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0. INTRODUCTION

All the main results of this paper can be summarized as follows.
Let M be either the orthogonal group O(m) or the Grassmann manifold
nom’ equipped with some natural metric (we admit metrics generated by
2

unitary ideal norms on O{(m) and their quotients on Gn m’ the opera-
9

tor metric on O{m) and the usual Hausdorff distance of spheres on

Gh psee Remark 5-—Dbeing the most standard examples). Let, for some

2

€ € (0,diam M], 7 be an e€-net of M of minimal cardinality. Then

)dim M dim M
-]

(%) (¢ daiam M/e s # N =< (c' diam M/€)

where c¢ and o are universal constants (independent of M and €).
Of course universality of the constants of M is the crucial point.

In view of Lemma 2 below, (%) is equivalent to saying that the
(normalized) Haar measure of a ball of radius € 1is roughly.

. dim M - . . .
(Ce/diam M) . Similar problems are extensively studied in the case
of Riemannian manifolds, but little seems to be known in the case of
non-Riemannian metriecs. One may expect (%) to hold in much more gen-—

eral circumstances—perhaps under some geometrical assumptions on a

manifold M.
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A special case of (%) with M = Gn o and the Hausdorff distance _
L1 Y,
of spheres as a metric (in fact its slightly weaker version, cf. Remark

11) was used in [5] to solve the finite-dimensional basis problem or,

more precisely, to prove

Theorem 0.(1.1 in [5]): There is a constant C > 0 such that, for
every n, there exists a 2n~-dimensional normed space B such that, for

every projection P on B of rank n,
P :B8 - 38| >cun.

A similar résult, giving slightly weaker estimate for HP“, was
obtained independently and somewhat earlier by E. D. Gluskin (see [3]).

This paper is an extended version of section 8 from [5], where most
of its results were announced without proof. The author does not know
about any application of the general form of (#), but believes that it
can be useful in many finite dimensional constructions involving ideal
norms.

The following problem is not immediately related to the ones con-

sidered here, but may be of some interest.

Problem: Let M be the Banach-Mazur compact (i.e., the set of all n-
dimensional normed spaces), d-—the Banach-Mazur distance and € > 1.

What is the minimal cardinality of an e-net of M with respect to d?

All spaces and manifolds considered here are real. All arguments
carry over ‘to the complex case (i.e., U(m), complex Gy o etc.)—word
3

by word or with some simplifications. One must only remember to enter

the topological (i.e., real) dimension of M into (%).
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1. NOTATION AND PRELIMINARY RESULTS

If XK is a bounded subset of some metric space and p the corre-
sponding metric, we shall denote by N(K,p,e) the minimal cardinality
of an €-net of K with respect to p. As a rule, we shall consider
only € € (O,diam K]. If the metric space is actually a normed space
with a norm H“H generated by an absolutely convex set KO, we may

write N(X,|-]l,e) of NW(K,X ,e) instead of N(K,p,€).

OD
The following properties of N(-,-,-) are either well known or

easy to prove. The first two of them express N(-,-,-) in terms of a

"volume ratio."

Lemma 1: Let KO’ K CiRd, KO absolutely convex. Then, for any € >0,
1,4 vol K
2 (/) ——,
N(K"KO’G> (6) vol KO

Moreover, if Koc: K and X is convex, then, for every € € (0,31,

(§)d vol K

€ vol K. °

N(K,Ko,e) <
0

In particular (l/e)d < N(K,K,e) = (3/6)d for absolutely convex X and

e € (0,3].

TLemma 2: Let M = ¢/H be a compact homogeneous space, MH—the normal-

ized Haar measure on it, p—a G-invariant metric on M (not necessarily
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Riemannian). FM:XOGM and let, for & =0, Wé)QWKHEM:

p(x,x.) <8}) (clearly ©(8) does not depend on x.). Then, for

0 0

every € =0,

-1

(e} 1™ < m(,p,¢) = [gle/2)]7.

Lemma 3: If (K,po) and (M,p) are metric spaces, K, 1is a subset

of K and ®:K — M a map such that, for some £, L >0,

(p) p(%(x),%y)) < Lpo(x,y) for x,y €K
(e) p(2(x),%y)) = Lp(x,y) for xy €Kj.

Then, for every € >0,

N(Ko,po,ze//&) < N(M,p,€) = N(K,p,,e/L).

-

If X is a normed space and |*| the corresponding norm, we shall
denote by B(X) or B([-[) its unit va1l, vy B_(X), B_([-]) or
simply BS——the ball of radius s and center at 0. The following

fact follows immediately from Lemmas 1 and 3.

