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CHAPTER 5

Metric Entropy and Concentration of Measure in
Classical Spaces

This chapter presents two fundamental concepts which will be applied in later
chapters: the metric entropy (a.k.a. packing and covering) and the concentration of
measure. Their conjunction leads to the Dvoretzky theorem, which will be presented
in Chapter 7.

5.1. Nets and packings

We will introduce now the complementary concepts of covering numbers (also
called metric entropy) and packing numbers, which quantify the complexity of a
given compact metric set. It will turn out that these parameters are closely related
to the volume and the mean width considered in the preceding chapter.

We first analyze the special but fundamental cases of the sphere and the discrete
cube. We subsequently discuss classical groups and manifolds, and general convex
bodies.

5.1.1. Definitions. If K is a compact subset of a metric space pM,dq, a finite
subset N Ă K is called an ε-net of K if, for every x P K, distpx,N q ď ε. Since this
is equivalent to the union of the corresponding balls containing K, an alternative
terminology is that of a covering , see Figure 5.1. We denote by NpK, εq (or by
NpK, d, εq, if there is an ambiguity as to the choice of the metric) the minimal
cardinality of an ε-net in K.

A subset P Ă K is called ε-separated if any pair px, yq of distinct elements
from P satisfies dpx, yq ą ε. This property implies that the balls of radius ε{2
centered at elements of P are disjoint (a configuration usually referred to as packing ,
whence the usage of the letter P ; see Figure 5.1), and in most contexts the two
properties are essentially equivalent. We denote by P pK, εq or P pK, d, εq the largest
cardinality of an ε-separated set in K. The quantities NpK, εq and P pK, εq are
called, respectively, covering numbers and packing numbers. The function ε ÞÑ
NpK, d, εq, and its various generalizations, is also often referred to as the metric
entropy of pK, dq.

For any compact metric space K, the following two relations between nets and
packings are fundamental. First, if P is a 2ε-separated set and N is an ε-net, then
the open balls of radius ε centered at elements from N cover K, and each ball
contains at most one element of P. Second, an ε-separated set which is maximal
(with respect to inclusion) is an ε-net (the reader not familiar with this circle of
ideas is encouraged to check these elementary facts). It follows that we have the
inequalities

(5.1) P pK, 2εq ď NpK, εq ď P pK, εq.

107



Pe
rso

na
l u

se
on

ly.
Not

for
dis

tri
bu

tio
n

108 5. METRIC ENTROPY AND CONCENTRATION OF MEASURE
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Figure 5.1. A net (left) and a packing (right) for an equilateral
triangle (with the Euclidean metric in R2). For optimal packings
or covering with few “classical” convex bodies in the plane (squares,
circles or triangles), see the website [@1].

Packings and coverings have been extensively studied, particularly for “stan-
dard” metric spaces. In various applications it is useful to know that there exist
“large” packings and/or “small” nets, and often to be able to exhibit them in a con-
structive manner. By (5.1), both notions are equivalent whenever the resolution
parameter ε is specified only up to a multiplicative constant. On the other hand, for
some applications, such as coding theory, very precise results are in high demand.

In many situations the isometry group of K acts transitively and preserves a
natural probability measure µ. In particular, all balls of radius ε have then the
same measure, denoted by V pεq, and we have the simple inequalities

(5.2)
1

V pεq
ď NpK, εq ď P pK, εq ď

1

V pε{2q
.

Exercise 5.1. Here, we introduce variations on the definitions and check their
equivalence. LetM be a metric space and K a compact subset. Denote by N 1pK, εq
the smallest cardinality of a family of closed balls of radius ε in M whose union
contains K (the difference with the definition of NpK, εq is that the centers are not
required to be in K). It is sometimes more convenient to allow sets of diameter
ď 2ε in place of balls of radius ε; call the resulting the quantity N2pK, εq. Let also
P 1pK, εq be the largest cardinality of a family of disjoint open balls of radius ε{2
with centers in K. Check the inequalities

N2pK, εq ď N 1pK, εq ď NpK, εq ď P pK, εq ď N2pK, ε{2q

and
P pK, εq ď P 1pK, εq ď NpK, ε{2q.

Give examples showing that inequalities may be strict (see also Exercise 5.16).

5.1.2. Nets and packings on the Euclidean sphere. We first consider the
specific case of the sphere Sn´1 for n ě 2; denote by g the geodesic distance and by
σ the normalized Haar measure. In some cases, it is more appropriate to consider
the extrinsic distance inherited from Rn. However, any result about one distance
transfers automatically to the other distance (see Appendix B.1 for details). We
give a brief overview of known estimates for packing and covering numbers for the
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5.1. NETS AND PACKINGS 109

sphere. The first point of business will be a discussion of volumes of spherical caps,
which enter the subject via (5.2).

5.1.2.1. Estimates on volumes of spherical caps. Given x0 P S
n´1, let Cpx0, εq

be the cap of center x0 and geodesic radius ε, and denote V pεq “ σpCpx0, εqq
(ε P r0, πs is tacitly assumed). We have

(5.3) V pεq “

şε

0
sinn´2 θ dθ

şπ

0
sinn´2 θ dθ

.

The denominator at the right-hand side of (5.3) (Wallis integral) equals
?

2π{κn´1.
Note that V pπ´ εq “ 1´ V pεq, in particular V pπ{2q “ 1{2. For fixed 0 ă ε ă π{2,
V pεq tends to 0 exponentially fast in the dimension: one has V pεq1{n „ sinpεq. The
following proposition gives elementary but reasonably precise bounds. The first one
is sharp when the radius is small, and the second one for a radius slightly smaller
than π{2.

Proposition 5.1. If 0 ď t ď π{2, then V ptq ď 1
2 sinn´1

ptq. More precisely

(5.4) p
?

2πκnq
´1psin tqn´1 ď V ptq ď p

?
2πκn cos tq´1psin tqn´1,

where κn „
?
n is given by (A.8). Moreover, if n ą 2, then

(5.5) V pπ{2´ tq ď
1

2
expp´nt2{2q.

•
0

•
x

t
sin t

C(x, t)

Sn−1

Figure 5.2. Proof that V ptq ď 1
2 sinn´1

ptq. The surface area of
Cpx, tq (bold) does not exceed the surface area of a half-sphere of
radius sin t (dashed).

A proof of (5.4) is sketched in Exercise 5.4. It is based on the fact that, for
convex sets, surface area is monotone with respect to inclusion (Exercise 5.2). The
inequality (5.5) is from [Jen13] (see also [JS]); a version with n ´ 1 instead of n
in the exponent is proved in Exercise 5.3.

The following fact is only marginally used in what follows, but we include it
since we did not encounter it in the convexity/functional analysis literature.

Proposition 5.2 (Convavity properties of V p¨q, see Exercise 5.5). If V prq is the
measure of a spherical cap of radius r, then the function t ÞÑ log V petq is concave.
A fortiori, the function r ÞÑ log V prq is strictly concave on r0, πs.
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110 5. METRIC ENTROPY AND CONCENTRATION OF MEASURE

A consequence of Proposition 5.2 is that, for 0 ď s ď t ď π,

(5.6) V ptq ď

ˆ

t

s

˙n´1

V psq.

Inequality (5.6) is a well-known fact in differential geometry; for example, it consti-
tutes the trivial case of the Gromov–Bishop comparison theorem. It is very likely
that Proposition 5.2 also follows from similar general results.

Exercise 5.2 (Surface area is monotone with respect to inclusion). Show that
if K Ă L are convex bodies, then areapKq ď areapLq.

Exercise 5.3. Using Exercise 5.2, show that for t P r0, π{2s, we have V ptq ď
1
2 sinn´1

ptq. Conclude that

V pπ{2´ tq ď
1

2
pcos tqn´1 ď

1

2
expp´pn´ 1qt2{2q.

This is only slightly weaker than the bound (5.5) and sharper than the estimates
typically cited in the literature.

Exercise 5.4 (Sharp bounds for volumes of caps). Using Exercise 5.2, show the
inequalities (5.4). Then strengthen the lower bound to p

?
2π κn cospt{2qq´1 sinn´1 t.

Exercise 5.5 (Convavity properties of V p¨q). Prove Proposition 5.2 and derive
the inequality (5.6).

5.1.2.2. Nets in the sphere. If ε P rπ{2, πq, we clearly have NpSn´1, g, εq “ 2.
The interesting case is when ε P p0, π{2q. In that range, the proportion V pεq of the
sphere covered by a cap of geodesic radius ε decays exponentially with n. It follows
that the cardinality of ε-nets grows also exponentially fast. For example, the first
estimate from Proposition 5.1 implies that, for ε P p0, π{2q,

(5.7) NpSn´1, g, εq ě V pεq´1 ě
2

sinn´1 ε
.

A basic and extremely useful bound for ε-nets (formulated in the extrinsic distance)
is the following

Lemma 5.3. For every dimension n and every ε ď 1, there is an ε-net in
pSn´1, | ¨ |q with less than p2{εqn elements. In other words, NpSn´1, | ¨ |, εq ď p2{εqn.

The standard and often quoted volumetric argument (which is a special case
of Lemma 5.8 below) gives a slightly worse bound p1` 2{εqn. The improved bound
p2{εqn can be achieved by a finer analysis combining a version (based on [Dum07])
of Proposition 5.4 below with the use of explicit nets in lower dimensions, see [Swe].
We also note that there exist simple explicit ε-nets in Sn´1 with cardinality at most
pC{εqn (see Exercise 5.22).

To discuss finer results it is more convenient to switch to the geodesic distance.
We know from the volume argument (5.2) thatNpSn´1, g, εq ě V pεq´1. It turns out
that this trivial estimate is remarkably sharp: an almost-matching upper estimate
is provided by an elegant random covering argument due to Rogers.

Proposition 5.4 (Random covering bound). For every 0 ă η ă θ, we have

NpSn´1, g, θ ` ηq ď

R

1

V pθq
log

ˆ

V pθq

V pηq

˙V

`
1

V pθq
.
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5.1. NETS AND PACKINGS 111

Proof. Let N “ r 1
V pθq log pV pθq{V pηqqs. Choose pxiq1ďiďN randomly, inde-

pendently according to σ, and denote A “
Ť

tCpxi, θq : 1 ď i ď Nu. The expected
proportion of the sphere missed by A can be computed using the Fubini–Tonelli
theorem

(5.8) EσpSn´1zAq “ p1´ V pθqq
N
ď expp´NV pθqq ď

V pηq

V pθq
.

In particular, there exist pxiq such that σpSn´1zAq ď V pηq{V pθq. Let tCpyj , ηq :
1 ď j ďMu be a maximal family of disjoint balls of radius η contained in Sn´1zA.
It follows from (5.8) that M ď 1{V pθq. By construction, Sn´1 is covered by the
family

 

Bpxi, θ ` ηq : 1 ď i ď N
(

Y
 

Bpyj , 2ηq : 1 ď j ďM
(

. �

Corollary 5.5 (Neat random covering bound, see Exercise 5.8). For every
0 ă ε ă π{2, we have

(5.9) NpSn´1, g, εq ď Cn log nV pεq´1

for some absolute constant C.

It follows from (5.7), (5.9) and (5.4) that, for a fixed ε P p0, π{2q, we have

(5.10) lim
nÑ8

1

n
logNpSn´1, g, εq “ ´ logpsin εq.

We note for future reference the following fact.

Proposition 5.6. Let P Ă Rn be a polytope such that dBM pP,Bn2 q ď λ. Then
P has at least 2 expppn´ 1q{2λ2q vertices and at least 2 expppn´ 1q{2λ2q facets.

Proof. Consider first the statement about vertices. Without loss of generality
we may assume that λ´1Bn2 Ă P Ă Bn2 , and that the vertices of P are unit vectors.
Let V be the set of vertices of P . The hypothesis is equivalent to saying that V
is a θ-net in pSn´1, gq for cos θ “ 1{λ (see Exercise 5.7). Using (5.7), it follows
that cardV ě 2psin θq´pn´1q ě 2 expppn ´ 1q{2λ2q, where we used the inequality
sin arccos t ď expp´t2{2q for 0 ď t ď 1. Since dBM pP,Bn2 q “ dBM pP

˝, Bn2 q, and
since vertices of P ˝ are in bijection with facets of P , the statement about facets
follows. �

We also point out that it is possible to approximate the sphere by polytopes with
at most exponentially many vertices and, simultaneously, at most exponentially
many facets (see Exercise 7.22).

Exercise 5.6. Check that the constant 2 cannot be replaced by a smaller
number in the statement of Lemma 5.3.

Exercise 5.7 (Nets and convex hulls). Let N Ă Sn´1 and θ P p0, π{2q. Prove
that N is a θ-net in pSn´1, gq if and only if pcos θqBn2 Ă convN .

Exercise 5.8 (Proof of the neat random covering bound). Deduce Corollary
5.5 from Proposition 5.4.

Exercise 5.9 (On the optimality of Corollary 5.5). Let Cn be the smallest
number such that the inequality NpSn´1, g, εq ď CnV pεq

´1 holds for any ε ą 0.
By considering ε slightly smaller than π{2, show that Cn ě n`1

2 . A less trivial fact
is that Cn “ Ωpnq is also witnessed by taking ε very close to 0, see [CFR59] and
Notes and Remarks.
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112 5. METRIC ENTROPY AND CONCENTRATION OF MEASURE

Exercise 5.10 (Nets in the projective space). Prove the following result, which
will be useful in Sections 8.1 and 9.4. Let ε P p0, π{2q. If N is an ε-net in
the projective space PpCdq (equipped with the Fubini-Study metric (B.5)), then
cardN ě pc{εq2d´2 for some absolute positive constant c. In the opposite direction,
there exists an ε-net of cardinality not exceeding pC{εq2d´2.

Exercise 5.11 (Volume of balls in PpCdq). Consider the projective space
PpCdq equipped with the Fubini-Study metric (B.5) and the invariant probabil-
ity measure. If ε P p0, π{2s, then the measure of any ball of radius ε in PpCdq is
sin2d´2 ε.

5.1.2.3. Packing on the sphere. Recall that P pSn´1, g, εq is the maximal num-
ber of disjoint caps of geodesic radius ε{2. The exact value is known for π{2 ď ε ă π
(we have P pSn´1, g, π{2q “ 2n, see Exercise 5.12) and so we restrict our discussion
to the range 0 ă ε ă π{2.

Packing problems are usually harder than covering problems. For example, as
opposed to (5.10), the exponential rate at which packing numbers increase, i.e., the
value of

ppεq “ lim sup
nÑ8

1

n
logP pSn´1, g, εq

is not known for ε P p0, π{2q. We know from (5.2) that V pεq´1 ď P pSn´1, g, εq ď
V pε{2q´1, and therefore

(5.11) ´ log sinpεq ď ppεq ď ´ log sinpε{2q.

In this context the lower bound is known as the Chabauty–Shannon–Wyner bound
and actually corresponds to using the trivial algorithm to produce packings: pick
separated points, no matter how, as long as you can. It is an amazing fact that
the lower bound ppεq ě ´ log sin ε has never been improved: nobody knows how to
substantially beat the worst possible choices!

On the other hand, the upper bound in (5.11) has received various improve-
ments. It has been shown by Rankin that for ε P p0, π{2q

ppεq ď ´ logp
?

