(H;) —
B(Hs) is called self-adjointness-preserving if ®(B%*(H1)) < B%*(Hz). It is easily
checked that the following are equivalent:

(1
(2

) $.is self—adjomtness -preserving,
) D(XT) = (®(X))T for any X € B(H1),
(3)-J (@) € B*(H2 @ H),
(4) C(2) € B*(H2 ® Ha).
An elegant way to rewrite the definition of Choi’s matrix is as follows.

(2.32) C(®) = (2@ Idpm,)) ()X),

where x = Y}, e; ® ¢; € H1 ® H; is (a multiple of) a maximally entangled vector.
(Recall that we fixed a basis (e;) in H; when defining the Choi isomorphism.) We
also note that there is a one-to-one correspondence between

(a) self-adjointness-preserving C-linear maps ® : B(H1) — B(H2) and

(b) R-linear maps ¥ : B%(H;) — B%(Hz).
The correspondence is straightforward: W is obtained from ® by restriction, whereas
® is obtained from ¥ by complexification (see Section [0.5).
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In the sequel we will occasionally refer to maps of the form ® ® Idp(y,) as
extensions of ® (not to be confused with k-extensions of states defined in Sec-
tion . As an example, the partial transposition I' is an extension of the
transposition 7.

Throughout this section, we consider a self-adjointness-preserving linear map
® : B(H1) — B(H2). The adjoint of ® is the unique map ®* : B(Ha) — B(H1)
such that

Tr(X®(Y)) = Tr(®*(X)Y)
for any X € B(H2) and Y € B(H1). Note that ®* is automatically self-adjointness-
preserving if & is.

The map @ is said to be positivity preserving—shortened to positive when this
does not lead to ambiguity—if the image of every positive operator‘is a positive
operator. The map ® is said to be n-positive if D®1d : B**(H; @ C*) = B**(Ha®
C™) is positive. (Note that n-positivity formally implies k-positivity for any k < n.)
Finally, the map ® is said to be completely positive if it is n-positive for every integer
n. (However, only n = min(dim %, dim #Hz) needs to bechecked, see Exercise
) We denote by CP(H1,H2) the set of completely positive maps from B(H;)
to B(Hz). It is immediate from the definition that CPR(H1,Hs) is a convex cone;
more about this aspect of the theory in Section [2:4]

The transposition is an example of a map whicliyis positive but not 2-positive;

this can be seen, e.g., from (2.24)) in Section or from Exercise Here is an

important structure theorem concerning completely positive maps.

THEOREM 2.21 (Choi’s theorem). Let. @ : B(H1) — B(H2) be self-adjointness-
preserving. The following are equivalent:

(1) the map ® is completely. positive,

(2) the Choi matriz C(®) s positive semi-definite,

(3) there exist finitely(many operators Ay, ..., An € B(H1,Hza) such that, for
any X € B(H1),

N
(2.33) O(X) = > AiXAL
i=1
A decomposition of @ in the form (2.33) is called a Kraus decomposition of ®.
The smallestyinteger N such that a Kraus decomposition is possible is called the
Kraus. rank of ®. As will be clear from the proof, the Kraus rank of ® is the same

as therank of C(®) in the usual (linear algebra) sense. In particular, it will follow
that the Kraus rank of ® : B(H1) — B(H2) is at most dim #H; dim H.

PROOF. It is easily checked that (3) implies (1). The implication (1) = (2)
follows from the representation (2.32) of the Choi matrix. We now prove (2) = (3).
By the spectral theorem, there exist vectors a; € Hi1 ® Ho such that

(2.34) (@) = Y loi)ail.

By Lemma la;)a;] is the Choi matrix of the map X — A; X A!, where A; €
B(H1,H2) is associated to a; via the relation a; = vec(4;). A representation of
type (3) follows now from the linearity of the Choi isomorphism. O
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There is a simple relation between Kraus decompositions of a completely posi-
tive map and of its adjoint: if ® is given by (2.33), then for any Y € B(Ha2),

N
(2.35) o*(V) =) AlY A,
i=1
It is clear from the above analysis that ®* is completely positive if and only if
® is. It is also readily checked that ®* is positivity-preserving if and only if ® is;
this and related properties are explored in Exercises and discussed in a
more general setting in Section [2.4]

EXERCISE 2.25. Let ® : B(H1) — B(H2) be self-adjointness-preserving. “Show
that ®* is positive if and only if ® is positive, and that for any n, ®* is n~positive
if and only if ® is n-positive.

EXERCISE 2.26. Show that if ® and ¥ are completely positive;so are ® @ ¥
and ® o ¥ (the composition, assuming it is defined).

EXERCISE 2.27. Show that any self-adjointness-preserving ‘map ® : B(H;) —
B(H2) is the difference of two completely positive maps.

EXERCISE 2.28. Show that the assertions of Theorem [2:21] are also equivalent
to the fact that ® is n-positive, with n = min(dim Hy, dim Hs).

EXERCISE 2.29. Let k£ < n be integers, Shew that the map ¢ : M,, —» M,
defined by ®(X) = kTr(X)I—X is k-pesitive-but not (k + 1)-positive.

2.3.3. Quantum channels and Stinespring representation. Consider a
self-adjointness-preserving map ® { B(H;) — B(Hz). We say that & is unital
if ®(Iy,) = Iy,. We say that @ is'trace-preserving if Tr®(X) = Tr X for any
X € B(H1). Tt is easily checked that these properties are dual to each other:

(2.36) ® is unital < ®* is trace-preserving.

We now introduce-afundamental concept in quantum information theory:

DEFINITION 2:22v."A quantum channel ® : B(H,) — B(H2) is a completely
positive and trace-preserving map.

The reasons why we require quantum channels to be positivity- and trace-
preservingtare clear: since ® is supposed to represent some physically possible
process;.we want states to be mapped to states. (The motivation behind the
complete positivity condition is more subtle; we attempt to explain it in Section
3.51) “A channel that is additionally unital (i.e., if both ® and ®* are channels)
is called doubly stochastic or bistochastic. Clearly, such channels exist only if
dimH; = dimH,. (However, see Proposition for a notion that makes sense
also when dim H; # dim H;.)

