CHAPTER 5

Metric Entropy and Concentration of Measure in
Classical Spaces

This chapter presents two fundamental concepts which will be applied-in later
chapters: the metric entropy (a.k.a. packing and covering) and the concentration of
measure. Their conjunction leads to the Dvoretzky theorem, which will be presented
in Chapter

5.1. Nets and packings

We will introduce now the complementary concepts of covering numbers (also
called metric entropy) and packing numbers, which| quantify the complexity of a
given compact metric set. It will turn out that these parameters are closely related
to the volume and the mean width considered’in the preceding chapter.

We first analyze the special but fundamental cases of the sphere and the discrete
cube. We subsequently discuss classical groups and manifolds, and general convex
bodies.

5.1.1. Definitions. If K is.a‘compact subset of a metric space (M, d), a finite
subset ' ¢ K is called an e-netofyK-if, for every x € K, dist(z, ') < €. Since this
is equivalent to the union of-the corresponding balls containing K, an alternative
terminology is that of a covering, see Figure We denote by N(K,e) (or by
N(K,d,¢e), if there is.an ambiguity as to the choice of the metric) the minimal
cardinality of an e-net’in K.

A subset.P < K"is called e-separated if any pair (x,y) of distinct elements
from P satisfies.d(z,y) > e. This property implies that the balls of radius /2
centered at elements of P are disjoint (a configuration usually referred to as packing,
whence the usage of the letter P; see Figure , and in most contexts the two
properties)are essentially equivalent. We denote by P(K, ¢) or P(K,d,¢) the largest
cardinality of an e-separated set in K. The quantities N(K,¢) and P(K,¢) are
called;, respectively, covering numbers and packing numbers. The function £ —
N(K,d,¢e), and its various generalizations, is also often referred to as the metric
entropy of (K, d).

For any compact metric space K, the following two relations between nets and
packings are fundamental. First, if P is a 2e-separated set and N is an e-net, then
the open balls of radius e centered at elements from N cover K, and each ball
contains at most one element of P. Second, an e-separated set which is maximal
(with respect to inclusion) is an e-net (the reader not familiar with this circle of
ideas is encouraged to check these elementary facts). It follows that we have the
inequalities

(5.1) P(K,2¢) < N(K,e) < P(K,¢).
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108 5. METRIC ENTROPY AND CONCENTRATION OF MEASURE

FIGURE 5.1. A net (left) and a packing (right) for an equilateral
triangle (with the Euclidean metric in R?). For optimal‘packings
or covering with few “classical” convex bodies in the plane (squares,
circles or triangles), see the website

Packings and coverings have been extensively studied, particularly for “stan-
dard” metric spaces. In various applications it is*useful to know that there exist
“large” packings and/or “small” nets, and often.to be’able to exhibit them in a con-
structive manner. By , both notions areequivalent whenever the resolution
parameter ¢ is specified only up to a multiplicative constant. On the other hand, for
some applications, such as coding theory, very precise results are in high demand.

In many situations the isometry group of K acts transitively and preserves a
natural probability measure p\In-particular, all balls of radius € have then the
same measure, denoted by V' (g)y and.we have the simple inequalities

1 1
@ < N(K,E) < P(K,E) < 7‘/(6/2)

EXERCISE 5.1. Here, we introduce variations on the definitions and check their
equivalence. Let M be'a metric space and K a compact subset. Denote by N'(K, ¢)
the smallest cardinality of a family of closed balls of radius ¢ in M whose union
contains K (the difference with the definition of N (K, ¢) is that the centers are not
required t0 bein K). It is sometimes more convenient to allow sets of diameter
< 2¢ in(place of balls of radius ¢; call the resulting the quantity N”(K,¢). Let also
P'(K,€) be the largest cardinality of a family of disjoint open balls of radius £/2
with.centers in K. Check the inequalities

N"(K,e) < N'(K,e) < N(K,e) < P(K,e) < N"(K,¢/2)

(5.2)

and
P(K,e) < P'(K,e) < N(K,g/2).
Give examples showing that inequalities may be strict (see also Exercise [5.16)).

5.1.2. Nets and packings on the Euclidean sphere. We first consider the
specific case of the sphere S"~! for n > 2; denote by ¢ the geodesic distance and by
o the normalized Haar measure. In some cases, it is more appropriate to consider
the extrinsic distance inherited from R™. However, any result about one distance
transfers automatically to the other distance (see Appendix for details). We
give a brief overview of known estimates for packing and covering numbers for the
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sphere. The first point of business will be a discussion of volumes of spherical caps,
which enter the subject via .
5.1.2.1. Estimates on volumes of spherical caps. Given xg € S" 1 let C(xy,¢)
be the cap of center zy and geodesic radius &, and denote V(e) = o(C(xq,¢))
(e € [0, 7] is tacitly assumed). We have

§osin" 2 6.do
 fosin"20do’
The denominator at the right-hand side of (5.3) (Wallis integral) equals /27 /i, L1
Note that V(r —e) = 1 —V(¢), in particular V(7/2) = 1/2. For fixed 0 < e\< /2,
V(¢) tends to 0 exponentially fast in the dimension: one has V' (¢)'/™ ~ sin(s).~The
following proposition gives elementary but reasonably precise bounds:The first one

is sharp when the radius is small, and the second one for a radius slightly smaller
than /2.

(5.3) V(e)

on—1

PROPOSITION 5.1. If 0 <t < 7/2, then V(t) < 5 sin" 7 (t)~More precisely

1
2
(5.4) (V2mry,) " Hsint)" ™! < V() < (V27k, cost) T (sint)"
where Kk, ~ +/n is given by (A.8)). Moreover, if n > 2,"then

(5.5) Vir/2—t) < %exp(—nt2/2).

FIGURE 5.2. Proof that V(t) < 3sin™ '(¢). The surface area of
C(z,t) (bold) does not exceed the surface area of a half-sphere of
radius sint (dashed).

A proof of is sketched in Exercise It is based on the fact that, for
convex sets, surface area is monotone with respect to inclusion (Exercise . The
inequality is from [Jenl13] (see also [JS|); a version with n — 1 instead of n
in the exponent is proved in Exercise [5.3]

The following fact is only marginally used in what follows, but we include it
since we did not encounter it in the convexity /functional analysis literature.

PROPOSITION 5.2 (Convavity properties of V(+), see Exercise|5.5)). If V(r) is the
measure of a spherical cap of radius r, then the function t — log V(e!) is concave.
A fortiori, the function r — log V(r) is strictly concave on [0, 7].
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A consequence of Proposition [5.2]is that, for 0 < s <t <,

(5.6) V() < (t)n_lws).

s
Inequality (|5.6) is a well-known fact in differential geometry; for example, it consti-

tutes the trivial case of the Gromov—Bishop comparison theorem. It is very likely
that Proposition [5.2) also follows from similar general results.

EXERCISE 5.2 (Surface area is monotone with respect to inclusion). Show that
if K < L are convex bodies, then area(K) < area(L).

EXERCISE 5.3. Using Exercise show that for ¢ € [0,7/2], we have Vi(t) <

1 sin""!(¢). Conclude that

V(r/2—1) < %(cost)"_1 < %exp(—(n — 1)t%/2).

This is only slightly weaker than the bound (5.5) and sharper_than the estimates
typically cited in the literature.

EXERCISE 5.4 (Sharp bounds for volumes of caps). Using Exercise show the
inequalities (5.4). Then strengthen the lower bound to (/27 £, cos(/2)) " sin™ ' ¢.

EXERCISE 5.5 (Convavity properties of V(:)). Prove Proposition [5.2|and derive
the inequality (5.6).

5.1.2.2. Nets in the sphere. If ¢ € [m/2,7), we clearly have N(S"~! g,¢) = 2.
The interesting case is when € € (0, 7/2). In that range, the proportion V(¢) of the
sphere covered by a cap of geodesic radius € decays exponentially with n. It follows
that the cardinality of e-nets grews-also exponentially fast. For example, the first
estimate from Proposition implies’ that, for € € (0,7/2),

2

sin” e

(5.7) NSt g,e) = V()™ =

A basic and extremely useful bound for e-nets (formulated in the extrinsic distance)
is the following

LEMMA 5.3v For every dimension n and every € < 1, there is an -net in
(S™71,|-]) with'less than (2/e)™ elements. In other words, N(S™~1,|-|,e) < (2/e)™.

The standard and often quoted volumetric argument (which is a special case
of Lemmnia[5.8 below) gives a slightly worse bound (14 2/¢)". The improved bound
(2/£)" can be achieved by a finer analysis combining a version (based on [Dum07])
of Proposition 5.4 below with the use of explicit nets in lower dimensions, see [Swe].
We also note that there exist simple explicit e-nets in S»~! with cardinality at most
(C/e)™ (see Exercise [5.22).

To discuss finer results it is more convenient to switch to the geodesic distance.
We know from the volume argument that N(S™"~1 g,e) = V(e)~!. It turns out
that this trivial estimate is remarkably sharp: an almost-matching upper estimate
is provided by an elegant random covering argument due to Rogers.

PROPOSITION 5.4 (Random covering bound). For every 0 <n < 0, we have

N(S" 9,0 +1n) < L/ze)log ng;ﬂ + %.
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PROOF. Let N =[5y log (V(8)/V (n))]. Choose (2)1<i<n randomly, inde-
pendently according to o, and denote A = | J{C(x;,0) : 1 < i< N}. The expected
proportion of the sphere missed by A can be computed using the Fubini—Tonelli
theorem

n—1 _ N V(U)
(5.8) Eo(S""N\A)=(1-V(0))" <exp(—NV(0)) < )
In particular, there exist (z;) such that o(S""'\A) < V(n)/V (). Let {C(y;,n)
1 < j < M} be a maximal family of disjoint balls of radius 7 contained in ™1\ 4,
It follows from (5.8)) that M < 1/V(#). By construction, S"~! is covered by the

family

<

{B(zi,0+n) : 1<i<N}U{B(y;,2n) : 1<j<M}. O

COROLLARY 5.5 (Neat random covering bound, see Exercise |5.8).~For every
0 <e < m/2, we have

(5.9) N(S" !, g,e) < CnlognV(e)™*
for some absolute constant C'.

It follows from (5.7)), (5.9) and (5.4)) that, for a fixed € € (0,7/2), we have
1
(5.10) lirrgO - log N(S"™ ! g,e) = —log(sine).
We note for future reference the following-fact.

PROPOSITION 5.6. Let P < R™ be a-polytope such that dpps (P, By) < A. Then
P has at least 2exp((n — 1)/2)?) vertices and at least 2exp((n — 1)/2)?) facets.

PRrROOF. Consider first the statement about vertices. Without loss of generality
we may assume that A" Bl « P'< BY, and that the vertices of P are unit vectors.
Let V be the set of vertices of. P: The hypothesis is equivalent to saying that V'
is a f-net in (S"1,g) for eosl = 1/)\ (see Exercise . Using (5.7), it follows
that card V' = 2(sin@) 7™~ > 2exp((n — 1)/2)?), where we used the inequality
sinarccost < exp(—t2/2) for 0 < t < 1. Since dppy (P, BY) = dpn(P°, BY), and
since vertices of P< are in bijection with facets of P, the statement about facets
follows. (]

We alse.péint out that it is possible to approximate the sphere by polytopes with
at most-exponentially many vertices and, simultaneously, at most exponentially

many facets (see Exercise [7.22)).

EXERCISE 5.6. Check that the constant 2 cannot be replaced by a smaller
number in the statement of Lemma [5.3

EXERCISE 5.7 (Nets and convex hulls). Let A’ < S"~! and 0 € (0,7/2). Prove
that N is a f-net in (S"71, g) if and only if (cos§)BY < conv .

EXERCISE 5.8 (Proof of the neat random covering bound). Deduce Corollary
[5.5] from Proposition [5.4]

EXERCISE 5.9 (On the optimality of Corollary . Let C), be the smallest
number such that the inequality N(S""1,g,¢) < C,,V(¢)~! holds for any £ > 0.
By considering ¢ slightly smaller than 7/2, show that C,, > "TH A less trivial fact
is that C,, = Q(n) is also witnessed by taking e very close to 0, see [CFR59| and
Notes and Remarks.
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EXERCISE 5.10 (Nets in the projective space). Prove the following result, which
will be useful in Sections and Let € € (0,7/2). If A is an e-net in
the projective space P(C?) (equipped with the Fubini-Study metric ), then
card N = (c/£)?4=2 for some absolute positive constant c. In the opposite direction,
there exists an e-net of cardinality not exceeding (C/e)29-2.

EXERCISE 5.11 (Volume of balls in P(C%)). Consider the projective space
P(C?) equipped with the Fubini-Study metric (B.5) and the invariant probabil-
ity measure. If ¢ € (0,7/2], then the measure of any ball of radius e in P(C?) i§

- 2d—2
sin €.

5.1.2.3. Packing on the sphere. Recall that P(S"~!, g, ¢) is the maxinral num-
ber of disjoint caps of geodesic radius /2. The exact value is known for 7/2'<e < 7
(we have P(S™"~ ! g, 7/2) = 2n, see Exercise [5.12)) and so we restrict eur-discussion
to the range 0 < ¢ < /2.

Packing problems are usually harder than covering probhlems. For example, as
opposed to , the exponential rate at which packing numbers increase, i.e., the
value of

1
p(e) = limsup — log P(S" !, gye)
n—soo N

is not known for ¢ € (0,7/2). We know from (5.2 "that V(e)~! < P(S"71,g,¢) <
V(g/2)71, and therefore

(5.11) —logsin(e) < p(¢).<.—logsin(g/2).

In this context the lower bound is known as the Chabauty—Shannon-Wyner bound
and actually corresponds to using the trivial algorithm to produce packings: pick
separated points, no matter how,<as long as you can. It is an amazing fact that
the lower bound p(e) = — log sin e has never been improved: nobody knows how to
substantially beat the worst possible choices!