2 sinpε{2qq

which matches the lower bound from (5.11) as ε increases to π{2. For small ε,
further improvements due to Kabatjanskĭı–Levenštĕın are based on the so-called
linear programming bound (see Notes and Remarks).

Exercise 5.12 (Packing large caps on the sphere). Suppose that pxiq are N
points in Sn´1 such that xxi, xjy ď t for i ‰ j.
(i) Show that N ď 1´ 1{t if t ă 0,
(ii) Show that N ď 2n if t “ 0
If t ą 0 is fixed, we know from (5.11) that exponentially many points in the sphere
may have pairwise inner products at most t. The situation when t tends to zero
with n is investigated in the following exercise.

Exercise 5.13 (Coarse approximation of Bn2 by polytopes with few vertices).
Suppose that pxiq are N points in Sn´1 such that |xxi, xjy| ď t whenever i ‰ j, for
some t ą 0.
(i) If t ă 1{

?
n, show that N ď n{p1´ nt2q.

(ii) By considering the family pxbki q1ďiďN for a suitable large k, show that if t ď 1{2,
then N ď pC{tqCt

2n for some absolute constant C.
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5.1. NETS AND PACKINGS 113

(iii) Deduce that, for r ě 2, there is a polytope P with at most pCrqCn{r
2

vertices
such that dgpP,Bn2 q ď r.

5.1.3. Nets and packings in the discrete cube. Although the discussion
from the previous sections dealt specifically with spheres, some ideas carry over
directly to other settings. As an illustration we consider the case of the discrete
cube t0, 1un (a.k.a. Boolean cube) equipped with the normalized Hamming distance

(5.12) dHpx, yq “
1

n
cardti : xi ‰ yiu.

We denote by V ptq the volume (i.e., the cardinality) of a ball of radius t P p0, 1q.
We have

V ptq “ card
 

y P t0, 1un : dHpx, yq ď t
(

“

ttnu
ÿ

k“0

ˆ

n

k

˙

.

The quantity V ptq is governed by the binary entropy functionH defined for x P p0, 1q
by Hpxq “ ´x log2 x ´ p1 ´ xq log2p1 ´ xq. For t ď 1{2 such that tn is an integer,
we have (see Exercise 5.15)

(5.13)
1

n` 1
2nHptq ď V ptq ď 2nHptq.

Related estimates will be used when discussing concentration of measure, see (5.59).
As in the case of the sphere, the covering problem is simpler than the packing

problem (at least in some asymptotic regimes). In particular (see Exercise 5.14), a
random covering argument similar to Proposition 5.4—in combination with (5.13)—
implies that, for 0 ă ε ă 1{2,

(5.14) lim
nÑ8

1

n
log2Npt0, 1u

n, dH , εq “ 1´Hpεq.

On the other hand, the corresponding limit for packing is unknown; we only
get from (5.2) the asymptotic bounds

(5.15) 1´Hpεq ď lim sup
nÑ8

1

n
log2 P pt0, 1u

n, dH , εq ď 1´Hpε{2q

for 0 ă ε ă 1{2. As in the case of the sphere, the lower bound from (5.15) (known
in this context as the Gilbert–Varshamov bound) has not been improved, while the
upper bound has been subject to various enhancements.

For the q-ary version of the cube, i.e., the space t0, . . . , q ´ 1un (also equipped
with normalized Hamming distance), the entropy function has to be replaced by

Hqpxq :“ ´x logq x´ p1´ xq logqp1´ xq ` x logqpq ´ 1q.

Indeed, if Vqptq denotes the cardinality of a ball of radius t in t1, . . . , q ´ 1un, for
t P p0, 1´ 1{qq such that tn is an integer, then

(5.16)
1

n` 1
qnHqptq ď Vqptq ď qnHqptq.

Estimates about the q-ary cube are useful when one wants to construct nets or
separated sets in products of metric spaces. The following specific fact, which is an
easy consequence of (5.16) and (5.1), will be used later.
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114 5. METRIC ENTROPY AND CONCENTRATION OF MEASURE

Proposition 5.7. Let pK, dq be a metric space such that P pK, d, εq ě q. Given
integer n P N, equip Kn with the distance

dnppx1, . . . , xnq, py1, . . . , ynqq “ dpx1, y1q ` ¨ ¨ ¨ ` dpxn, ynq.

Then, for t P p0, 1´ 1{qq,

(5.17) P pKn, dn, tεnq ě P pt0, . . . , q ´ 1un, dH , tq ě
qn

Vqptq
ě qnp1´Hqptqq.

Exercise 5.14 (Efficient random nets of the Boolean cube). Show (5.14) by
adapting the random covering argument from Proposition 5.4.

Exercise 5.15 (Volume of balls in the q-ary discrete cube). Show (5.16) (which
specified to q “ 2 gives (5.13)).

5.1.4. Metric entropy for convex bodies. If the metric space pM,dq is
actually a normed space with a unit ball B, we write NpK,B, εq or NpK, εBq
instead of NpK, d, εq. It is possible to come up with an alternative definition which
does not refer to the norm, by saying that NpK,B, εq is the minimum number N
such that there exist x1, . . . , xN in K with

(5.18) K Ă

N
ď

i“1

pxi ` εBq.

This alternative definition does not require the set B to be symmetric, or even
convex, or to have nonempty interior, even though that is usually the case. In
our context, the minimal reasonable hypothesis appears to be asking that B be
star-shaped with respect to the origin, i.e., that tB Ă B for t P r0, 1s.

The technology for estimating covering/packing numbers of subsets (particu-
larly convex subsets) of normed spaces is quite well-developed and frequently rather
sophisticated. We quote here a simple well-known result that expresses Np¨, ¨q in
terms of a “volume ratio.”

Lemma 5.8. Let L be a symmetric convex body in Rn and let K Ă Rn be a
Borel set. Then, for any ε ą 0,

(5.19)
ˆ

1

ε

˙n
volpKq

volpLq
ď NpK,L, εq ď

ˆ

2

ε

˙n volpK ` ε
2Lq

volpLq
.

Proof. If pxiq is an ε-net in K with respect to } ¨ }L, then the union of the sets
xi` εL contains K, and the left-hand side inequality in (5.19) follows from volume
comparison. Consider now a family pxiq of N elements of K which is ε-separated
for } ¨ }L. This means that the sets xi ` ε

2L have disjoint interiors. Since they are
all included in K ` ε

2L, we have N volp ε2Lq ď volpK ` ε
2Lq. Together with (5.1),

this implies the right-hand side inequality in (5.19) �

When K is convex and the “regularizing” trick implicit in Exercise 5.17 below is
applied, the lower and upper bounds are often as close as one can expect provided
K and L are is the M -position (see Notes and Remarks). The case K “ L in
Lemma 5.8 is related to the approximation of convex bodies by polytopes.

Lemma 5.9. Let 0 ă ε ă 1, K Ă Rn be a symmetric convex body and N be an
ε-net in K with respect to } ¨ }K . Then convN Ą p1´ εqK.
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5.1. NETS AND PACKINGS 115

Proof. Let P “ convN and denote A “ supt}y}P : y P Ku. One checks
that P contains 0 in the interior, so that A ă 8. Given x P K, there is x1 P N
such that }x´ x1}K ď ε, and therefore }x}P ď }x1}P ` }x´ x1}P ď 1` εA. Taking
supremum over x gives A ď 1 ` εA, so that A ď p1 ´ εq´1, which is equivalent to
the inclusion P Ą p1´ εqK. �

The following is an immediate consequence of Lemmas 5.8 and 5.9.

Corollary 5.10. Let ε P p0, 1q. Any symmetric convex body in Rn is p1´εq´1-
close, in the Banach–Mazur distance, to a polytope with at most p1`2{εqn vertices.

For an extension of Lemma 5.9 and 5.10 to not-necessarily-symmetric convex
bodies, see Exercises 5.18–5.20. Note that the dependence on ε in Corollary 5.10 is
not sharp (see Notes and Remarks). For the special case K “ Bn2 , the conclusion
of Lemma 5.9 can be easily improved to convN Ą p1´ ε2{2qK, see Exercise 5.7.

Exercise 5.16 (Covering with balls whose centers lie outside of the set). For
convex bodies K,L in Rn, let N 1pK,Lq be the smallest number N such that there
exist x1, . . . , xN in Rn with K Ă

Ť

1ďiďN pxi ` Lq (the difference with NpK,Lq is
that xi are not required to belong to K). Give an example with L symmetric for
which N 1pK,Lq ă NpK,Lq. Can we have such an example with also K symmetric?

Exercise 5.17 (A regularizing trick). Let K,L be convex bodies in Rn, with
0 P L. Show that NpK, εLq “ NpK, pK ´Kq X εLq.

Exercise 5.18 (Approximating by polytopes with few vertices). Let K Ă Rn
be a convex body with centroid at the origin (K is not assumed to be symmetric).
Using Lemma 5.8 and Proposition 4.18, show that for every ε P p0, 1q we have
NpK, εKq ď p2` 4{εqn, where NpK, εKq “ NpK,K, εq is defined as in (5.18). By
arguing as in the proof of Lemma 5.9, conclude that there exists a polytope P with
at most p2` 4{εqn vertices such that p1´ εqK Ă P Ă K.

Exercise 5.19 (Approximating by polytopes with few facets). Let ε P p0, 1q
and K Ă Rn be a convex body with centroid at the origin. Show that there exists
a polytope Q with at most p2` 4{εqn facets such that p1´ εqQ Ă K Ă Q.

Exercise 5.20 (Approximating by polytopes and the Santaló inequality). Let
K be a convex body in Rn and let κ “ vradpKq vradpK˝q ă 8 (i.e., K satisfies
approximately the Santaló inequality, see Theorem 4.17 and the comments following
it). If ε P p0, 1q, then K can be approximated up to ε (in the sense of Exercises
5.18 and 5.19) by a polytope P with at most pCκ{εqn vertices (resp., facets).

Exercise 5.21 (Duality of metric entropy for ellipsoids). Let E and F be 0-
symmetric ellipsoids in Rn. Check that for every ε ą 0, NpE ,F , εq “ NpF ˝,E ˝, εq.

Exercise 5.22 (Explicit nets in Sn´1). Here is an explicit construction of an
ε-net in Sn´1 with at most pC{εqn elements, for some (suboptimal) constant C.
(i) Show that, if N is an ε-net in Bn2 (with 0 ă ε ă 1), then the set tx{|x| : x P N u
is an η-net in pSn´1, | ¨ |q for η “

a

2´ 2
?

1´ ε2.
(ii) Let N “ Bn2 X

ε?
n
Zn. Show that N is an ε-net in Bn2 and that cardN ď pC{εqn.



Pe
rso

na
l u

se
on

ly.
Not

for
dis

tri
bu

tio
n

116 5. METRIC ENTROPY AND CONCENTRATION OF MEASURE

5.1.5. Nets in Grassmann manifolds, orthogonal and unitary group.
We now extend the results given for the sphere to other classical manifolds, includ-
ing unitary and orthogonal groups and Grassmann manifolds (which are introduced
in Appendix B). Metric structures on such manifolds are induced by unitarily in-
variant norms on the corresponding matrix spaces, with Schatten p-norms being the
most popular choices. While there are several natural ways (also discussed in detail
in Appendix B) to define a metric on a manifold starting from a given Schatten
norm, all such metrics—for a fixed p—differ by at most by a multiplicative factor
of π{2. Accordingly, the behavior of covering numbers in all such situations can be
subsumed in the following single statement.

Theorem 5.11 (not proved here, but see Exercise 5.23). LetM be either SOpnq,
Upnq, SUpnq, Grpk,Rnq or Grpk,Cnq, equipped with a metric generated by the Schat-
ten norm } ¨ }p for some 1 ď p ď 8. Then for any ε P p0,diamM s,

(5.20)
ˆ

cdiamM

ε

˙dimM

ď NpM, εq ď

ˆ

C diamM

ε

˙dimM

,

where C, c ą 0 are universal constants (independent of n, k, p and ε), dimM is the
real dimension of M , and diamM the diameter of M with respect to the corre-
sponding metric.

For easy reference, we list in Table 5.1 some of the values of the parameters
(dimensions, diameters) that appear in (5.20).

Table 5.1. Real dimensions and diameters from the bounds (5.20)
for covering numbers of a selection of classical manifolds. The dis-
tances used on SOpnq and Upnq are the extrinsic metrics obtained
from the Schatten p-norm on Mn, and the distances on Grassmann
manifolds are the corresponding quotient metrics. The restriction
k ď n{2 is imposed to reduce clutter (note that Grpk,Rnq and
Grpn´ k,Rnq are isometric).

M dimM diamM comments
SOpnq npn´ 1q{2 2n1{p

Upnq n2 2n1{p

Grpk,Rnq kpn´ kq 21{2p2kq1{p k ď n{2

Grpk,Cnq 2kpn´ kq 21{2p2kq1{p k ď n{2

Exercise 5.23 (Metric entropy of classical groups and manifolds). Prove The-
orem 5.11 forM “ Upnq,M “ SUpnq orM “ SOpnq and for p “ 8, by appealing to
Lipschitz properties of the exponential map with matrix argument (Exercise B.8).

Exercise 5.24. Derive the formula for diameter of Grpk,Rnq in Table 5.1.

Exercise 5.25 (Volume of balls in classical groups and manifolds). Let M
be either SOpnq,Upnq or Grpk,Rnq, equipped with a metric as in Theorem 5.11.
Denoting by σ the Haar probability measure on M , deduce from Theorem 5.11 a
two-sided estimate for σpBpx, εqq, where Bpx, εq denotes the ball of radius ε centered
at x PM .
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5.2. Concentration of measure

The classical isoperimetric inequality in Rn (Eq. (4.27), also known as Dido’s
problem) states that among all sets of given volume, the Euclidean balls have the
smallest surface area. As we already noticed in the setting of Rn in Section 4.3.1,
an alternative methodology is to consider, instead of the surface area, the family of
ε-enlargements of a given set. The latter approach makes sense in any metric space
X equipped with a measure µ (a metric measure space, or a metric probability space
if µpXq “ 1, which will be assumed as a default): for a subset A Ă X and ε ą 0,
we define

Aε “ tx P X : distpx,Aq ď εu.

The two viewpoints are roughly equivalent since the “surface area” relative to µ can
be retrieved (when that makes sense) as the first-order variation of µpAεq when ε
goes to 0, cf. (4.23) and, conversely, the growth of the function ε ÞÑ µpAεq on the
macroscopic scale can be recovered from the knowledge of its derivative. However,
the enlargement-based approach seems simpler (a more flexible definition) and is
often more fruitful since some otherwise useful bounds on µpAεqmay be meaningless
for small ε, and/or may be available in absence of any clue with regard to the nature
of extremal sets.