REMARK 2.23. It follows immediately from the relation that the condi-
tion Zivzl AiA;( = Iy, is equivalent to @(IHl) = Iy,, i.e., to ® being unital. It
is less obvious, but easily checked, that Zf\il AIAZ- = Iy, is equivalent to ® being
trace-preserving. Indeed, if the condition holds, then, for any £ € H;,

N

Tleel) - 1 (Y Alalexel) 1 (3 Adexelal).

i=1
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In other words, Tr ®(X) = Tr X if X = |£)(¢| and hence, by linearity, for any X €
B%2(H1). Furthermore, the argument is clearly reversible, so we have equivalence.

We now state the Stinespring representation theorem, which plays a fundamen-
tal role in understanding the structure of quantum maps.

THEOREM 2.24 (Stinespring theorem). Let ® : B(H1) — B(Hs2) be a com-
pletely positive map. Then there exist a finite-dimensional Hilbert space Hs and an
embedding V : H1 — Ho @ Hs such that, for any X € B(H1),

(2.37) O(X) = Try, VXV

Moreover, ® is a quantum channel if and only if V' is an isometry. Conversély; for
any isometric embedding V , the map ® defined via (2.37) is a quantum channel.

The proof shows that the smallest possible dimension for H3 equals.the Kraus
rank of ®; in particular we can require that dim(H3) < dim(H;) dim(Hz).

PROOF. Start from a Kraus decomposition (2.33) for.®. Set H3 := CV, and
let (|2))1<i<n be its canonical basis. Define V' by the formula

N
(2.38) Vigy = > AilY) ®|iy for. € Hy.

i=1
We claim that, for any X € B(H;),

N
VXV = YA XA ®1ixl.
ij=1
As in Remark this follows by linearity from the special case X = |¢){¢|. This
implies the identity . We also see from that VIV = Zf\il A;YAi. By
Remark it follows that & is a.quantum channel if and only if V1V = I, which
is equivalent to V being an(isometry. Finally, the last assertion is straightforward:
complete positivity follows from (the easy direction of) Choi’s Theorem and
the trace preserving property is immediate. ([l

When Hy1 = Hs, the Stinespring theorem can be reformulated as follows: any
quantum channel can be lifted to a unitary transformation using some ancillary
Hilbert space.

THEOREM 2.25. Let ® : B(H) — B(H) be a quantum channel. Then there
exist o finite-dimensional Hilbert space H', a unit vector v» € H' and a unitary

transformation U on H® H' such that, for any X in B(H),
(2:39) O(X) = Tra U(X @ [¥)¢))U".

PrOOF. Let V : H — H ® H' be given by Theorem (with H' = Hg).
Choose any vector ¢ € H'. The map ¢ ® ¢ — V(¢) (defined on the subspace

H®y < H®H') is an isometry, and therefore can be extended to a unitary U on
H®H'. One checks easily that (2.39) holds. O

We mention in passing that a popular way to quantify how different two quan-
tum channels are is the diamond norm. For a self-adjointness-preserving map
® : B(H1) — B(Hz), define

|®]s = sup sup [(®®Ipck))(p)]1-
keN peD(C*)
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EXERCISE 2.30. Show that any positive unital map ® : M}3 — M;? is a con-
traction with respect to the operator norm | - ||g.

EXERCISE 2.31. Show that any positive trace-preserving map ® : M2 — M2
is a contraction with respect to the trace norm || - |1 (cf. Proposition [8.4).

EXERCISE 2.32. (i) Let @ : M3 — M? be a trace preserving map. Show that
® is k-positive if and only if P®Id : B%*(C"®C*) — B%2(C"®C¥) is a contraction
with respect to the trace norm | - |;. (ii) Let 7" : M,, — M,, be the transposition
map. Calculate the norm of 7' ®Id considered as a map on (B**(C™ ®C?),] - 1)
and give an example of an operator on which that norm is attained. (iii) Samne
question for the operator norm | - | 4.

EXERCISE 2.33. Show that any positive, unital, and trace-preservingymap ® :
M$2 — MS? is rank non-decreasing, i.e., rank ®(p) = rank p for any,p e D(C™).

2.3.4. Some examples of channels. In this section we list\some important
classes and examples of quantum channels or, more generally, -of superoperators.
(Sometimes it is convenient to drop the trace-preserving constraint.)

2.3.4.1. Unitary channels. Unitary channels are the completely positive isome-
tries of the set of states identified in Theorem [2(4] i.e.,>the maps that are of the
form p > UpUT for some U € U(d).

2.3.4.2. Mized-unitary channels. A mized-unitary channel ® : B(C%) — B(C?)
is a channel which is a convex combinatien of unitary channels, i.e., is of the form

N
=1

where ();) is a convex combination and U; € U(C?). Such channels are automati-
cally unital. A remarkable faet is,that the converse is true when d = 2.

PROPOSITION 2.26 (se¢-Exercise [2.34)). Let ® : B(C?) — B(C?) be a unital
quantum channel. Then @, is mized-unitary.

EXERCISE 2.34 (Proof of Proposition[2.26). (i) Argue that it is enough to prove
Proposition for channels which are diagonal with respect to the basis of Pauli
matrices (2.2
(ii) Given real-numbers a, b, ¢, check that the superoperator

%(I DXL + alow Xow| + bloyXoy| + clo=)Xo-])

is completely positive if and only if (a + b)? < (1 + ¢)? and (a — b)? < (1 — ¢)?.
(iif) Rewrite the conditions from part (ii) as a system of four linear inequalities and
conclude the proof.

EXERCISE 2.35. Show that any mixed-unitary channel ® : B(C?) — B(C%) can
be expressed as in (2.40) with N < d* — 2d? + 2. Note that the argument from
Exercise gives N < 4 (which is optimal) for d = 2.

