Riemann sums and Riemann integrals

Notation and setup Suppose $f : [a, b] \to \mathbb{R}$ is a bounded function (say, $|f| \leq M$ on [a, b]), $\mathcal{P} = \{x_0, x_1, \dots, x_n\}$ a partition of [a, b], i.e.,

 $a = x_0 < x_1 < \ldots < x_n = b$ and $\dot{\mathcal{P}}$ is a *tagged* partition, i.e.,

$$\dot{\mathcal{P}} = (\mathcal{P}, \{t_1, t_2 \dots, t_n\}),$$

where each $t_j \in [x_{j-1}, x_j]$. As usual, one defines *Riemann sums*

$$S(f, \dot{\mathcal{P}}) := \sum_{j=1}^{n} f(t_j)(x_j - x_{j-1})$$

and calls $\|\dot{\mathcal{P}}\| = \|\mathcal{P}\|$:= max_j $|x_j - x_{j-1}|$ the norm (or mesh) of the partitions $\mathcal{P}, \dot{\mathcal{P}}$.

(i) $f \in \mathcal{R}[a, b]$ (*f* is Riemann integrable), *i.e.* $\exists I \in \mathbb{R} \quad \forall \epsilon > 0 \quad \exists \delta > 0 \quad \forall \dot{\mathcal{P}} \quad || \dot{\mathcal{P}} || < \delta \implies |S(f, \dot{\mathcal{P}}) - I| < \epsilon$

(ii) $\forall \epsilon > 0 \quad \exists \delta > 0 \quad \forall \dot{\mathcal{P}}, \dot{\mathcal{Q}} \quad \| \dot{\mathcal{P}} \| < \delta, \| \dot{\mathcal{Q}} \| < \delta \Rightarrow$ $|S(f, \dot{\mathcal{P}}) - S(f, \dot{\mathcal{Q}})| < \epsilon$

(iii) $\exists I \in \mathbb{R} \quad \forall (\dot{\mathcal{P}}_n) \quad \| \dot{\mathcal{P}}_n \| \to 0 \Rightarrow S(f, \dot{\mathcal{P}}_n) \to I$

(iv) $\forall (\dot{\mathcal{P}}_n) \| \dot{\mathcal{P}}_n \| \to 0 \Rightarrow (S(f, \dot{\mathcal{P}}_n))$ is a Cauchy sequence

Define the lower und upper sums

$$L(f, \mathcal{P}) := \sum_{j=1}^{n} m_j (x_j - x_{j-1})$$
$$U(f, \mathcal{P}) := \sum_{j=1}^{n} M_j (x_j - x_{j-1})$$
where $m_j := \inf\{f(x) : x_{j-1} \le x \le x_j\},$
$$M_j := \sup\{f(x) : x_{j-1} \le x \le x_j\}.$$

If $\dot{\mathcal{P}}$ is any *tagged* partition with the same intervals as \mathcal{P} , then

$$L(f, \mathcal{P}) \leq S(f, \dot{\mathcal{P}}) \leq U(f, \mathcal{P})$$

and $L(f, \mathcal{P}) = \inf S(f, \dot{\mathcal{P}})$ and $U(f, \mathcal{P}) = \sup S(f, \dot{\mathcal{P}})$ (inf, sup over all *tagged* partitions with the same intervals as \mathcal{P}).

Proposition. f is Riemann integrable iff

$$\sup_{\mathcal{P}} L(f, \mathcal{P}) = \inf_{\mathcal{P}} U(f, \mathcal{P}) \qquad (v)$$

One calls $L(f) := \sup_{\mathcal{P}} L(f, \mathcal{P})$ and U(f) := $\inf_{\mathcal{P}} U(f, \mathcal{P})$ the lower and upper integrals of f over [a, b]. If they coincide, the common value is the Riemann integral of f, or $\int_a^b f$ (same as I in the Fact above). As in Fact (iii), U(f) = $\lim_{n \to \infty} U(f, \mathcal{P}_n)$ for any (\mathcal{P}_n) verifying $\|\dot{\mathcal{P}}_n\| \to 0$, and similarly for L(f). It follows that modifying f at a finite number of points does not affect U(f) and L(f) and hence the integrability and the value of the integral. For example, if $\|\mathcal{P}_n\| < \delta$, then modifying f at k points changes $U(f, \mathcal{P}_n)$ at most by $2k \times \delta \times M$ (since at most 2k intervals of \mathcal{P}_n are affected) and this can be made as small as we please by letting $\delta \to 0$.