On the other hand, thé.upper bound in has received various improve-
ments. It has been shown by Rankin that for € € (0, 7/2)

p(e) < —log(v2sin(e/2))

which matches.the lower bound from (5.11) as € increases to 7/2. For small e,
further improyentents due to Kabatjanskii-Levenstein are based on the so-called
linear prograniming bound (see Notes and Remarks).

EXERCISE 5.12 (Packing large caps on the sphere). Suppose that (z;) are N
pointsin S"~! such that (z;,x;) <t for i # j.
(i) Show that N <1—-1/tift <0,
(i) Show that N <2n ift =0
If t > 0 is fixed, we know from that exponentially many points in the sphere
may have pairwise inner products at most ¢. The situation when ¢ tends to zero
with n is investigated in the following exercise.

EXERCISE 5.13 (Coarse approximation of BY by polytopes with few vertices).
Suppose that (z;) are N points in S”! such that |[(z;,z;)| < ¢ whenever i # j, for
some ¢ > 0.

(i) If t < 1/4/n, show that N < n/(1 — nt?).
(ii) By considering the family (z®*);<;<y for a suitable large k, show that if ¢ < 1/2,
then N < (C/t)CF™ for some absolute constant C.
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(iii) Deduce that, for 7 > 2, there is a polytope P with at most (C7)C™"" vertices
such that d,(P, BY) <.

5.1.3. Nets and packings in the discrete cube. Although the discussion
from the previous sections dealt specifically with spheres, some ideas carry over
directly to other settings. As an illustration we consider the case of the discrete
cube {0,1}" (a.k.a. Boolean cube) equipped with the normalized Hamming distance

1
(5.12) dy(x,y) = - card{i : m; # y;}.

We denote by V (t) the volume (i.e., the cardinality) of a ball of radius ¢ &40,1).
We have

Ltn]
V(t) =card{y € {0,1}" : dp(z,y) <t} = Z <Z>
k=0
The quantity V (¢) is governed by the binary entropy function .H defined for x € (0, 1)
by H(z) = —zlog,x — (1 — z)log,(1 — ). For ¢t < 1/2 such that ¢tn is an integer,
we have (see Exercise [5.15))

_L onH@ )
(5.13) T 2 <V() <2 .
Related estimates will be used when discussingconcentration of measure, see ((5.59)).
As in the case of the sphere, the covering problem is simpler than the packing
problem (at least in some asymptotic regimes): In particular (see Exercise [5.14), a
random covering argument similar to Proposition|[5.4}—in combination with (5.13)—
implies that, for 0 < e < 1/2,

1
(5.14) lirrgoﬁlog2 N({0,1}",dp,e) =1 — He).

On the other hand, the corresponding limit for packing is unknown; we only
get from ([5.2)) the asymptotic bounds

(5.15) 1 — H(&).< limsup % log, P({0,1}",dp,e) <1— H(g/2)
n—aoo
for 0 < & < 1/2. 'As in the case of the sphere, the lower bound from (known
in this context-as the Gilbert—Varshamov bound) has not been improved, while the
upper bound has been subject to various enhancements.
For-the g-ary version of the cube, i.e., the space {0,...,q — 1}" (also equipped
with.normalized Hamming distance), the entropy function has to be replaced by

Hy(z) == —zlog,z — (1 — x)log,(1 — x) + zlog,(q — 1).

Indeed, if V,(¢) denotes the cardinality of a ball of radius ¢ in {1,...,q — 1}, for
t € (0,1 —1/q) such that tn is an integer, then

Ll
- q < V.
n+1 1 a
Estimates about the g-ary cube are useful when one wants to construct nets or

separated sets in products of metric spaces. The following specific fact, which is an

easy consequence of (5.16)) and (5.1)), will be used later.

(5.16) (1) < ¢"Ha(®),
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PROPOSITION 5.7. Let (K, d) be a metric space such that P(K,d,e) = q. Given
integer n € N, equip K™ with the distance

dn((xlv cee ,l’n), (yla e 7yn)) = d(xlayl) + -+ d(xn,yn)
Then, forte (0,1 —1/q),

> 1=Ho),

(5.17) P(K™,d" ten) = P({0,...,q — 1}", dg, t) > —
Vq(t)

EXERCISE 5.14 (Efficient random nets of the Boolean cube). Show ([5.14) by
adapting the random covering argument from Proposition

EXERCISE 5.15 (Volume of balls in the g-ary discrete cube). Show (5.16)(which
specified to ¢ = 2 gives (5.13))).

5.1.4. Metric entropy for convex bodies. If the metric-space (M,d) is
actually a normed space with a unit ball B, we write N(K,Bje) or N(K,eB)
instead of N(K,d,¢). It is possible to come up with an alternative definition which
does not refer to the norm, by saying that N(K, B, ¢) is the\minimum number N

such that there exist z1,...,zy in K with
N

(5.18) K c U(ml + eB):
i=1

This alternative definition does not require the set B to be symmetric, or even
convex, or to have nonempty interior; even though that is usually the case. In
our context, the minimal reasonable hypothesis appears to be asking that B be
star-shaped with respect to the origin, i.e., that tB < B for ¢t € [0, 1].

The technology for estimating covering/packing numbers of subsets (particu-
larly convex subsets) of normed spaces is quite well-developed and frequently rather
sophisticated. We quote herezarsimple well-known result that expresses N(-,-) in
terms of a “volume ratio.”

LEMMA 5.8. Let'Lnbe a symmetric convex body in R™ and let K < R™ be a
Borel set. Then, for any e > 0,

L) e (2) )

PROOF! If (x;) is an e-net in K with respect to ||- |1, then the union of the sets
x; +-5L contains K, and the left-hand side inequality in (5.19)) follows from volume
comparison. Consider now a family (x;) of N elements of K which is e-separated

for-| - |r. This means that the sets x; + 5L have disjoint interiors. Since they are
all included in K + L, we have Nvol(5L) < vol(K + §L). Together with (5.1)),
this implies the right-hand side inequality in (5.19) O

When K is convex and the “regularizing” trick implicit in Exercise [5.17] below is
applied, the lower and upper bounds are often as close as one can expect provided
K and L are is the M-position (see Notes and Remarks). The case K = L in
Lemma [5.8] is related to the approximation of convex bodies by polytopes.

LEMMA 5.9. Let 0 <e <1, K c R" be a symmetric convex body and N be an
e-net in K with respect to | - |k. Then conv N o (1 —¢)K.
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PROOF. Let P = conv N and denote A = sup{|y|lp : y € K}. One checks
that P contains 0 in the interior, so that A < oo. Given x € K, there is 2’ € N
such that |z — 2’|k < e, and therefore |z|p < |2/|p + |z — 2/||p < 1+ eA. Taking
supremum over x gives A < 1 + €A, so that A < (1 —¢)~!, which is equivalent to
the inclusion P o (1 —¢)K. O

The following is an immediate consequence of Lemmas 5.8 and

COROLLARY 5.10. Lete € (0,1). Any symmetric convex body in R™ is (1—g)~ 12
close, in the Banach—Mazur distance, to a polytope with at most (14 2/e)™ vertices.

For an extension of Lemma [5.9] and to not-necessarily-symmetrie. convex
bodies, see Exercises Note that the dependence on ¢ in Corollary [5.10]is
not sharp (see Notes and Remarks). For the special case K = BY, the.conclusion
of Lemma can be easily improved to conv N o (1 — £2/2) K, see Exercise

EXERCISE 5.16 (Covering with balls whose centers lie,outside of the set). For
convex bodies K, L in R™, let N'(K, L) be the smallest nunmiber- N such that there
exist z1,...,ry in R" with K < (J,,cy(zi + L) (the difference with N(K, L) is
that z; are not required to belong to K). Give an example with L symmetric for
which N'(K,L) < N(K,L). Can we have such an ‘example with also K symmetric?

EXERCISE 5.17 (A regularizing trick). Let<X, L be convex bodies in R", with
0€ L. Show that N(K,eL) = N(K, (K <K) NeL).

EXERCISE 5.18 (Approximating by polytopes with few vertices). Let K < R™
be a convex body with centroid at the origin (K is not assumed to be symmetric).
Using Lemma and Proposition show that for every £ € (0,1) we have
N(K,eK) < (24 4/e)", where-N(K,£K) = N(K, K,¢) is defined as in . By
arguing as in the proof of Lemma[5.9] conclude that there exists a polytope P with
at most (2 + 4/¢)™ vertices such that (1 —e)K < P c K.

EXERCISE 5.19 (Approximating by polytopes with few facets). Let ¢ € (0,1)
and K < R"™ be a.convex body with centroid at the origin. Show that there exists
a polytope Q with at most (2 + 4/¢)" facets such that (1 —¢)Q < K < Q.

EXERCISE 5:20 (Approximating by polytopes and the Santal6 inequality). Let
K be a_convex body in R™ and let k = vrad(K) vrad(K°) < o« (i.e., K satisfies
approximately the Santalo inequality, see Theorem[4.17and the comments following
it)ATf.e'e (0,1), then K can be approximated up to £ (in the sense of Exercises

and [5.19) by a polytope P with at most (Ck/e)™ vertices (resp., facets).

EXERCISE 5.21 (Duality of metric entropy for ellipsoids). Let & and # be 0-
symmetric ellipsoids in R™. Check that for every ¢ > 0, N(&, %#,¢) = N(F°,£°,¢).

EXERCISE 5.22 (Explicit nets in S"~'). Here is an explicit construction of an
e-net in S”~! with at most (C/e)™ elements, for some (suboptimal) constant C'.
(i) Show that, if M is an e-net in BY (with 0 < & < 1), then the set {z/|z| : = € N}
is an p-net in (™71, ] |) for n = /2 — 24/1 — 2.

(ii) Let N = By n 77 Z". Show that N is an e-net in BY and that card N < (C/e)™.
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5.1.5. Nets in Grassmann manifolds, orthogonal and unitary group.
We now extend the results given for the sphere to other classical manifolds, includ-
ing unitary and orthogonal groups and Grassmann manifolds (which are introduced
in Appendix . Metric structures on such manifolds are induced by unitarily in-
variant norms on the corresponding matrix spaces, with Schatten p-norms being the
most popular choices. While there are several natural ways (also discussed in detail
in Appendix to define a metric on a manifold starting from a given Schatten
norm, all such metrics—for a fixed p—differ by at most by a multiplicative factor
of m/2. Accordingly, the behavior of covering numbers in all such situations can be
subsumed in the following single statement.

THEOREM 5.11 (not proved here, but see Exercise[5.23|). Let M be either SO(n),
U(n), SU(n), Gr(k,R™) or Gr(k,C"™), equipped with a metric generated by the Schat-
ten norm | - |, for some 1 <p < 0. Then for any € € (0, diam M],

) dim M . A
<cdlamM> < N(M.2) < <CdlamM> ,

(5.20) - -

where C, ¢ > 0 are universal constants (independent of n, kyp-and €), dim M is the
real dimension of M, and diam M the diameter of NI with respect to the corre-
sponding metric.

For easy reference, we list in Table [5.1] some of the values of the parameters
(dimensions, diameters) that appear in (5.20])-

TABLE 5.1. Real dimensions and diameters from the bounds
for covering numbers of a selection of classical manifolds. The dis-
tances used on SO(n) and-U(n) are the extrinsic metrics obtained
from the Schatten p-norm'on.M,,, and the distances on Grassmann
manifolds are the corresponding quotient metrics. The restriction
k < m/2 is imposed-to reduce clutter (note that Gr(k,R™) and
Gr(n — k,R™) are isometric).

M dim M diam M | comments
SO(n) |n(n—1)/2 2nt/P
U(n) n? 2n /P
Gr(k,R™) | k(n—k) |2Y202k)Y? | k<n/2
Gr(k,C") | 2k(n —k) | 22(2K)Y? | k <n/2

EXERCISE 5.23 (Metric entropy of classical groups and manifolds). Prove The-
orem for M = U(n), M = SU(n) or M = SO(n) and for p = o, by appealing to
Lipschitz properties of the exponential map with matrix argument (Exercise [B.8g]).

EXERCISE 5.24. Derive the formula for diameter of Gr(k,R™) in Table

EXERCISE 5.25 (Volume of balls in classical groups and manifolds). Let M
be either SO(n), U(n) or Gr(k,R™), equipped with a metric as in Theorem
Denoting by o the Haar probability measure on M, deduce from Theorem [5.11] a
two-sided estimate for o(B(z,¢)), where B(z, €) denotes the ball of radius € centered
at x e M.
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5.2. Concentration of measure

The classical isoperimetric inequality in R™ (Eq. , also known as Dido’s
problem) states that among all sets of given volume, the Euclidean balls have the
smallest surface area. As we already noticed in the setting of R™ in Section
an alternative methodology is to consider, instead of the surface area, the family of
e-enlargements of a given set. The latter approach makes sense in any metric space
X equipped with a measure p (a metric measure space, or a metric probability space
if p(X) = 1, which will be assumed as a default): for a subset A ¢ X and ¢ > 0]
we define

Ac ={zxe X : dist(z, A) <&}

The two viewpoints are roughly equivalent since the “surface area” relativéstoru can
be retrieved (when that makes sense) as the first-order variation of p(4.) when ¢
goes to 0, cf. and, conversely, the growth of the function e =5 p(A.) on the
macroscopic scale can be recovered from the knowledge of its detivative. However,
the enlargement-based approach seems simpler (a more flexible definition) and is
often more fruitful since some otherwise useful bounds on p(Ax) may be meaningless
for small e, and /or may be available in absence of any clue with regard to the nature
of extremal sets.

