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Abstract : We discuss metric, algorithmic,

and geometric issues related to broadly un-

derstood complexity of high dimensional con-

vex sets. The specific topics include metric

entropy and its duality, derandomization of

constructions of normed spaces or of convex

bodies, and different fundamental questions

related to the geometric diversity of such

bodies, as measured by various isomorphic

(as opposed to isometric) invariants.



Plan of the talk

• introductory remarks about the field (for
non-specialists)

• metric complexity: the metric entropy of a
convex set and related duality issues

• geometric complexity: diversity of convex sets

• algorithmic complexity of convex sets, de-
randomization

“Case studies” centered around a concept
and related fundamental questions or con-
jectures.



Introductory remarks, some notation

Perspective : asymptotic geometric analysis (AGA)

(or geometry of Banach spaces, or local the-

ory of normed/Banach spaces, or geometric

functional analysis (GFA), or high-dimensional

convex geometry)

Setting : fixed finite but usually high dimension

Objects of study : convex bodies, normed

spaces, linear operators, matrices,. . .



Typical objective :

cf ≤ invariant ≤ Cf

- f : an explicit function of the parameters

- C, c > 0 : constants independent of the

particular instance of the problem

This is elsewhere denoted as “invariant = Θ(f)”

In GFA : “invariant ' f ,” or worse “∼ f”

(can be (mis)understood as lim invariant
f = 1)



Dictionary : geometric vs. functional-analytic
objects

• normed space X ↔ its unit ball BX

• convex body K ⊂ Rn ↔ its gauge ‖ · ‖K

(i.e., ‖x‖K := inf{t > 0 : x ∈ tK})

and so if K is 0-symmetric (usually assumed)

• K ↔ the normed space (Rn, ‖ · ‖K)

• pairs of convex sets ↔ operators

(K, B) ↔ Id : (Rn, ‖ · ‖K) → (Rn, ‖ · ‖B)

• duals of normed spaces ↔ polars of sets

the polar of S : S◦ := {x : ∀y ∈ S 〈x, y〉 ≤ 1}



Fundamental concept : Banach-Mazur distance

d(K, B) := inf{λ > 0 : ∃u ∈ GL(n) K ⊂ u(B) ⊂ λK}

or, in terms of normed spaces,

d(X, Y ) := inf{‖u‖ · ‖u−1‖ : u ∈ L(X, Y )}

(maximum over all isomorphisms)

Groups other than GL(n) are also considered



Metric Complexity

Covering numbers, metric entropy functional,

packing numbers

Definition If X is a metric space, K ⊂ X - a

compact set and ε > 0, the covering number

N(K, ε) is the minimal number of balls of

radius ε whose union covers K. We call ε →
log N(K, ε) the metric entropy functional of

K.



If X is a normed space, this is about covering

K by translates of B = εBX.

In a vector space, N(K, B) is the covering

number of a subset K by translates of a con-

vex body B.

A closely related concept: packing numbers

M(K, B), the maximal number of disjoint

translates of B by elements of K. We have

N(K, 2B) ≤ M(K, B) ≤ N(K, B) if B is sym-

metric.



Motivation, applications

• the immediate geometric framework

• log2 N(K, ε) = the complexity of K, in bits,
at the level of resolution ε

• in coding theory, a self-correcting code is
essentially a packing

• in probability theory, metric entropy func-
tionals are very closely related to various in-
variants of stochastic processes

• metric entropy estimates are crucial in nu-
merous constructions in classical and func-
tional analysis and in operator theory



The duality conjecture (Pietsch 1972)

Conjecture There exist numerical constants

a, b ≥ 1 such that for any dimension n and

for any two symmetric convex bodies K, B in

Rn one has

b−1 log N(B◦, aK◦) ≤ log N(K, B),

where S◦ := {x : ∀y ∈ S 〈x, y〉 ≤ 1}.



Remarks

• The bipolar theorem ((S◦)◦ = S) allows to
exchange the role of the sets K, B and their
polars.

• Rescaling allows to introduce an extra pa-
rameter ε and to consider N(K, εB) etc.

So we are asking whether the two metric en-
tropy functionals, log N(K, εB) and log N(B◦, εK◦),
are – in the appropriate sense – equivalent,
uniformly over the dimension of the problem,
K, B and ε > 0.



The original functional-analytic formulation

Set, for a compact linear operator u : X → Y

N(u, ε) := N(uBX , ε) = N(uBX , εBY )

The duality conjecture asserts that

b−1 log N(u∗, aε) ≤ log N(u, ε)

uniformly over X, Y, u and ε.