Corollary 4: Let X be a normed space, dim X =d, and (M,p)—a

metric space. Let & :X -—M satisfy, for some R,L,r,4 >0,

(b) p(2(x),%y)) < Llx~y]| for =x,y € Bp
(c) p(a(x),%y)) = 4lx=y] for =x,y € B

Then, for every € € (0,diam M],

(cy/)® = N(M,p,6) 5 (cf/e)?,
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Lemma 5: Let (Kl,pl) and (K2=pg) be metric spaces, (KlXRé,plng)——
. af

1— a " i X = .

their product with (pl pe)((xl,xg)(yl,yg)) max{pl(xl,yl),pg(xg,yg)}

Then, for every € >0,

N(Kl,pl,%)N(Kz,pg,Ee) < N(KlXKg,plxpz,d < N(Kl,pl,e>N(K2,p2,e).

Lemma 6: Let G be a compact group, H—its subgroup, p—an invariant
metric on G, and p'——the corresponding quotient metric on G/H. Then,

for every € > 0,

N(G,p,2€) ‘ N(G,p,e/2)
puloih Bhnett- M nl- Reulnd S N(G/H c < 2o o
N(E,p,e) - M O/HPTE) = Ty 0
P m
As usually we shall denote by “-H2 the standard »~TOTT On R,

by O(m) the group of orthogonal operators on R, by S0(m) the sub-
group of O0O(m) consisting of all operators of determinant 1. Let
el,eg,---,em be the standard basis of Rm and let, for some n = m,

ar ' .
P o= span{el,eg,--~,en}. Let O(n,m) = {V € 0(m) :VF=F}. Now define
the Grassmann manifold Gn o 88 0(m)/0(n,m) —the set of left cosets
of 0O(n,m)—and identify it with the set of all n-dimensional subspaces
of R" wvia VO(n,m) ~ VF.

Let L(Rm) be the space of linear operators on Rm. Then every

T € L(R™) can be written in the form

m
(1) 7= 2.A<

., Jh!
i=1 i 1 1
where (hi) and (h’) are orthonormal bases of R™ with respect to

the standard scalar product <£-,-) and (Aj) a nonincreasing sequence

of nonnegative numbers. We shall refer to (1) as "the polar decomposition
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of T" and to kl’XZ’."’Xm as s-numbers of T.

Now let O be any unitary ideal norm on L(R") (i.e., a norm
such that a(UTV) = a(T) for T € L(R"), U,V €0(m) and ofS) = HsHOp
if rank S = 1). It is clear that a{T) depends only on the s-numbers
of T. Typical examples are the operator norm ”.“OP’ the nuclear
norm V and the Hilbert-Schmidt norm. Let, for some fixed n =m,

pa be the quotient metric on Gn o More specifically, we have, for
3

H. ,H

1272 € Gn ?

i

(2) (5. ,H.) = inf a(I-v),

v€o(m),VHl=H2

o

regardless of whether we consider Hl’HE to be subspaces of R or

cosets of O(n,m) in O(m). We shall skip the subscript in p ~ if

a = [|-l|op.

It turns out that, for given H and H2, V in the above defi-

1

nition can be chosen independently of «. Moreover, we are able to
describe s-numbers of such a V more precisely.
Let, for every subspace H of Rm, PH denote the orthogonal pro-

jection onto H. Fix Hl’H and consider the operator PHlJ? —let

2 B

11,12,--=,%m be its s-numbers (of course Aj =0 for Jj >m/2). Then

2

the "optimal"—and independent of Q~—choice of V is such that the

s-numbers of I-V are ul,ul,uz,ug,---, where

1
Z

(3) = {2[1-(1-3%) 1}%
M3 A '

To show this let us consider the polar decomposition

n
= L A,
J J o

P.o1
mlE 0
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n
and define, for x € Hl’ Vx = Z ,,x)h Similarly, considering the
polar decomposition of PH IHL (whlch has the same nonzero s-numbers

271
L
as we may define V on H and extend to Rm by linearity.

Py )

Hngl 1 |

It 1s not difficult to see that then the s-numbers of I-V are

i‘ll 5“15}"1'2 9“25‘ . 5 (Hj) deflned by (3) -

On the other hand it is not difficult to see that such a V mini-

mizes «(I-V) for any «. Notice that if, for some A =20 and some

x €H (resp. x € Hi), [l =

ol =% (ress. e xll =

i 5
then, for every V € 0(m) such that VHl = Hy,
i1

|
bl = {2[1-(1-2%)2172,

which shows that the sequence of s-numbers of I-V dominates

(l‘J‘l’“‘l)p‘Ea“E)D- .)'