Lower bounds for µpAεq can be rephrased as deviation inequalities for Lips-
chitz functions. This leads, in some settings, to a remarkable phenomenon: every
Lipschitz function concentrates strongly around some “central value.” Statements
to such and similar effect will be the focus of our presentation. Specifically, we will
look for estimates of the form

(5.21) µpf ąMf ` tq ď Ce´λt
2

and

(5.22) µpf ą Ef ` tq ď Ce´λt
2

,

to be valid for any real-valued 1-Lipschitz function on X and all t ą 0, where Mf

and Ef are the median and the expected value of f calculated with respect to µ.
(A number M is said to be a median for a random variable X if PpX ěMq ě 1{2
and PpX ďMq ě 1{2.) Clearly, (5.21) and (5.22) formally imply then similar two-
sided estimates for µp|f ´Mf | ą tq and µp|f ´ Ef | ą tq with C replaced by 2C.
Concentration of this type is referred to as subgaussian (more on this terminology
in Section 5.2.6). For the convenience of a casual reader—and for easy reference—
we list in Table 5.2 the constants and the exponents that appear in subgaussian
concentration inequalities for a selection of classical objects.

Remark 5.12. We point out that if a function f is such that one of the in-
equalities (5.21) or (5.22) holds (for all t ą 0) with constants C, λ, then the other
inequality similarly holds (for the same function) with some other constants. For
example, if (5.22) holds with C ě 1

2 and λ, then (5.21) holds with 2C2 and λ{2; if
(5.21) holds with C ě e´1{3 « 0.717 and λ, then (5.21) holds with eC2 and λ{2 (see
Proposition 5.29 and Remarks 5.30, 5.31.) Sharper results of this nature (i.e., with
better dependence on C, λ) can sometimes be obtained if we assume that (5.21) (or
(5.22)) holds for all real-valued 1-Lipschitz functions on X; some questions in that
spirit are considered in [Led01] (see, e.g., Exercise 5.48).
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In the next two subsections we will exemplify the concentration phenomenon
and related techniques in the case of the Euclidean sphere and the Gaussian space.
In subsequent subsections we will survey some general methods for proving isoperi-
metric/concentration results and present a selection of examples, in particular those
listed in Table 5.2. We will concentrate on the objects that exhibit subgaussian con-
centration; more general settings will be addressed briefly in exercises and in Notes
and Remarks (an exception is Section 5.2.6 which treats sums of independent subex-
ponential random variables). A comprehensive presentation of diverse aspects and
manifestations of the concentration phenomenon is beyond the scope of this work;
we refer the interested reader to the monographs [Led01, BLM13] and/or to other
sources listed in Notes and Remarks. Here we restrict our attention to highlighting
several central techniques and, subsequently, to going over examples that appear
to be of relevance to the quantum theory.

5.2.1. A prime example: concentration on the sphere. The settings of
the Euclidean sphere and of the projective space are directly relevant to quantum
information theory since the latter identifies canonically with the set of pure states.
In the language of enlargements, the isoperimetric inequality on the sphere can be
stated as follows.

Theorem 5.13 (Spherical isoperimetric inequality, not proved here). Equip
the unit sphere Sn´1 Ă Rn with the geodesic distance g and the uniform probability
measure σ. If A Ă Sn´1 and if C Ă Sn´1 is a spherical cap such that σpAq “ σpCq,
then, for any ε ą 0,

(5.23) σpAεq ě σpCεq.

Recall that the spherical cap with center x P Sn´1 and radius ε is the set

Cpx, εq “ ty P Sn´1 : gpx, yq ď εu.

Note that the class of spherical caps is stable under enlargements and that we have

(5.24) Cpx, εqδ “ Cpx, ε` δq for any δ, ε ą 0.

In view of the simple relationship between g and the extrinsic (or chordal) dis-
tance inherited from the ambient Euclidean space (see Appendix B.1), Theorem
5.13 is valid also for the latter. However, it is traditionally stated for the geo-
desic distance. Also, the formula (5.24) for Cpx, εqδ stated above would be more
complicated if we used | ¨ | to define caps.

The usefulness of Theorem 5.13 comes from the fact that there are explicit
integral formulas and sharp bounds for the measure of spherical caps, which were
explored in Section 5.1.2. However, while in the study of packing and covering
small caps seemed most interesting, in the present context of concentration the radii
close to π{2 are most relevant. This is because arguably the most useful instance
of Theorem 5.13 is σpAq “ 1

2 , in which case the radius of the corresponding cap C
is π{2 and the radius of its ε-enlargement, Cε, is π{2` ε. Taking into account the
bound (5.5) leads then to

Corollary 5.14. If n ą 2 and if A Ă Sn´1 with σpAq ě 1
2 and ε ą 0, then

(5.25) σpAεq ě σ
´

C
´

x,
π

2
` ε

¯¯

ě 1´
1

2
e´nε

2
{2.
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There is no simple proof of the isoperimetric inequality on the sphere (Theorem
5.13) that we know of. However, a result just slightly weaker than Corollary 5.14
follows easily from the Brunn–Minkowski inequality (4.21). We have the following

Proposition 5.15. If ε P p0, π{2s and K,L Ă Sn´1 are such that distpK,Lq ě

ε (in the geodesic distance), then σpKqσpLq ď e´nε
2
{4. In particular, if σpKq ě 1{2,

then σpKεq ě 1´ 2e´nε
2
{4.

Proof. The second statement follows by applying the first one with L “ Kc
ε .

It thus remains to prove the first statement.
Define K 1 Ă Bn2 via K 1 :“ ttx : x P K, t P r0, 1su and similarly for L1. Then

volpK 1q “ σpKqvolpBn2 q and volpL1q “ σpLqvolpBn2 q. Consequently, by the Brunn–
Minkowski inequality in the form (4.21),

vol

ˆ

K 1 ` L1

2

˙

ě
a

volpK 1qvolpL1q “
a

σpKqσpLq volpBn2 q.

On the other hand, if x, y P Sn´1 and the angle between x and y is at least ε,
then |px ` yq{2| ď cospε{2q. If ε ď π{2 (and so xx, yy ě 0), a simple calculation
shows that the same is true if we replace x and y by x1 “ sx and y1 “ ty, where
s, t P r0, 1s (in fact this is even true if ε ď 2π{3). This means that we have then
K1`L1

2 Ă cospε{2qBn2 and so
a

σpKqσpLq ď pcospε{2qq
n. It remains to appeal to the

(subtle but elementary) inequality cosu ď e´u
2
{2 (see Exercise 5.3). �

Remark 5.16. (1) Proposition 5.15 holds actually for the entire nontrivial
range of ε, which is r0, πs; this follows a posteriori from the estimate in Lévy’s
lemma (see Exercise 5.26). The above proof fails for large ε; however, only the range
r0, π{2s is relevant to the second statement and to Corollary 5.14: if µpKq ě 1{2,
then no point x can verify distpx,Kq ą π{2.
(2) The estimate in the Proposition is pretty tight: if K,L are opposite (i.e., K “

´L) caps with distpK,Lq “ 2ε, we conclude from the Proposition that µpKq ď
e´nε

2
{2. This compares fairly well with the bound 1

2e
´nε2{2 implicit in (5.25).

Corollary 5.14 readily implies a concentration result for Lipschitz functions,
which is often referred to in quantum information circles as Lévy’s lemma.

Corollary 5.17 (Lévy’s lemma). Let n ą 2. If f : pSn´1, gq Ñ R is a
L-Lipschitz function and if Mf is a median for f , then, for any t ą 0,

(5.26) σpf ąMf ` tq ď
1

2
expp´nt2{2L2q,

and therefore

(5.27) σp|f ´Mf | ą tq ď expp´nt2{2L2q.

Proof. Let A “ tx P Sn´1 : fpxq ďMfu and set ε “ t{L. Since f ďMf on A
and since f is L-Lipschitz (i.e., |fpxq ´ fpyq| ď Lgpx, yq for x, y P Sn´1), it follows
that for any y P Sn´1 we have fpyq ďMf `Lgpy,Aq. In particular, if y P Aε, then
gpy,Aq ď ε and so fpyq ď Mf ` Lε “ Mf ` t. In other words, we proved that
Aε Ă tf ďMf ` tu “ tf ąMf ` tu

c. The first inequality in Corollary 5.17 follows
now by observing that, by the definition of the median, σpAq ě 1

2 and by appealing
to Corollary 5.14.

The second inequality follows from the first one combined with an identical
bound on σpf ă Mf ´ tq, which is shown either by the same argument applied to
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A “ tx P Sn´1 : fpxq ěMfu, or by appealing to the first inequality with f replaced
by ´f . �

Remark 5.18. Both parts of the above proof are quite general. First, any
lower bounds on measures of enlargements of sets of measure 1

2 imply (in fact are
equivalent to, see Exercise 5.27) bounds for deviation of Lipschitz function from
their medians. Second, any one-sided bound for deviation from the median (or the
expected value, or any other “symmetric” parameter) implies a two-sided bound, at
the cost of a factor of 2.

Remark 5.19. In Corollaries 5.14 and 5.17 we have to assume that n ą 2
because the bound (5.5) is not valid in the entire nontrivial range 0 ď t ď π{2.
If n “ 2, one needs to replace the function 1

2e
´nt2{2 by maxt 1

2 ´
t
π , 0u. However,

no modifications are needed if the enlargements or the Lipschitz constants are
calculated with respect to the ambient space metric, or if only small values of ε or
t are of interest, say, ε ď 1 or t ď L.

Concentration around the median follows naturally from the isoperimetric in-
equality. As we mentioned in Remark 5.12, this implies formally concentration
around the expectation with altered constants. In some situations, it is possible to
obtain good constants with extra work.

Proposition 5.20 (Lévy’s lemma for the mean, not proved here). Let n ą 2.
If f : pSn´1, gq Ñ R is a 1-Lipschitz function, then for any t ą 0,

(5.28) σpf ą Ef ` tq ď expp´nt2{2q.

As mentioned in Remark 5.18, the inequality σp|f ´Ef | ą tq ď 2 expp´nt2{2q
follows formally, but is probably not optimal. See Problem 5.26 for questions about
possible better bounds in this and similar settings.

Exercise 5.26 (Proposition 5.15 holds for the full range of ε). Show that it
follows a posteriori from Theorem 5.13 and the bound (5.5) that, for n ą 2, in
the notation and under the hypotheses of Proposition 5.15, we have σpKqσpLq ď
1
4e
´nε2{4. For n “ 2, the optimal inequality is σpKqσpLq ď 1

4

`

1´ ε
π

˘2 (cf. Remark
5.19).

Exercise 5.27 (Concentration implies isoperimetry). Show that, for a metric
probability space pX,µq, concentration implies isoperimetry in the following sense:
if µpf ą Mf ` tq ď α for any 1-Lipschitz function f , then µpAtq ě 1 ´ α for any
A Ă X with µpAq “ 1

2 .

Exercise 5.28 (A finer bound tor the mean width of a union). Let K,L be two
bounded sets in Rn, and R the outradius of K Y L. Show that wpconvpK Y Lqq ď

maxpwpKq, wpLqq `
b

2π
n R.

5.2.2. Gaussian concentration. Another classical setting where isoperime-
try and concentration have been widely studied is the Gaussian space

`

Rn, | ¨ |, γn
˘

,
where γn is the standard Gaussian measure on Rn (see Appendix A.2 for the no-
tation, basic properties and relevant facts). It turns out that the extremal sets
for the isoperimetric problem are then half-spaces, and since their enlargements
are also half-spaces, the solution to the problem can be expressed simply in terms
of the cumulative distribution function of an Np0, 1q variable, i.e., in terms of
Φpxq :“ γ1pp´8, xsq. We have
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Theorem 5.21 (Gaussian isoperimetric inequality, see Exercise 5.30). Let A Ă
Rn, and let a P R be defined by γ1

`

p´8, as
˘

“ γnpAq. Then, for any ε ą 0,

(5.29) γnpAεq ě γ1

`

p´8, a` εs
˘

or, equivalently,

(5.30) Φ´1pγnpAεqq ě Φ´1pγnpAqq ` ε.

The solution to the Gaussian isoperimetric problem (Theorem 5.21) was orig-
inally derived from the spherical isoperimetric inequality (Theorem 5.13) via the
following classical fact.

Theorem 5.22 (Poincaré’s lemma, see Exercise 5.29). For n,N P N with
N ě n, we consider Rn to be a subspace of RN . Next, fix n and let νN be the
pushforward to Rn, via the orthogonal projection, of the normalized uniform mea-
sure on

?
NSN´1. Then, as N Ñ8, pνN q converges to γn, the standard Gaussian

measure on Rn.

The convergence in Theorem 5.22 holds in a very strong sense, e.g., in total
variation, or in uniform convergence of densities.

Another derivation of the Gaussian isoperimetric inequality is based on the
following analogue of the Brunn–Minkowski inequality in the Gaussian setting.

Theorem 5.23 (Ehrhard’s inequality, not proved here). Let A,B be Borel sub-
sets of Rn and let λ P r0, 1s. Then

(5.31) Φ´1pγnpp1´ λqA` λBqq ě p1´ λqΦ
´1pγnpAqq ` λΦ´1pγnpBqq.

Ehrhard’s inequality is stronger than log-concavity of the Gaussian measure
(Section 4.3.2), see Exercise 5.31. Assuming Ehrhard’s inequality, the derivation of
the Gaussian isoperimetric inequality goes as follows. Fix A, ε and let λ P p0, 1q.
Since Aε “ A` εBn2 “ p1´ λqp1´ λq

´1A` λελ´1Bn2 , we have, by (5.31),

(5.32) Φ´1pγnpAεqq ě p1´ λqΦ
´1pγnpp1´ λq

´1Aqq ` λΦ´1pγnpελ
´1Bn2 qq.

We now let λ Ñ 0`. The first term on the right-hand side of (5.32) converges
clearly to Φ´1pγnpAqq, while the second term converges to ε (this is a little harder,
but elementary, see Exercise 5.32), and so we proved the Gaussian isoperimetric
inequality in the form (5.30).

The next theorem follows from Theorem 5.21 according to the general scheme
indicated in Remark 5.18, with the explicit exponential bound being a consequence
of Exercise A.1.

Theorem 5.24. If f : Rn Ñ R is L-Lipschitz and Mf denotes its median (with
respect to γn), then for any t ą 0

(5.33) γnpf ąMf ` tq ď γ1

`

pt{L,8q
˘

ď
1

2
e´t

2
{2L2

,

γnp|f ´Mf | ą tq ď e´t
2
{2L2

.

As we already noted in the setting of the sphere, concentration around the
median formally implies similar concentration around the mean (see Remark 5.12).
However, this approach leads to suboptimal constants. A more precise technique
relies on the log-Sobolev inequality from Section 5.2.4.2, which specified to the
Gaussian setting yields the following.
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Theorem 5.25 (see Theorem 5.39 and Proposition 5.42). If f : Rn Ñ R is
L-Lipschitz and Ef is the mean of f (with respect to γn), then for any t ą 0

(5.34) max tγnpf ą Ef ` tq, γnpf ă Ef ´ tqu ď e´t
2
{2L2

.

There is some numerical evidence that the assertion of Theorem 5.25 can be
further strengthened. We pose

Problem 5.26. If f : Rn Ñ R is 1-Lipschitz and Ef denotes its average with
respect to γn, is it true that γnp|f ´ Ef | ą tq ď e´t

2
{2? The case n “ 1 implies

the general case and is probably not that hard to settle. Similarly, is it true that
σp|f ´Ef | ą tq ď expp´nt2{2q if f : pSn´1, gq Ñ R is a 1-Lipschitz function (and
n ą 2; see Remark 5.19 for comments on peculiarities of the case n “ 2)?