While the general conjecture remains open,
there is a substantial progress to report.



Progress report

Theorem 1 The duality conjecture holds

if one of the spaces X, Y is a Hilbert space

or, equivalently, if one of the sets K, B is an

ellipsoid.

[Artstein, Milman, S. (2004)]

Theorem 2 The duality conjecture holds if

one of X, Y is a K-convex space.

[A., M., S., Tomczak-Jaegermann, (2004)]



K-convexity

K-convexity ⇔ absence of large subspaces
resembling finite-dimensional `1-spaces

Other interesting descriptions:

- nontrivial type p > 1

- boundedness of the Rademacher (or Gaus-
sian) projection on L2(X).

K-convex spaces ⊃ Lp-spaces for 1 < p < ∞
(classical or non-commutative)

K-convexity can be quantified → “K-convexity
constant,” well behaving with respect to stan-
dard functors of functional analysis



Comments on various degrees of generality

• both X and Y are Hilbert spaces:

- metric entropy of a Hilbert space operator

depends only on its singular values, and the

singular values of an operator and its adjoint

coincide

- in the “geometric” formulation, K, B (and

hence K◦, B◦) are ellipsoids, with the pair

(K, B) affinely equivalent to the pair (B◦, K◦)
(in this order!)

- so duality results hold with a = b = 1



• just one of the spaces is a Hilbert space:

- the duality theorem expresses what seems

to be a rather fundamental property of all

convex subsets of the Hilbert space.

• the general setting

- a statement about arbitrary convex subsets

of a general normed space.



Related concepts, further problems

A new concept: convexified packing

Definition A sequence x1, . . . , xm is called a
convexified B-packing if

(xj + B) ∩ conv
⋃
i<j

(xi + B) = ∅

for j = 2, . . . , m. Next, the convexified pack-
ing number M̂(K, B) is the maximal length
of a sequence in K that is a convexified B-
packing.

Unlike for the usual packing or covering, the
order is important here.



For this modified notion, the duality holds

Proposition 1 If K, B ⊂ Rn are convex sym-
metric bodies, then M̂(K, B) ≤ M̂(B◦, K◦/2)2.

This is (essentially) a consequence of a Hahn-
Banach type separation theorem. Another
ingredient of the proof is

Proposition 2 In a Hilbert space (or a K-
convex space), the packing numbers M(K, ·)
and M̂(K, ·) are equivalent (in the appropri-
ate sense) if the diameter of K and the res-
olution are comparable.



Conclusion : the duality of M(·, ·), or N(·, ·),

holds whenever the diameter of K and the

resolution are comparable. To obtain the

theorems, we use now

Proposition 3 For a given space X, if the

duality conjecture holds for the resolution

ε = 1 and all K ⊂ X verifying K ⊂ 4BX,

then it holds (perhaps with different a, b) for

all K and all ε > 0.

In geometric terms : it is enough to prove

the original conjecture for K, B with K ⊂ 4B



Some of the ideas behind Propositions 1 and
2 were already present in the much earlier pa-
per [Bourgain, Pajor, S., Tomczak-Jaegermann
(1989)].

Several natural problems remain open:

Are the functionals M(K, ·) and M̂(K, ·) al-
ways equivalent? equivalent for bounded sets
(i.e., if the diameter and the resolution are
comparable)? in specific spaces such as `1?

Positive results in this spirit imply new results
on duality.



Geometric Diversity

The theme considered in this part is

To what extent do convex bodies of the same

dimension n exhibit common geometric fea-

tures? In particular, to what extent do they

resemble the arguably most regular body, the

Euclidean ball Bn
2?

[resp., normed spaces, the Euclidean space `n
2]



Answer #1 :

The Minkowski compactum and its size

The nth Minkowski compactum : the set
of (classes of affinely equivalent) symmet-
ric convex bodies in Rn (or, equivalently, of
classes of isometric n-dimensional normed
spaces), endowed with the Banach-Mazur dis-
tance.

max d(K, Bn
2) =

√
n, max d(K, B) = Θ(n)

[John (1948), Gluskin (1981)]; the maxima
are taken over all 0-symmetric n-dimensional
convex bodies K, B.



Answer #2 :

Quotient of a subspace theorem

Every n-dimensional normed space admits a
subspace of a quotient whose dimension is
n/2 and whose Banach-Mazur distance to
the Euclidean space does not exceed some
universal bound C (resp., ≥ θn for θ ∈ (0, 1),
C = C(θ) → 1 as θ → 0+).