Lower bounds for u(A:) can be rephrased as<deviation inequalities for Lips-
chitz functions. This leads, in some settings, to a remarkable phenomenon: every
Lipschitz function concentrates strongly around-some “central value.” Statements
to such and similar effect will be the focus of‘eur presentation. Specifically, we will
look for estimates of the form

(5.21) w(f > My +1t) < Ce
and
(5.22) WS Ef+1) < Ce ™,

to be valid for any real-valued 1-Lipschitz function on X and all ¢ > 0, where M}
and Ef are the median<and the expected value of f calculated with respect to u.
(A number M is said to’'be a median for a random variable X if P(X > M) > 1/2
and P(X < M) > 1/2.) Clearly, and formally imply then similar two-
sided estimates for pu(|f — My| > t) and p(|f — Ef| > t) with C replaced by 2C.
Concentratioil of this type is referred to as subgaussian (more on this terminology
in Section . For the convenience of a casual reader—and for easy reference—
we list in Table the constants and the exponents that appear in subgaussian
concentration inequalities for a selection of classical objects.

REMARK 5.12. We point out that if a function f is such that one of the in-
equalities or holds (for all ¢ > 0) with constants C, \, then the other
inequality similarly holds (for the same function) with some other constants. For
example, if holds with C' > % and A, then holds with 2C? and \/2; if
holds with C' > e~/ ~ 0.717 and ), then holds with eC? and \/2 (see
Proposition and Remarks ) Sharper results of this nature (i.e., with
better dependence on C, \) can sometimes be obtained if we assume that (or
(5.22))) holds for all real-valued 1-Lipschitz functions on X; some questions in that
spirit are considered in [Led01] (see, e.g., Exercise [5.48)).
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In the next two subsections we will exemplify the concentration phenomenon
and related techniques in the case of the Euclidean sphere and the Gaussian space.
In subsequent subsections we will survey some general methods for proving isoperi-
metric/concentration results and present a selection of examples, in particular those
listed in Table[5.2] We will concentrate on the objects that exhibit subgaussian con-
centration; more general settings will be addressed briefly in exercises and in Notes
and Remarks (an exception is Sectionwhich treats sums of independent subex-
ponential random variables). A comprehensive presentation of diverse aspects and
manifestations of the concentration phenomenon is beyond the scope of this work;
we refer the interested reader to the monographs [Led01}, BLM13| and/or to other
sources listed in Notes and Remarks. Here we restrict our attention to highlighting
several central techniques and, subsequently, to going over examples that.appear
to be of relevance to the quantum theory.

5.2.1. A prime example: concentration on the sphere. The settings of
the Euclidean sphere and of the projective space are directly.relevant to quantum
information theory since the latter identifies canonically with the set of pure states.
In the language of enlargements, the isoperimetric inequality on the sphere can be
stated as follows.

THEOREM 5.13 (Spherical isoperimetric inequality, not proved here). FEquip
the unit sphere "~ < R™ with the geodesic distance g and the uniform probability
measure o. If A < S"! and if C = S"~Yis @ spherical cap such that o(A) = o(C),
then, for any e > 0,

(5.23) o(Aes) = o(C).

Recall that the spherical cap with center z € S"~! and radius ¢ is the set
Clz,e)<Aye S"" + gla,y) <e}.

Note that the class of spherical caps is stable under enlargements and that we have

(5.24) Cl#,e)s = C(x,e+0) forany 6,e>0.

In view of the simple relationship between g and the extrinsic (or chordal) dis-
tance inherited from the ambient Euclidean space (see Appendix , Theorem
[-13] is valid “also for the latter. However, it is traditionally stated for the geo-
desic distance. Also, the formula for C(x,e)s stated above would be more
complicated if we used | - | to define caps.

The' usefulness of Theorem [5.13] comes from the fact that there are explicit
integral formulas and sharp bounds for the measure of spherical caps, which were
explored in Section [5.1.2] However, while in the study of packing and covering
small caps seemed most interesting, in the present context of concentration the radii
close to 7/2 are most relevant. This is because arguably the most useful instance
of Theorem E is 0(A) = %, in which case the radius of the corresponding cap C
is /2 and the radius of its e-enlargement, C., is /2 + . Taking into account the
bound leads then to

COROLLARY 5.14. Ifn > 2 and if A< S"~! with o(A) > § and € > 0, then
™ 1 2
n = —ne“/2
(5.25) o(As) =0 (C (:z:, 5+ 5)) >1 5¢ .
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There is no simple proof of the isoperimetric inequality on the sphere (Theorem
5.13)) that we know of. However, a result just slightly weaker than Corollary
follows easily from the Brunn—Minkowski inequality (4.21)). We have the following

PROPOSITION 5.15. Ife € (0,7/2] and K, L = S"~1 are such that dist(K, L) >
e (in the geodesic distance), then o(K)o(L) < e /4. In particular, if o(K) > 1/2,
then o(K.) =1 — 2e"<"/4,

ProoF. The second statement follows by applying the first one with L = K¢.
It thus remains to prove the first statement.

Define K’ < BY via K’ := {tz : z € K,t € [0,1]} and similarly for L, Then
vol(K') = o(K)vol(BY) and vol(L') = o(L)vol(BY). Consequently, by the*Brunn—
Minkowski inequality in the form ,

K+ 1
vol( ; ) VOl (KWvol(L) = A/o (K)o (L) vol(BY).

On the other hand, if z,y € S"~! and the angle between_z.and y is at least ¢,
then |(x + y)/2| < cos(g/2). If ¢ < m/2 (and so (z,y) > 0))a simple calculation
shows that the same is true if we replace x and y by #/ = sz and y' = ty, where
s,t € [0,1] (in fact this is even true if € < 27/3). This'means that we have then
M c cos(e/2)BY and so /o (K)o (L) (cos(s/Q)) It remains to appeal to the

(subtle but elementary) inequality cosu < e X(2 (see Exercise . (]

<
<

REMARK 5.16. (1) Proposition holds actually for the entire nontrivial
range of e, which is [0,7]; this follows ‘@ posteriori from the estimate in Lévy’s
lemma (see Exercise. The above proof fails for large £; however, only the range
[0,7/2] is relevant to the second statement and to Corollary if p(K) > 1/2,
then no point = can verify dist(z, %) > 7/2.

(2) The estimate in the Proposition is pretty tight: if K, L are opposite (i.e., K =
—L) caps with dist(K, L) =_2¢, we conclude from the Proposition that u(K) <
e~"<*/2, This compares|fairly well with the bound %e*”‘fg/Q implicit in .

Corollary readily implies a concentration result for Lipschitz functions,
which is oftenreferred to in quantum information circles as Lévy’s lemma.

COROLLARY '5.17 (Lévy’s lemma). Let n > 2. If f : (8" 1,9) > R is a
L-Lipschitz function and if My is a median for f, then, for any t > 0,

1
(5.26) o(f>M;+1t) < 3 exp(—nt?/2L%),
and)therefore
(5.27) o(|f — My| > t) < exp(—nt?/2L?).

PROOF. Let A= {x e S" ! : f(z) < My} and set ¢ = ¢/L. Since f < My on A
and since f is L-Lipschitz (i.e., |f(z) — f(y)| < Lg(z,y) for x,y € S"~1), it follows
that for any y € S"~! we have f(y) < My + Lg(y, A). In particular, if y € A, then
9(y,A) < e and so f(y) < My + Le = My +t. In other words, we proved that
Ac c{f < My +t} = {f > My +t}°. The first inequality in Corollary follows

now by observing that, by the definition of the median, o(A) > % and by appealing
to Corollary

The second inequality follows from the first one combined with an identical
bound on o(f < My —t), which is shown either by the same argument applied to
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A={xeS" 1 f(x) = My}, or by appealing to the first inequality with f replaced
by —f. 0

REMARK 5.18. Both parts of the above proof are quite general. First, any
lower bounds on measures of enlargements of sets of measure % imply (in fact are
equivalent to, see Exercise bounds for deviation of Lipschitz function from
their medians. Second, any one-sided bound for deviation from the median (or the
expected value, or any other “symmetric” parameter) implies a two-sided bound, at

the cost of a factor of 2.

REMARK 5.19. In Corollaries B.14] and we have to assume that. n“>"2
because the bound is not valid in the entire nontrivial range 0 < t<Sum/2.
If n = 2, one needs to replace the function ie —nt*/2 by max{f - = 0} However,
no modifications are needed if the enlargements or the Llpschltz constants are
calculated with respect to the ambient space metric, or if only small values of € or
t are of interest, say, e <1lort < L.

Concentration around the median follows naturally from the isoperimetric in-
equality. As we mentioned in Remark this implies formally concentration
around the expectation with altered constants. In some situations, it is possible to
obtain good constants with extra work.

PROPOSITION 5.20 (Lévy’s lemma for theymean, not proved here). Let n > 2.
If f: (8", g) — R is a 1-Lipschitz function,then for any t > 0,
(5.28) o(f > Ef + ) <exp(—nt?/2).

As mentioned in Remark [5 - 8| the inequality o(|f — Ef| > t) < 2exp(—nt?/2)

follows formally, but is probably net optimal. See Problem [5.26] for questions about
possible better bounds in this and.similar settings.

EXERCISE 5.26 (Proposition [5.15| holds for the full range of £). Show that 1t
follows a posteriori from Theorem [5.13] and the bound 1-) that, for n > 2,

the notation and under\the hypotheses of Proposition [5.15] we have o( O'(L) <
Le=ne*/4 For n = 2;.the optimal inequality is o/(K) o(L) - ;) (cf. Remark

p19).

EXERCISE*5.27 (Concentration implies isoperimetry). Show that, for a metric
probability space (X, ), concentration implies isoperimetry in the following sense:
if u(f » MF +t) < a for any 1-Lipschitz function f, then pu(A;) > 1 — a for any
A X with p(A) = 1.

EXERCISE 5.28 (A finer bound tor the mean width of a union). Let K, L be two
bounded sets in R™, and R the outradius of K u L. Show that w(conv(K u L)) <

max(w(K),w(L)) + 1/ 2= R.

5.2.2. Gaussian concentration. Another classical setting where isoperime-
try and concentration have been widely studied is the Gaussian space (R", |- |,'yn),
where 7, is the standard Gaussian measure on R™ (see Appendix for the no-
tation, basic properties and relevant facts). It turns out that the extremal sets
for the isoperimetric problem are then half-spaces, and since their enlargements
are also half-spaces, the solution to the problem can be expressed simply in terms
of the cumulative distribution function of an N(0,1) variable, i.e., in terms of
®(x) == y1((—0,z]). We have
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THEOREM 5.21 (Gaussian isoperimetric inequality, see Exercise [5.30). Let A
R™, and let a € R be defined by 'yl((foo, a]) = v, (A). Then, for any e > 0,

(5.29) Yn(Ae) =M ((_007 a+ E])
or, equivalently,
(5'30) éil(')’n(As)) = ®71(7n(A)) +e.

inally derived from the spherical isoperimetric inequality (Theorem [5.13]) via the
following classical fact.

THEOREM 5.22 (Poincaré’s lemma, see Exercise . For n, N "N with
N > n, we consider R" to be a subspace of RY. Next, fix n and’let un—be the
pushforward to R™, via the orthogonal projection, of the normalized uniform mea-
sure on VNSN=1. Then, as N — o, (vN) converges to vy, the standard Gaussian
measure on R™.

The solution to the Gaussian isoperimetric problem (Theorem [5.21)) was orig-

The convergence in Theorem [5.22] holds in a very stroug Sense, e.g., in total
variation, or in uniform convergence of densities.

Another derivation of the Gaussian isoperimetrie, inequality is based on the
following analogue of the Brunn—Minkowski inequality in the Gaussian setting.

THEOREM 5.23 (Ehrhard’s inequality, not proved here). Let A, B be Borel sub-
sets of R™ and let X € [0,1]. Then

(5.31) O (1 (1 = M)A+ AB)) = (1 = N2 (7a(4)) + A0~ (1 (B).

Ehrhard’s inequality is stronger than log-concavity of the Gaussian measure
(Section [4.3.2)), see Exercise Assuming Ehrhard’s inequality, the derivation of
the Gaussian isoperimetric inéquality goes as follows. Fix A,e and let A € (0,1).
Since A, = A+eBy = (1 < )Y —\)"tA + XeA"1 B, we have, by (5.31)),

(5.32) 27 ((A))Z> (1= N2 (1((1 = A) 71 A)) + AT (3 (AT BY)).
We now let A — 0% The first term on the right-hand side of ((5.32)) converges

clearly to ®%(v,(A)); while the second term converges to ¢ (this is a little harder,
but elementary, see Exercise [5.32)), and so we proved the Gaussian isoperimetric

inequality inthe form .

The next-theorem follows from Theorem [5.21] according to the general scheme
indicated in Remark with the explicit exponential bound being a consequence
of Exercise [A 1l

THEOREM 5.24. If f : R™ — R is L-Lipschitz and M denotes its median (with
respect to 7, ), then for anyt >0

1 2972
(5-33) Ynl(f > My +1) <y ((t/L,0)) < e 2H,

Yollf = My > t) < e t/2F.

As we already noted in the setting of the sphere, concentration around the
median formally implies similar concentration around the mean (see Remark [5.12)).
However, this approach leads to suboptimal constants. A more precise technique
relies on the log-Sobolev inequality from Section [5.2.4.2] which specified to the
Gaussian setting yields the following.
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THEOREM 5.25 (see Theorem and Proposition [5.42)). If f : R™ — R is
L-Lipschitz and Ef is the mean of f (with respect to 7y, ), then for any t > 0
(5.34) max {7, (f > Bf + 1), (f <Ef —t)} < e t/2L°,

There is some numerical evidence that the assertion of Theorem [5.25] can be

further strengthened. We pose

PRrROBLEM 5.26. If f : R® — R is 1-Lipschitz and Ef denotes its average with
respect to yn, is it true that v, (|f — Ef] > t) < e=t/2% The case n = 1 implies
the general case and is probably not that hard to settle. Similarly, is it true,that
o(|f —Ef] > t) < exp(—nt?/2) if f: (S"!,g) — R is a 1-Lipschitz function_(and
n > 2; see Rema'rkfor comments on peculiarities of the case n = 2)2

An example of a function for which Theorem [5.24]is meaningful is the Euclidean
norm, which is trivially 1-Lipschitz. This gives the following (see also.Exercise([5.37]).