2.3.4.3. Depolarizing and dephasing channels. The completely depolarizing (or
completely randomizing) channel is the channel R : B(C?) — B(CY) defined as
R(X)=TrX é. It maps every state to the maximally mixed state. The completely
dephasing channel is the channel D : B(C¢) — B(CY) that maps any operator to
its diagonal part (with respect to a fixed basis).
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EXERCISE 2.36 (Depolarizing channels and isotropic states). The family of
depolarizing channels is defined as Ry = AI+(1 — AR for — 5 < A < 1. Check
that the Choi matrix of @, is dpy, where p, is the isotropic state defined in (2.20]).

EXERCISE 2.37. Show that the completely depolarizing and completely dephas-
ing channels are mixed-unitaries (see also Exercise .

2.3.44. POVMs, quantum-classical channels. A POVM (Positive Operator-
Valued Measure) on H is a finite family of positive operators (M;)i1<;<n with the
property that >’ M; = 1. Given a POVM, we can associate to it a quantum channel
(called sometimes a quantum-classical or q-c channel) ® : B(H) — B(C") defined
as

(2.41) ®(p) = Z |0)<i| Te(Mip).

The dual concept is the notion of a classical-quantum._ er—c-q channel ¥ :
B(CN) — B(H). This is a channel of the form

N
U(p) = . pidilpliy,
i=1

where (p;) are states on H.

EXERCISE 2.38 (Duality between c-q and‘g-c channels). Let ® be a g-c channel
of the form (2.41). Under what condition-on (M;) is ® unital? When this condition
is satisfied, show that the dual map ®* is a c-q channel.

2.3.4.5. Entanglement-breaking maps. A map ® € CP(H™ H) is said to
be entanglement-breaking if, for~any integer d and for any positive operator X €
Bs*(H"™ @ C4), the operator (@ ® Idu,)(X) belongs to the cone SEP(H ™ @ C?)
of separable operators. Here are equivalent descriptions of entanglement-breaking
maps:

LEMMA 2.27 (Characterization of entanglement-breaking maps, see Exercise
. Let @ : B(H™) — B(H°“) be completely positive. The following are equiv-
alent:

(i) ® is entanglement-breaking,

(ii) the\Choi matriz C(®) lies in the separable cone SEP(H ™ @ H™),

(i) there is a Kraus decomposition of ® where all the Kraus operators A;
haverank 1.

Entanglement-breaking quantum channels are sometimes called g-c-q channels.
This reflects the fact that a quantum channel ® is entanglement-breaking if and
only if it can be written as the composition of a g-c channel with a c-q channel.

EXERCISE 2.39. Prove Lemma 2.27

EXERCISE 2.40 (Once broken, always broken). Let ®, ¥ be two completely
positive maps, with one of them being entanglement-breaking. Show that (¢ ®
U)(X) e SEP for any positive operator X.
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2.3.4.6. PPT-inducing maps. A map ® € CP(H™, H°") is said to be PPT-
inducing if for any integer d and any positive operator X € B*(H™ ® C%), the
operator (® ® Idwm,)(X) has positive partial transpose.

LEMMA 2.28 (Characterization of PPT-inducing maps, see Exercise [2.41). A
completely positive map ® is PPT-inducing if and only if J(®) = C(®)! is positive
semi-definite.

EXERCISE 2.41. Prove Lemma [2.28)

2.3.4.7. Schur channels. Given matrices A, B € My, their Schur product A®.B
is defined as the entrywise product: (A® B);; = A;;B;;. Given A € My, the map
O4 : Mg — My defined as ©4(X) = A® X is called a Schur multiplier.“When A
is positive with A;; = 1 for all 4, the map © 4 is a quantum channel: called a Schur
channel.

EXERCISE 2.42 (Positivity of Schur multipliers). Let A € Mq>~Show that the
following are equivalent:
(i) A is positive semi-definite,
(ii) © 4 is positive,
(iii) © 4 is completely positive.
EXERCISE 2.43 (Kraus decompositions of\Schur’channels). Let ® : Mg — My

be a quantum channel. Show that ® is a Schur channel if and only if it admits a
Kraus decomposition (2.33]) where A; are diagenal operators.

2.3.4.8. Separable and LOCC superoperators. We now assume that H" and
Hu are bipartite spaces, say H'™ = Hi" @ Hy* and H" = H{M @ HS™. A
map ® € CP(H™, H°u) is called 8eparable if it admits a Kraus decomposition
involving product operators, ite.,-if there exist operators Al(-l) s H — HU and
A§2) : HI — HGW such that.for any X € B(H™"),
N
&(X) = ), (A" @ A7) x (4 @ AP,
i=1
A widely used class is the class of LOCC channels (LOCC standing for “Local
Operations-aiid Classical Communication”). Without defining this class, we simply
note that any LOCC channel is separable, and that any convex combination of
product.channels (of the form ®; ® @) is an LOCC channel. (Note that these
notions are not all equivalent, see Exercise ) More properties of this class will
be presented in Section [12.2

EXERCISE 2.44. Consider the following operators on C? ® C2
Ap = [0X0[®10)0], A2 = [0)X0] @ |0)(1], Az = [1)}{1] @ [1)(1], As = [LX1] ®[1)}0].

Show that the channel on B(C?®C?) defined as ®(X) = Z?zl AiXA;r is a separable
channel which cannot be written as a convex combination of product channels.

2.3.4.9. Direct sums. Let @1 : B(Hi") — B(HS$"') and @5 : B(HY") — B(H3Y)
be two quantum channels. Their direct sum

D, @y : B(H" ®HY") — B(H{" @ HS™)
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is the quantum channel defined by its action on block operators as

(1 ® D) ([?; éj]) _ [@1(3(11) @2(2(22)].

EXERCISE 2.45. Describe the Kraus operators of ®; @ ®» in terms of the Kraus
operators of ®; and Ps.

(2.42)

2.4. Cones of QIT

In this section we will review some of the cones used commonly in quantum
information theory. We will distinguish between cones of operators and cones of.su-=
peroperators, and emphasize the distinction by using two different fonts: C-denotes
a generic cone of operators and C' a generic cone of superoperators.

