Analyse fonctionnelle/Functional Analysis

A Geometric Approach to Duality of Metric Entropy
Note de V. D. Milman et S. J. Szarek, présentée par Michel Talagrand.

Abstract - We introduce a new geometric approach for studying Duality of Metric Entropy (of
operators, or of convex sets). We demonstrate such duality, up to a logarithmic factor, in one
important case, for the hitherto not-too-well understood low “levels of resolution”.

Dualité d’Entropie Métrique: une Approche Géométrique

Résumé - Nous introduisons une nouvelle approche & 1’étude de Dualité d’Entropie Métrique
(d’opérateurs, ou de convexes). Nous démontrons la dualité, & un facteur logarithmique pres,
dans un certain cas important et pour les niveaux faibles de résolution qui ont été mal compris
jusqu’ici.

0. Version francgaise abrégée - Pour deux sous-ensembles U et V' d’un espace linéaire
on définit le nombre de récouvrement N(U,V) := min{N : U peut étre couvert par N
translates de V'}. La version géométrique du probléme bien connu de dualité d’entropie
affirme que

Conjecture 1 Soit n un entier positif et soient U et V deuz corps converes symétriques
dans IR™. Alors
log N(U°,bV°) < alog N(V,U). (1)

ou a,b > 0 sont des constantes universelles et K° désigne le polaire de K.

Cette conjecture s’énonce habituellement dans le langage des opérateurs compacts entre
des epaces de Banach. Pour un tel opérateur, disons v : X — Y, on definit le k-iéme
nombre d’entropie de u par

ex(u) := inf{e > 0 : N(u(Bx),eBy) < 2F}, (2)
ou Bz désigne la boule unité de l’espace Z, et 'affirmation (1) devient alors
VEe IN b leg(u) < ep(u*) < beg /q(u)- (3)

La conjecture 1 reste toujours ouverte, voir [1], [2], [7], [10] et leurs bibliographies pour
des résultats partiels et voisins. Dans notre recherche nous avons identifié les deux
affirmations géométriques suivantes qui, si elles étaient vraies, permettraient la solution
du cas central oli I'un des espaces X,Y est Hilbertien (ou I'un des corps U, Vest la boule
unité euclidienne D).

1l existe une constante ¢ > 0 telle que pour tout n, N € IN verifiant log N < cn on
a, pour tout polytope K C IR™ (resp. P C IR"™ ),
(i) si le nombre de sommets de K est au plus N et si N(K,D) < N, alors 1D ¢ K.
(ii) si le nombre de faces de P est au plus N et si N(D,P) < N, alors P ¢ 4D.



Nous avons démontré que 'affirmation (i) est vraie & un facteur logarithmique pres. Plus
précisément, nous avons

Théoréme 3-4 L’affirmation (i) au-dessus est vraie sous l'hypothése plus forte log N <
c(1+1logn)=n. Par conséquent, pour tout opérateur compact a valeurs dans un espace
de Hilbert et pour tout k€ IN on a

eak(u”) < C(1 +log k) ek (u).
Ici, C,c > 0 et a > 1 sont des constantes universelles.

11 existe également une version géométrique de ce résultat dans I'esprit de la Conjecture 1
et des résultats formellement plus forts exprimés dans le langage d’epaisseures moyennes
definies par (4) ci-dessous.

1. Background. If U, V are subsets of a vector space, one defines the covering number
N(U,V) := min{N : U may be covered by N translates of V'}. The geometric form of
the over 25 years old “duality conjecture” for entropy numbers of operators asserts that

Conjecture 1 There exist universal constants a,b > 0 such that whenever n € IN
and U, V are symmetric convez bodies in IR™, then (1) holds.

In (1) and in what follows, K° denotes the polar body of K and all logarithms are to
the base 2. The conjecture is often expressed as a statement about compact operators
acting between Banach spaces. For such an operator, say, © : X — Y, one defines
entropy numbers (see [8] for basic results on this and related concepts) by (2) (Bz
is the unit ball of Z); the assertion of the conjecture takes then the form (3). We
shall often use the notation ® < ¥ (resp. 2 ) for universal estimates ® < C'¥, where
C > 0 stands for a numerical constant independent of any parameters implicit in the
quantities @, U (notably the dimension). Accordingly, one way to restate (3) would be
eak(u) S ex(u*) S ep/q(u). Here and in what follows, numbers like ak and k/a should
be thought of as integers: due to the asymptotic nature of the questions we investigate,
the distinction between the number and its integer part or, usually, even its double, is
immaterial.