COROLLARY 5.27. Let G be a standard Gaussian vector in R™ Then, for any

t>0,
1 —2)2 2 1 —t2/2
P(|G\>\/ﬁ+t)<§e and P(\G|< n—g—t)<§e .

The distribution of |G|? is commonly known as 2(n), the chi-squared distribu-
tion with n degrees of freedom. Denoting by mJ;. the median of |G|, what is required

to deduce Corollary |5.27| from Theorem [5:24} are the inequalities 4/n — % <m, <

4/n. The lower bound is proved in Exercise [5.34] and the upper bound follows from
Proposition |5.34)): we have m,, < k, < +/n.

EXERCISE 5.29 (Weak convergence in Poincaré’s lemma). In the context of
Poincaré’s lemma (Theorem [5.22}), show without any computation that the sequence
(vn) converges weakly towards 7,,.

EXERCISE 5.30 (Gaussian isoperimetric inequality via Poincaré lemma). Derive
the Gaussian isoperimetric inequality (5.29) from the Poincaré lemma (Theorem

5.22)) and the spherical isoperimetric inequality (Theorem [5.13)).

EXERCISE_5.31 (Ehrhard’s inequality implies log-concavity). Show that The-
orem (Ehrhard’s inequality) formally implies that the Gaussian measure 7,
satisfies the log-concavity inequality (4.28)).

EXERCISE 5.32 (Gaussian measure of large balls). Show that
&1 (v, (rBy
lim (v (rB3))

77— 400 T

EXERCISE 5.33 (Ehrhard-like (a-)symmetrization). Show that the following
statement is equivalent to the validity of Ehrhard’s inequality for convex bodies.
Let K < R™ be a convex body and let E < R™ be a k-dimensional subspace with
0 < k < n. Identify E and E* with, respectively, R* and R"* and define a set
L < RFHL by

(r,5)e L == s <& (yo_({ye B : (z,y) € K})),

where x € E,s € R. Then L is convex.
In the case when £ = u' is a hyperplane (i.e., & = n — 1) the transformation
K — L is called Ehrhard (a-)symmetrization in direction w.

=1.
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EXERCISE 5.34 (Median of the chi-squared distribution, based on [CR86]).
X

1/3
Let X be a random variable with distribution x?(n), and V = (m . Show

that the density h of V satisfies the inequality h(1 —t) < h(1 + ¢) for ¢t € [0,1],
and conclude that the median of V' is greater than 1, therefore the median of X is
larger than n — 2/3. Higher order two-sided bounds for the median can be found in

IBS].

5.2.3. Concentration tricks and treats. This section contains a selection
of largely elementary facts related to the concentration phenomenon. It supplies
a set of tools allowing for flexible applications of concentration results. As)a rule,
the facts are well known to experts in the area and are included here for future
reference. Proofs are relegated to exercises.

5.2.3.1. Laplace transform. We mostly restrict ourselves to settings where con-
centration exhibits a subgaussian behaviour as in or . Such behaviour
can be proved via estimating the bilateral Laplace transform, using-the exponential
Markov inequality P(X > t) < e *'Eexp(sX) for s > 0.

LEMMA 5.28 (Laplace transform method). Let X be a random variable such
that Eexp(sX) < Aexp(Bs?) for every s € R. Then, for.every t > 0,

max(P(X > t),P(—X > t)) < Aexp(—t2/43).
EXERCISE 5.35. Prove Lemma [5.28 about-the Laplace transform method.

EXERCISE 5.36. Prove Hoeffding’s Temma: if X is a mean zero random variable
taking values in an interval [a, b], then E exp(sX) < exp(3s*(b—a)?) for any s € R.

EXERCISE 5.37 (A large deviation bound for chi-squared variable, based on
[VemO04]). Let X be a random-variable with distribution x?(n), for example X =
|G|? where G is a standard Gaussian vector in R™. Show that Eexp(sX) = (1 —

2s)~™/2 for any s < 1/2. Coniclude that P(X > (1+¢)n) < ((1+¢) exp(fs))n/2 for

any € > 0 and that P(X'< (1—¢)n) < ((1—¢) exp(s))n/2 for € € (0,1]. (We known
from Cramér’s large deviations theorem that this bounds are sharp.) Conclude that

ne?

(5.35) P(|X —n| = en) <2exp< 4+8€/3> .

5.2,3:2.vCentral values. Once we know that a function is concentrated around
some value, we can a posteriori infer that it also concentrates around the mean or
the'median, or any other particular quantile. This can be formalized by the concept
of & central value. If Y is a real random variable, we will say that M is a central
value of Y if M is either the mean of Y, or any number between the 1st and the 3rd
quartile of Y (i.e., if min{P(Y > M),P(Y < M)} > %; this happens in particular
if M is the median of Y'). The numbers % and % play no special role and can be
changed to other numbers from (0, 1) at the cost of deteriorating (or improving)
the constants in the statements that follow (see, e.g., Remark .

PROPOSITION 5.29 (see Exercises 5.40). Let Y be a real random variable
and let M be any central value for Y. Let a € R and let constants A = 2, X\ > 0 be

2
such that, for anyt > 0,
(5.36) max{P(Y > a+1),P(Y < a—t)} < Aexp(—\t?).
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Then |M — a| < +/log(4A) \='/2. Consequently, for any t = +/log(4A) A\=1/2,
(5.37) max{P(Y > M +1),P(Y < M —t)} < 4A% exp(—\t?/2).

REMARK 5.30 (Improvements to Proposition . The expressions 4/log(4A)
and 4A? in the assertion of Proposition can be replaced by 4/log(kA) and kA2,
where k = 2 when M is the median of Y and k = e when M is the expectation of

Y; see Exercises [5.39], [5.59] and [5.40]

REMARK 5.31 (On the necessity of restrictions on ¢ in Proposition [5.29). Wé
point out that the bound on the first (resp., the second) probability appéaring
in is valid under the formally weaker restriction ¢ > (M — a)™ Xresp.,
t > (M — a)~). The restriction ¢ > +/log(4A4) A~'/2, while annoying, cannot be
completely avoided if we want to keep full generality because the hypothesis (5.36)
does not necessarily supply any information about the probabilities appearing in
the assertion if ¢ is small. However, this is only a minor inconvenience since for
such t the upper bound in is never small and often holds-for trivial reasons.
In particular, holds for all ¢ > 0 if M is the mean orany quantile between
the 27th and 73rd percentile, or if A > 3%/3/4 ~ 0.52, and always if we replace the
factor 442 by 3v/2A2. If M is the median, we can go.even further: no restrictions
on t are needed even if we replace 442 by 242 onthe right hand side of ; if
M is the mean, similar improvement (i.e., eA% on the right hand side) is possible
when A > e~ /% ~ 0.717 (these last observations.were used in Remark .

COROLLARY 5.32 (Lévy’s lemma for-eentral values). Let f: (S""1 g) = R be
an L-Lipschitz function and let M be any.central value for f. Then |M — My| <

V2log2n~Y? and, for any e > 0,
(5.38) P(f>M+s)<exp(fn—€2>.
4L2

We sketch proofs and give more precise bounds and/or variations on the above
results in Exercises W Note that while follows from Proposition
[-29) and Corollary [5-37] for n > 2 and for £ not-too-small, a separate argument
is needed to cover“the remaining cases (cf. Remark . We also point out that
while Proposition [5.29]is meant to give reasonably good estimates valid in the most
general setting ' when concentration is present, better bounds are available in specific
instances~For example, Corollary can be improved when M is the mean (see
Table 5.2 anid Exercise [5.44), and similarly in the Gaussian case.

The heuristics behind Corollary [5.32] is as follows: if we know that all sets of
measure at least % have large enlargements, then approzimately the same is true for
all sets of measure at least %. Actually, almost the same is true for much smaller
sets; here is a sample result.

PROPOSITION 5.33 (see Exercise [5.49). Let (X,d, ) be a metric probability
space and let € > 0. Suppose that any set A < X with p(A) > 3 verifies pu(A.) =
1—Ce > Then pu(Bae) =1 — Ce><" for any set B < X with w(B) = Ce=>e",

A common feature of concentration inequalities presented up to now is that
in order to translate them to concrete bounds for concrete functions, we need to
calculate—or at least reasonably estimate—the medians or expected values, or sim-
ilar parameters of the functions under consideration. A selection of tools, some of
them quite sharp, to handle expected values will be described in Section [6.1] The
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preceding three results tell us that it doesn’t really matter which central value we
employ, as long as we are willing to pay a small penalty in the form of an addi-
tional multiplicative constant in the exponent and in front of the exponential. The
following observation shows that, in the Gaussian context, sometimes no penalty is
needed at all.

PROPOSITION 5.34 (see Exercise [5.50). Let f : R™ — R be a convex function.
Denote by My (resp., Ef ) the median (resp., the expectation) of f with respect to
the standard Gaussian measure v,. Then My < Ef.

EXERCISE 5.38. Show that a random variable Y such that P(Yy > #)'<
Aexp(—t?) for t > 0 must verify EYy < EY;" < min{A4,/7/2,4/1 + log"™ A}: De-
duce the first assertion of Proposition [5.29 and the corresponding.imprevement
from Remark £.301if M is the mean of Y.

EXERCISE 5.39. Show that if Yj is a random variable such\that P(Yy > t) <
Aexp(—t?) for t > 0 and if M3,y is its 3rd quartile, then Mg < A/logt (4A).
Deduce the first assertion of Proposition [5.29]if M is between the 1st or the 3rd
quartile of Y, and the strengthening from Remark |5.30} M —a| < 4/log™ (24) \~1/2
if M is the median of Y.

EXERCISE 5.40. Prove the inequality e~ < 9% (5+9)°/2 for s,0 € R. Use it
and the last two exercises to show the second-assertion of Proposition [5.29] and its
strengthenings stated in Remark when M is the median or the mean of Y.

EXERCISE 5.41. Verify the assertions in the last two sentences of Remark [5.31}

EXERCISE 5.42. Given « €,(0,1), prove a version of (5.37)) with the right-hand
side of the form Bexp(—a\t?), where B depends only on A and « (and on & from

Remark if applicable).

EXERCISE 5.43 (Lévy’silemma for central values). Let n > 2. Use Exercise
[5:26] to derive Corollary[5.32] for any quantile between the 1st and the 3rd quartile.

EXERCISE 5.44"(The median and the mean on the sphere). Let f be a 1-
Lipschitz funetion on (S"~1, g) with n > 2. Show that the median and the mean
of f differ at-most by 1/7/8n and describe the extremal function.

EXERCISE 5.45 (Variance of a Lipschitz function on the sphere). Let f be a
1-Lipschitz function on (S"~!, g) with n > 1. Show that Var(f) < 2 and give an
example with Var(f) > -. What function gives the maximal variance?

EXERCISE 5.46 (Concentration around Ly average). Let f be a 1-Lipschitz and
positive function on ("1, g) with n > 1. Set ¢ = (Ef?)"/2. Show that for any
t>0,P(f>q+t) <exp(—nt?/2) and P(f < q—t) < eexp(—nt?/2).

EXERCISE 5.47 (The case of S'). Using directly the solution to the isoperimetric
problem on S!, show that Corollary holds also for n = 2.

EXERCISE 5.48. Let (X, d, 1) be a metric probability space and let « : [0, 00) —
[0,00) be such that u(f = Ef +t) < a(t) for any bounded 1-Lipschitz function
f X — R and for all ¢ > 0. Then, for any such function f and for any ¢ > 0,
u(f = My +t) < at/2). Equivalently, p(A:) = 1 — a(e/2) for any A < X with
#(A) = 1/2 and any € > 0. The preceding argument can be iterated, see (1.18) in
[LedO1].
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EXERCISE 5.49. Prove Proposition[5.33]about enlargements of fairly small sets.

EXERCISE 5.50 (Median vs. mean for convex functions of Gaussian variables).
Prove Proposition by showing first that the function g : t — ®~ (v, ({f < t}))
is concave.

EXERCISE 5.51. Show that the following statement is a consequence of Propo-
sition If (X1,..., Xx) are jointly Gaussian random variables and f : RY — R
is a convex function, then the median of the random variable f(X,..., Xy) does
not exceed its expectation.

5.2.3.3. Local versions. It sometimes happens that a function defined)on ‘the
sphere S"~! has a poor global Lipschitz behaviour, while its restriction to_a stibset
of large measure is much more regular. To take advantage of such situation, we
formulate a “local” version of Lévy’s lemma.

COROLLARY 5.35 (Lévy’s lemma, local version). Let Q < S™ ! be a subset
of measure larger than 3/4. Let f : (S""1,g) — R be a_function such that the
restriction of f to Q is L-Lipschitz. Then, for every € > 0

P({|f(z) — My| > &}) < P(S" N\Q) + 2exp(—ne?/4L?),
where My is the median of f.

One scenario under which the hypotheses of Corollary may be satisfied is
when we have an upper bound on some Sobolev-norm of f (a “global” parameter,
which suggests that “restricted version-ef Lévy’s lemma’ could have been better
terminology). However, our applications of the Corollary will be rather straightfor-
ward and will not require any advanced notions.

EXERCISE 5.52. Prove Corollary the local version of Lévy’s lemma.

5.2.3.4. Pushforward. Thefollowing elementary result is very useful for estab-
lishing concentration phenomenon for many classical spaces. In a nutshell, it says
that concentration results can be “pushed forward” by surjective contractions.

PROPOSITION, 5:36-(Contraction principle). Let (X,u) and (Y,v) be metric
probability spaces. Assume that there exists a surjective contraction ¢ : X — Y
which pushesforward p to v (i.e., v(B) = p(¢~1(B)) and let a € (0,1) and £ > 0.
Then

5.39 inf B.) = inf AL).
(5.39) syt s (B = nf  wlAe)

Siilarly, for any t > 0,
(540) sup vig—Eg>t) < sup p(f —Ef >1t).
g:Y >R, g 1-Lipschitz f:X—>R, f 1-Lipschitz

Moreover, (5.40)) holds if expectation is replaced by median on both sides.