2.4.1. Cones of operators. We start by describing some cones of operators
and by identifying their bases and their dual cones (Table . We work in a
Hilbert space H and the corresponding space B (H) of self-adjoint operators. The
vector e chosen to define the base in is the maximally mixed state. Here
and in what follows, we assume that separability and the PPT property are defined
with respect to a fixed bipartition H = H; ® Ho. However, most considerations
extend to multipartite variants and settings allowing\flexibility in the choice of the
partition. In order lighten the notation, we often write PSD and SEP instead of
PSD(H) and SEP(H1 ® Hs) unless this may cause ambiguity.

TABLE 2.1. List of cones of operators. All cones live in B (H),
the space of self-adjoint operators on a bipartite Hilbert space H =
H1 ® Ho with dimension n = dim#H. The base is taken with
respect to the distinguished vector e = I /n. The cones C are listed
in the decreasing order(with respect to inclusion) from top to
bottom and, consequently, the dual cones C* are in the increasing
order from top to bottom. Most inclusions/duality relations are
straightforward and /or were pointed out earlier in this chapter;
the remaining few are clarified in this subsection.

Gore of operators C base CP dual cone C*
Block-pesitive BP BP SEP
Decomposable co-PSD + PSD | conv(D uI'(D)) PPT

Positive PSD D PSD
Pos. partial transpose PPT PPT co-PSD + PSD
Separable SEP Sep BP

In the same way that PSD is associated with its base D, the set of separable
states Sep gives rise to the separable cone SEP, and the set PPT of states with
positive partial transpose leads to the PPT cone. Another example is the cone
of k-entangled matrices (cf. Section . In general, whenever a definition of a
set of matrices involves linear matrix inequalities and a trace constraint, dropping
that constraint gives us a cone. When the original set of matrices is compact, the
resulting cone is pointed, with the hyperplane of trace zero matrices isolating 0 as
an exposed point (cf. Corollary . All the cones cataloged in this section have
this property and are in fact nondegenerate.



56 2. THE MATHEMATICS OF QUANTUM INFORMATION THEORY

One more convenient concept is that of co-PSD matrices
(2.43) co-PSD :=T(PSD) = {pe M* : pl' € PSD}

where I' is the partial transpose defined in Section [2.2.6] It allows a compact
description of the cone dual to PPT: since PPT = co-PSD n PSD, it follows

from (1.20) (see also Exercise (1.36))) that
(2.44) PPT* = co-PSD + PSD,

the cone of decomposable matrices. Note that, except in trivial cases, this cone is
strictly larger than PSD and so its base contains matrices that are not states.

To conclude the review of the standard cones, we will identify the cone SEP*.
To that end, it is convenient to think of operators on a composite Hilbert\space
C™ ®C" as block matrices M = (Mjy)},_;, where My, € M, (see Section .
Since the extreme rays of SEP are generated by pure separable states [€®n)}{E®n|
(see Section [2.2.3), we have

(245) MeSEP* «— VEeC™, VneC, Tr (M[EQuXE®n]|) =0

(2.46) — VeeC™, > &&GMj e PSD(CM).

Gok=1
The condition in is usually referred to as M= (M) being block-positive.
(We note that the definition treats m and n $ymmetrically, even though this not
apparent in (2.46)).) In other words, the“dual to the cone of separable matrices is
that of block-positive matrices, denoted by-BP. As a consequence, the polar of Sep
can be identified: we obtain from Lemma that

(2.47) Sep® = —d*BP,

where BP denotes the set of block-positive matrices with unit trace and the minus
sign stands for the point reflection with respect to the appropriately normalized
identity matrix.

2.4.2. Cones of superoperators. We next turn our attention to the classes
of superoperators «considered in Section [2.3.2] We consider superoperators acting
from B%*(H) to.B%*(K) and denote the corresponding cones as C(H, K), or as C(H)
when H = K ersimply as C' when there is no ambiguity. The cones we consider
most frequently are gathered in Table (See Exercise for a discussion of
identification and duality relations for k-positive superoperators and k-entangled
states.)

In the language of cones, a positivity-preserving superoperator ® : B (H) —
B*2(K) may be defined via the condition ®(PSD(H)) < PSD(K). It is readily
seen that the set of positivity-preserving maps is itself a cone (which we will denote
by P(H,K)) in the space B(B*(H), B**(K)).

As was noted in Section ® e P(H,K) iff * € P(K,H). As we shall
see, it would be erroneous to take this to mean that P is self-dual. Instead, this
is a special case of a very general elementary fact: If Vi, V5 are vector spaces, if
Ci < Vi, Co < V5 are closed convex cones, and if ® : Vi — V5 is linear, then
®(Cy) < Cy iff *(C¥) < Cf.

The most important cone of superoperators is arguably that of completely
positive maps, denoted by CP. By Choi’s Theorem ® ¢ CP iff the Choi
matrix C'(®) is positive semi-definite. In other words, CP(C™,C") is isomorphic to
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TABLE 2.2. Cones of superoperators. To each cone C from the
first (double) column we associate a cone C which consists of Choi
matrices of elements from C. They are connected by the rela-
tion ® e C < C(®) € C. We note that C is a subset of
B(B**(H), B¥(K)) while C is a subset of B¥*(K ® H). The cones
C and C are in decreasing order from top to bottom and the dual
cones C* and C* are in increasing order from top to bottom.

57

Cone of superoperators C C c* C*
Positivity-preserving P BP SEP EB
Decomposable DEC | co-PSD + PSD PPT PPT
Completely positive CcP PSD PSD CcP
PPT-inducing PPT PPT co-PSD + PSD.| DEC
Entanglement-breaking | EB SEP BP P

PSD(C*®C™). This means that—with proper identifications, see Exercise W
the cone CP is self-dual. Choi’s correspondence & — C(®) relates similarly the
cone EB(C™,C") of entanglement-breaking maps from Ms? to Ms* to SEP(C" ®
C™), as well as the cone PPT(C™,C") of PPT-inducing maps to PPT (C"®@C™).

A map @ : M? — M3? is said to be co-completely positive if C(®) € co-PSD.
Similarly, one says that ® is decomposable \if it can be represented as a sum of
a completely positive map and a co-completely positive map. It follows that the
correspondence ® — C(®) relates the coné DEC(C™,C™) of decomposable maps
to the cone of decomposable matrices.