An example of a function for which Theorem 5.24 is meaningful is the Euclidean
norm, which is trivially 1-Lipschitz. This gives the following (see also Exercise 5.37).

Corollary 5.27. Let G be a standard Gaussian vector in Rn. Then, for any
t ą 0,

P
`

|G| ě
?
n` t

˘

ď
1

2
e´t

2
{2 and P

´

|G| ď

c

n´
2

3
´ t

¯

ď
1

2
e´t

2
{2.

The distribution of |G|2 is commonly known as χ2pnq, the chi-squared distribu-
tion with n degrees of freedom. Denoting by mn the median of |G|, what is required
to deduce Corollary 5.27 from Theorem 5.24 are the inequalities

b

n´ 2
3 ď mn ď

?
n. The lower bound is proved in Exercise 5.34 and the upper bound follows from

Proposition 5.34): we have mn ď κn ď
?
n.

Exercise 5.29 (Weak convergence in Poincaré’s lemma). In the context of
Poincaré’s lemma (Theorem 5.22), show without any computation that the sequence
pνN q converges weakly towards γn.

Exercise 5.30 (Gaussian isoperimetric inequality via Poincaré lemma). Derive
the Gaussian isoperimetric inequality (5.29) from the Poincaré lemma (Theorem
5.22) and the spherical isoperimetric inequality (Theorem 5.13).

Exercise 5.31 (Ehrhard’s inequality implies log-concavity). Show that The-
orem 5.23 (Ehrhard’s inequality) formally implies that the Gaussian measure γn
satisfies the log-concavity inequality (4.28).

Exercise 5.32 (Gaussian measure of large balls). Show that

lim
rÑ`8

Φ´1
`

γnprB
n
2 q
˘

r
“ 1.

Exercise 5.33 (Ehrhard-like (a-)symmetrization). Show that the following
statement is equivalent to the validity of Ehrhard’s inequality for convex bodies.
Let K Ă Rn be a convex body and let E Ă Rn be a k-dimensional subspace with
0 ă k ă n. Identify E and EK with, respectively, Rk and Rn´k and define a set
L Ă Rk`1 by

px, sq P L ðñ s ď Φ´1pγn´kpty P E
K : px, yq P Kuqq,

where x P E, s P R. Then L is convex.
In the case when E “ uK is a hyperplane (i.e., k “ n´ 1) the transformation
K ÞÑ L is called Ehrhard (a-)symmetrization in direction u.
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Exercise 5.34 (Median of the chi-squared distribution, based on [CR86]).

Let X be a random variable with distribution χ2pnq, and V “
´

X
n´ 2{3

¯1{3

. Show
that the density h of V satisfies the inequality hp1 ´ tq ď hp1 ` tq for t P r0, 1s,
and conclude that the median of V is greater than 1, therefore the median of X is
larger than n´ 2{3. Higher order two-sided bounds for the median can be found in
[BS].

5.2.3. Concentration tricks and treats. This section contains a selection
of largely elementary facts related to the concentration phenomenon. It supplies
a set of tools allowing for flexible applications of concentration results. As a rule,
the facts are well known to experts in the area and are included here for future
reference. Proofs are relegated to exercises.

5.2.3.1. Laplace transform. We mostly restrict ourselves to settings where con-
centration exhibits a subgaussian behaviour as in (5.21) or (5.22). Such behaviour
can be proved via estimating the bilateral Laplace transform, using the exponential
Markov inequality PpX ą tq ď e´stE exppsXq for s ą 0.

Lemma 5.28 (Laplace transform method). Let X be a random variable such
that E exppsXq ď A exppβs2q for every s P R. Then, for every t ą 0,

maxpPpX ą tq,Pp´X ą tqq ď A expp´t2{4βq.

Exercise 5.35. Prove Lemma 5.28 about the Laplace transform method.

Exercise 5.36. Prove Hoeffding’s lemma: if X is a mean zero random variable
taking values in an interval ra, bs, then E exppsXq ď expp 1

8s
2pb´aq2q for any s P R.

Exercise 5.37 (A large deviation bound for chi-squared variable, based on
[Vem04]). Let X be a random variable with distribution χ2pnq, for example X “

|G|2 where G is a standard Gaussian vector in Rn. Show that E exppsXq “ p1 ´

2sq´n{2 for any s ă 1{2. Conclude that PpX ě p1` εqnq ď
`

p1` εq expp´εq
˘n{2 for

any ε ą 0 and that PpX ď p1´εqnq ď
`

p1´εq exppεq
˘n{2 for ε P p0, 1s. (We known

from Cramér’s large deviations theorem that this bounds are sharp.) Conclude that

(5.35) Pp|X ´ n| ě εnq ď 2 exp

ˆ

´
nε2

4` 8ε{3

˙

.

5.2.3.2. Central values. Once we know that a function is concentrated around
some value, we can a posteriori infer that it also concentrates around the mean or
the median, or any other particular quantile. This can be formalized by the concept
of a central value. If Y is a real random variable, we will say that M is a central
value of Y ifM is either the mean of Y , or any number between the 1st and the 3rd
quartile of Y (i.e., if mintPpY ě Mq,PpY ď Mqu ě 1

4 ; this happens in particular
if M is the median of Y ). The numbers 1

4 and 3
4 play no special role and can be

changed to other numbers from p0, 1q at the cost of deteriorating (or improving)
the constants in the statements that follow (see, e.g., Remark 5.31).

Proposition 5.29 (see Exercises 5.38–5.40). Let Y be a real random variable
and let M be any central value for Y . Let a P R and let constants A ě 1

2 , λ ą 0 be
such that, for any t ą 0,

(5.36) maxtPpY ą a` tq,PpY ă a´ tqu ď A expp´λt2q.
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Then |M ´ a| ď
a

logp4Aq λ´1{2. Consequently, for any t ě
a

logp4Aq λ´1{2,

(5.37) maxtPpY ąM ` tq,PpY ăM ´ tqu ď 4A2 expp´λt2{2q.

Remark 5.30 (Improvements to Proposition 5.29). The expressions
a

logp4Aq

and 4A2 in the assertion of Proposition 5.29 can be replaced by
a

logpκAq and κA2,
where κ “ 2 when M is the median of Y and κ “ e when M is the expectation of
Y ; see Exercises 5.38, 5.39 and 5.40.

Remark 5.31 (On the necessity of restrictions on t in Proposition 5.29). We
point out that the bound on the first (resp., the second) probability appearing
in (5.37) is valid under the formally weaker restriction t ą pM ´ aq` (resp.,
t ą pM ´ aq´). The restriction t ě

a

logp4Aq λ´1{2, while annoying, cannot be
completely avoided if we want to keep full generality because the hypothesis (5.36)
does not necessarily supply any information about the probabilities appearing in
the assertion if t is small. However, this is only a minor inconvenience since for
such t the upper bound in (5.37) is never small and often holds for trivial reasons.
In particular, (5.37) holds for all t ą 0 if M is the mean or any quantile between
the 27th and 73rd percentile, or if A ě 32{3{4 « 0.52, and always if we replace the
factor 4A2 by 3

?
2A2. If M is the median, we can go even further: no restrictions

on t are needed even if we replace 4A2 by 2A2 on the right hand side of (5.37); if
M is the mean, similar improvement (i.e., eA2 on the right hand side) is possible
when A ě e´1{3 « 0.717 (these last observations were used in Remark 5.12).

Corollary 5.32 (Lévy’s lemma for central values). Let f : pSn´1, gq Ñ R be
an L-Lipschitz function and let M be any central value for f . Then |M ´Mf | ď?

2 log 2n´1{2 and, for any ε ą 0,

(5.38) Ppf ěM ` εq ď exp
´

´
nε2

4L2

¯

.

We sketch proofs and give more precise bounds and/or variations on the above
results in Exercises 5.38–5.48. Note that while (5.38) follows from Proposition
5.29 and Corollary 5.17 for n ą 2 and for ε not-too-small, a separate argument
is needed to cover the remaining cases (cf. Remark 5.31). We also point out that
while Proposition 5.29 is meant to give reasonably good estimates valid in the most
general setting when concentration is present, better bounds are available in specific
instances. For example, Corollary 5.32 can be improved when M is the mean (see
Table 5.2 and Exercise 5.44), and similarly in the Gaussian case.

The heuristics behind Corollary 5.32 is as follows: if we know that all sets of
measure at least 1

2 have large enlargements, then approximately the same is true for
all sets of measure at least 1

4 . Actually, almost the same is true for much smaller
sets; here is a sample result.

Proposition 5.33 (see Exercise 5.49). Let pX, d, µq be a metric probability
space and let ε ą 0. Suppose that any set A Ă X with µpAq ě 1

2 verifies µpAεq ě
1´ Ce´λε

2

. Then µpB2εq ě 1´ Ce´λε
2

for any set B Ă X with µpBq ě Ce´λε
2

.

A common feature of concentration inequalities presented up to now is that
in order to translate them to concrete bounds for concrete functions, we need to
calculate—or at least reasonably estimate—the medians or expected values, or sim-
ilar parameters of the functions under consideration. A selection of tools, some of
them quite sharp, to handle expected values will be described in Section 6.1. The
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preceding three results tell us that it doesn’t really matter which central value we
employ, as long as we are willing to pay a small penalty in the form of an addi-
tional multiplicative constant in the exponent and in front of the exponential. The
following observation shows that, in the Gaussian context, sometimes no penalty is
needed at all.

Proposition 5.34 (see Exercise 5.50). Let f : Rn Ñ R be a convex function.
Denote by Mf (resp., Ef) the median (resp., the expectation) of f with respect to
the standard Gaussian measure γn. Then Mf ď Ef .

Exercise 5.38. Show that a random variable Y0 such that P pY0 ą tq ď

A expp´t2q for t ą 0 must verify EY0 ď EY `0 ď mintA
?
π{2,

a

1` log`Au. De-
duce the first assertion of Proposition 5.29 and the corresponding improvement
from Remark 5.30 if M is the mean of Y .

Exercise 5.39. Show that if Y0 is a random variable such that P pY0 ą tq ď

A expp´t2q for t ą 0 and if M3{4 is its 3rd quartile, then M3{4 ď

b

log`p4Aq.
Deduce the first assertion of Proposition 5.29 if M is between the 1st or the 3rd

quartile of Y , and the strengthening from Remark 5.30: |M´a| ď
b

log`p2Aq λ´1{2

if M is the median of Y .

Exercise 5.40. Prove the inequality e´s
2

ď eδ
2

e´ps`δq
2
{2 for s, δ P R. Use it

and the last two exercises to show the second assertion of Proposition 5.29, and its
strengthenings stated in Remark 5.30 when M is the median or the mean of Y .

Exercise 5.41. Verify the assertions in the last two sentences of Remark 5.31.

Exercise 5.42. Given α P p0, 1q, prove a version of (5.37) with the right-hand
side of the form B expp´αλt2q, where B depends only on A and α (and on κ from
Remark 5.30, if applicable).

Exercise 5.43 (Lévy’s lemma for central values). Let n ą 2. Use Exercise
5.26 to derive Corollary 5.32 for any quantile between the 1st and the 3rd quartile.

Exercise 5.44 (The median and the mean on the sphere). Let f be a 1-
Lipschitz function on pSn´1, gq with n ą 2. Show that the median and the mean
of f differ at most by

a

π{8n and describe the extremal function.

Exercise 5.45 (Variance of a Lipschitz function on the sphere). Let f be a
1-Lipschitz function on pSn´1, gq with n ą 1. Show that Varpfq ď 2

n and give an
example with Varpfq ě 1

n . What function gives the maximal variance?

Exercise 5.46 (Concentration around L2 average). Let f be a 1-Lipschitz and
positive function on pSn´1, gq with n ą 1. Set q “ pEf2q1{2. Show that for any
t ą 0, Ppf ě q ` tq ď expp´nt2{2q and Ppf ď q ´ tq ď e expp´nt2{2q.

Exercise 5.47 (The case of S1). Using directly the solution to the isoperimetric
problem on S1, show that Corollary 5.32 holds also for n “ 2.

Exercise 5.48. Let pX, d, µq be a metric probability space and let α : r0,8q Ñ
r0,8q be such that µpf ě Ef ` tq ď αptq for any bounded 1-Lipschitz function
f : X Ñ R and for all t ą 0. Then, for any such function f and for any t ą 0,
µpf ě Mf ` tq ď αpt{2q. Equivalently, µpAεq ě 1 ´ αpε{2q for any A Ă X with
µpAq ě 1{2 and any ε ą 0. The preceding argument can be iterated, see (1.18) in
[Led01].
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Exercise 5.49. Prove Proposition 5.33 about enlargements of fairly small sets.

Exercise 5.50 (Median vs. mean for convex functions of Gaussian variables).
Prove Proposition 5.34 by showing first that the function g : t ÞÑ Φ´1pγnptf ď tuqq
is concave.

Exercise 5.51. Show that the following statement is a consequence of Propo-
sition 5.34. If pX1, . . . , XN q are jointly Gaussian random variables and f : RN Ñ R
is a convex function, then the median of the random variable fpX1, . . . , XN q does
not exceed its expectation.

5.2.3.3. Local versions. It sometimes happens that a function defined on the
sphere Sn´1 has a poor global Lipschitz behaviour, while its restriction to a subset
of large measure is much more regular. To take advantage of such situation, we
formulate a “local” version of Lévy’s lemma.

Corollary 5.35 (Lévy’s lemma, local version). Let Ω Ă Sn´1 be a subset
of measure larger than 3{4. Let f : pSn´1, gq Ñ R be a function such that the
restriction of f to Ω is L-Lipschitz. Then, for every ε ą 0,

Ppt|fpxq ´Mf | ą εuq ď PpSn´1zΩq ` 2 expp´nε2{4L2q,

where Mf is the median of f .

One scenario under which the hypotheses of Corollary 5.35 may be satisfied is
when we have an upper bound on some Sobolev norm of f (a “global” parameter,
which suggests that “restricted version of Lévy’s lemma” could have been better
terminology). However, our applications of the Corollary will be rather straightfor-
ward and will not require any advanced notions.

Exercise 5.52. Prove Corollary 5.35, the local version of Lévy’s lemma.

5.2.3.4. Pushforward. The following elementary result is very useful for estab-
lishing concentration phenomenon for many classical spaces. In a nutshell, it says
that concentration results can be “pushed forward” by surjective contractions.

Proposition 5.36 (Contraction principle). Let pX,µq and pY, νq be metric
probability spaces. Assume that there exists a surjective contraction φ : X Ñ Y
which pushes forward µ to ν (i.e., νpBq “ µpφ´1pBq) and let a P p0, 1q and ε ą 0.
Then

(5.39) inf
BĂY, νpBqěa

νpBεq ě inf
AĂX,µpAqěa

µpAεq.

Similarly, for any t ą 0,

(5.40) sup
g:YÑR, g 1-Lipschitz

νpg ´Eg ą tq ď sup
f :XÑR, f 1-Lipschitz

µpf ´Ef ą tq.

Moreover, (5.40) holds if expectation is replaced by median on both sides.