EXERCISE 5.53. Prove Proposition the contraction principle. State a
more general version with ¢ : X — Y assumed to be L-Lipschitz rather than a
contraction.

EXERCISE 5.54 (Concentration on the solid cube via Gaussian pusforward). Let
Y be the solid cube [0,1]™ endowed with the Lebesgue measure and the Euclidean
metric inherited from R™. Use Proposition to show that Y verifies (5.21)) with

(C,\) = (3,7) and with (C,\) = (1, 7).
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5.2.3.5. Direct products. It is easy to see that the concentration phenomenon
passes to direct products of metric probability spaces. Indeed, let X and Y be two
such spaces that exhibit the concentration phenomenon and let X x Y be endowed
with the product measure and some reasonable product metric, such as the ¢,
product metric defined for (z1,y1) and (22,y2) in X x Y as

(5.41) d((z1, 1), (22,2)) = (dx (21, 22)" + dy (x1,22)7) "7 |

the limit case p = o0 being interpreted as a maximum. If f is a 1-Lipschitz function
on X x Y, then ¢(x) = My(, .y is 1-Lipschitz on X and hence concentrated around
its median M. Since, for each x € X, f(z, -) is concentrated around ¢(z), it follows
that f is concentrated around M. (See Exercise for precise statements.). The
above argument can be clearly iterated. Here is another elementary result_involving
product measures.

PROPOSITION 5.37 (Concentration on product spaces, see Exercise . Let
(Xi,dispi), 1 < i < n, be bounded metric probability spaces-and denote D; =
diam X;. Let X = X7 x ... x X, be endowed with the product,measure 1 and the
£y product metric d. Then, for every 1-Lipschitz function 2 X — R and for any
t>=0,

(5.42) u(f = Bf +1) < e 2D
where D = (Y, D?)l/z.

Both approaches to products of metric probability spaces that are sketched
above share an unsatisfactory feature: the constants deteriorate as the number of
factors increases. In complete generality, this feature is unavoidable (see Section
5.2.5). However, in some natural settings (e.g., the Gaussian space) dimension-free
results are possible.

EXERCISE 5.55 (Concentration on product spaces, a naive approach). For the
purpose of this exercise the median of a random variable F' is defined as Mp =
L(sup{t : P(F > t) = 1/2} + inf{t : P(F < t) > 1/2}), but most other definitions
would work if applied consistently and with sufficient care. Let (X,dy,u) and
(Y, ds,v) be metric probability spaces. Consider the space (X x Y,d, ), where
7 = @ v and~d is any metric verifying

d(($1,y)7 (.’lﬁg,y)) = d1($17m2) and d((x’yl)? (xva)) = d2(y17y2>

for allxya1,20 € X and y,y1,y2 € Y and let f : X x Y — R be a 1-Lipschitz
funtetion with respect to d.

(i) Show that the function ¢(x) = Mj(, .y is 1-Lipschitz on X.

(ii) If X and Y exhibit the concentration phenomenon in the sense of for
some C and A, then n(f > My +t) < 2Ce=M/4 for all t > 0, and similarly for
7T(f < M¢ — t).

(iii) Show that M, is a central value in the sense of Section

(iv) Same as (ii) with replaced by and M, by Ef.

EXERCISE 5.56 (Concentration on product spaces, Laplace transform method).
The Laplace functional of a probability metric space (X, d, ) is defined for A € R
as Eix,q,.)(A) = sup § e dyu, where the supremum is taken over all 1-Lipschitz
functions f : X — R with mean 0.

(i) Show that if X has diameter D, then E(x 4,)(\) < exp(A2D?/8) (use Exercise
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[

3
(ii
d

o)) -
Show that if (X1, d;, 1) and (Xo,da, u2) are two metric probability spaces, if
enotes the ¢; product metric on X; x X5 as defined in (5.41), then

o ~—

E(x,x Xa,d 1 @12) (V) S Exs s, n) N E (X, 112) (V-
(iii) Show that in the context of Proposition we have
E(x,a,)(A) < exp(A>D?/8).
(iv) Prove Proposition using Lemma
EXERCISE 5.57 (Hoeffding’s inequality). Show that Proposition implies

Hoeffding’s inequality: if Xi,...,X,, are independent random variables such that
X; takes values in an interval of length l;, then for any t > 0,
(5.43) P(S>ES+1) <e /L7,

where S = X1 + -+ X, and L> =13 + -+ + [2.

5.2.4. Geometric and analytic methods. Classical examples. In Sec-
tions and we sketched isoperimetric/concentration results on the Eu-
clidean sphere and for the Gaussian measure. While)these are admittedly very
special situations, the fact of the matter is that, in high-dimensional settings, some
form of concentration phenomenon is the rule rather than the exception.

5.2.4.1. Gromov’s comparison theorem. The first result asserts that isoperimet-
ric and concentration inequalities hold under geometric assumptions which signifi-
cantly generalize the spherical case. The invariant that can be related to sphere-like
behavior is the Ricci curvature,, which describes the rate of growth of volume under
geodesic flow on the manifold with the similar rate in the Euclidean space. For
example (see Figure [5.3)), the“cireumference of a circle of geodesic radius § (< )
on the sphere S? is 2rsin#, and hence the length of the arc of the circle corre-
sponding to an angle «a (measured on the plane tangent at the center of the circle)
is asinf ~ a(& — %) > a@(l — %) compared to af for the Euclidean plane. (Here
and in the next paragraph ~ means equality up to higher order terms.)

Repeating this calculation mutatis mutandis for an m-dimensional sphere (in
R™+1) of radius’R and a solid m-dimensional angle a we get a(Rsin £)™~! ~

a(G — %)m_l ~ afm ! (1 — "}”{21 %) compared to a#™ ! in the Euclidean setting

(i.e., in\R"). This is subsumed by saying that the Ricci curvature of RS™, the
m-~dimensional sphere of radius R, at every point and in each direction is ngl.
The mnotion is generalized to an arbitrary point p on a Riemannian manifold X
of dimension greater than or equal to 2 and to an arbitrary unit vector u in the

tangent space at p by considering infinitesimal (solid) angles in the direction of u

and finding the coefficient of % in the corresponding expression for the volume on
the geodesic sphere or radius 6 centered at p; this coefficient is denoted by Ric, (u).
The minimum of Ric,(u) over p € X and over directions u is denoted by ¢(X).
Such straightforward calculation may be difficult to perform for more compli-
cated manifolds. On a less elementary level, the Ricci curvature can be computed
using the following formula expressed in the language of Riemannian geometry:
whenever (ug,...,u,) is an orthonormal basis in the tangent space at p (thought
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the radius in
the ambient space
is sin 6

angle «

the resulting
arc of length

asinf =~ af (17 %)

a circle of
geodesic
radius 6

FIGURE 5.3. Volume growth on the sphere $2 as a function of
geodesic distance.

of as a real inner product space), we have
(5.44) Ricp(uq) = Z sec(u1,u;),
i=2

where sec denotes the sectional.curvature. This leads to an alternative explanation
of the value of the Ricci curvature for the sphere, for other manifolds of constant
sectional curvature such as thé\Euclidean space or the hyperbolic space, or for their
quotients by discrete groups_of symmetries (e.g., for tori or for the real projective
space). In the case of Tie groups, sectional curvature can be expressed via Lie
brackets. For examples-of computations, see Exercises [5.58] and [5.59}

We are now réady-to state the main result of this section. By RS™ we denote
the sphere of radius R in R™*+1!,

THEOREM.5.38 (Gromov’s comparison theorem, not proved here). Let m >
and let X be an m-dimensional connected Riemannian manifold such that ¢(X)
mt =%¢(RS™). Let A = X and let C < RS™ be a cap such that px(A)
wrsem (C), where px and prsm are normalized Riemannian volumes on, respec-
twely, X and RS™. Then, for every e > 0, ux(A:) = prsn (C:).

It follows then (same proof as Corollary [5.17)) that any 1-Lipschitz function
f+ X — R with median M} satisfies, for any ¢ > 0,

WV o

px ((F > My +1)) < 3 exp(—(m + 1)?/2R?).

As it turns out, the hypotheses of Theorem are verified for many (but not
all) manifolds that naturally appear in mathematics and that play a role in physics,
notably for most classical Lie groups and their homogeneous spaces, see Table [5.3]

EXERCISE 5.58 (Ricci curvature of Grassmannians). For Gr(k, R™) or Gr(k, C"),
the tangent space at any point can be identified with My ,,_;. If X, Y € My, ,,_, are
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TABLE 5.3. Optimal bounds on Ricci curvature for a selection
of classical manifolds. We restrict our attention to manifolds for
which that curvature is nonnegative, which in particular excludes
the hyperbolic space and its quotients. All the bounds concerning
specific objects can be derived via formula involving the
(more standard) sectional curvatures. This is straightforward for
spaces, for which the sectional curvatures are constant (R™, S"~ 1,
and P(R™)); the remaining cases are covered by Exercises
and Note that the values for the projective spaces P(V')
and the corresponding Gr(1,V) do not coincide due to different
normalization of the metric (an additional v/2 factor in when

compared to (B.5)).

X metric o(X) comments
R™ Euclidean 0
gt geodesic n—2 n=2
SO(n) standard n2 n=2
SU(n) standard 2
U(n) standard 0
Gr(k,R™) | quotient from O(n) (B.10)) "T_Q 1<k<n-1
Gr(k,C™) | quotient from U(n) (B.10) 1<k<n-1
P(R"™) Fubini-Study n—2 n=2
P(C") Fubini-Study 2n n=2
X1 x Xo | ¥5 product metrie (5.41) | min{e(X1), c(X2)}
orthogonal, one can show (see Section 8.2.1 in [Pet06]) that
(5.45) sec(X,Y) = i (IxYT -y XT|fs + XY — YTX ) .

Use this formula,and (5.44) to compute the corresponding values from Table
In some references we find the coefficient % instead of i because of a different
normalization of the metric.

EXERCISE 5.59 (Ricci curvature of classical groups). For G = SO(n), SU(n)
or-U(n), the tangent space at I (or at any point) can be identified with the corre-
sponding Lie algebra g (= so,, su, or u,). If X,Y € g are orthonormal, one can
show (see Exercise 2.19 in [Pet06]) that sec(X,Y) = 3|XY — Y X|#s. Use this
formula and to compute the corresponding values from Table

5.2.4.2. Log-Sobolev inequalities (LSI). The next technique that we present is
of analytic nature. It is based on a class of inequalities which at the first sight seem
irrelevant to the subject at hand. Let (X, u) be a measure space and let f be a
non-negative function on X. The (continuous Shannon) entropy is defined by

(5.46) Ent,(f) == f Flog fdp
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if §{fdu = 1, where we used the convention 0log0 = 0, and then extended to
non-negative integrable functions by 1-homogeneity. An explicit formula that im-
plements the extension is

(5.47) EMAﬁ:fﬂ%fw—fﬁngUfw)

By Jensen’s inequality, Ent, (f) > 0, with 400 being a possibility.

We now assume that X is a Riemannian manifold and that p is a Borel measure
on X. We say that (X, ) verifies a logarithmic Sobolev inequality with parameter
a if for every (sufficiently smooth) function f : X — R we have

(5.48) Ent,(f?) < 2af\Vf|2du.

The smallest constant « that works in is called the log-Sobolev. constant of
(X, u) and denoted by LS(X, u).

The relevance of this circle of ideas to the concentration(phenomenon is ex-
plained by the following result.

THEOREM 5.39 (Herbst’s argument). Let X be arRiemannian manifold and
let p be a Borel probability measure on X such that"LS(X,u) < a. Then every
1-Lipschitz function F : X — R is integrable and satisfies, for everyt > 0,

(5.49) ,u(F > Jqu + t) Lot/

REMARK 5.40. The above Theorem can be extended to the setting of general
metric spaces, with essentially the same proof, once |V f| is properly defined. For
example, we may use |V f|(z) =limsup,_,, % if X has no isolated points;
discrete spaces may also be handled-with some care. However, for clarity of the
exposition, we will assume forthe rest of this subsection that the underlying spaces

are (connected) Riemannian-manifolds.

Proor or THEOREM[5.39 First, we may assume that F' is smooth and that
§ F dp = 0; this may be achieved by replacing F' by an appropriate approximation
and subtracting a constant. The strategy is to show that the (bilateral) Laplace
transform of (P verifies

(5.50) Je’\F dp < e®/2 forall AeR,

which by Lemma implies that u(F > t) < e’t2/2a, as needed. To establish
(5-50)), we introduce an auxiliQary function f = fy > 0 defined via f2 = eM'—oA/2,
In other words, f = e*"/2=%2"/4 and it is readily checked that Vf = %fVF. Since
|[VF| < 1 (because F is 1-Lipschitz), it follows that |V f]? < %zf? Consequently,
by (548) (cf. (547),

2 2 a)? 2 2 a)? 2
(5.51) Ent,(f2) = [ f </\Ff 7) du— | F2du log( f du) <2 | fdn
We now set ¢(A) = { f2dp and note that differentiating under the integral sign
gives

WM:fF@>aMw-
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This allows to rewrite (5.51]) as
AP (X) = d(X) log (6(N)) <0,
which, for A # 0, is equivalent to

(5.52) %(M) <0.

On the other hand, given that ¢(0) = 1, 'Hopital’s rule yields

log (V) _ (V) _ ¢/(0) _ [Fdp
(5:53) I = =y ~ %0 -1
Combining (5.52) and (5.53) we conclude that log (¢(\))/A < 0 for A > 0-and
log (¢(N))/A = 0 for A\ < 0, which just means that ¢(\) < 1 for all X\é R. In

other words, Se’\F_O‘)‘Z/Q dp < 1 for A € R, which is just a restatement of ([5.50]) and
concludes the argument. O

0.