Interestingly, SEP(C" ® C")* identifies with P(C™,C™). This last identi-
fication is in fact easy to see directly from (2.45)—(2.46). Indeed, C(®) = (Mjy)
means that M;, = ®(|e;){ex]) and hence if £ = (§;)7L; € C™, then ®(|{){¢]) =
=1 &€k Mjy.. Consequently,

C(P) e SEP(CERC™)* <« P(|€)€]) e PSD(C") for £eC™

— deP,

which is the elaimed identification. The first equivalence is simply (2.45)—(2.46]) for
the choice\ Vi = C(®), whereas the second one reflects the fact that the property
of “preserving positivity” needs to be checked only on the extreme rays of the
PSD-cone, i.e., on operators of the form |£){£]. (See Section and particularly

Corollary )

EXERCISE 2.46 (Composition rules for maps). Show that a composition of
two co-completely positive maps is completely positive. Similarly, show that a
composition of a co-completely positive map and a completely positive map is co-
completely positive.

EXERCISE 2.47 (The completely positive cone is self-dual). Show that

CP(C",C") ={V e B(M*, M) : Tr(Vod) >0 VPe CP(C™ C")},
where Tr denotes the trace on B(MS?).

EXERCISE 2.48 (k-positive superoperators and k-entangled states). Let 1 <
k < min(m,n) and ® : M,, - M,, be self-adjointness-preserving. Show that the
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following are equivalent

(1) @ is k-positive,

(2) for every x € C"™ ® C™ with Schmidt rank at most k, we have (z|C(®)|z) = 0,
(3) for every A € My, ,,, and B € My, ,,, the operator (A® B)TC(®)(A® B) is positive.
In words, the cone of Choi matrices of k-positive superoperators is dual to the cone
generated by the set of k-entangled states (as defined in Section [2.2.5)).

2.4.3. Symmetries of the PSD cone. The results of Sections [2.1.4] allow us
to deduce a description of the groups of affine automorphisms of some of the cones
cataloged in the present section. The argument is based on the following two simple
observations: first, since affine automorphisms preserve facial structure, and ’since 0
is the only extreme point of all the cones considered above, any affine automorphism
must be linear. Next, if ® : M52 — M$? is such that A = ®(I) is pesitive) definite,
then U defined by W(p) = A~Y/2®(p)A~1/? is unital, and its adjoint, W*, is trace-
preserving (see ) This often allows to reduce the analysis of general maps to
that of unital or trace-preserving maps. As an example of such reduction we will
prove the following statement.

PROPOSITION 2.29 (Characterization of automorphisms of the PSD cone). Let
O : M52 — M2 be an affine map which satisfies ®(PSD(C™)) = PSD(C™). Then ®
is a linear automorphism of PSD(C™) and is of one of two possible forms: ®(p) =
VoVt or ®(p) = VpTVT, for some V e GL(n,€). In the first case ® is completely
positive, whereas in the second case ® is“co-completely positive.

PRrROOF. Since rank® > dimPSD(C") = dim M$?, it follows that @ is sur-
jective and hence injective, so it is indeed an automorphism of PSD(C") (and,
consequently, so is ®~!). By~the_ earlier remark, ® must be linear. Since the
adjoint of a positive map is positive (see Section , it follows that ®* and
(®*)~1 = (®@71)* are positive."Hénce they are both automorphisms of PSD(C").
Let A = &*(I) e PSD(C™)\We claim that A belongs to the interior of PSD(C")
and, consequently, is positive definite (and invertible). This follows from topologi-
cal considerations, but“can also be deduced from Proposition if A=®*(I) lay
on the boundary 6f PSD(C™), we would have A € F for some face of PSD(C"),
which would imply ®*(PSD(C")) < F, contradicting injectivity of ®*. Having
established the'claim, we set ¥(0) = A~1/20*(0)A~1/2, so that U is a unital auto-
morphismi ofyPSD(C™). Consequently, U* is a trace-preserving automorphism of
PSD(C™)) which is only possible if ¥*(D) = D. It now follows from Kadison’s The-
orem 2.4 that, for some U € U(n), either (i) ¥*(7) = UrU" or (ii) ¥*(7) = UrTUT
(for all 7 € M?2). The rest of the argument is just bookkeeping. First, the defi-
nition of ¥—and that of an adjoint map—imply that U* is given by the formula
T* (1) = B(A~Y27A1/2). In case (i), this shows that ®(A~1/274-12) = UrUT or,
substituting p = A=Y27A7Y2 ®(p) = UAY2pAY2UT = VpVT, where V = UAY?,
as needed. The fact that ® is then completely positive is the easy implication of
Choi’s Theorem Case (ii) is handled in the same way. O

We have an immediate

COROLLARY 2.30. Completely positive automorphisms of the cone PSD(C™),
all of which are of the form ®y(p) = VpVT for some V € GL(n,C), act transitively
on the interior of that cone.
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For future reference, we state here a slightly more general form of the principle
that is implicit in the proof of Proposition [2:29

LEMMA 2.31. If @ : M2 — MS? is a positivity-preserving linear map such
that A = ®(1) is positive definite, then ® defined by ®(p) = A~V2®(p)A~? is
unital and positivity-preserving. Similarly, if U is a positivity-preserving linear
map such that ¥(p) # 0 for p € PSD(C™)\{0}, then W(p) = U(B~2pB~1/2) is
trace-preserving and positivity-preserving, where B = U*(I) (necessarily positive
definite).

We emphasize that the map ® in Lemma [2.31]is not assumed to be an auto-
morphism of the PSD cone (as was the case in Proposition , only positivity-
preserving. Moreover, we also allow the dimensions in the domain and in-the range
to be different. Finally, recall that, by Lemma the properties “®(I)\is positive
definite” and “¥(p) # 0 for p € PSD(C™)\{0}” are dual to each other.