Exercise 5.53. Prove Proposition 5.36, the contraction principle. State a
more general version with φ : X Ñ Y assumed to be L-Lipschitz rather than a
contraction.

Exercise 5.54 (Concentration on the solid cube via Gaussian pusforward). Let
Y be the solid cube r0, 1sn endowed with the Lebesgue measure and the Euclidean
metric inherited from Rn. Use Proposition 5.36 to show that Y verifies (5.21) with
pC, λq “

`

1
2 , π

˘

and (5.22) with pC, λq “ p1, πq.
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5.2.3.5. Direct products. It is easy to see that the concentration phenomenon
passes to direct products of metric probability spaces. Indeed, let X and Y be two
such spaces that exhibit the concentration phenomenon and let X ˆY be endowed
with the product measure and some reasonable product metric, such as the `p
product metric defined for px1, y1q and px2, y2q in X ˆ Y as

(5.41) dppx1, y1q, px2, y2qq “ pdXpx1, x2q
p ` dY px1, x2q

pq
1{p

,

the limit case p “ 8 being interpreted as a maximum. If f is a 1-Lipschitz function
on X ˆ Y , then φpxq “Mfpx,¨q is 1-Lipschitz on X and hence concentrated around
its medianMφ. Since, for each x P X, fpx, ¨q is concentrated around φpxq, it follows
that f is concentrated around Mφ. (See Exercise 5.55 for precise statements.) The
above argument can be clearly iterated. Here is another elementary result involving
product measures.

Proposition 5.37 (Concentration on product spaces, see Exercise 5.55). Let
pXi, di, µiq, 1 ď i ď n, be bounded metric probability spaces and denote Di “

diamXi. Let X “ X1 ˆ . . . ˆXn be endowed with the product measure µ and the
`1 product metric d. Then, for every 1-Lipschitz function f : X Ñ R and for any
t ě 0,

(5.42) µpf ě Ef ` tq ď e´2t2{D2

,

where D “
`
řn
i“1D

2
i

˘1{2.

Both approaches to products of metric probability spaces that are sketched
above share an unsatisfactory feature: the constants deteriorate as the number of
factors increases. In complete generality, this feature is unavoidable (see Section
5.2.5). However, in some natural settings (e.g., the Gaussian space) dimension-free
results are possible.

Exercise 5.55 (Concentration on product spaces, a naive approach). For the
purpose of this exercise the median of a random variable F is defined as MF “
1
2 psuptt : PpF ě tq ě 1{2u ` inftt : PpF ď tq ě 1{2uq, but most other definitions
would work if applied consistently and with sufficient care. Let pX, d1, µq and
pY, d2, νq be metric probability spaces. Consider the space pX ˆ Y, d, πq, where
π “ µb ν and d is any metric verifying

dppx1, yq, px2, yqq “ d1px1, x2q and dppx, y1q, px, y2qq “ d2py1, y2q

for all x, x1, x2 P X and y, y1, y2 P Y and let f : X ˆ Y Ñ R be a 1-Lipschitz
function with respect to d.
(i) Show that the function φpxq “Mfpx,¨q is 1-Lipschitz on X.
(ii) If X and Y exhibit the concentration phenomenon in the sense of (5.21) for
some C and λ, then πpf ą Mφ ` tq ď 2Ce´λt

2
{4 for all t ą 0, and similarly for

πpf ăMφ ´ tq.
(iii) Show that Mφ is a central value in the sense of Section 5.2.3.
(iv) Same as (ii) with (5.21) replaced by (5.22) and Mφ by Ef .

Exercise 5.56 (Concentration on product spaces, Laplace transform method).
The Laplace functional of a probability metric space pX, d, µq is defined for λ P R
as EpX,d,µqpλq “ sup

ş

eλf dµ, where the supremum is taken over all 1-Lipschitz
functions f : X Ñ R with mean 0.
(i) Show that if X has diameter D, then EpX,d,µqpλq ď exppλ2D2{8q (use Exercise
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5.36).
(ii) Show that if pX1, d1, µ1q and pX2, d2, µ2q are two metric probability spaces, if
d denotes the `1 product metric on X1 ˆX2 as defined in (5.41), then

EpX1ˆX2,d,µ1bµ2qpλq ď EpX1,d1,µ1qpλqEpX2,d2,µ2qpλq.

(iii) Show that in the context of Proposition 5.37, we have

EpX,d,µqpλq ď exppλ2D2{8q.

(iv) Prove Proposition 5.37 using Lemma 5.28.

Exercise 5.57 (Hoeffding’s inequality). Show that Proposition 5.37 implies
Hoeffding’s inequality: if X1, . . . , Xn are independent random variables such that
Xi takes values in an interval of length li, then for any t ą 0,

(5.43) PpS ě ES ` tq ď e´2t2{L2

,

where S “ X1 ` ¨ ¨ ¨ `Xn and L2 “ l21 ` ¨ ¨ ¨ ` l
2
n.

5.2.4. Geometric and analytic methods. Classical examples. In Sec-
tions 5.2.1 and 5.2.2 we sketched isoperimetric/concentration results on the Eu-
clidean sphere and for the Gaussian measure. While these are admittedly very
special situations, the fact of the matter is that, in high-dimensional settings, some
form of concentration phenomenon is the rule rather than the exception.

5.2.4.1. Gromov’s comparison theorem. The first result asserts that isoperimet-
ric and concentration inequalities hold under geometric assumptions which signifi-
cantly generalize the spherical case. The invariant that can be related to sphere-like
behavior is the Ricci curvature, which describes the rate of growth of volume under
geodesic flow on the manifold with the similar rate in the Euclidean space. For
example (see Figure 5.3), the circumference of a circle of geodesic radius θ (ă π)
on the sphere S2 is 2π sin θ, and hence the length of the arc of the circle corre-
sponding to an angle α (measured on the plane tangent at the center of the circle)
is α sin θ « α

`

θ´ θ3

6

˘

“ αθ
`

1´ θ2

6

˘

compared to αθ for the Euclidean plane. (Here
and in the next paragraph « means equality up to higher order terms.)

Repeating this calculation mutatis mutandis for an m-dimensional sphere (in
Rm`1) of radius R and a solid m-dimensional angle α we get α

`

R sin θ
R q

m´1 «

α
`

θ´ θ3

6R2

˘m´1
« αθm´1

`

1´ m´1
R2

θ2

6

˘

compared to αθm´1 in the Euclidean setting
(i.e., in Rm). This is subsumed by saying that the Ricci curvature of RSm, the
m-dimensional sphere of radius R, at every point and in each direction is m´1

R2 .
The notion is generalized to an arbitrary point p on a Riemannian manifold X
of dimension greater than or equal to 2 and to an arbitrary unit vector u in the
tangent space at p by considering infinitesimal (solid) angles in the direction of u
and finding the coefficient of θ

2

6 in the corresponding expression for the volume on
the geodesic sphere or radius θ centered at p; this coefficient is denoted by Ricppuq.
The minimum of Ricppuq over p P X and over directions u is denoted by cpXq.

Such straightforward calculation may be difficult to perform for more compli-
cated manifolds. On a less elementary level, the Ricci curvature can be computed
using the following formula expressed in the language of Riemannian geometry:
whenever pu1, . . . , umq is an orthonormal basis in the tangent space at p (thought



Pe
rso

na
l u

se
on

ly.
Not

for
dis

tri
bu

tio
n

130 5. METRIC ENTROPY AND CONCENTRATION OF MEASURE

·

·

·
the radius in

the ambient space
is sin θ

a circle of
geodesic
radius θ

the resulting
arc of length

α sin θ ≈ αθ
(
1− θ2

6

)

angle α

θ

Figure 5.3. Volume growth on the sphere S2 as a function of
geodesic distance.

of as a real inner product space), we have

(5.44) Ricppu1q “

m
ÿ

i“2

secpu1, uiq,

where sec denotes the sectional curvature. This leads to an alternative explanation
of the value of the Ricci curvature for the sphere, for other manifolds of constant
sectional curvature such as the Euclidean space or the hyperbolic space, or for their
quotients by discrete groups of symmetries (e.g., for tori or for the real projective
space). In the case of Lie groups, sectional curvature can be expressed via Lie
brackets. For examples of computations, see Exercises 5.58 and 5.59.

We are now ready to state the main result of this section. By RSm we denote
the sphere of radius R in Rm`1.

Theorem 5.38 (Gromov’s comparison theorem, not proved here). Let m ě 2
and let X be an m-dimensional connected Riemannian manifold such that cpXq ě
m´1
R2 “ cpRSmq. Let A Ă X and let C Ă RSm be a cap such that µXpAq “
µRSmpCq, where µX and µRSm are normalized Riemannian volumes on, respec-
tively, X and RSm. Then, for every ε ą 0, µXpAεq ě µRSmpCεq.

It follows then (same proof as Corollary 5.17) that any 1-Lipschitz function
f : X Ñ R with median Mf satisfies, for any t ą 0,

µX ptf ąMf ` tuq ď
1

2
expp´pm` 1qt2{2R2q.

As it turns out, the hypotheses of Theorem 5.38 are verified for many (but not
all) manifolds that naturally appear in mathematics and that play a role in physics,
notably for most classical Lie groups and their homogeneous spaces, see Table 5.3.

Exercise 5.58 (Ricci curvature of Grassmannians). For Grpk,Rnq or Grpk,Cnq,
the tangent space at any point can be identified with Mk,n´k. If X,Y P Mk,n´k are
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Table 5.3. Optimal bounds on Ricci curvature for a selection
of classical manifolds. We restrict our attention to manifolds for
which that curvature is nonnegative, which in particular excludes
the hyperbolic space and its quotients. All the bounds concerning
specific objects can be derived via formula (5.44) involving the
(more standard) sectional curvatures. This is straightforward for
spaces, for which the sectional curvatures are constant (Rn, Sn´1,
and PpRnq); the remaining cases are covered by Exercises 5.58
and 5.59. Note that the values for the projective spaces PpV q
and the corresponding Grp1, V q do not coincide due to different
normalization of the metric (an additional

?
2 factor in (B.10) when

compared to (B.5)).

X metric cpXq comments
Rn Euclidean 0

Sn´1 geodesic n´ 2 n ě 2

SOpnq standard (B.8) n´2
4 n ě 2

SUpnq standard (B.8) n
2

Upnq standard (B.8) 0

Grpk,Rnq quotient from Opnq (B.10) n´2
2 1 ď k ď n´ 1

Grpk,Cnq quotient from Upnq (B.10) n 1 ď k ď n´ 1

PpRnq Fubini–Study (B.5) n´ 2 n ě 2

PpCnq Fubini–Study (B.5) 2n n ě 2

X1 ˆX2 `2 product metric (5.41) mintcpX1q, cpX2qu

orthogonal, one can show (see Section 8.2.1 in [Pet06]) that

(5.45) secpX,Y q “
1

4

`

}XY : ´ Y X:}2HS ` }X
:Y ´ Y :X}2HS

˘

.

Use this formula and (5.44) to compute the corresponding values from Table 5.3.
In some references we find the coefficient 1

2 instead of 1
4 because of a different

normalization of the metric.

Exercise 5.59 (Ricci curvature of classical groups). For G “ SOpnq, SUpnq
or Upnq, the tangent space at I (or at any point) can be identified with the corre-
sponding Lie algebra g (“ son, sun or un). If X,Y P g are orthonormal, one can
show (see Exercise 2.19 in [Pet06]) that secpX,Y q “ 1

4}XY ´ Y X}2HS. Use this
formula and (5.44) to compute the corresponding values from Table 5.3.

5.2.4.2. Log-Sobolev inequalities (LSI). The next technique that we present is
of analytic nature. It is based on a class of inequalities which at the first sight seem
irrelevant to the subject at hand. Let pX,µq be a measure space and let f be a
non-negative function on X. The (continuous Shannon) entropy is defined by

(5.46) Entµpfq :“

ż

f log f dµ
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if
ş

f dµ “ 1, where we used the convention 0 log 0 “ 0, and then extended to
non-negative integrable functions by 1-homogeneity. An explicit formula that im-
plements the extension is

(5.47) Entµpfq :“

ż

f log f dµ´

ż

f dµ log

ˆ
ż

f dµ

˙

.

By Jensen’s inequality, Entµpfq ě 0, with `8 being a possibility.
We now assume that X is a Riemannian manifold and that µ is a Borel measure

on X. We say that pX,µq verifies a logarithmic Sobolev inequality with parameter
α if for every (sufficiently smooth) function f : X Ñ R we have

(5.48) Entµpf
2q ď 2α

ż

|∇f |2 dµ.

The smallest constant α that works in (5.48) is called the log-Sobolev constant of
pX,µq and denoted by LSpX,µq.

The relevance of this circle of ideas to the concentration phenomenon is ex-
plained by the following result.

Theorem 5.39 (Herbst’s argument). Let X be a Riemannian manifold and
let µ be a Borel probability measure on X such that LSpX,µq ď α. Then every
1-Lipschitz function F : X Ñ R is integrable and satisfies, for every t ą 0,

(5.49) µ
´

F ą

ż

Fdµ ` t
¯

ď e´t
2
{2α.

Remark 5.40. The above Theorem can be extended to the setting of general
metric spaces, with essentially the same proof, once |∇f | is properly defined. For
example, we may use |∇f |pxq “ lim supyÑx

|fpyq´fpxq|
distpy,xq if X has no isolated points;

discrete spaces may also be handled with some care. However, for clarity of the
exposition, we will assume for the rest of this subsection that the underlying spaces
are (connected) Riemannian manifolds.

Proof of Theorem 5.39. First, we may assume that F is smooth and that
ş

F dµ “ 0; this may be achieved by replacing F by an appropriate approximation
and subtracting a constant. The strategy is to show that the (bilateral) Laplace
transform of F verifies

(5.50)
ż

eλF dµ ď eαλ
2
{2 for all λ P R,

which by Lemma 5.28 implies that µpF ą tq ď e´t
2
{2α, as needed. To establish

(5.50), we introduce an auxiliary function f “ fλ ą 0 defined via f2 “ eλF´αλ
2
{2.

In other words, f “ eλF {2´αλ
2
{4 and it is readily checked that ∇f “ λ

2 f∇F . Since
|∇F | ď 1 (because F is 1-Lipschitz), it follows that |∇f |2 ď λ2

4 f
2. Consequently,

by (5.48) (cf. (5.47)),

(5.51) Entµpf
2q “

ż

f2
´

λF ´
αλ2

2

¯

dµ´

ż

f2 dµ log
´

ż

f2 dµ
¯

ď
αλ2

2

ż

f2 dµ.

We now set φpλq “
ş

f2 dµ and note that differentiating under the integral sign
gives

φ1pλq “

ż

f2pF ´ αλqdµ.
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This allows to rewrite (5.51) as

λφ1pλq ´ φpλq log
`

φpλq
˘

ď 0,

which, for λ ‰ 0, is equivalent to

(5.52)
d

dλ

´ log
`

φpλq
˘

λ

¯

ď 0.

On the other hand, given that φp0q “ 1, l’Hôpital’s rule yields

(5.53) lim
λÑ0

log
`

φpλq
˘

λ
“ lim
λÑ0

φ1pλq

φpλq
“
φ1p0q

φp0q
“

ş

F dµ

1
“ 0.