Up to now, in spite of a substantial body of work, the duality conjecture has been
verified only under very strong assumptions on both spaces. In a way, many of the results
stem from the Hilbertian case where, by a simple spectral-theoretic argument, u(Bx)
and u*(By~) are just isometric. For the most “up-to-date” results on the matter and
further details on the current state of the knowledge we refer the reader to [1], [7], [10],
the survey [2] and their references. Our approach is arguably the first — in this context
— attempt at an analysis of a general n-dimensional convex set at multiple “levels of
resolution”. Details of most the arguments below can be found in [6]; the remaining few
are a, part of a work in progress.

2. The geometric statements. In our approach to the duality conjecture, we identi-
fied the following two geometric statements which, if proved, would together imply the
special case of Conjecture 1 when one of the spaces is a Hilbert space, and the other



arbitrary (or, equivalently, when one of the bodies U,V in (3) is the Euclidean ball
D = D,, C IR", or any ellipsoid).

There exists a universal constant ¢ > 0 such that whenever n,N € IN wverify
log N < cn, then, for any polytope K C IR™ (resp. P C IR"),
(i) if K has no more than N vertices and if N(K,D) < N, then 1D ¢ K
(ii) if P has no more than N faces and if N(D,P) < N, then P ¢ 4D.

The “half-Hilbertian” setting is of significant interest as it is relevant, e.g., to many
contexts where “maximal functions” of some kind are used (regularity of Gaussian pro-
cesses, convergence almost everywhere) or to areas such as coding theory. Moreover, we
believe that once that case is resolved (in the affirmative, that is), the stage will be set
for proving a “nearly” general version, paralleling the developments of ideas in [13] and
[1], where “weaker” duality results were established.

At the first glance, statements of the above nature may appear “trivial”. Indeed,
on some meta-mathematical level, we are asking whether the “complexity” of an n-
dimensional FEuclidean ball is smaller than exponential in n. And our intuition says
“no”, no matter what exactly this complexity is supposed to mean. However, the more
exact formulation brings together two rather different hypotheses: the small number of
vertices of the polytope K (resp., faces, P) and the small cardinality of the covering
family. These data are not easy to combine; a difficulty which also arouses interest.

3. The mean width. In this note we analyze the first of the two geometric conjectures
stated above (i.e., part (i)), to which we shall refer as the “Geometric Lemma”. We first
present its more precise and quantitative (but equivalent) version, for which we need
to introduce some notation. First, if U C IR™ is a compact symmetric convex body
containing the origin in the interior, one denotes by || - | its Minkowski functional, i.e.
the norm, for which U is the unit ball. We shall use the same notation for gauges of
nonsymmetric sets. We also set

M©)= [ sup@y) dun(o) = [ llzlloe dpa(o) (@

n—1 yGU

where p,, is the normalized (i.e., probability) Lebesgue measure on S”~!. The quantity
M*(U) equals 1/2 of the mean width of U, a well known geometric parameter. We can
now state (# stands for cardinality)

Conjecture 2 Given S C IR", set K = convS and k = max{log#S,log N(K,D)}.

Then
M*(K D) $\/k/n. 5)

Clearly Conjecture 2 = Geometric Lemma: if yD C K, then M*(KND) > M*(yD) = v,
which is inconsistent with (5) if k/n is small. The reverse implication is less immediate;
we shall sketch its proof in §5.

4. The results. Our main result asserts that Conjecture 2 (and the Geometric Lemma)
hold “up to a logarithmic factor”. We have



Theorem 3 Ifn € IN, S, K C IR" and k are as in Conjecture 2 , then M*(K N D)
S (1 +logk)3\/k/n. In particular, there exzists a universal constant ¢ > 0 such that if
k < c(1+logn)~Sn, then M*(K N D) < 1 (and hence 1D ¢ K).