In view of the above result, it is natural to wonder when a positivity-preserving
map is equivalent, in the sense of Lemma to a map which+is both unital and
trace-preserving. (Of course if the dimensions in the domain’jand in the range are
different, this is only possible if we use the normalized.trace or, alternatively, if we
ask that the maximally mixed state be mapped t6 the\maximally mixed state.) It
turns out that this can be ensured if just a little more regularity is assumed. (See
Exercise for examples exploring the necessity of the stronger hypothesis.) We
have

PROPOSITION 2.32 (Sinkhorn’s normal form for positive maps). Let ® : M? —
M?2 be a linear map which belongs to the interior of P, the cone of positivity-
preserving maps. Then there~exist, positive operators A € PSD(C™) and B €
PSD(C™) such that the map ®(p)= A®(BpB)A is trace-preserving and maps the
mazimally mized state to the.maZimally mized state (and is necessarily positivity-
preserving).

_ PrOOF. Let us first-focus on the case m = n. Given positive definite A, B, let
® be given by the.formula from the Proposition. Then

(2.48) ® is unital < AP(B)A=1< &(B?) = A2 < ®(BY) ! = A2

We next netel that, in the notation of Corollary = Pyuododg and so
O* = Opo®*od 4 (this uses the identity @3, = Py, valid when M is self-adjoint).
Accordingly, by (2.36]),

(2.49) )

@ is trace-preserving < ®* is unital < B®*(A?)B =1« ®*(A?) = B2,
Solving the last equation in (2.49) for B? and substituting it in (2.48) we are led
to a system of equations
1

(2.50) B? = 0*(A*)™" and ®(®*(A%*)7) =A%
The second equation in (2.50]) says that S = A? is a fixed point of the function
(2.51) S f(S) = (D*(S)1)

Conversely, if S is a positive definite fixed point of f, then A = S'/2 and B =
®*(A?)7!/2 (i.e., B defined so that the first equation in (2.50) holds) satisfy (2.48)
and (2.49) and yield ® that is unital and trace-preserving. (The hypothesis “®



60 2. THE MATHEMATICS OF QUANTUM INFORMATION THEORY

belongs to the interior of P” guarantees that all the inverses and negative powers
above make sense, and that f is well-defined and continuous on PSD\{0}, see
Exercises and [2.51] )

To find a fixed point of f we want to use Brouwer’s fixed-point theorem, which
requires a (continuous) function that is a self-map of a compact convex set. One
way to arrive at such setting is to consider f; : D(C™) — D(C") defined by

flo)
2.52 =
( ) fl (U) Tr f(O')
It then follows that there is og € D(C™) such that f;(0g) = 0o and hence f(op)'=
tog, where t = Tr f(op) > 0. The final step is to note that if we choose, as before,

A= 03/2 and B = <I>*(A2)_1/2, then the corresponding P is trace-preserving and
satisfies ®(I) = t~' L. If m = n, this is only possible if t = 1. In otherwords, o is a
fixed point of f that we needed in order to conclude the argument™ In’the general
case, the same argument yields ¢ = n/m, which translates to ®(I /m) = I /n, again
as needed.

EXERCISE 2.49. Show that ® € P(C") is an automorphism of PSD(C") if an
only if it is rank-preserving.

EXERCISE 2.50 (Descriptions of the interior of\the positive cone). Show that
® belongs to the interior of P(C") iff ® maps PSD(C")\{0} to the interior of
PSD(C") iff there exists § > 0 such that“®(p) = d(Trp)I for all p e PSD.

EXERCISE 2.51 (Interior of the positive cone is self-dual). Show that ® verifies
D(p) = 6(Trp)I (for all p e PSD) iff &* does.

EXERCISE 2.52 (Discussion “of the necessity of the hypothesis of Proposition
. Give examples of ®, W.e P(C?) such that (a) ®(I) and ®*(I) are positive
definite, but ® is not equivalent (in the sense of Proposition to a unital,
trace-preserving map, and (b) ¥ is unital and trace-preserving, but ¥ € ¢P.

EXERCISE 2.53 (Rank nondecreasing and Sinkhorn’s normal form). Give an ex-
ample of map ® € P (€2, C?) which is rank nondecreasing (i.e., verifies rank ®(p) >
rank p for any p.e D(C?)), but which does not satisfy the conclusion of Proposition

2.52

2.4.4, “Entanglement witnesses. The formalism of cones and their duality
allows us-to conveniently discuss the concept of entanglement witnesses. We start
with the following simple observation, which is a direct consequence of the identi-
fications of the dual cone SEP* as BP (see Table in Section , and of the
corresponding cone of superoperators as P (Table [2.2).

PROPOSITION 2.33 (Entanglement witnesses, take #1). Let H = C"®C" and
let p be a state on H. Then the following conditions are equivalent:
(i) p is entangled,
(i1) there exists 0 € SEP(H)* = BP such that (o, pyus = Tr(op) <0,
(#ii) there exists a positwity-preserving linear map ¥ : M$® — M such that
Tr(C(¥)p) < 0.

The next result is a simple corollary of the above observation, but it goes well
beyond a straightforward reformulation.
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THEOREM 2.34 (Horodecki’s entanglement witness theorem). Let H = C™QC™
and let p be a state on H. Then p is entangled iff there exists a positivity-preserving
map ® : M55 — M such that the operator (P®Idmsa)p is not positive semi-definite.

In the setting of Proposition [2:33]and Theorem [2.34] the operator o or the map
® are said to witness the entanglement present in p, hence the term “entanglement
witnesses.”