[Milman (1985)] In other words, every n-
dimensional symmetric convex body admits
a central section and an affine image of that
section that is of dimension ≥ n/2 and that
is C-equivalent to a Euclidean ball.



Conclusion : The answer dramatically de-

pends on the invariant that is relevant in a

particular context or application.

In what follows we will be mostly interested

in the circle of ideas related to the quotient

of a subspace theorem and its aftermath.



A digression : The Dvoretzky theorem

Every n-dimensional symmetric convex body

K admits a nearly spherical central section

whose dimension is of order log n.

[Dvoretzky (1961), Milman (1971)] In gen-

eral, the logarithmic order is optimal.

The original “almost isometric” formulation:

Given ε > 0,t there exists a (1 + ε)-spherical

section of K of dimension k ≥ c(ε) log n.

Optimal dependence between k, ε and n : unknown



Further digression : The Knaster problem

Given continuous function on the sphere in

Rn and a configuration of n points on that

sphere, is there a rotation of the configura-

tion on which the function is constant?

[Knaster, The New Scottish Book (1946)]

An affirmative answer would easily imply the

Dvoretzky theorem with very good depen-

dence on the parameters.



Theorem 3 The answer to the Knaster
problem is “no” if the dimension n is large.

[Kashin, S., CRAS (2003)]

Large: answer is unknown only for n between
4 and ≈60 [Hinrichs, Richter (2005)].

However, the following may still be true, and
its consequences would be just as good for
precise forms of the Dvoretzky theorem.

Is the answer to the Knaster problem affir-
mative if the configuration C ⊂ Sn−1 consists
of (say) ≤

√
n points? or if

∑
x∈C x⊗x = λP?



Back to the quotient of a subspace theorem

ICM 1986 - Milman’s program to further de-
velop the “proportional theory.” 1st problem:

Does every n-dimensional normed space ad-
mit a quotient of dimension ≥ n/2 whose
cotype 2 constant is bounded by a universal
numerical constant?

There was strong “experimental evidence”
that such a result may be true, and the an-
swer was affirmative if one replaced the co-
type 2 property by a closely related “bounded
volume ratio property.”



Cotype 2 and Cotype 2 constants

Cotype 2 constants of a space X is the small-
est C (if it exists) such that, for every finite
sequence (xj) in X one has

Ave±‖
∑
j

±xj‖2 ≥ C−2 ∑
j

‖xj‖2

(relaxed parallelogram inequality). If such
a constant exists, the space is said to have
cotype 2.

Examples: classical and non-commutative Lp-
spaces for p ∈ [1, 2].



Negative answers: the saturation phenomenon

Theorem 4 ∃c > 0 such that whenever k, n

are positive integers with

k ≤ c
√

n

and W is a k-dimensional normed space, then

there exists an n-dimensional normed space

X such that every quotient Y of X with

dim Y ≥ n/2 contains a contractively com-

plemented subspace isometric to W .

[S., Tomczak-Jaegermann (2004), (2005)]



Relation to Milman’s problem

Apply the Theorem with W = `k
∞ for largest

possible k, that is with k of order
√

n.

Then every quotient Y of X with dim Y ≥
n/2 contains `k

∞, and so its cotype 2 con-

stant is at least
√

k ' n1/4

Another interesting point : the
√

n threshold,

which appears in many places in the theory



Why “saturation”?

Theorem 4 says that the space X is so “satu-
rated” with subspaces isometric to W (copies
of W ), that such subspaces persist in every
“sufficiently large” quotient of X.

Complementability ⇒ “every quotient Y of X”
can be replaced by “every subspace Y of X.”

Thus, in general, passing to large subspaces
or large quotients can not erase k-dimensional
features of a space if k is below certain thresh-
old value.



Any future for the “proportional theory”?

Some positive results in the same direction
are still possible (Theorem 4 clarifies which).
Here is a sample problem :

Given n-dimensional normed space X, is there
a subspace Y ⊂ X with m := dim Y ≥ n/2
and a basis y1, . . . , ym of Y such that, de-
noting by y∗1, . . . , y∗m the dual basis of Y ∗ we
have

Ave±‖
∑
i

±yi‖ ·Ave±‖
∑
j

±y∗j‖ ≤ Cm ?

[May be true without passing to a subspace.]



Algorithmic Complexity, Derandomization

The theme of this part is : How difficult is
it to describe a given convex body K?