Apart from the median being replaced by the expected. value’/(which is largely
a matter of convenience or elegance, see Proposition in Section [5.2.3)), the
assertion of Theorem closely resembles and , which quantified the
concentration phenomenon for Lipschitz functions in~the spherical and Gaussian
settings. However, its usefulness depends on availability of spaces (X, u) verifying
logarithmic Sobolev inequalities. The next few results ensure that the supply is
indeed quite ample. For easy references the spaces and estimates on their log-
Sobolev constants are cataloged in Table 5.4l

PROPOSITION 5.41 (not proved here). Let X be an m-dimensional Riemannian
manifold such that ¢(X) > 0 and let u be the normalized Riemannian volume. Then

LS(X, ) < 7ty

PROPOSITION 5.42 (not proved here). Let u be a measure on R™ whose density
with respect to the Lebesque measure is of the form e~V , where U verifies Hess(U) =
B1 for some B > 0. Then LS(R™, u) < B~L. In particular, LS(R™,v,) < 1 and
LS(C™, %) < 3.

PROPOSITION 5.43 (not proved here, but see Exercise [5.61)). We have
LS(S',0) =1 and LS([0,1],vol;) = 72

PROPOSITION 5.44 (Tensorization property of LSI, not proved here). Given
(Xipp)y @ = 1,...0k, let X = X1 x -+ x Xi be endowed with the ly product
melric as defined in and the product measure p = p1 Q --- @ pui. Then
LS(X, p) = maxy<i<k LS(X;, ).

REMARK 5.45 (Poincaré’s inequality). Another related famous functional in-
equality is the Poincaré inequality, which reads as follows: for every smooth function
f X—->R

(5.54) Var, f < aJ\VﬂQdu,

where Var, f denotes the quantity { f>du — (X f dp)z. The smallest « is called
the Poincaré constant of (X, u) and denoted P(X, ). Inequality is implied
by the LSI (with the same constant «); it implies sub-exponential instead of
subgaussian concentration. A list of Poincaré constants for common spaces can be
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found in Table [5.4] An example of a probability measure satisfying the Poincaré
inequality but not the LSI is the (symmetric) exponential distribution on R.

REMARK 5.46 (Contraction principle for LSI and Poincaré’s inequality). If
¢ (X, u) — (Y,v) is a surjective contraction which pushes forward p onto v, then
LS(Y,v) < LS(X, 1) and P(Y,v) < P(X, p). This can be proved as in Exercise[5.53
and is especially transparent if we define |V f| as in Remark

TABLE 5.4. Bounds on log-Sobolev and Poincaré constants for a
selection of classical manifolds. We use the same metrics as in
Table [5.3] Except as indicated, the estimates on log-Sobolev con-
stants follow from estimates on the Ricci curvature (see Proposi
tion. Most of the time we use the bound LS(X, u) < (X )1}
the more precise expressions involving the dimension of X.lead to
slightly better but often cumbersome formulas. The upper bounds
on the Poincaré constants of Grassmann manifolds-follow from Re-
mark For more comments and references about Poincaré
constants, see Notes and Remarks.

X or (X, p) LS(X, ) P(X,w) Comments
([a, b], Zil;) (b;g)z (b;3)2 Prop. [5.43
gn—t ﬁ n£1 Prop. |5.43| for St
P(R") < P
P(C™) < 5 i
(R™, vy,) 1 1 Exercise |5.60|
1 2
SO(n) <9 71
SU(n) <2 T
U(n) <$ 1 [MM13]
Gr(k,R™) <2 <% 1<k<n-—1
Gr(k,C™ <1 <1 1<k<n-—1
(X x Y, ux @ py) | max{LS(X),LS(Y)} | max{P(X),P(Y)} | {2 product metric

EXERCISE 5.60 (Log-Sobolev constant for the Gaussian space). Show that
LS(R™ v,) = 1 (we have actually equality, see Proposition [5.42)).

EXERCISE 5.61 (Log-Sobolev constants for segments and circles). (i) Use the
contraction principle from Remark[5.46]to show that LS([0, 1], vol;) < 72LS(S?, o)
and P([0,1],vol;) < 7 2P(S',0). (ii) Verify that P(S',0) = 1. (iii) Verify that
P([0,1],vol;) = 72 (see Notes and Remarks for the reasons why there is actually
an equality).

5.2.4.3. Hypercontractivity, Gaussian polynomials. We give a brief introduc-
tion to the concept of hypercontractivity and illustrate it to give an example of a
concentration inequality for Gaussian polynomials.

We work on the probability space (R™,~,,). We define the Ornstein—Uhlenbeck
semigroup of operators (P;);>o as follows. For f: R™ — R a bounded measurable
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function, and x € R", let
(5.55) (P.f)(z) = E f(e_tm +4/1— e—2tG),

where G is a standard Gaussian vector in R™. These operators satisfy the semigroup
property P;P, = Psi;. Moreover it is easily checked (Exercise that for every
p=landt =0,

1PNz, vy < UFlz,vm)s
and therefore P, extends to a bounded (contractive) operator on Ly (7). Remark=
ably, a stronger statement is true: provided p > 1 and ¢ > 0, P; is a contraction

from Ly(vn) to Ly(yy,) for some g = ¢(t) > p. This phenomenon is called. hyper-
contractivity.

PROPOSITION 5.47 (not proved here, but see Exercise[5.63)). Let1 < p < g < o
and t > 0 such that ¢ < 1+ e*(p—1). Then

1P f 2y < WFIlLp(vm)-

The eigenvectors of P; are the Hermite polynomials. In the one-dimensional
case, denote by (hx)ken the sequence of polynomials ebtained by orthonormalizing
the sequence (1,z,22,...) in the space 4 = Eo(R/v;). (In this context, we

exceptionally mean N = {0,1,2,3,...}.) Given a multi-index o = (aq,...,q,) €
N, let h, be the multivariate polynomial
(5.56) ha(Zi,...,Tn) =hay{z1) - - ha, ().

The family (hg)aene is an orthonormal basis in .77, = La(R",7,), and we have
(5.57) Rohy = e tlalp,,

where |a| = >} | a; is the weight of the multi-index «, or the total degree of the
polynomial h,. Note that formula (5.57)) allows to define P,Q for any polynomial
Q@ even when t is negative,

PROPOSITION*5.48. Let @ be a polynomial in n variables of (total) degree at
most k. Then, for every q = 2,

1Ql Ly < (@ = D*21Q L5,

PROOF. For any ¢ = 0, we have P,P_;(QQ = @ (see the remark following (5.57)).
Choosing ¢ > 0 such that ¢ — 1 = e, we may apply Proposition to conclude
that Q| L, (v,) < |P-tQ|Ls(y,)- We may write the decomposition of () in the basis
of Hermite polynomials

Q = 2 cala

la|<k

for some coefficients (c,). It follows that ||QH2L2(%) =Y ¢c?, while

HP*tQH%Q(’yn) = Z th‘a‘ci < 62”‘7”@“%2(’}/”)7

|| <k

whence the result follows. O
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COROLLARY 5.49 (Concentration inequality for Gaussian polynomials). Let
Zi,...,Zy be independent N(0,1) variables and let X = Q(Z1,...,Z,), where Q

is a polynomial of (total) degree at most k. Then, for any t > (2e)k/2,
k
P (|X —EX| >tV Var X) < exp (—2t2/k> .
e
PrROOF. There is no loss of generality in assuming that Z1,...,Z, are defined

as the coordinate functions on (R",~, ), so that Proposition applies. We may
assume EX = 0, Var X = 1 and write by Markov’s inequality, for any ¢ > 2,

P(X|>t) <t 9E|X|? <t (g —1)*? < (¢"?/t)

where we used Proposition m The choice ¢ = t%/ k /e (which is larger _than 2
provided ¢ > (2¢)¥/?) yields the result. O

REMARK 5.50. The phenomenon of hypercontractivity is not specific to the
Gaussian case and is essentially equivalent to a log-Sobolev inequality (see Theorem
5.2.3 in [BGL14]). Similar concentration results are true forpolynomials in binary
random variables (see Theorem 9.21 in [O’D14]) and for polynomials on the sphere
(cf. [Mon12]). Here is a precise statement of the latter. If Q be a polynomial with
total degree at most k in ny + -+ + ng variablessand X = (Xy,...,Xq) with X;
independent and uniformly distributed on S™ ", thew for every ¢ = 2, |Q(X)]z, <
(¢ — 1)*2|Q(X)|r,. (This is slightly more general than Corollary 12 in [Mon12]
which assumes that ny = --- = ng and that the/partial degrees in each variable are
equal.) The argument is similar to the Gaussian case, using spherical harmonics
instead of Hermite polynomials. Concentration estimates similar to Corollary [5.49]
follow.

EXERCISE 5.62 (Ornstein<Uhlenbeck semigroup is contractive). Show that P;
is a contraction on Ly (v, ) forany ¢ > 0 and p > 1.

EXERCISE 5.63 (Sharpness of the hypercontractive inequality). When n = 1,
compute P;fy when fx(x) = e**. Conclude that Proposition is sharp in the
following sense: when 'q > 1 + e*(p — 1), there is no constant C' such that the
inequality || P f{z,(v,) < ClflL, () holds.

5.2.5.~Some discrete settings. All the specific instances of concentration
we identified ‘thus far involved manifolds. However, the phenomenon also occurs
in the discrete case. We will exemplify it (and the issues that may arise) on the
fundamental example of the Boolean cube {0,1}", or {—1,1}", endowed with the
normalized counting measure p and the normalized Hamming distance dg(x,y) =
%card{i : x; # yi}, which up to normalization coincides with the ¢; metric in the
ambient space R™. (This setting was already studied in Section other product
measures, or metrics induced by £,-norms for other p are also frequently considered,
more about that later.)

A nearly optimal concentration result for the Boolean cube follows already from
Proposition|5.37 However, we can do better: the exact solution to the isoperimetric
problem on the cube is known. To describe it, we introduce a total order < on {0, 1}"
(called the simplicial order) as follows: for x = (x;) and y = (y;) in {0, 1}, declare
that z <y ifeitherz; +-- +z, <y1+---+yporaxy+- - +x, =y + -+ +y, and
x precedes y in the lexicographic order. Then the initial segments for this order are
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isoperimetric sets. As opposed to the Gaussian and spherical case, the extremal
sets are not unique in any reasonable sense (see Exercise [5.66))

THEOREM 5.51 (Harper’s isoperimetric inequality, not proved here). For any
integer N with 1 < N < 2", let A < {0,1}"™ be the set of N smallest elements
with respect to the simplicial order. Then A has the smallest e-enlargements (for
all e > 0) among all sets of the same cardinality. The set A verifies

(5.58) B(z,k/2") c A c B(z,(k+1)/2")
for some ke {0,...,n—1}.

If we define the boundary of A as 0A = {y € {0,1}" : dist(y, A) = 1/n}, the
sets from Theorem also have the “smallest boundary” among subsets_of {0, 1}"
of the same measure. In this language, the condition (5.58|) says that A4 consists
of a ball and a part of its boundary. If N = Z?=1 (?) for some %, the situation
becomes simple: the optimal sets are balls, and so are their enlargements.

For example, if n = 2m + 1 is odd, an example of an optimal'set of measure %
is

A={ye{0,1}":Y <m},
where Y = Z?:l yj. The enlargements of A are‘then clearly of the form A/, =
{Y <m+ s} and, consequently,

(5.59) :U’(As/n) _ ijln (J) 1 Zj>w2L:L—s (])

where the inequality follows from Hoefldinlg’s inequality (5.43)). A similar analysis
can be performed when n is even (see Exercise for details). To summarize, we
have

COROLLARY 5.52. If A= Y{0,1}" with pu(A) > 3, s € N and € = s/n, then
(A =1-— e~2me* | Consequently, if f : {0,1}™ — R is a 1-Lipschitz function and

M 1is its median, then y{f > M +¢) < e—2ne’

_9g2
>1—c¢ s/n7

REMARK -5.53. S6me authors assert that the bound p(A.) > 1—e~2"" (for A
satisfying 11(4)"= 3) holds for all ¢ > 0. However, this may be false, but only if
n =1 or 2 and only for certain values of € € (0,1/n), see Exercise

The setting of Corollary [5.52] is a special case of that of Proposition [5.37]
(The'differences include the mean being replaced by the median, and the numeri-
cal, constants being better in the former, which is not surprising since it is a more
specialized result.) The Corollary is an elegant and sharp result, but it exhibits
the following unsatisfactory feature: if we use the standard Euclidean metric to
define the 1-Lipschitz property of f or the expansions Ay, the exponential term
in the estimates becomes e~2"/. This should be compared to the dimension-free
(and differently scaled) term %e_tz/ 2 in Theorem the Gaussian isoperimet-
ric inequality. However, there is a fix to this difficulty due to Talagrand: if the
function f is convex, its restriction to {0,1}" exhibits dimension-free subgaussian
concentration. We have

THEOREM 5.54 (Talagrand’s convex concentration inequality for the Boolean
cube, not proved here). Let A be a non-empty subset of {0,1}" < R™ and set
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da(x) = dist(x,conv A), where the distance is calculated with respect to the Eu-
clidean metric. Then

(5.60) Ee?%t < 1/u(A)

and so p(pa > t) < e t/2/u(A) for t > 0. Consequently, if f : [0,1]" — R is
a convezx (or concave) 1-Lipschitz function and M is its median with respect to p,
then u(f > M +t) < 2e=1°/2 for t > 0.

In the statement of Theorem we tacitly assume that p is a measure on R"
supported on {0,1}™. The second assertion of the Theorem follows from by
Markov’s inequality. Some finer issues related to the derivation of the last assertion
are addressed in Exercise See also Exercise

Theorem turned out to be very useful (for example in the context of
random matrices) and has been generalized in various ways. Here is\o1ne possible
statement.

