MATH 424 - SPRING 2021 - Set #7

Extra Exercise A Let \mathcal{H}, \mathcal{K} be separable Hilbert spaces, so that orthonormal bases (ONB) of \mathcal{H} and \mathcal{K} are coutable. An operator $T \in L(\mathcal{H}, \mathcal{K})$ is called a *Hilbert-Schmidt* operator if, for some ONB (u_k) of \mathcal{H} we have $\sum_k ||Tu_k||^2 < \infty$. The quantity $(\sum_k ||Tu_k||^2)^{1/2}$ is then called "the Hilbert-Schmidt norm" of T and denoted $||T||_{HS}$.

a. Show that $\|\cdot\|_{HS}$ is indeed a norm on the vector space $\{T \in L(\mathcal{H}, \mathcal{K}) : \|T\|_{HS} < \infty\}$.

b. Show that the expression $\sum_{k} ||Tu_k||^2$ does not depend on the choice of the basis (u_k) and that $||T||_{HS} = ||T^*||_{HS}$.

Hint: Let (u_k) , (v_k) be two orthonormal bases of \mathcal{H} and (e_j) an ONB of \mathcal{K} . Express $||T||_{HS}$ in terms of $\langle Tu_k, e_j \rangle$, and similarly for the basis (v_k) .

c. Show that for any Hilbert-Schmidt operator T we have $||T|| \leq ||T||_{HS}$, where $||\cdot||$ is the usual operator norm defined on p.154.

Note: In the definition of a Hilbert-Schmidt operator we assumed boundedness, the above inequality effectively shows that that hypothesis is superfluous.

d. Show that every Hilbert-Schmidt operator T is compact.

Hint: You may use without proof the following rather easy fact (which really belongs to topology): If (S_n) is a sequence in $L(\mathcal{X}, \mathcal{Y})$ which converges in norm (*i.e.*, operator norm) to S, and if each S_n is compact, the so is S. Now, if P_n is the orthogonal projection on to the space spanned by u_1, u_2, \ldots, u_n (where (u_k) is the ONB dfrom the definition of $||T||_{HS}$), then TP_n is finite rank, hence compact (justify) and $||T - TP_n|| \to 0$ (again, justify).

Extra Exercise B Let \mathcal{H}, \mathcal{K} be separable Hilbert spaces, $B_{\mathcal{H}}$ – the unit ball of \mathcal{H} and let $T \in L(\mathcal{H}, \mathcal{K})$ be a compact operator. Show that $T(B_{\mathcal{H}})$ is compact. *Hint*: Use similar reasoning to the one that showed that such T attains its norm.

Extra Exercise C Let $\mathcal{H} = L_2([0, 1], m)$ and let $T : \mathcal{H} \mapsto \mathcal{H}$ be defined by (Tf)(t) = tf(t) (for $f \in \mathcal{H}, t \in [0, 1]$). Show that T is an Hermitian operator and that T does not achieve its norm. (See p.172-173 for the definition of $L_2(X, \mu)$.)