Combining (5.52) and (5.53) we conclude that log
`

φpλq
˘

{λ ď 0 for λ ą 0 and
log

`

φpλq
˘

{λ ě 0 for λ ă 0, which just means that φpλq ď 1 for all λ P R. In
other words,

ş

eλF´αλ
2
{2 dµ ď 1 for λ P R, which is just a restatement of (5.50) and

concludes the argument. �

Apart from the median being replaced by the expected value (which is largely
a matter of convenience or elegance, see Proposition 5.29 in Section 5.2.3), the
assertion of Theorem 5.39 closely resembles (5.26) and (5.33), which quantified the
concentration phenomenon for Lipschitz functions in the spherical and Gaussian
settings. However, its usefulness depends on availability of spaces pX,µq verifying
logarithmic Sobolev inequalities. The next few results ensure that the supply is
indeed quite ample. For easy reference, the spaces and estimates on their log-
Sobolev constants are cataloged in Table 5.4.

Proposition 5.41 (not proved here). Let X be an m-dimensional Riemannian
manifold such that cpXq ą 0 and let µ be the normalized Riemannian volume. Then
LSpX,µq ď m´1

mcpXq .

Proposition 5.42 (not proved here). Let µ be a measure on Rn whose density
with respect to the Lebesgue measure is of the form e´U , where U verifies HesspUq ě
β I for some β ą 0. Then LSpRn, µq ď β´1. In particular, LSpRn, γnq ď 1 and
LSpCn, γCn q ď 1

2 .

Proposition 5.43 (not proved here, but see Exercise 5.61). We have

LSpS1, σq “ 1 and LSpr0, 1s, vol1q “ π´2.

Proposition 5.44 (Tensorization property of LSI, not proved here). Given
pXi, µiq, i “ 1, . . . , k, let X “ X1 ˆ ¨ ¨ ¨ ˆ Xk be endowed with the `2 product
metric as defined in (5.41) and the product measure µ “ µ1 b ¨ ¨ ¨ b µk. Then
LSpX,µq “ max1ďiďk LSpXi, µiq.

Remark 5.45 (Poincaré’s inequality). Another related famous functional in-
equality is the Poincaré inequality, which reads as follows: for every smooth function
f : X Ñ R

(5.54) Varµ f ď α

ż

|∇f |2 dµ,

where Varµ f denotes the quantity
ş

f2 dµ ´
`ş

f dµ
˘2. The smallest α is called

the Poincaré constant of pX,µq and denoted PpX,µq. Inequality (5.54) is implied
by the LSI (5.48) (with the same constant α); it implies sub-exponential instead of
subgaussian concentration. A list of Poincaré constants for common spaces can be
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found in Table 5.4. An example of a probability measure satisfying the Poincaré
inequality but not the LSI is the (symmetric) exponential distribution on R.

Remark 5.46 (Contraction principle for LSI and Poincaré’s inequality). If
φ : pX,µq Ñ pY, νq is a surjective contraction which pushes forward µ onto ν, then
LSpY, νq ď LSpX,µq and PpY, νq ď PpX,µq. This can be proved as in Exercise 5.53
and is especially transparent if we define |∇f | as in Remark 5.40.

Table 5.4. Bounds on log-Sobolev and Poincaré constants for a
selection of classical manifolds. We use the same metrics as in
Table 5.3. Except as indicated, the estimates on log-Sobolev con-
stants follow from estimates on the Ricci curvature (see Proposi-
tion 5.41). Most of the time we use the bound LSpX,µq ă cpXq´1;
the more precise expressions involving the dimension of X lead to
slightly better but often cumbersome formulas. The upper bounds
on the Poincaré constants of Grassmann manifolds follow from Re-
mark 5.46. For more comments and references about Poincaré
constants, see Notes and Remarks.

X or pX,µq LSpX,µq PpX,µq Comments
`

ra, bs, vol1b´a

˘

pb´aq2

π2

pb´aq2

π2 Prop. 5.43
Sn´1 1

n´1
1

n´1 Prop. 5.43 for S1

PpRnq ď 1
n´1

1
2n

PpCnq ă 1
2n

1
4n

pRn, γnq 1 1 Exercise 5.60
SOpnq ă 4

n´2
2

n´1

SUpnq ă 2
n

n
n2´1

Upnq ď 6
n

1
n [MM13]

Grpk,Rnq ă 2
n´2 ď 2

n´1 1 ď k ď n´ 1

Grpk,Cnq ă 1
n ď 1

n 1 ď k ď n´ 1

pX ˆ Y, µX b µY q maxtLSpXq,LSpY qu maxtPpXq,PpY qu `2 product metric

Exercise 5.60 (Log-Sobolev constant for the Gaussian space). Show that
LSpRn, γnq ě 1 (we have actually equality, see Proposition 5.42).

Exercise 5.61 (Log-Sobolev constants for segments and circles). (i) Use the
contraction principle from Remark 5.46 to show that LSpr0, 1s, vol1q ď π´2LSpS1, σq
and Ppr0, 1s, vol1q ď π´2PpS1, σq. (ii) Verify that PpS1, σq “ 1. (iii) Verify that
Ppr0, 1s, vol1q ě π´2 (see Notes and Remarks for the reasons why there is actually
an equality).

5.2.4.3. Hypercontractivity, Gaussian polynomials. We give a brief introduc-
tion to the concept of hypercontractivity and illustrate it to give an example of a
concentration inequality for Gaussian polynomials.

We work on the probability space pRn, γnq. We define the Ornstein–Uhlenbeck
semigroup of operators pPtqtě0 as follows. For f : Rn Ñ R a bounded measurable
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function, and x P Rn, let

(5.55) pPtfqpxq “ E f
´

e´tx`
a

1´ e´2tG
¯

,

where G is a standard Gaussian vector in Rn. These operators satisfy the semigroup
property PsPt “ Ps`t. Moreover it is easily checked (Exercise 5.62) that for every
p ě 1 and t ě 0,

}Ptf}Lppγnq ď }f}Lppγnq,

and therefore Pt extends to a bounded (contractive) operator on Lppγnq. Remark-
ably, a stronger statement is true: provided p ą 1 and t ą 0, Pt is a contraction
from Lppγnq to Lqpγnq for some q “ qptq ą p. This phenomenon is called hyper-
contractivity.

Proposition 5.47 (not proved here, but see Exercise 5.63). Let 1 ď p ď q ă 8
and t ą 0 such that q ď 1` e2tpp´ 1q. Then

}Ptf}Lqpγnq ď }f}Lppγnq.

The eigenvectors of Pt are the Hermite polynomials. In the one-dimensional
case, denote by phkqkPN the sequence of polynomials obtained by orthonormalizing
the sequence p1, x, x2, . . . q in the space H1 :“ L2pR, γ1q. (In this context, we
exceptionally mean N “ t0, 1, 2, 3, . . .u.) Given a multi-index α “ pα1, . . . , αnq P
Nn, let hα be the multivariate polynomial

(5.56) hαpx1, . . . , xnq “ hα1
px1q ¨ ¨ ¨hαnpxnq.

The family phαqαPNn is an orthonormal basis in Hn :“ L2pRn, γnq, and we have

(5.57) Pthα “ e´t|α|hα,

where |α| “
řn
i“1 αi is the weight of the multi-index α, or the total degree of the

polynomial hα. Note that formula (5.57) allows to define PtQ for any polynomial
Q even when t is negative.

Proposition 5.48. Let Q be a polynomial in n variables of (total) degree at
most k. Then, for every q ě 2,

}Q}Lqpγnq ď pq ´ 1qk{2}Q}L2pγnq.

Proof. For any t ě 0, we have PtP´tQ “ Q (see the remark following (5.57)).
Choosing t ą 0 such that q ´ 1 “ e2t, we may apply Proposition 5.47 to conclude
that }Q}Lqpγnq ď }P´tQ}L2pγnq. We may write the decomposition of Q in the basis
of Hermite polynomials

Q “
ÿ

|α|ďk

cαhα

for some coefficients pcαq. It follows that }Q}2L2pγnq
“
ř

c2α, while

}P´tQ}
2
L2pγnq

“
ÿ

|α|ďk

e2t|α|c2α ď e2tk}Q}2L2pγnq
,

whence the result follows. �
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Corollary 5.49 (Concentration inequality for Gaussian polynomials). Let
Z1, . . . , Zn be independent Np0, 1q variables and let X “ QpZ1, . . . , Znq, where Q
is a polynomial of (total) degree at most k. Then, for any t ě p2eqk{2,

P
´

|X ´EX| ě t
?
VarX

¯

ď exp

ˆ

´
k

2e
t2{k

˙

.

Proof. There is no loss of generality in assuming that Z1, . . . , Zn are defined
as the coordinate functions on pRn, γnq, so that Proposition 5.48 applies. We may
assume EX “ 0, VarX “ 1 and write by Markov’s inequality, for any q ě 2,

P p|X| ě tq ď t´q E |X|q ď t´qpq ´ 1qkq{2 ď pqk{2{tqq

where we used Proposition 5.48. The choice q “ t2{k{e (which is larger than 2
provided t ě p2eqk{2) yields the result. �

Remark 5.50. The phenomenon of hypercontractivity is not specific to the
Gaussian case and is essentially equivalent to a log-Sobolev inequality (see Theorem
5.2.3 in [BGL14]). Similar concentration results are true for polynomials in binary
random variables (see Theorem 9.21 in [O’D14]) and for polynomials on the sphere
(cf. [Mon12]). Here is a precise statement of the latter. If Q be a polynomial with
total degree at most k in n1 ` ¨ ¨ ¨ ` nd variables and X “ pX1, . . . , Xdq with Xi

independent and uniformly distributed on Sni´1, then for every q ě 2, }QpXq}Lq ď
pq ´ 1qk{2}QpXq}L2

. (This is slightly more general than Corollary 12 in [Mon12]
which assumes that n1 “ ¨ ¨ ¨ “ nd and that the partial degrees in each variable are
equal.) The argument is similar to the Gaussian case, using spherical harmonics
instead of Hermite polynomials. Concentration estimates similar to Corollary 5.49
follow.

Exercise 5.62 (Ornstein–Uhlenbeck semigroup is contractive). Show that Pt
is a contraction on Lppγnq for any t ě 0 and p ě 1.

Exercise 5.63 (Sharpness of the hypercontractive inequality). When n “ 1,
compute Ptfλ when fλpxq “ eλx. Conclude that Proposition 5.47 is sharp in the
following sense: when q ą 1 ` e2tpp ´ 1q, there is no constant C such that the
inequality }Ptf}Lqpγ1q ď C}f}Lppγ1q holds.

5.2.5. Some discrete settings. All the specific instances of concentration
we identified thus far involved manifolds. However, the phenomenon also occurs
in the discrete case. We will exemplify it (and the issues that may arise) on the
fundamental example of the Boolean cube t0, 1un, or t´1, 1un, endowed with the
normalized counting measure µ and the normalized Hamming distance dHpx, yq :“
1
n cardti : xi ‰ yiu, which up to normalization coincides with the `1 metric in the
ambient space Rn. (This setting was already studied in Section 5.1.3; other product
measures, or metrics induced by `p-norms for other p are also frequently considered,
more about that later.)

A nearly optimal concentration result for the Boolean cube follows already from
Proposition 5.37. However, we can do better: the exact solution to the isoperimetric
problem on the cube is known. To describe it, we introduce a total orderă on t0, 1un
(called the simplicial order) as follows: for x “ pxiq and y “ pyiq in t0, 1un, declare
that x ă y if either x1`¨ ¨ ¨`xn ă y1`¨ ¨ ¨`yn or x1`¨ ¨ ¨`xn “ y1`¨ ¨ ¨`yn and
x precedes y in the lexicographic order. Then the initial segments for this order are
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isoperimetric sets. As opposed to the Gaussian and spherical case, the extremal
sets are not unique in any reasonable sense (see Exercise 5.66)

Theorem 5.51 (Harper’s isoperimetric inequality, not proved here). For any
integer N with 1 ď N ă 2n, let A Ă t0, 1un be the set of N smallest elements
with respect to the simplicial order. Then A has the smallest ε-enlargements (for
all ε ą 0) among all sets of the same cardinality. The set A verifies

(5.58) Bpx, k{2nq Ă A Ă Bpx, pk ` 1q{2nq

for some k P t0, . . . , n´ 1u.

If we define the boundary of A as BA :“ ty P t0, 1un : distpy,Aq “ 1{nu, the
sets from Theorem 5.51 also have the “smallest boundary” among subsets of t0, 1un
of the same measure. In this language, the condition (5.58) says that A consists
of a ball and a part of its boundary. If N “

řk
j“1

`

n
j

˘

for some k, the situation
becomes simple: the optimal sets are balls, and so are their enlargements.

For example, if n “ 2m` 1 is odd, an example of an optimal set of measure 1
2

is
A “ ty P t0, 1un : Y ď mu ,

where Y “
řn
j“1 yj . The enlargements of A are then clearly of the form As{n “

 

Y ď m` s
(

and, consequently,

(5.59) µpAs{nq “

řm`s
j“1

`

n
j

˘

2n
“ 1´

ř

jąm`s

`

n
j

˘

2n
ě 1´ e´2s2{n,

where the inequality follows from Hoeffding’s inequality (5.43). A similar analysis
can be performed when n is even (see Exercise 5.64 for details). To summarize, we
have

Corollary 5.52. If A Ă t0, 1un with µpAq ě 1
2 , s P N and ε “ s{n, then

µpAεq ě 1´ e´2nε2 . Consequently, if f : t0, 1un Ñ R is a 1-Lipschitz function and
M is its median, then µpf ąM ` εq ď e´2nε2 .

Remark 5.53. Some authors assert that the bound µpAεq ě 1´ e´2nε2 (for A
satisfying µpAq ě 1

2 ) holds for all ε ą 0. However, this may be false, but only if
n “ 1 or 2 and only for certain values of ε P p0, 1{nq, see Exercise 5.65.

The setting of Corollary 5.52 is a special case of that of Proposition 5.37.
(The differences include the mean being replaced by the median, and the numeri-
cal constants being better in the former, which is not surprising since it is a more
specialized result.) The Corollary is an elegant and sharp result, but it exhibits
the following unsatisfactory feature: if we use the standard Euclidean metric to
define the 1-Lipschitz property of f or the expansions At, the exponential term
in the estimates becomes e´2t2{n. This should be compared to the dimension-free
(and differently scaled) term 1

2e
´t2{2 in Theorem 5.24, the Gaussian isoperimet-

ric inequality. However, there is a fix to this difficulty due to Talagrand: if the
function f is convex, its restriction to t0, 1un exhibits dimension-free subgaussian
concentration. We have

Theorem 5.54 (Talagrand’s convex concentration inequality for the Boolean
cube, not proved here). Let A be a non-empty subset of t0, 1un Ă Rn and set
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φApxq :“ distpx, convAq, where the distance is calculated with respect to the Eu-
clidean metric. Then

(5.60) E e
1
2φ

2
A ď 1{µpAq

and so µpφA ą tq ď e´t
2
{2{µpAq for t ą 0. Consequently, if f : r0, 1sn Ñ R is

a convex (or concave) 1-Lipschitz function and M is its median with respect to µ,
then µpf ąM ` tq ď 2e´t

2
{2 for t ą 0.