- - : = -l- .
Remark 5: We can define another metric on Gn,m by pa(H1 H2> a(PHgPHl)

Since (3) clearly implies kj < pj S/JE_KJ, we have, for every o,
' < I
Py = Py <2420

In the special case Q = “-“op’ p(Hl H2) is the same as the Hausdorff

. . 4 .
distance of 8 n H, and 8.1 n H,, while p (Hl’H2> is the same

as the Hausdorff distance of the corresponding Euclidean balls. In par-

ticular it is clear from geometric considerations that p's; p = Viap'.

)

Consider the standard exponential map exp :L(R") — L(R de-

fined by exp T = 12 7 /k!  Tet A(R™) and S(R") denote the spaces
=1
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of skew-symmetric and symmetric operators on R" respectively. It is

well known that exp(A(R")) = 80(m). Moreover, a more subtle argument

shows that

(%) expB(A(R"), [l )] = so(m).

To show (L), consider U € S0(m) and let TO € A(R™) be such that

exp T, = U. Then T can be written in the form
0 0

-
0 Al
—kl 0 0

0 ke

with respect to some orthonormal basis of Rm, where k <= m/2 and

Xl,---,%k are reals.

For any real A let X be the (unique) real number satisfying
(i)  (A-A)/2m is an integer, (ii) -T < A < 1. Define Tl c A(Rm)

be represented by the matrix obtained from (5) by replacing each Kj by

to

Aj' Then, in view of (i) and (ii), we have

(1)" exp T, =exp T ) = U,
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) o
CELNN Uy . ?zilljl <,

as required.

2. THE ORTHOGONATL. GROUP

!

Throughout this and the next section h'“ will always stand for

the operator norm with respect to the ﬂz—normJ We start with the fol-

lowing

Proposition 6: There exist universal constants cl,ci > 0 such that,

for every positive integer m and € € (0,2],
d d
(e, /e)" < N(o(m),|-lf,e) = (c'l/e) >
where d = m(m~1)/2 = dim 0(m).

Proof: Since O(m) is geometrically a disjoint union of two copies of
S0(m), it is enough to prove Proposition 6 with 0(m) replaced by
S0(m). By Corollary 4 to do this it is sufficient to show that the con-
ditions (a),(b),(c) of Corollary L4 are satisfied for M = 50(m) and
appropriate ®,X, dimX=4d, with constants r,R,£ and L independent
of m.

We choose X = (A(R™),|‘]), & =exp and R=m, L= e, r= .l
"4 = .5. Then (a) follows immediately from (4). To prove (b) and (c)

cbserve that, immediately from the definition of exp, we have

(6) (2-e®)Is-T| = [lexp s-exp T|| = ®|5-1|

for any a =0 and S,T € L(R"), |s].lrll =a. This shows Proposition 6. LI

The following statement generalizes Proposition 6.



178 SZAREK

Proposition 7: There exist universal constants Cl,Ci such that, for

every unitary ideal norm &, positive integer m and € € (0,2a(I)],

(1) (c,a(m)/e)® = W(o(m) ,&,6) s(¢jo(T)/e),

where d = m(m-1)/2.
Proof: Observe first that the following generalization of (6) holds
(8) (2-e®)a(s-T) < alexp S-exp T) < e a(8-T)

for 8,7 € LR, [sll.ltl< a.

Hence, by Lemma 3 and similarly as in the proof of Proposition 5,
it is enough to show that the condition (7) is satisfied with 0(m) re-
placed by B df B(A(Rm):“'”)-

The right hand side inequality is easy. Indeed, .for every T € L(Rm)

we have
a(r) = a(1)|r].

In particular every e/a(I)-net of B with respect to ”-” is an e€-net
with respect to o and it remains to apply Proposition 6 with €/a(I)
instead of €.

To prove the left hand side inequality we shall estimate from below

(9) vol B/vol B(A(R™),a)

and then use the first part of Lemma 1. We have, for all T € L(Rm),
oI)V(T)/m = a(T) (v is the nuclear form). Hence B(A(R")

arf
m/a(I) Bl, where Bl. = B(A(Rm),v). Therefore (9) is not less than

,a) <
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(10) vol B - a(I)d vol B
VOl(ag%) Bl) vol(m B.)

Now observe that L(R") = A(R™) ® S(R™) and the coordinate projections
are of norm 1 with respect to any unitary ideal norm (in particular,

v and |*]). Hence, by Proposition 1.3, [6],
m —m®
vol B - vol B(S(R),||-]) =2 2™ wvo1 B(L(E™),|-I.
On the other hand, also using Proposition 1.3, [6], we have
m m
vol B1 ~vol B(S(R),v) < vol B(L(R ),Vv).

