Assignment \#9, notes and hints

Problem 10.6.4 Following the method sketched in section 10.6.1 (and in class) find the first three nonzero terms of the power series expansion of $\tan x$.

Problem 10.7.3 Find the terms of the power series expansion of $e^{\tan x}$ at $x=0$ through the term involving x^{4}.

Problem 11.1.5: Hint : You may use without proof the following variant of Problem 5.4.3 (which was assigned last semester, and essentially the same proof works): If $c \in[-1,1]$ and if we define

$$
H_{c}(x):=\left\{\begin{array}{ll}
\sin \left(x^{-1}\right) & \text { if } x \neq 0 \\
c & \text { if } x=0
\end{array},\right.
$$

then H_{c} has intermediate value property in \mathbb{R}.
Problem 11.1.6 Part (a) was (mostly) shown in class, as was the following : If $f \in C[0,2 \pi]$, then $f \cdot f \geq 0$ with equality if and only if $f \equiv 0$.

Problem 11.2.6 Part (a) is very easy. For the second inequality in part (c) one possible trick is to apply creatively the Cauchy-Schwarz inequality.