In the statement of Theorem 5.54 we tacitly assume that µ is a measure on Rn
supported on t0, 1un. The second assertion of the Theorem follows from (5.60) by
Markov’s inequality. Some finer issues related to the derivation of the last assertion
are addressed in Exercise 5.67. See also Exercise 5.68.

Theorem 5.54 turned out to be very useful (for example in the context of
random matrices) and has been generalized in various ways. Here is one possible
statement.

Theorem 5.55 (not proved here). Let V1, V2, . . . , VN be finite-dimensional
normed spaces and let V “

ÀN
j“1 Vj be their sum in the `q-sense (for some q ě 2).

For j “ 1, 2, . . . , N , let µj be a measure on Vj supported on a set of diameter at
most 1 and let µ “ bNj“1µj. Further, assume that F : V Ñ R is 1-Lipschitz and
quasiconvex (i.e., F´1

`

p´8, as
˘

is convex for all a P R) or quasiconcave. Then

(5.61) µpF ąM ` tq ď 2e´
1
4 t
q

for all t ą 0,

where M is the median of F with respect to µ.

We conclude this section with a result that is the counterpart of Theorem 5.54
with the median replaced by the mean, whose degree of generality is intermediate
between those of Theorem 5.54 and Theorem 5.55.

Theorem 5.56 (Convex concentration inequality for the mean, not proved
here). Let µ “ µ1 b ¨ ¨ ¨ b µk be a product measure on r0, 1sn Ă Rn and let f :
r0, 1sn Ñ R be a function which is 1-Lipschitz with respect to the Euclidean distance
and convex with respect to each variable. Then, for any t ě 0,

(5.62) µpf ą Ef ` tq ď e´t
2
{2.

While, by Remark 5.12 (which was based on the very general results from
Section 5.2.3.2), statements about concentration around the median formally im-
ply similar statements about the mean, we state Theorem 5.56 separately since it
combines good constants with a different set of hypotheses.

Exercise 5.64 (Concentration on even-dimensional Boolean cube). If n “ 2m
is even, an example of a set A Ă t0, 1un with µpAq “ 1

2 that is optimal in the sense
of Theorem 5.51 is A “

 
řn
j“1 yj ă m

(

Y
 
řn
j“1 yj “ m and y1 “ 1

(

. Show that
also in this case µpAs{nq ě 1´ e´2s2{n for s P N.

Exercise 5.65. Show that the bound µpAεq ě 1´ e´2nε2 from Corollary 5.52
may fail for some ε ą 0 if n “ 1 or 2, but that it always holds if n ą 2 or if ε ě 1{n.

Exercise 5.66 (Non uniqueness in Harper’s theorem). Give an example of a
value N and two sets of N elements in t0, 1u4 with smallest ε-enlargements (for all
values of ε) among sets with N elements, which are distinct up to symmetries of the
hypercube. Note: it appears to be unknown whether uniqueness can be assured
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by insisting that both A and its complement are isoperimetric sets for all sizes of
enlargement.

Exercise 5.67 (Talagrand’s concentration inequality for concave functions).
Derive the bound µpf ą M ` tq ď 2e´t

2
{2 for concave f in Theorem 5.54 (or,

equivalently, µpf ăM ´ tq ď 2e´t
2
{2 for convex f) from the inequalities preceding

it.

Exercise 5.68 (Existence of convex Lipschitz extensions). Let K Ă Rn be a
convex set and let f : K Ñ R be a convex 1-Lipschitz function. Then f admits
a convex 1-Lipschitz extension to Rn. Consequently, in Theorem 5.54 it doesn’t
matter whether we assume f to be convex and 1-Lipschitz on Rn or just on r0, 1sn.

Exercise 5.69 (No dimension-free subgaussian bound in absence of convexity).
Here is an example showing that convexity is crucial in Theorem 5.54. Define f :
t´1, 1un Ñ R by fpx1, . . . , xnq “ maxp0, x1`¨ ¨ ¨`xnq

1{2. Show that f has median
0 and is 1?

2
-Lipschitz with respect to the Euclidean metric, while µ

`

f ą cn1{4
˘

ě c

for some absolute constant c ą 0.

5.2.6. Deviation inequalities for sums of independent random vari-
ables. In this section we gather some simple but useful facts about deviation in-
equalities for sum of independent mean zero random variables. We mostly focus on
two families of random variables: subgaussian and subexponential variables.

In a probabilistic setting, the Lp-norm (for p ě 1) of a random variable X is
}X}p “ pE |X|

pq
1{p. As a preliminary step, consider two prototypical examples: let

Z be an Np0, 1q random variable and T be a symmetric exponential variable with
parameter 1 (i.e., PpT ą tq “ Pp´T ą tq “ 1

2e
´t for t ą 0). A simple computation

(cf. (A.1)) shows that

(5.63) }Z}p “

?
2

π1{2p
Γ

ˆ

p` 1

2

˙1{p

„

c

p

e
,

(5.64) }T }p “ Γpp` 1q1{p „
p

e

as p tends to infinity.
The growth of the Lp-norms motivates the following definitions: a random

variable X is said to be subgaussian (or ψ2) when

(5.65) }X}ψ2
:“ sup

pě1
p´1{2}X}p ă 8.

This terminology is consistent with that introduced in the preamble to Section 5.2
and based on the tail behavior (cf. (5.21), (5.22); see Exercise 5.70 and Lemma 5.57
below). Similarly, X is said to be subexponential (or ψ1) when

(5.66) }X}ψ1
:“ sup

pě2

}X}p
}T }p

ă 8.

The reader may be familiar with the arguably less ad hoc forms of ψr conditions,
based on either the rate of growth of the (bilateral) Laplace transform or the ap-
propriate Orlicz norms, or on the tail behavior of the type

Pp|X| ą tq ď Ce´λt
r

for t ě 0
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(cf. (5.21) and (5.22)). There is no need to be alarmed, though: while not identical,
all these approaches lead to quantities that are equivalent up to universal constants.
The definitions (5.65)–(5.66) were chosen out of convenience in view of the sample
applications we present. See Notes and Remarks for more details and references.

If follows from (5.63) and (5.64) that }T }ψ1
“ 1, }Z}ψ2

“
a

2{π and that
}¨}ψ1

ď }¨}ψ2
(see Exercise 5.75). We have obviously }¨}ψ2

ď }¨}8 and }¨}ψ1
ď }¨}8,

so the present discussion also applies to bounded variables. Another important
example of subgaussian variables is obtained by taking the inner product with
a fixed vector of a randomly chosen unit vector in Rd or Cd. This has to be
compared with Poincaré’s lemma (Theorem 5.22) which says that the Gaussian
measure appears at the limit dÑ8.

Lemma 5.57. If X is uniformly distributed on Sd´1 (resp., SCd), then for every
u P Rd (resp., u P Cd), we have }xX,uy}ψ2

ď |u|{
?
d.

Proof. We may assume by homogeneity that |u| “ 1. Let G be a standard
Gaussian vector in Rd. The variable uniformly distributed on Sd´1 can be then
represented as X “ G{|G|. Moreover, |G| is independent of X and hence, for p ě 1,

}xG, uy}p “ }|G|}p}xX,uy}p.

We have }|G|}p ě }|G|}1 “ κd (see Section 4.3.3). Since xG, uy has distribution
Np0, 1q, we know from (5.63) that }xX,uy}ψ2 “

a

2{π “ κ1. Therefore, using
Proposition A.1(ii), we obtain }xX,uy}ψ2

ď κ1

κd
ď 1?

d
. The complex case is similar.

�

We also note that the square of a subgaussian variable is subexponential, as
follows easily from the definitions. We now consider the case of a sum of either
subgaussian or subexponential mean zero random variables. If the random vari-
ables are bounded, we can apply Hoeffding’s inequality (5.43). It turns our that
essentially the same result holds for subgaussian variables.

Proposition 5.58 (see Exercise 5.73). Let X1, . . . , Xn be independent subgaus-
sian real random variables with mean zero, and S “ X1 ` ¨ ¨ ¨ `Xn. Define K ą 0
by K2 “ }X1}

2
ψ2
` ¨ ¨ ¨ ` }Xn}

2
ψ2
. Then for every t ą 0,

Pp|S| ą tq ď 2 exp

ˆ

´
t2

8eK2

˙

.

The proof actually yields a better bound 2 expp´ t2

2eK2 q when pXiq are symmet-
ric random variables (i.e., such that Xi and ´Xi have the same distribution for any
fixed i).

In the case of ψ1 variables, the situation is slightly more complicated since
two tails enter the picture: subgaussian tails for moderate deviations (which are
reminiscent of the central limit phenomenon) and subexponential tails for large
deviations (which come from the tails of individual variables)

Proposition 5.59 (Bernstein’s inequalities, see Exercise 5.76). Let X1, . . . , Xn

be independent real random variables with mean zero, and assume that }Xi}ψ1
ď K

for every index i. Then, for every vector a “ pa1, . . . , anq P Rn and every t ě 0,

P

˜
ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

i“1

aiXi

ˇ

ˇ

ˇ

ˇ

ˇ

ą t

¸

ď 2 exp

ˆ

´min

ˆ

t2

8K2}a}22
,

t

4K}a}8

˙˙

.
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Remark 5.60. Propositions 5.58 and 5.59 readily generalize to the complex
case (with possibly different numerical constants).

Exercise 5.70 (Lipschitz function on a Gaussian space is subgaussian). Let
G be a standard Gaussian vector on Rn and f : Rn Ñ R a 1-Lipschitz function
such that fpGq has mean zero. Deduce from the results of Section 5.2.2 that
}fpGq}ψ2 ď C for some absolute constant C. (Except for the value of the constant
C, this is a generalization of Lemma 5.57.)

Exercise 5.71 (Khintchine inequalities). Let X “
řn
i“1 εiai, where a1, . . . , an

are real numbers and pεiq is a sequence of independent random variables with
Ppεi “ 1q “ Ppεi “ ´1q “ 1{2. Show that, for any p ě 1,

Ap}X}L2
ď }X}Lp ď Bp}X}L2

where Ap ą 0 and Bp are constants depending only on p. Show that Bp “ Op
?
pq

as pÑ8.

Exercise 5.72 (Khintchine–Kahane inequalities). Khintchine inequalities have
a vector-valued generalization which is due to Kahane: If x1, . . . , xn belong to some
normed space Y and X 1 denotes the random variable }

řn
i“1 εixi}Y , then

A1p}X
1}L2 ď }X

1}Lp ď B1p}X
1}L2

where A1p ą 0 and B1p are constants depending only on p. Prove this. Moreover, we
have A1 “ A11 “ 1{

?
2 and B1p “ Θp

?
pq as pÑ8.

Exercise 5.73. Prove Proposition 5.58 by following the outline given below.
(i) If X is symmetric, show that E exppλXq ď expp e2}X}

2
ψ2
λ2q for any λ ą 0.

(ii) Let Y be an independent copy of a mean zero random variable X. Show that
E exppλXq ď E exppλpX ´ Y qq. Using this symmetrization trick, deduce from (i)
that the inequality E exppλXq ď expp2e}X}2ψ2

λ2q holds for any mean zero random
variable X.
(iii) Deduce Proposition 5.58 using Lemma 5.28.

Exercise 5.74 (Linear combinations of subgaussian random variables are sub-
gaussian). Show the following variant of Proposition 5.58: if X1, . . . , Xn are inde-
pendent and mean zero, then }X1 ` ¨ ¨ ¨ `Xn}ψ2

ď Cp}X1}
2
ψ2
` ¨ ¨ ¨ ` }Xn}

2
ψ2
q for

some absolute constant C.

Exercise 5.75. Verify that }Z}ψ2
“

a

2{π and that, for any variable X,
}X}ψ1

ď }X}ψ2
.

Exercise 5.76 (Bernstein’s inequalities). (i) Show that if EX “ 0 and }X}ψ1 ď

1, then E exppλXq ď 1` 2λ2 ď expp2λ2q for |λ| ă 1{2 (cf. Lemma 5.28).
(ii) Under the hypotheses of Proposition 5.59, assuming K “ 1 and denoting S “
a1X1 ` ¨ ¨ ¨ ` anXn, prove that E exppλSq ď expp2λ2

ř

a2
i q for |λ| ď 1{p2}a}8q.

(iii) Prove Proposition 5.59.

Notes and Remarks

Section 5.1. An encyclopedic reference for sphere packings is the book [CS99].
Other valuable and historically significant references are [Rog64, Bör04, FT97].

Packing and covering on the Euclidean sphere and the discrete cube.
To complement Proposition 5.1, it has been proved in [BGK`01] that for 0 ď t ď
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arccos
a

2{n, we have V ptq ě p6
?
n cos tq´1psin tqn´1 (similar estimates appear in

[Bör04], Lemma 6.8.6). For some values of n, t (roughly for t ą 1.14 and for large
n), this is better than the lower bound from (5.4), and similarly superior to the
improved bound from Exercise 5.4 if t ą 1.221.

The random covering argument from Proposition 5.4 is due to Rogers [Rog57,
Rog63]. The factor Cn log n from Corollary 5.5 is usually referred to as the density
of the covering , even though calling it “the overlap” or “the redundancy” would seem
more logical. Both the original Rogers’s argument, and the one presented here,
allow achieving C “ 1 at the expense of additional lower order terms (see Exercise
5.8 and its hint). Recent advances by Dumer [Dum07] improve the bound on the
density to p 1

2 ` op1qqn log n. The paper [Dum07] establishes also a density bound
1
2n log n`2n log log n`5n, valid for all ε P p0, 1q and all n ě 4. It should be noted,
however, that the latter result deals with a slightly easier problem, covering the
sphere Sn´1 Ă Rn by balls whose centers are not required to belong to Sn´1 (i.e.,
with the parameter N 1 from Exercise 5.1). Finally, at the price of increasing the
constant C, the result from Corollary 5.5 can be strengthened as follows: for any
dimension n and angle ε, there is a covering of Sn´1 by caps of radius ε such that
any point belongs to at most 400n log n caps [BW03].

Since the sphere looks locally like a Euclidean space, as the radii of the caps
tend to 0, the packing/covering problems for Sn´1 converge to the corresponding
problems for Rn´1. (The original random covering argument of Rogers [Rog57]
considered an even more general question, economical coverings of Rn by translates
of an arbitrary convex body—the spherical variant being an afterthought—and
led to an upper bound of n log n ` n log log n ` 5n for the appropriately defined
asymptotic density.) In that setting, a lower bound on density of optimal coverings
by Euclidean balls is Ωpnq [CFR59] and this estimate can be transferred back to
Sn´1 if the radius is small enough; see Example 6.3 in [BW03] for an argument
that works if ε ď arcsinp1{

?
nq.