THEOREM 5.55 (not proved here). Let Vi, Va, ...,V “be” finite-dimensional
normed spaces and let V = @;il V; be their sum in the {,isense (for some g = 2).
For j =1,2,...,N, let u; be a measure on V; supported on a set of diameter at
most 1 and let p = ®§-V=1uj. Further, assume that F~+V — R is 1-Lipschitz and
quasiconvez (i.e., F~1 ((foo,a]) is convex for all a°€ R) or quasiconcave. Then

(5.61) W(F > M +t) < 2e 3"~ for all t >0,
where M is the median of F with respéct-to.p.

We conclude this section with a result that is the counterpart of Theorem [5.54]
with the median replaced by the mean, whose degree of generality is intermediate
between those of Theorem [5.54] and Theorem [£.55

THEOREM 5.56 (Convex~concentration inequality for the mean, not proved
here). Let p = p1 ® -+ - ® g be a product measure on [0,1]" < R™ and let f :
[0,1]™ — R be a function which is 1-Lipschitz with respect to the Euclidean distance
and conver with respect to each variable. Then, for any t = 0,

(5.62) p(f >Bf +1) <e 2

While, by Remark (which was based on the very general results from
Section , statements about concentration around the median formally im-
ply similar statements about the mean, we state Theorem [5.50] separately since it
conibines good constants with a different set of hypotheses.

EXERCISE 5.64 (Concentration on even-dimensional Boolean cube). If n = 2m
is even, an example of a set A < {0,1}" with pu(A4) = % that is optimal in the sense

of Theorem is A= {Z;;l y; <m}u {Z;Ll y; =m and y; = 1}. Show that
also in this case p(Ay/,) =1 — e=25°/n for s € N.

EXERCISE 5.65. Show that the bound p(A4.) > 1— e=2n¢* from Corollary [5.52
may fail for some ¢ > 0 if n = 1 or 2, but that it always holds if n > 2 or if £ = 1/n.

EXERCISE 5.66 (Non uniqueness in Harper’s theorem). Give an example of a
value N and two sets of N elements in {0, 1}* with smallest e-enlargements (for all
values of €) among sets with N elements, which are distinct up to symmetries of the
hypercube. Note: it appears to be unknown whether uniqueness can be assured
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by insisting that both A and its complement are isoperimetric sets for all sizes of
enlargement.

EXERCISE 5.67 (Talagrand’s concentration inequality for concave functions).
Derive the bound u(f > M +t) < 2e~"/2 for concave f in Theorem m (or,
equivalently, u(f < M —t) < 2¢=t*/2 for convex f) from the inequalities preceding
it.

EXERCISE 5.68 (Existence of convex Lipschitz extensions). Let K < R™ be a
convex set and let f : K — R be a convex 1-Lipschitz function. Then f admits

a convex 1-Lipschitz extension to R™. Consequently, in Theorem [5.54] it doesn’t
matter whether we assume f to be convex and 1-Lipschitz on R™ or just on[0,1]™.

EXERCISE 5.69 (No dimension-free subgaussian bound in absence.of‘convexity).
Here is an example showing that convexity is crucial in Theorem Define f :
{-=1,1}" > Rby f(x1,...,2,) = max(0,z1 + - - - + z,,) /2. Show that f has median
0 and is %—Lipschitz with respect to the Euclidean metric;while z ( f>ent/ 4) =c
for some absolute constant ¢ > 0.

5.2.6. Deviation inequalities for sums of independent random vari-
ables. In this section we gather some simple butiuseful facts about deviation in-
equalities for sum of independent mean zero random wariables. We mostly focus on
two families of random variables: subgaussian.and subexponential variables.

In a probabilistic setting, the L,-norm (for p > 1) of a random variable X is
I X, = (E|X |p)1/ P As a preliminary step, consider two prototypical examples: let
Z be an N(0,1) random variable and T be a symmetric exponential variable with
parameter 1 (i.e., P(T >t) = P(<L'>'t) = fe~' for t > 0). A simple computation

(cf. (A.1)) shows that

V2 (p+ I\ p
(5:63) 2= Yo (B5) ~y%
(5.64) Tl = T(p+ 1) ~ 2

as p tends to-infinity.
The growth of the L,-norms motivates the following definitions: a random
variableXissaid to be subgaussian (or 13) when

(5.65) | X [, = sup p~?| X[, < 0.
p=1

This terminology is consistent with that introduced in the preamble to Section [5.2]

and based on the tail behavior (cf. (5.21]), ; see Exercise and Lemma

below). Similarly, X is said to be subexponential (or 11) when

X
(5.66) | Xy, = sup X1y < .
p=2 |Tlp

The reader may be familiar with the arguably less ad hoc forms of ¥, conditions,
based on either the rate of growth of the (bilateral) Laplace transform or the ap-
propriate Orlicz norms, or on the tail behavior of the type

P(|X|>t)<Ce™ for t>0



140 5. METRIC ENTROPY AND CONCENTRATION OF MEASURE

(cf. and ) There is no need to be alarmed, though: while not identical,
all these approaches lead to quantities that are equivalent up to universal constants.
The definitions 7 were chosen out of convenience in view of the sample
applications we present. See Notes and Remarks for more details and references.

If follows from and (5.64) that |T|y, = 1, |Z|ly, = +/2/7 and that
|-, < [“]l, (see Exercise[5.75). We have obviously || |y, < |- and [-[ly, < []lco,
so the present discussion also applies to bounded variables. Another important
example of subgaussian variables is obtained by taking the inner product with
a fixed vector of a randomly chosen unit vector in R? or C?. This has to be
compared with Poincaré’s lemma (Theorem which says that the Gaussian
measure appears at the limit d — oo.

LEMMA 5.57. If X is uniformly distributed on ST (resp., Sca ), then\for every
ue R (resp., ue C%), we have |[{X,u)|y, < |u|/v/d.

PrROOF. We may assume by homogeneity that |u| = 1. Let G be a standard
Gaussian vector in R%. The variable uniformly distributéd on-S%~! can be then
represented as X = G/|G|. Moreover, |G| is independent of X )and hence, for p > 1,

KG wlp = G I<X, wlly:
We have [|G]|, = [|G|lli = ka (see Section . Since (G, u) has distribution
N(0,1), we know from that [(X,u)|yy = /2/7 = k1. Therefore, using
Proposition ii), we obtain [[{X, w)y, < 1< ﬁ. The complex case is similar.
(]

We also note that the square of a subgaussian variable is subexponential, as
follows easily from the definitions. 'We now consider the case of a sum of either
subgaussian or subexponential niean\zero random variables. If the random vari-
ables are bounded, we can apply»Hoeffding’s inequality . It turns our that
essentially the same result holds for subgaussian variables.

PROPOSITION 5.58 (see Exercise[5.73)). Let X1,..., X, be independent subgaus-
sian real random variables with mean zero, and S = X1 + ---+ X,,. Define K >0
by K? = | X1|3, + "+ [ Xul3,. Then for everyt >0,

2
P(|S| >t) < 2exp ( 8€K2> .

The proof actually yields a better bound 2 exp(—%) when (X;) are symmet-
ric’random variables (i.e., such that X; and —X; have the same distribution for any
fixed 7).

In the case of 1, variables, the situation is slightly more complicated since
two tails enter the picture: subgaussian tails for moderate deviations (which are
reminiscent of the central limit phenomenon) and subexponential tails for large
deviations (which come from the tails of individual variables)

PROPOSITION 5.59 (Bernstein’s inequalities, see Exercise|5.76)). Let X1,..., X,
be independent real random variables with mean zero, and assume that | X; |y, < K
for every index i. Then, for every vector a = (ai,...,a,) € R™ and every t = 0,

P > ) < 2exp (- min ( R ))
< 2exp | —min , .
: 8K2|al3” 4K lafx

n
2, ki
1=1
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REMARK 5.60. Propositions [5.58 and [5.59] readily generalize to the complex
case (with possibly different numerical constants).

EXERCISE 5.70 (Lipschitz function on a Gaussian space is subgaussian). Let
G be a standard Gaussian vector on R™ and f : R™ — R a 1-Lipschitz function
such that f(G) has mean zero. Deduce from the results of Section that
| f(G)|y, < C for some absolute constant C. (Except for the value of the constant
C, this is a generalization of Lemma[5.57)

EXERCISE 5.71 (Khintchine inequalities). Let X = }"" | €;a;, where ay, ... @
are real numbers and (g;) is a sequence of independent random variables with
P(e; =1) =P(g; = —1) = 1/2. Show that, for any p > 1,

Ap| XL, < Xz, < BplX]L,

where A, > 0 and B, are constants depending only on p. Show that B, = O(,/p)
as p — 0.

EXERCISE 5.72 (Khintchine-Kahane inequalities). Khintchire inequalities have
a vector-valued generalization which is due to Kahane: If x4, .., z, belong to some
normed space Y and X' denotes the random variable |31 e;xi|y, then

ANX' |z, < X'z, < Bl X!z,
where A}, > 0 and B,, are constants depending)only on p. Prove this. Moreover, we
have A; = A} = 1/4/2 and B, = O(y/p) as p.— 0.

EXERCISE 5.73. Prove Proposition [5.58 by following the outline given below.
(i) If X is symmetric, show that Eexp(AX) < exp(§]X|?7,A?) for any A > 0.
(ii) Let Y be an independent copy-of a mean zero random variable X. Show that
Eexp(AX) < Eexp(A(X —Y)). Using this symmetrization trick, deduce from (i)
that the inequality Eexp(AX) < exp(2¢] X |[7,A%) holds for any mean zero random
variable X.

(iii) Deduce Proposition using Lemma

EXERCISE 5.74 (Linear combinations of subgaussian random variables are sub-
gaussian). Shew the-following variant of Proposition if X1,...,X, are inde-
pendent and mean zero, then | Xy + - + Xy [y, < C([X0]3, +--- + | Xa]3,) for
some absolute.constant C.

EXERCISE 5.75. Verify that ||Z|y, = +/2/7 and that, for any variable X,
[ X < 1 X s -

EXERCISE 5.76 (Bernstein’s inequalities). (i) Show that if EX = 0 and | X ||y, <
1, then Eexp(AX) < 1+ 2)% < exp(2A?) for |A| < 1/2 (cf. Lemma[5.28).
(ii) Under the hypotheses of Proposition assuming K = 1 and denoting S =
a1 Xy + -+ + a, X, prove that Eexp(AS) < exp(2A? Y] a?) for |A| < 1/(2]al ).
(iii) Prove Proposition [5.59]

Notes and Remarks

Section An encyclopedic reference for sphere packings is the book [CS99].
Other valuable and historically significant references are [Rog64), [B6r04), [EF'T97].

Packing and covering on the Euclidean sphere and the discrete cube.
To complement Proposition it has been proved in [BGK™01] that for 0 < ¢ <
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arccos /2/n, we have V(t) > (64/ncost) (sint)"~! (similar estimates appear in
[B6r04], Lemma 6.8.6). For some values of n,t (roughly for ¢ > 1.14 and for large
n), this is better than the lower bound from , and similarly superior to the
improved bound from Exercise if t > 1.221.

The random covering argument from Propositionis due to Rogers [Rog57,
Rog63|. The factor Cnlogn from Corollaryis usually referred to as the density
of the covering, even though calling it “the overlap” or “the redundancy” would seem
more logical. Both the original Rogers’s argument, and the one presented here,
allow achieving C' = 1 at the expense of additional lower order terms (see Exercise
and its hint). Recent advances by Dumer [Dum07| improve the bound on“the
density to (3 + o(1))nlogn. The paper [Dum07] establishes also a density. beund
%n logn + 2nloglogn + 5n, valid for all € € (0,1) and all n > 4. It should-be noted,
however, that the latter result deals with a slightly easier problems covering the
sphere S"~1 = R" by balls whose centers are not required to belonig td S"~* (i.e.,
with the parameter N’ from Exercise . Finally, at the price of increasing the
constant C, the result from Corollary [5.5] can be strengthienéd as follows: for any
dimension n and angle ¢, there is a covering of S™~! by caps of radius ¢ such that
any point belongs to at most 400n logn caps [BWO03].

Since the sphere looks locally like a Euclidean space; as the radii of the caps
tend to 0, the packing/covering problems for S™~*.converge to the corresponding
problems for R?~!. (The original random covering argument of Rogers [Rog57|
considered an even more general questions economical coverings of R™ by translates
of an arbitrary convex body—the spherical variant being an afterthought—and
led to an upper bound of nlogn + nloglogn + 5n for the appropriately defined
asymptotic density.) In that settings a lower bound on density of optimal coverings
by Euclidean balls is Q(n) [CFR59]and this estimate can be transferred back to
S™~1 if the radius is small enough; see Example 6.3 in [BW03| for an argument
that works if € < arcsin(1/y/n).

References for the results mentioned about packing are [Ran55| (Rankin) and
IKL78] (Kabatjanskii~Levenstein), we refer to [CS99| for more information (see
also [BNO6al). Again; when the radius of the cap tends to 0, the problem becomes
the classical sphere packing problem in R™. In this context, a classical result due to
Minkowski-Hlawka shows the existence of lattice packings of Euclidean balls (or ac-
tually, of any symmetric convex body) in R™ which cover a proportion 1/2"~! of the
space (a-k.a, packing density). Remarkably, this result has been only marginally im-
proved in the past century [Rog47), [DR47, Bal92b] and is exponentially far from
Kabatjanskii-Levenstein upper bound—which is approximately of order 0.66"—for
the proportion covered by a (non-necessarily) lattice packing (see [Gru07] for more
on this topic).

Covering and particularly packing in the Hamming cube is of fundamental
importance in coding theory, see, e.g., [Rot06), [CHLL97|. The case of (very
small) balls of radius 1/n in {0,...,q — 1}" is treated in [KP88§.