Proor or THEOREM [2.34l The sufficiency is obvious: if p = 7 ® 7’ is a prod-
uct state and ® is positivity-preserving, then (P ®1Id)p = ®(7)®7’, which is clearly
positive; the case of convex combinations of product states easily follows. To show
necessity, let ¥ : M>* — M?>> be the positivity-preserving map given by Proposition
If x e C* ® C™ is the maximally entangled vector as in , then

0 > Tr(C(¥)p) =<(C(¥), ppus = (¥ @ Idms) )Xx|, pins
= Do (¥ @ Idms ) pyms = x| (P* @ Idmea) p[X0;

which implies that (\II* ® Idmsa ) p is not positive. Given.that-U* is positivity-
preserving if and only if ¥ is (see Section , the choice of & = U* works as
needed. (]

REMARK 2.35. It follows from general considerations that the entanglement
witnesses o, ® may be required to satisfy various additional properties. First, one
may include a normalizing condition such as Tr.o~= 1 or Tr ®(I) = 1, which reduces
the search for a witness to a convex .compact set. Next, since linear functions
(restricted to compact sets) attain extreme values on extreme points, one may
insist that o or ® belong to an extreme ray of the respective cone (or even, by a
density argument, to an exposed ray; cf. Exercise . Finally, another acceptable
normalizing condition is to require:that ® be unital or trace-preserving. To see that
® can be assumed unital, we note first that by a density argument the operator
®(I) may be assumed to be.positive definite, in which case Lemma applies.
The case of the trace-preserving restriction is slightly more involved and requires
increasing the dimensien of the range of ®. We relegate the details of the arguments

to Exercises 2.54] and'2.55

EXERCISE, 2:54 (Unital witnesses suffice). Show that in Theorem one can
require that. ®_be unital.

EXERCISE 2.55 (Trace-preserving witnesses suffice). Show that in Theorem [2.34]

one-can)require that ® be trace-preserving, at the cost of allowing the range of ®
to be M52

m+n-*

EXERCISE 2.56 (Optimal entanglement witnesses). We work in the Hilbert
space H = C™ ® C". For o € BP, we denote by E(o) = {pe D : Tr(po) < 0}
the set of states detected to be entangled by o. We say that o is an optimal
entanglement witness if E(o) is maximal (i.e., whenever E(c) < E(r) for 7 € BP,
then E(c) = E(7)). Use the S-lemma (Lemma to show that if o lies on an
extreme ray of BP and o ¢ PSD, then o is an optimal entanglement witness.

2.4.5. Proofs of Stgrmer’s theorem. In this section we will present two
rather different proofs of the C? ® C? case of Theorem which we state here in
a slightly more general form. (See Notes and Remarks for comments regarding the
C?® C? case.)



62 2. THE MATHEMATICS OF QUANTUM INFORMATION THEORY

THEOREM 2.36 (Stgrmer’s theorem). If H = C2® C2, then the separable cone
SEP(H) and the cone PPT(H) coincide. Equivalently, P(C?) = DEC(C?).

The equivalence of the two assertions of the Theorem follows from Choi’s cor-
respondence and duality (see Section and particularly Table . We will focus
on the second assertion. Since the inclusion DEC(H) < P(H) always holds, we
only need to establish that every positivity-preserving map on M$5* is decomposable.

In a nutshell, the first proof depends on noticing that Proposition effec-
tively reduces the general case to that of unital, trace-preserving maps, which in
turn follows easily from very classical facts. The second proof handles first the'maps
generating extreme rays of P(C?), and concludes via the Krein—Milman theorem.
Here are the details.

PROOF # 1 OoF THEOREM [2.36] The crucial observation is that,_it. suffices to
show that the interior of P(C?) is contained in DEC(C?). The needed inclusion
P(C?) <« DEC(C?) follows then from both cones being closed, and being the
closures of their interiors.

To that end, suppose that ® belongs to the interior (of\/P(C?). Proposition
2.32 implies then that there exist positive operators A; B € M$* and a positivity-
preserving, unital and trace-preserving map @ i M3 > M3* such that ®(p) =
A*1§>(B*1pB’1)A*1 for all p € M3*. In other words, ® = & 4-1 0 ® o Py, where
®rr(p) := MpMT. Since every @, is completely positive, the composition rules for
completely positive and co-completely pesitive\maps (see Exercises and
show that the problem reduces to establishing decomposability of ®.

Up to now, the argument worked in any dimension; presently, we will exploit
the special features of dimension 2.Since ® is an affine self-map of the Bloch ball
that preserves the center, it may._be thought of as a linear map R € B(R?) with

R|lo < 1. Such maps are convex ¢ombinations of elements of O(3) (cf. Exercises
and , which in turn correspond to maps of the form (i) p — UpUT or (ii)
p — UpTUT for some U.€ U(2) (depending on whether the said element of O(3)
belongs to SO(3) or not). This is a very special and elementary case of Kadison’s
Theorem and, was. explained in the proof of Wigner’s Theorem (see also
Exercise for the-isomorphism PSU(2) < SO(3)). It remains to recall that the
maps of form-(i) are completely positive and those of form (ii) are co-completely
positive. (Il

REMARK 2.37. The above argument, when combined with the result from Ex-
ercise l1.45L shows that every ® € P(C?) can be represented as ® = 2 P4, +
Y P, oT so that the total number of terms does not exceed 4.

PROOF # 2 OF THEOREM [2.36] Again, we will prove the inclusion P(C?) ¢
DEC(C?). Since P(C?) is convex and nondegenerate, it is enough to verify that its
extreme rays consist of decomposable maps (see the comment following Proposition
. The following characterization of such extreme rays comes in handy.

PROPOSITION 2.38 (see Appendix[C). Let ® : M5 — M$* be a map which gen-
erates an extreme ray of P(C?). Then either ® is an automorphism of PSD(C?),
in which case it is described by Proposition[2.29, or ® is of rank one, in which case

it is of the form ®(p) = Tr(ple)(p)[W)W] = ) plple)(W| for some 1 € C*\{0}.

Proposition 2:38] is a special case of the characterization of the extreme rays
of the maps preserving the Lorentz cone £, (remember that the cone PSD(C?)
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is isomorphic to the Lorentz cone £4) that will be proved in Appendix The
proof is based on the so-called S-lemma, a well-known fact from control theory and
quadratic/semi-definite programming.

Once we assume the above Proposition, concluding the proof is easy. Indeed, if
® is an automorphism of PSD(C?), then, by Propositionm it is either completely
positive or co-completely positive, so a fortiori decomposable. On the other had,
if @ is of rank one and ®(p) = |1){v|p|le )|, then P is clearly completely positive
with Kraus rank one and the single Kraus operator A = |1)){¢p| (see Choi’s Theorem
2:21} actually, since A is itself of rank one, it follows that C(®) is in fact separable
and hence that ® entanglement-breaking, see Lemmas and . [

Notes and Remarks

Classical references for the mathematical aspects of quantum information the-
ory are [NCO00), [Hol12], (Wil17]. We also recommend [Wat].