Combining these two estimates we get

(_1_)1112 vol B(LE™),]-1D < _vol B vol B(S(E™), [ vol B
vollm B(L(R™),V)] vol(m Bl) vollm B(S(R™ ),v)J

(11)

the last inequality following trivially from the fact that B(L “ ”
cm B(L(R™),V).
On the other hand, combining Proposition 3.1, [6], and Proposition,

[2], (cf. the end of the proof of Proposition 8), one gets

vol B(L(R™),I-ID
vollm B(L (Rm),v)]

(12)

where b € (0,1) does not depend on m. Setting (10), (11), and (12)

2
m h]d-

together we see that (9) is not less than (b/2) = [(p/2) This

shows Proposition T. g

3. THE GRASSMANN MANIFOLD

In this section we shall prove the following
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Proposition 8: There exist universal constants such that, for

e, el
2272
every unitary ideal norm «, positive integers n <m and € € (O’Da]’

)d

b

d ]
(cha/e) < N(Gn’m,pa,e) < (e D /€

where d = n(m-n) and Da is the diameter of Gn o with

dim G
n ]

2

respect to pa.

Remark 9: Let k

min{n,mrn} and let G = span{el,"',egk} cr". It

follows easily from the consideration following (2) that DG‘=IJ§‘Q(PG).

Proof of Proposition 8: We shall proceed similarly as in the proofs of

Propositions 6 and 7. Let F = span{el,'-~,en} and let A(n,m) =4

{T € A(R™) ;TF CF, TP € F"} (i.e., T = (4, ) € A(n,m) iff t,, =0
for 1 €<n<j and j Sn <1i). It is well known that exp A{m,n)
c0(m,n) N80(m). Now let X be the orthogonal complement of A(n,m)
in A(RD) (i.e., (tij) €Xx iff t, =0 for i,jsn and i,j >n)
equipped with the operator norm and X — Gn o be defined by

3

¢ = q ©eXp|ys where q :0(m) — 0(m)/0(n,m) = G is the quotient map.

2

I. Case Q= H-“. We show that, for X and & Jjust defined, the

conditions (a)-(c) of Corollary L hold with R=m, L=e , v = .05,
L= .25.

(a) First observe that, by Ex. 2(i), page 266, [4], exp X exp A{n,m)
= 80(m). Hence also exp X O(n,m) = 0(m)—in other words, §(x) = Gn,m'
Now (a) follows immediately if we oﬁserve that the construction from the
proof of (U4) yields 'I‘l € X if we start with Ty € X.

(b) Follows immediately from (6) and the fact that q, Dbeing a

guotient map, is a contraction.
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(¢) We need some more properties of the exponential map. First

observe that, immediately from the definition of exp,

Is, Il I

(13) llexp (8,48, )-exp 8, exp 5[ < 2e s, 1-lis, I

172 1

€ L(R™).
for 8,8, L(R)
It is well known that exp admits a local inverse in the neighbor-

hood of I, call it Im. If [I-v[]| <1, then In V is given by

Inv= ) (rv)*
k=1 kK
and hence
(1k) ln v < ki;”I—VHk/k = -1n(1-JI-v]).
To prove (c) we must show that if 7T, €X, HTl“,”T2” <r = .05,
then
(15) ltexp 7))V ~exp T || = .25]1 -1, |

for all V € O(n,m). Given such Tl’TE fix V € 0(n,m), for which the

left hand side of (2) is minimal. OFf course we must have
ltexp )V —exp T || = llexp T, -exp T, = &7, -1, ]l
by (6). Hence

(16) “LN“S[h—emﬂ&ikxpTd]+”V—a@bﬂlkmpTg[

= ”exp Tl —-exp T2” +lKexp Tﬁvﬁ—exp Tellg Eer“Tl—TQH.

In particular



182 SZAREK

(17) [T-v]| < 2e" - 2r < .22.

Let T=1InV. Of course V=exp T and T € A(n,m). By (14),
Il < -1n(a-[lr-v]).