The Gilbert—Varshamov bound has been improved in the g-ary cube for certain
large values of ¢ in [TVZ82], using a link with modular curves.

Packing and covering for convex bodies. For early references on metric
entropy of convex bodies see [CS90], [Pis89b].

The arguments from [Barl4] imply the following improvement on the volu-
metric bound from Corollary for € € (0,1), any symmetric convex body in
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R™ is (1 + ¢)-close in Banach—-Mazur distance to a polytope with (C'/4/e)™ vertices.
(This is sharp: consider the case of the sphere.) To the best of our knowledge, it is
not known whether analogous statement holds for not-necessarily symmetric bodies
and the affine version of the Banach—Mazur distance. Similar questions can
be considered for large €, or even ¢ growing with the dimension. In the case of the
sphere, this is essentially the problem considered in Exercise Again, [Bar14]
contains good estimates in the general case. However, the bounds from [Barl4]
deteriorate as the asymmetry of the body (defined, for example, as the minimal dis»
tance dpps to a symmetric body) increases. Estimates that are superior for,some
ranges of parameters can be found in [Szal.

Let us also mention an important open problem, known as the duality~conjec-
ture: do there exist absolute constants c¢,C' > 0 such that for every two-symmetric
convex bodies K, L < R™ we have

(5.67) log N(L°, K°) < Cllog N (K, cL)?

This was proved when K or L is the Euclidean ball [AMS04] and extended to
the case when a bound on the K-convexity constant (as defined in Section [7.1.2)
is present in [AMSTJ04|. Another possible generalization to the setting of non-
symmetric convex bodies is more tricky; in that case;-even the proper formulation
of is not entirely clear.

A deep fact about covering numbers is the following (|[Mil86], see also the dis-
cussion in [Pis89b]): there is an absolute constant' C such that, for every symmetric
convex body K < R" there is an 0-symmetric-¢llipsoid & such that

(5.68) max (N (K, &), N(&,K)) < C".

Note that since metric entropy. duality is known to hold when one of the
bodies is an ellipsoid, it follows then)that similar bounds automatically hold also
for N(K°,&°) and N(&°, K°)\(In the original definitions, all four quantities were
included explicitly or implicitly.) Such an ellipsoid & is called an M -ellipsoid for
K, and K is said to be(in the M -position when B% is an M-ellipsoid for K. The
M-ellipsoids are discussed in detail in [AAGM15].

Metric entropy of classical manifolds. Theorem is from [Sza82],
which covers-the case of all metrics induced by unitarily invariant norms (see
also [Sza83), [Sza98| and [Paj99]). Examples of packings in some Grassmannians
(mostly low-dimensional), some of them optimal, can be found in [CHS96), [SS98|.
More recent references, motivated by information transmission issues and concen-
trated~on different asymptotics (k fixed and n tending to infinity), are [BNO2|
BNO5l, BNO6b]. It appears that the theoretical computer science community is
not aware that questions of that nature were considered in AGA already in 1980s.

Section Classical general references about concentration of measure are
[Led01] and [Sch03]. We particularly recommend the recent monograph [BLM13|.
For a presentation directed towards applications to data science, see [Ver].

Isoperimetry and concentration. A geometry-oriented reference about
isoperimetric inequalities is [BZ88|. The paternity of the isoperimetric inequal-
ity on the sphere (Theorem [5.13) is usually attributed to Lévy [Lév22, Lév51]
although the arguments he presented were not fully rigorous; [Sch48] is usually
cited as the first rigorous proof. Remarkably, the functional version (Lévy’s lemma,




144 5. METRIC ENTROPY AND CONCENTRATION OF MEASURE

in the language of our Corollary appears explicitly in [Lév22] (see p. 279)
and is therefore almost one century old!

A self-contained proof of the isoperimetric inequality on S™~!, based on the
concept of spherical symmetrization, appears in [FLMT7|. Another symmetriza-
tion procedure (the two-point symmetrization) is applied in [Ben84]. The simple
proof of the non-sharp inequality from Proposition is based on [AdRBV98|.
Proposition is from [JS].

The Gaussian isoperimetric inequality was proved independently by Borell
[Bor75b| and Sudakov—Tsireslon [SCT4]. For a proof of Poincaré’s lemma (Theo=
rem going beyond the weak convergence version from Exercise we Tefer
to [DF87] (which also advocates that the statement was first formulated by Borel
and not by Poincaré). See also [Led96| and references therein. For a direéet proof
of concentration of measure on Gauss space, see [Pis86].

Ehrhard’s inequality was proved in [Ehr83| for convex sets, then ex-
tended in [Lat96] to the case where only one of the sets set is convex, with the
general case being treated in [Bor03|. A priori, deriving an isoperimetric inequal-
ity such as requires validity of for an arbitrary ‘Borel set and a ball;
the paper [Ehr83|, however, contains a direct application of the technique to prove
(5:29). A general reference for this circle of ideasis [Lat02].

The concept of central values was formalized and applied in the context of QIT
in [ASW11], which also contains versions of Corollaries and However,
instances of the arguments can be found in [Has09] and in AGA literature dating
to (at least) 1980s.

Proposition appears in [Dmi90, Kwa94, [Fer97|. Exercise appears
as Proposition 1.7 in [Led01]. Proposition is Corollary 1.17 from [Led01].

There are various generalizations.of Hoeffding’s inequality appearing in Exercise
notably due to Azuma [Azu67] and McDiarmid [McD89] in the context of

martingales.

Geometric and analytical methods. General references for Section
are [MS86, [Sch03, [DS01), (GMO00, BLM13), BGL14, [GZ03|.

Gromov’s, comparison theorem (Theorem appeared first in the preprint
[Gro80]. A proof can be found in an appendix in [MS86]. A new proof and
an extension ‘tornon-Riemannian spaces was proposed recently in [CM15]. While
the theorem ‘is sharp as stated, there is a reason to suspect that a more precise
result-should be available: the proof proceeds via a local/variational argument
andthe’globally normalized volume appears only a posteriori. A more satisfactory
variant appears in [Mil15]. In addition to the curvature, it takes into account the
actual diameter of the manifold in question, which may be strictly smaller than
the bound following indirectly from the curvature. However, since the results in
[Mil15] necessarily involve model manifolds more complicated than spheres, their
statements are somewhat technical.

The case of manifolds of dimension 1 is a little special. First, while the definition
of Ricci curvature in dimension 1 needs to be properly construed, the only sensi-
ble value is 0 since every such manifold looks locally like a segment. Accordingly,
Proposition [5.41] is then vacuously true. Next, the solution to the isoperimetric
problem in S! (resp., in R) is very simple: among sets of any (positive, but not
full) measure, the boundary is the smallest if it consists of exactly two points.
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Consequently, the solutions, both for the “smallest boundary” and the “smallest en-
largement” problems, are arcs (resp., segments). However, finer analytic statements
(including but not limited to LSI) are interesting and highly nontrivial already in
dimension 1. For example, in view of Proposition the validity of for
the 1-dimensional Gaussian measure implies the same inequality in any dimension
(with the same constant a, which, in view of Proposition can be taken to be
1, which is optimal). Indeed, even statements about spaces consisting of only two
points can be deep as for example in the elementary proof of the Gaussian isoperis
metric inequality presented in [Bob97|. We will return to the same theme further
when reporting on developments directly related to LSI and hypercontractivity:

Log-Sobolev inequalities (LSI) were introduced in a seminal paper by Gross
[Gro75|]. Again, the case of manifolds of dimension 1 (segments, cireles).is.a little
special; see [GMW14] for an elementary overview of this aspect of the subject and
for references. The link with concentration of measure (the Herbst ‘argument) orig-
inates in an unpublished letter from Herbst to Gross. The connection between LSI,
Ricci curvature, and the Hessian of the density was put forward in [BES5, Bak94].
For a comprehensive treatment of functional inequalities (including complete refer-
ences), see [BGL14]|. Another fruitful approach is the connection between LSI and
the quadratic transportation cost inequalities; see* Chapter 6 in [Led01].

As exemplified in Table the values of the Poincaré constants can often
be computed exactly. Indeed, the Poincaré inéquality can be rewritten as
Var, f < af(—Af)fdu, where A is theLaplace-Beltrami operator on Lo (X, p1).
It follows that the optimal « is equal to-the reciprocal of the “spectral gap,” i.e.,
the smallest nonzero eigenvalue of —A. In some examples the eigenfunctions of the
Laplace—Beltrami operator can be explicitly described: for the Gauss space they
are the Hermite polynomials, for, the sphere they are the spherical harmonics (see
the elementary [See66|, or [BGMT71]| which covers also the case of the projective
spaces). On S"1 equality in is achieved for functions of the form x — {z,y)
with y € R™. For Lie groups there is a connection with the spectrum of the Casimir
operator and representations of the associated Lie algebra (see Proposition 10.6 in
|[Hal15]), which allows to derive the entire spectrum of —A. The case of SO(n) and
SU(n) appears in [SC94] (for U(n), see [Voi91]). Note that in these examples there
is equality in when f is a function of the form M — Tr(AM) for A € M,,. For
a complete list of semisimple Lie algebras, see [Rot86]. The spectrum of Grassmann
manifolds is considered in [Tsu81), EC04, [TKO04, [Hal07|, which allows in principle
to retrieve the value of the Poincaré constant for specific dimensions if needed.

Hypercontractivity for the Ornstein—Uhlenbeck semigroup (Proposition
has \been first established by Nelson [Nel73|. The connection with log-Sobolev
inequalities was put forward by Gross [Gro75|.

In many situations, the Gaussian case can be treated as a limit case from
the case of the hypercube via the central limit theorem. By the tensorization
property (Proposition, this amounts ultimately to verifying statements about
the two-point space {—1,1} (see [Gro75| for a proof of the Gaussian LSI along
these lines). The hypercontractivity inequality on the discrete cube is known as the
Bonami-Beckner inequality [Bon70, [Bec75|. Some variants of Proposition
appear in [Jan97]. For a more sophisticated technology giving sharp estimations
on the moments of Gaussian polynomials (or Gaussian chaoses) see [Lat06]. The
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statement about concentration on polynomials on products of spheres appearing in
Remark follows from the proof of Corollary 12 in [Mon12].

Discrete settings. A reference focusing on the case of the hypercube is
[O’D14] (it contains in particular the versions of Proposition and Corollary
for the hypercube alluded to in Remark @ . In addition to [O’D14], general
references for Section[5.2.5are [Mat02, McD98]. The main statement of Theorem
5.51| was proved in [Har66| and rediscovered in [Kat75|. A short proof may be
found in [FF81]; we also recommend the reference [Lea91]. Theorem deals
with vertex-isoperimetry. If we consider instead edge-isoperimetry (minimizing the
number of edges joining A to A€), the optimal sets are no longer Hamming balls
but subcubes.

Theorem [5.54]is taken from [Tal88] (Note that [Tal88] states the result for the
cube {—1,1}" and so the coeflicient in the exponent in the estimate-corresponding
to is there §.) Theorem appears in [JS91] and [Mec04]. The latter
paper addresses general unconditional direct sums and not -only-f,-sums; see also
[Mec03]. Similar results, but with quite different proofs were.presented in [Mau91]|
and [Dem97|. The most abstract (and most flexible) statements are arguably in
[Tal95), [Tal96b, [Tal96al. The arguments addressing settings more general than
that of Theorem @l usually led to a coefficient % in)the exponent as in ,
except for [Tal95], which includes a statement, (Theorem 4.2.4) featuring coefficient
%, but at the cost of introducing additional factors of lower order and restricting
the range of t. A clean proof of Theorem (which also has coefficient % in the
exponent) can be found in [BLM13]; the argument is attributed to [Led97] and
the result itself to [Tal96b].

Deviation inequalities. “Some references for Section are [Verl2| and
[CGLP12| (the latter treats alsoythe case of intermediate growth between sub-
gaussian and subexponential), “AS pointed out in the main text, there are several
possible forms of 1, conditiens and of definitions of the ,.-norms. The original
ones were (presumably) in terms of Orlicz/Young functions: given an increasing
convex function ¢ «»R7)— Ry with ¢(0) = 0 and ¢(x) — o0 as & — 00, we may
define a the t-norm of a random variable X as (for example)

[ Xy = inffe >0 : Ey(|X|/c) < (1)}

If one considers ¢, (z) = exp(a”) — 1 (r = 1), then, for r = 1,2, one gets norms
which dre‘equivalent (although not equal) to the ones defined in and .
For -precise statements and proofs, see Theorem 1.1.5 in [CGLP12|, which also
covers the link to (the rate of growth of) the Laplace transforms mentioned in the
niain text; cf. Lemma [5.28 and Exercise Overall, Section 1.1 of [CGLP12]
is an excellent reference for 1, conditions/norms, which are otherwise difficult to
extract from books/surveys on the more general Orlicz spaces.

For a historical account of Bernstein’s contributions, we refer to pp. 126-128
in [AAGM15|. For more precise results about moments of sums of independent
variables, see [Lat97|. For non-commutative analogues of these inequalities (i.e.,
for sums of random matrices), see [Trol12].

Finally, among other techniques to prove concentration of measure, we men-
tion the so-called martingale method which implies for example concentration on
permutation groups (see [Sch82, Mau79, [MS86]): If we equip the symmet-
ric group &, with the uniform probability measure and the distance d(c,T) =
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Leard{i : o(i) # (i)}, then any 1-Lipschitz function f on (&,,d) satisfies
P(f = Ef +t) < exp(—nt?/8) for any t > 0.

The best constants in Khintchine inequalities (see Exercise have been
found in [Sza76] (who proved A; = 1/4/2) and in [Haa81] (for p > 1). The
Khintchine-Kahane inequalities from Exercise were first proved in [Kah85].
The correct asymptotic order of the constants as p — o0 was found in [Kwa76],
while the value A} = 1/4/2 is from [LO94]. A complete proof of the Khintchine—
Kahane inequalities can be found by consulting Theorem 3.5.2 of [AAGM15].