Prime example : algorithmic complexity of
the membership oracle: How difficult is it to
decide whether a point belongs to K?

Another class of issues : if the existence of
K with certain properties is shown by a non-
constructive or probabilistic proof; is it possi-
ble to give an explicit example, or an efficient
derandomized algorithm?



The probabilistic method in functional analysis :

a glorious history

• Dvoretzky theorem

• Kashin decomposition

• Gluskin random normed spaces

• random factorizations of operators

• poorly reducible matrices

• matrix models in free probability

• saturation phenomenon

• compressed sensing

• . . .



Methodology : produce a random variable
whose values were convex sets – or normed
spaces, or operators – and to show that the
required property is satisfied with nonzero
probability (and typically very close to 1)

Challenge : exhibit explicit objects with sim-
ilar properties

Explicit : feasible in the algorithmic sense

Typical goal : replace random matrices by
pseudorandom matrices

Will concentrate on : poorly reducible ma-
trices, Kashin decomposition of `m

1 and com-
pressed sensing
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Poorly reducible matrices

Definition A matrix M is said to be
reducible if, in some orthonormal basis,
it can be written as a block matrix

M =

[
M1 0
0 M2

]
,

where M1 and M2 are square matrices.

This is equivalent to M commuting with
a nontrivial orthogonal projection.



Experimental mathematics led to (≈1980)

Conjecture As n increases to ∞, the re-
ducible matrices become more and more dense
(in norm) in the space of all n× n matrices.

Theorem 5 There is a computable constant
δ > 0 such that for every n ≥ 2 there is an
n × n (real or complex) matrix of norm one
which cannot be approximated within δ by a
reducible matrix.

Probabilistic argument : [Herrero & S. (1986)]

Explicit construction, based on property τ :
[Benveniste & S. (≈2002)]



The Kashin decomposition

Given m = 2n ∈ 2N, there exist two orthog-
onal m-dimensional subspaces E1, E2 ⊂ Rm

such that
1

8
‖x‖2 ≤

1
√

m
‖x‖1 ≤ ‖x‖2

for all x ∈ Ei, i = 1,2.

[Kashin (1977)] In other words, the space
`2n
1 is an orthogonal (in the `2n

2 sense) sum
of two nearly Euclidean subspaces.

This is surprising since the discrepancy be-
tween the `1 and `2 norms on Rm is

√
m.



One way to prove it : show that most of

n-dimensional sections of the unit ball of `m
1

are nearly spherical if n = m/2.

Challenge : find explicit sections with that

property.

Reality check : explicit nearly Euclidean sub-

spaces of `m
1 are to date known only for di-

mensions n = O(
√

m).



Progress report on Kashin decompositions
and large nearly Euclidean subspaces of `m

1 .

• several attempts at partial derandomiza-
tion of Kashin decomposition, notably [Art-
stein & Milman (2006)] :
- random walks on expander graphs
- requires O(m(logm)α) random bits, vs.
' m2 entries in the random matrix approach

• explicit high-dimensional nearly spherical
projections of sections of simplices [Ben-Tal
& Nemirovski (2001)] via mathematical pro-
gramming



Why mathematical programming?

Passing to a projection or a section are natu-
ral operations in mathematical programming;
the following are two sides of the same story:

• every conic quadratic problem can be re-
duced to linear programming without increas-
ing the size of the problem too much

• a k-dimensional ball is approximable within
ε by a projection of a section of a simplex of
dimension O(k log 1/ε)

More details and backround: the talk by Arkadi
Nemirovski on Monday



Compressed sensing

Problem from signal processing : efficiently
reconstruct sparse vector x ∈ RN by perform-
ing m � N linear measurements

Sparse: supported on at most s coordinates

Surprise: possible with m = O(s log(N/s))

For best rates: random measurements, Gaus-
sian or Bernoulli m×N matrices. Many needed
techniques were known in GFA starting around
1980.

What about explicit sensing matrices?
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Specific questions : Find (for all m) explicit
m×10m matrices A = Am such that, for any
x ∈ R10m supported on at most m/10 co-
ordinates the following “restricted isometry
condition” holds

0.9‖x‖2 ≤ ‖Ax‖2 ≤ 1.1‖x‖2

How difficult is it to verify the restricted
isometry condition? (Appears to be NP -hard.)

More on this: the talk by Emmanuel Candès
(section 18) just an hour ago.

If you did not go, bad news : efficient sensing
in the past hasn’t been worked out yet.
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