References for the results mentioned about packing are [Ran55] (Rankin) and
[KL78] (Kabatjanskĭı–Levenštĕın), we refer to [CS99] for more information (see
also [BN06a]). Again, when the radius of the cap tends to 0, the problem becomes
the classical sphere packing problem in Rn. In this context, a classical result due to
Minkowski–Hlawka shows the existence of lattice packings of Euclidean balls (or ac-
tually, of any symmetric convex body) in Rn which cover a proportion 1{2n´1 of the
space (a.k.a. packing density). Remarkably, this result has been only marginally im-
proved in the past century [Rog47, DR47, Bal92b] and is exponentially far from
Kabatjanskĭı–Levenštĕın upper bound—which is approximately of order 0.66n—for
the proportion covered by a (non-necessarily) lattice packing (see [Gru07] for more
on this topic).

Covering and particularly packing in the Hamming cube is of fundamental
importance in coding theory, see, e.g., [Rot06, CHLL97]. The case of (very
small) balls of radius 1{n in t0, . . . , q ´ 1un is treated in [KP88].

The Gilbert–Varshamov bound has been improved in the q-ary cube for certain
large values of q in [TVZ82], using a link with modular curves.

Packing and covering for convex bodies. For early references on metric
entropy of convex bodies see [CS90], [Pis89b].

The arguments from [Bar14] imply the following improvement on the volu-
metric bound from Corollary 5.10: for ε P p0, 1q, any symmetric convex body in
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Rn is p1` εq-close in Banach–Mazur distance to a polytope with pC{
?
εqn vertices.

(This is sharp: consider the case of the sphere.) To the best of our knowledge, it is
not known whether analogous statement holds for not-necessarily symmetric bodies
and the affine version (4.2) of the Banach–Mazur distance. Similar questions can
be considered for large ε, or even ε growing with the dimension. In the case of the
sphere, this is essentially the problem considered in Exercise 5.13. Again, [Bar14]
contains good estimates in the general case. However, the bounds from [Bar14]
deteriorate as the asymmetry of the body (defined, for example, as the minimal dis-
tance dBM to a symmetric body) increases. Estimates that are superior for some
ranges of parameters can be found in [Sza].

Let us also mention an important open problem, known as the duality conjec-
ture: do there exist absolute constants c, C ą 0 such that for every two symmetric
convex bodies K,L Ă Rn we have

(5.67) logNpL˝,K˝q ď C logNpK, cLq?

This was proved when K or L is the Euclidean ball [AMS04] and extended to
the case when a bound on the K-convexity constant (as defined in Section 7.1.2)
is present in [AMSTJ04]. Another possible generalization to the setting of non-
symmetric convex bodies is more tricky; in that case, even the proper formulation
of (5.67) is not entirely clear.

A deep fact about covering numbers is the following ([Mil86], see also the dis-
cussion in [Pis89b]): there is an absolute constant C such that, for every symmetric
convex body K Ă Rn there is an 0-symmetric ellipsoid E such that

(5.68) max pNpK,E q, NpE ,Kqq ď Cn.

Note that since metric entropy duality (5.67) is known to hold when one of the
bodies is an ellipsoid, it follows then that similar bounds automatically hold also
for NpK˝,E ˝q and NpE ˝,K˝q. (In the original definitions, all four quantities were
included explicitly or implicitly.) Such an ellipsoid E is called an M -ellipsoid for
K, and K is said to be in the M -position when Bn2 is an M -ellipsoid for K. The
M -ellipsoids are discussed in detail in [AAGM15].

Metric entropy of classical manifolds. Theorem 5.11 is from [Sza82],
which covers the case of all metrics induced by unitarily invariant norms (see
also [Sza83, Sza98] and [Paj99]). Examples of packings in some Grassmannians
(mostly low-dimensional), some of them optimal, can be found in [CHS96, SS98].
More recent references, motivated by information transmission issues and concen-
trated on different asymptotics (k fixed and n tending to infinity), are [BN02,
BN05, BN06b]. It appears that the theoretical computer science community is
not aware that questions of that nature were considered in AGA already in 1980s.

Section 5.2. Classical general references about concentration of measure are
[Led01] and [Sch03]. We particularly recommend the recent monograph [BLM13].
For a presentation directed towards applications to data science, see [Ver].

Isoperimetry and concentration. A geometry-oriented reference about
isoperimetric inequalities is [BZ88]. The paternity of the isoperimetric inequal-
ity on the sphere (Theorem 5.13) is usually attributed to Lévy [Lév22, Lév51]
although the arguments he presented were not fully rigorous; [Sch48] is usually
cited as the first rigorous proof. Remarkably, the functional version (Lévy’s lemma,
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in the language of our Corollary 5.17) appears explicitly in [Lév22] (see p. 279)
and is therefore almost one century old!

A self-contained proof of the isoperimetric inequality on Sn´1, based on the
concept of spherical symmetrization, appears in [FLM77]. Another symmetriza-
tion procedure (the two-point symmetrization) is applied in [Ben84]. The simple
proof of the non-sharp inequality from Proposition 5.15 is based on [AdRBV98].
Proposition 5.20 is from [JS].

The Gaussian isoperimetric inequality was proved independently by Borell
[Bor75b] and Sudakov–Tsireslon [SC74]. For a proof of Poincaré’s lemma (Theo-
rem 5.22) going beyond the weak convergence version from Exercise 5.29, we refer
to [DF87] (which also advocates that the statement was first formulated by Borel
and not by Poincaré). See also [Led96] and references therein. For a direct proof
of concentration of measure on Gauss space, see [Pis86].

Ehrhard’s inequality (5.31) was proved in [Ehr83] for convex sets, then ex-
tended in [Lat96] to the case where only one of the sets set is convex, with the
general case being treated in [Bor03]. A priori, deriving an isoperimetric inequal-
ity such as (5.29) requires validity of (5.31) for an arbitrary Borel set and a ball;
the paper [Ehr83], however, contains a direct application of the technique to prove
(5.29). A general reference for this circle of ideas is [Lat02].

The concept of central values was formalized and applied in the context of QIT
in [ASW11], which also contains versions of Corollaries 5.32 and 5.35. However,
instances of the arguments can be found in [Has09] and in AGA literature dating
to (at least) 1980s.

Proposition 5.34 appears in [Dmi90, Kwa94, Fer97]. Exercise 5.48 appears
as Proposition 1.7 in [Led01]. Proposition 5.37 is Corollary 1.17 from [Led01].

There are various generalizations of Hoeffding’s inequality appearing in Exercise
5.57, notably due to Azuma [Azu67] and McDiarmid [McD89] in the context of
martingales.

Geometric and analytical methods. General references for Section 5.2.4
are [MS86, Sch03, DS01, GM00, BLM13, BGL14, GZ03].

Gromov’s comparison theorem (Theorem 5.38) appeared first in the preprint
[Gro80]. A proof can be found in an appendix in [MS86]. A new proof and
an extension to non-Riemannian spaces was proposed recently in [CM15]. While
the theorem is sharp as stated, there is a reason to suspect that a more precise
result should be available: the proof proceeds via a local/variational argument
and the globally normalized volume appears only a posteriori. A more satisfactory
variant appears in [Mil15]. In addition to the curvature, it takes into account the
actual diameter of the manifold in question, which may be strictly smaller than
the bound following indirectly from the curvature. However, since the results in
[Mil15] necessarily involve model manifolds more complicated than spheres, their
statements are somewhat technical.

The case of manifolds of dimension 1 is a little special. First, while the definition
of Ricci curvature in dimension 1 needs to be properly construed, the only sensi-
ble value is 0 since every such manifold looks locally like a segment. Accordingly,
Proposition 5.41 is then vacuously true. Next, the solution to the isoperimetric
problem in S1 (resp., in R) is very simple: among sets of any (positive, but not
full) measure, the boundary is the smallest if it consists of exactly two points.
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Consequently, the solutions, both for the “smallest boundary” and the “smallest en-
largement” problems, are arcs (resp., segments). However, finer analytic statements
(including but not limited to LSI) are interesting and highly nontrivial already in
dimension 1. For example, in view of Proposition 5.44, the validity of (5.48) for
the 1-dimensional Gaussian measure implies the same inequality in any dimension
(with the same constant α, which, in view of Proposition 5.42, can be taken to be
1, which is optimal). Indeed, even statements about spaces consisting of only two
points can be deep as for example in the elementary proof of the Gaussian isoperi-
metric inequality presented in [Bob97]. We will return to the same theme further
when reporting on developments directly related to LSI and hypercontractivity.

Log-Sobolev inequalities (LSI) were introduced in a seminal paper by Gross
[Gro75]. Again, the case of manifolds of dimension 1 (segments, circles) is a little
special; see [GMW14] for an elementary overview of this aspect of the subject and
for references. The link with concentration of measure (the Herbst argument) orig-
inates in an unpublished letter from Herbst to Gross. The connection between LSI,
Ricci curvature, and the Hessian of the density was put forward in [BÉ85, Bak94].
For a comprehensive treatment of functional inequalities (including complete refer-
ences), see [BGL14]. Another fruitful approach is the connection between LSI and
the quadratic transportation cost inequalities; see Chapter 6 in [Led01].

As exemplified in Table 5.4, the values of the Poincaré constants can often
be computed exactly. Indeed, the Poincaré inequality (5.54) can be rewritten as
Varµ f ď α

ş

p´∆fqf dµ, where ∆ is the Laplace–Beltrami operator on L2pX,µq.
It follows that the optimal α is equal to the reciprocal of the “spectral gap,” i.e.,
the smallest nonzero eigenvalue of ´∆. In some examples the eigenfunctions of the
Laplace–Beltrami operator can be explicitly described: for the Gauss space they
are the Hermite polynomials, for the sphere they are the spherical harmonics (see
the elementary [See66], or [BGM71] which covers also the case of the projective
spaces). On Sn´1, equality in (5.54) is achieved for functions of the form x ÞÑ xx, yy
with y P Rn. For Lie groups there is a connection with the spectrum of the Casimir
operator and representations of the associated Lie algebra (see Proposition 10.6 in
[Hal15]), which allows to derive the entire spectrum of ´∆. The case of SOpnq and
SUpnq appears in [SC94] (for Upnq, see [Voi91]). Note that in these examples there
is equality in (5.54) when f is a function of the formM ÞÑ TrpAMq for A P Mn. For
a complete list of semisimple Lie algebras, see [Rot86]. The spectrum of Grassmann
manifolds is considered in [Tsu81, EC04, TK04, Hal07], which allows in principle
to retrieve the value of the Poincaré constant for specific dimensions if needed.

Hypercontractivity for the Ornstein–Uhlenbeck semigroup (Proposition 5.47)
has been first established by Nelson [Nel73]. The connection with log-Sobolev
inequalities was put forward by Gross [Gro75].

In many situations, the Gaussian case can be treated as a limit case from
the case of the hypercube via the central limit theorem. By the tensorization
property (Proposition 5.44), this amounts ultimately to verifying statements about
the two-point space t´1, 1u (see [Gro75] for a proof of the Gaussian LSI along
these lines). The hypercontractivity inequality on the discrete cube is known as the
Bonami–Beckner inequality [Bon70, Bec75]. Some variants of Proposition 5.48
appear in [Jan97]. For a more sophisticated technology giving sharp estimations
on the moments of Gaussian polynomials (or Gaussian chaoses) see [Lat06]. The
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statement about concentration on polynomials on products of spheres appearing in
Remark 5.50 follows from the proof of Corollary 12 in [Mon12].

Discrete settings. A reference focusing on the case of the hypercube is
[O’D14] (it contains in particular the versions of Proposition 5.48 and Corollary
5.49 for the hypercube alluded to in Remark 5.50). In addition to [O’D14], general
references for Section 5.2.5 are [Mat02, McD98]. The main statement of Theorem
5.51 was proved in [Har66] and rediscovered in [Kat75]. A short proof may be
found in [FF81]; we also recommend the reference [Lea91]. Theorem 5.51 deals
with vertex-isoperimetry. If we consider instead edge-isoperimetry (minimizing the
number of edges joining A to Ac), the optimal sets are no longer Hamming balls
but subcubes.

Theorem 5.54 is taken from [Tal88] (Note that [Tal88] states the result for the
cube t´1, 1un and so the coefficient in the exponent in the estimate corresponding
to (5.60) is there 1

8 .) Theorem 5.55 appears in [JS91] and [Mec04]. The latter
paper addresses general unconditional direct sums and not only `q-sums; see also
[Mec03]. Similar results, but with quite different proofs were presented in [Mau91]
and [Dem97]. The most abstract (and most flexible) statements are arguably in
[Tal95, Tal96b, Tal96a]. The arguments addressing settings more general than
that of Theorem 5.54 usually led to a coefficient 1

4 in the exponent as in (5.61),
except for [Tal95], which includes a statement (Theorem 4.2.4) featuring coefficient
1
2 , but at the cost of introducing additional factors of lower order and restricting
the range of t. A clean proof of Theorem 5.56 (which also has coefficient 1

2 in the
exponent) can be found in [BLM13]; the argument is attributed to [Led97] and
the result itself to [Tal96b].

Deviation inequalities. Some references for Section 5.2.6 are [Ver12] and
[CGLP12] (the latter treats also the case of intermediate growth between sub-
gaussian and subexponential). As pointed out in the main text, there are several
possible forms of ψr conditions and of definitions of the ψr-norms. The original
ones were (presumably) in terms of Orlicz/Young functions: given an increasing
convex function ψ : R` Ñ R` with ψp0q “ 0 and ψpxq Ñ 8 as x Ñ 8, we may
define a the ψ-norm of a random variable X as (for example)

}X}ψ “ inftc ą 0 : Eψp|X|{cq ď ψp1qu.

If one considers ψrpxq “ exppxrq ´ 1 (r ě 1), then, for r “ 1, 2, one gets norms
which are equivalent (although not equal) to the ones defined in (5.66) and (5.65).
For precise statements and proofs, see Theorem 1.1.5 in [CGLP12], which also
covers the link to (the rate of growth of) the Laplace transforms mentioned in the
main text; cf. Lemma 5.28 and Exercise 5.76. Overall, Section 1.1 of [CGLP12]
is an excellent reference for ψr conditions/norms, which are otherwise difficult to
extract from books/surveys on the more general Orlicz spaces.

For a historical account of Bernstein’s contributions, we refer to pp. 126–128
in [AAGM15]. For more precise results about moments of sums of independent
variables, see [Lat97]. For non-commutative analogues of these inequalities (i.e.,
for sums of random matrices), see [Tro12].

Finally, among other techniques to prove concentration of measure, we men-
tion the so-called martingale method which implies for example concentration on
permutation groups (see [Sch82, Mau79, MS86]): If we equip the symmet-
ric group Sn with the uniform probability measure and the distance dpσ, τq “
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1
n cardti : σpiq ‰ τpiqu, then any 1-Lipschitz function f on pSn, dq satisfies
Ppf ě Ef ` tq ď expp´nt2{8q for any t ě 0.

The best constants in Khintchine inequalities (see Exercise 5.72) have been
found in [Sza76] (who proved A1 “ 1{

?
2q and in [Haa81] (for p ą 1). The

Khintchine–Kahane inequalities from Exercise 5.72 were first proved in [Kah85].
The correct asymptotic order of the constants as p Ñ 8 was found in [Kwa76],
while the value A11 “ 1{

?
2 is from [LO94]. A complete proof of the Khintchine–

Kahane inequalities can be found by consulting Theorem 3.5.2 of [AAGM15].