Section A general reference for the geometry of quantum states is the
book [BZ06|. Wigner’s theorem appears in [Wig59] and Kadison’s theorem in
[Kad65] in a broader context. Elementary proofs can be found in [Hun72, [Sim76|
and recent generalizations in [SCM16), [Sts16].

Section The definition of separability for mixed states was introduced in
[Wer89|. The NP-hardness of deciding whether a state is separable was shown in
[Gur03|. The argument sketched in Exercise about the number of product
vectors needed to represent any separable state is from [CD13].

Werner states were introduced in [VWO1], where the question of their separa-
bility (Proposition is also.discussed.

Theorem was proved in. [DPS04]. For more information about k-ex-
tendibility and the symmetric‘subspace (also in the multipartite setting) we refer to
the survey [Har13|. An early veference for k-entangled states is [THOQ|. See Notes
and Remarks on Chapter{d] for quantitative results about the hierarchies defined in
Section [2.2.51

The observation that non-PPT states are entangled (Peres—Horodecki criterion,
Proposition goes back to [Per96], see also [HHH96].

It was observed in [HHH96]| that Theorem is a consequence of results by
Stgrmer [St@63] and Woronowicz [Wor76|. See Notes and Remarks on Section
for more information.

For-examples of PPT entangled states in C*> ® C3 or C2® C*, see [Hor97]; an
eatly result going in the same direction can be found in [Cho75b|. Less ad hoc
examples (in higher dimensions) are presented, e.g., in [BDM7'99|. A geometric
(non-constructive) argument is given in Chapter |§| (see Propositions and
this approach works if the dimension is sufficiently large).

The realignment criterion to detect entanglement (also called cross-norm cri-
terion) presented in Exercise is from [CWO03|, Rud05|. It is neither weaker
nor stronger than the PPT criterion. For more separability criteria, see the survey
[HHHHO09].

Theorem was proved in [AS10] in the bipartite case and in [FLPS11] in
the general case.

The geometry of the set of absolutely separable states is poorly understood. By
definition, whether a state p is absolutely separable depends only on its spectrum.
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An explicit description is known for C? ® C2: a state p with eigenvalues \; > Ay >
A3 = A4 is absolutely separable if and only if A; < A3z + 2/ 224 [VADMOI].

Similarly to absolute separability, one may say that a state p € H; ® Hs is
absolutely PPT if UpU' is PPT for any unitary U on H; @ Hs. An intriguing
open problem is whether every absolutely PPT state is absolutely separable; see
[AJR15].

Lemma [2.19] can be proved via elementary representation theory; see, e.g.,
Appendix C in [ASY14].

Section The Jamiotkowski isomorphism can be traced to [Jam72|. Choi’s
and Jamioltkowski’s isomorphisms are seldom distinguished in the literature; a dis-
cussion of the difference between the two appears in [LS13].

Choi’s Theorem as stated was proved in [Cho75a], which also)contains
a description of extreme completely positive unital maps. Closely related state-
ments (including variants of Stinespring’s Theorem varying by the level of
abstractness were arrived at (largely) independently by various authors, see, e.g.,
[Sti55], Kra7ll, Kra83].

Proposition 2.26]is from [LS93] and the argument from Exercise[2.34]is based on
more general results from [RSW02] which give various descriptions of all quantum
channels between qubits and of extreme points of'the set of such channels.

For elementary properties of the diamond normi, see Section 3.3.4 in [Wat]
(where it is studied under the name completely-bounded trace norm). Entanglement-
breaking channels were studied in detail in. [HSRO03].

The example from Exercise is from [Tom85|. Exercise is from [Wat],
to which we also refer for a discussion of the class of LOCC channels.

Section Proposition [2:229] s a folklore result which appears explicitly in
[Sch65]. Many similar results«involve classification of “linear preservers”, i.e., linear
maps on My which preserve some property of matrices. Here is a typical statement
due to Frobenius: a linear map ® : My — M, satisfies the equation det ®(X) =
det X if and only if it has the from X +— AXB or A— AX"B for A, B € My with
det(AB) = 1. For a'survey on linear preserver problems, see [LT92].

The result.from Proposition 2:32) and its derivation from Brouwer’s fixed-point
theorem appear in [Idel3l, Idel6), [AS15|. A similar statement (proved via an
iterative comstruction) appeared in [Gur03| for positive maps ® which are “rank
non-decreasing” (however, not all such maps satisfy the conclusion of Proposition
m see-Exercise . The validity of Proposition for completely positive
maps is simpler and well known, see for example [GGHEOS| and its references.
The original Sinkhorn’s theorem (for matrices, or for maps preserving the positive
orthant in R™) goes back to [Sin64]; see [Idel6] for an extensive survey of related
topics.

Theorem [2.34is from [HHH96|. The concept of optimal entanglement witness
which appears in Exercise was investigated in [LKCHOO].

Stgrmer’s Theorem s initially proved in [St@63]; the original formulation
involved the second of the two statements. The first proof presented here seems
to be new and was a byproduct of the work on this book [AS15]. The scheme
behind the second proof was apparently folklore for some time; it was documented
in [MO15]. The novelty of its current presentation, if any, consists in streamlining
of the proof of Proposition m (For more background information on Proposition
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2.38] see Appendix[C]) Other proofs (of either of the two versions given in Theorem
2.36) appeared in [KCKLO0O0, VDDO01, LMOO06, KVSW09, [Sts13]. A recent

study of positivity-preserving maps on Mz can be found in [MO16]. While [MO186]
is focused on the unital trace-preserving case, it is likely that (particularly when
combined with our Proposition it may provide a clear picture of the more
general setting. In particular, it may lead to a simple and transparent proof of the
C? ® C? case of Theorem (Woronowicz’s Theorem).