This combined with (17) shows that

(18) IT|l = -1n .78 < .25,

while on the other hand yields

1 vl lzv]

Il = 2o -z-v]  1-flz-vi .78

>

also with the use of (17). This and (16) imply
(19) o) = 25 Jlo, -z || < 270,
.78 "F1T2 1772
Coming back to (15) we have
(20)  [[(exp T)V -exp Tl = flexp T, exp T - exp 1|
> l[exp(Tl+T) - exp T2“ - ”exp(Tl+T) ~exp T, exp Tl

Since ”Tl[[ < .05 and, by (18), {T1+T[l < “Tl“+“'l‘” < .05+.25 = .3,
applying (6) with a = .3 we get
(21) llexp(Tl+T) —exp T, |l = (e-e'3)|‘lTl+ T—T2” > .65“’_[‘1— T7,+7|
= '65“Tl _Tgua
the last inequality following from the fact that [[T’ H < HT'+ T”H for

T/ €XxX, T € A(n,m).

On the other hand we have, by (13),
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(22) }exp(Tl+T) ~exp T, exp T < 2e=T1“+”T“ -HTlﬂ il
<2e - 057 =, by (19), 2e'3 . .05 -2.7“T1—T2H
< .h”Tl—TZH.

Combining (20), (21) and (22) we get
ltexp )V —exp 1| = .65]z, -1, || - Mlfr -z, |l = .25]m 7.

This shows (15) and hence (c), completing the proof of Proposition 8 in

the case a = ”'”.

IT. The case of general Q. We proceed similarly as in the proof

of Proposition 7. First we prove analogues of (a)-(c) from the case

a= -] with || replaced by o where necessary (the balls B

and B, must be taken with respect to [-]l, not «, however). The

argument is an almost exact translation of the case o = ||*||: we must
I +lis 0l

use (8) instead of (6), olexp(S.+S,.) -exp S, exp 8,) S 2e Hsl[

172

instead of (13), etc. One must only remember thaﬁ the minimum in the
definition of pa is attained simultaneously for all «a and hence one
can work with both norms «, ”'“ and at the same time with Just one
vV € 0(n,m).

Hence, by Lemma 3 and similarly as in the proof of Proposition T,
it is enough to prove Proposition 8 with Gn,m replaced by B(X) (the
unit ball in X in the operator norm H'”). Once again the upper esti-

mate is easy-—it is enough to observe that o(T) < a(PG)HT“ = DaAﬂSHTH,

for T € X, where P is the same as in Remark 9 and DOL = diam Gn

G L,

To prove the lower estimate we must notice that, for T € X,

ja(s
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= ——— v(T),
V(PG) Nﬁg_ ok

where k = min{n,m—n}, which—by Lemma 1 (cf. the proof of Proposition

7)—reduces the problem to showing that

vol B(X, ” ”
vollk-B( V)

) d
TP

where d = n{m-n) = dim X and B >0 is independent of m and n.
Identifying an m Xm matrix (tij) representing T € X with its

n X(m-n) submatrix (t..). . we see that in fact we need to estimate
ij’'is=n,j>n

vol[B(L(R® &™), ]
vol[kB(L(Rn R n) V) ]

(23)

where L(Rq,Rp) denotes the space of linear operators from Rq to Rp,
”'“ and V—the operator and the nuclear norms with respect to the £2—
norms. The problem is essentially the same as estimating (12). One
could attempt to use the methods of [6] and [2] to prove analogues of
Proposition 3.1 of [6] and Proposition of [2], but we choose another
approach.

The following result is due to Santald ([7]).

Lemma 10: Let Y = (Rd,”-HO) be a normed space and Y¥—its dual iden-

tified with Rd via the standard scalar product. Then
vol B(Y) - vol B(Y*) = [vol B(ﬁg)]g.

Lemma 10 shows that any estimate from below for vol B(Y) always
!
|

yields some estimate from above for vol B(Y*¥). Since the norms ”°

and V on L(Rq,Rp) are dual with respect to the standard duality
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(S,T) = tr(S*T), an easy computation shows that to conclude the proof
of Proposition 8 it is enough to estimate from below the numerator of
(23) in an appropriate way. In turn this can be done by using Lemma
3.1(2) from [1], as noticed by S. Kwapiefi and N. Tomczak-Jaegermann

(cf. [5], proof of Fact 5.1). LI

Remark 11: A slightly weaker version of Proposition 8 follows immedi-

ately from Proposition T: We write Gn oo 0({m)/0(n,m), observe that

3

0(n,m) ~ 0(n) X O(m-n) and then apply Lemmas 5 and 6 to estimate

N{G -} in terms of N(0(k),a,*) for appropriate integers k.

n,m’ a’
In the particular case of operator norm this shows that N(Gn m,p,e)
b

2 _n(m-n)

is, roughly speaking, of order ¢l e —a result, which is not pre-

cise 1f n or m-n is much smaller than m, Dbut which was sufficient

to prove Theorem O mentioned in section O (see [5] for details).
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