Assignment \#8, additional problems and notes

Additional Problem A It was shown in class that the function E defined by $E(x)=\sum_{k=0}^{\infty} \frac{x^{k}}{k!}$ is a (strictly increasing) bijection E : verifying the initial value problem

$$
\begin{equation*}
E(0)=1, \quad E^{\prime}(x)=E(x) \tag{1}
\end{equation*}
$$

It follows that E admits an inverse $L:=E^{-1}:(0, \infty) \rightarrow \mathbb{R}$.
(a) State a general result that guarantees that L is a continuous strictly increasing function on its domain. You do not need to prove the result, just state it with the appropriate hypotheses.
Hint: A version of the result can be found in one of the exercises in Chapter 5.
(b) Derive a formula for $L^{\prime}(x)$ from the above properties of $E(x)$. This should include citing the general result that that guarantees that L is differentiable. (Such result can be found in the book, but the best source is one of the files in the "MATH 321 handouts" Module on Canvas.)
Additional Problem B Define $e:=E(1)=\sum_{k=0}^{\infty} \frac{1}{k!}$. Show rigorously that $2.71<e<2.72$.
Note: Your argument can use a calculator with 4 basic operations, but no more advanced functions.
Additional Problem C (a) Show that if $n \in \mathbb{N}$, then

$$
\begin{equation*}
0<e n!-n!\sum_{k=0}^{n} \frac{1}{k!}<\frac{e}{n+1} \tag{2}
\end{equation*}
$$

(b) Deduce that e is irrational.

Hints : For part (a), you may either use the Taylor-Lagrange theorem, or an elementary argument upper-bounding the remainder of the series defining e. For part (b), start by showing that if $r \in \mathbb{Q}$, then $r n!$ is an integer for all sufficiently large $n \in \mathbb{N}$.

Re Problem 10.5.7 Note: This is a problem about a function being analytic at a particular point (Definition 10.27). Another way to say that f is analytic at c is as follows: There is $r>0$ and a sequence of scalars $\left(a_{k}\right)$ such that $f(x)=\sum_{n=0}^{\infty} a_{k}(x-c)^{k}$ if $|x-c|<r$. In other words, f can be represented as a powers series (in powers of $(x-c)$) in some neighborhood of c. (A posteriori, that power series is necessarily the Taylor series for f at c.). This is a simpler concept than the definition of f being analytic on an open interval I that was given in class: $f: I \rightarrow \mathbb{R}$ is analytic on I if it analytic at every $c \in I$ (in the sense stated above).