The Geometric Lemma as stated in previous sections remains thus a conjecture. How-
ever, we did check it for various (classes of) convex bodies, including £}-balls of arbi-
trary radii and some “random bodies” (specifically, “generic” projections of £2¥-balls, a
“canonical” counterexample to many problems in high dimensional convexity, cf. [4]).

And here is a duality result for covering numbers and entropy numbers, which is a
corollary of Theorem 3.

Theorem 4 There exist universal constants a,C > 0 such that, for allm € IN, all
convex sets K C IR™ and all k,

log N(K,D) <k = logN(D,wK") < ak.

where w = w(k) = C(1 +logk)3. Similarly, for a compact Hilbert-space-valued operator
" eak (u") < wey(u),
for all k € IN (with the same w).

In the remainder of this note we sketch the implications Geometric Lemma = Con-
jecture 2, Conjecture 2 = (the case U = D of) Conjecture 1 (we note that a similar but
more quantitative and more precise reasoning allows to deduce Theorem 4 from Theorem
3), and hint at some ingredients of the proof of Theorem 3. The arguments are quite
involved, and they invoke a surprisingly wide spectrum of methods and ideas of local
theory of Banach spaces. We reiterate that, on the technical level, the principal difficulty
appears to lie in combining the two quite different kinds of hypotheses: the control of
the number of vertices of K (say, log#S < n, where by < we mean “much smaller
than”; essentially a negation of 2 ) and that of the covering number N (K, D) (say,
log N(K, D) < n). On the more methodological level, we believe that the complexity of
the proofs reflects obstructions inherent in the general problem. Indeed, as we indicated
in the paragraph following (3), the conjecture holds if both spaces (resp., bodies) are
“sufficiently close” to the Hilbert space (resp., ellipsoids). Similarly, if ¥ 2 rank u (in
the language of (3), or £ 2 n in (1)), entropy duality holds ([3], see also [10]) and is
essentially a “volumetric” statement related to (the highly nontrivial) inverse Santald
and inverse Brunn-Minkowski inequalities. However, the validity of (3) for £ < rank w,
or (1) for log N(K,D) < n, seems to be a much more delicate question: there is no
manifest reason why convex bodies and their polars should be so closely related on so
fine a scale. In this context, our up-to-logarithmic-factor results do suggest at least some
of the needed “connections” and hopefully prepare the ground for further progress.

5. The implication Geometric Lemma = Conjecture 2 is based on the following
“relative” of the Dvoretzky Theorem (see, e.g., [5], Lemma 2.1 and its proof), needed
here without the usual symmetry hypothesis.



Proposition 5 There exists a numerical constant ¢ > 0 such that if m < n and a convex
set V.C D C R"™ verify \/m/n < cM*(V), then, for a generic orthogonal projection P
of rank m, tM*(V)PD C PV C 2M*(V)PD.

Above and elsewhere in the paper, “generic” means “except on a small exceptional set”.
More specifically, the projections are considered here as elements of the Grassmann
manifold G, and “small” may mean “of (the normalized Haar) measure < exp(—c'm)”,
where ¢ > 0 is a universal numerical constant.

Assuming Proposition 5, we now argue as follows. Suppose K is a “counterexample”
to Conjecture 2, ie., 1 > M*(K N D) > /k/n. Without loss of generality we may
assume that M*(K N (D + z)) attains maximum at = 0 (which is necessarily the case
if K = —K). Now apply the Proposition with V.= KN D and m = |(cM*(K N D))?n]|;
note that m > k. This yields Ky = PK = conv PS, of which we may think to be
contained in IR™, such that Ky O P(K N D,) D %M* (K N Dy)D,, while, for each
r € R", P(KN (Dp+z)) C Px+2M*(K N D,)Dy, and so Ky can be covered by 2*
balls of radius 2M*(K N Dy,). Accordingly, if we set K1 = (2M*(K N D,)) 'Ky, C R™,
then log N(K1, Dy,) < k and Ky D $Dy, although m > k, contradicting the Geometric
Lemma for n = m.

We note that the “dimension reduction” trick of the type presented above, and par-
ticularly its use of the simultaneous control of the covering number and of the parameter
M*(-), is quite representative for our arguments.

6. The implication Conjecture 2 = Conjecture 1 (the case U = D). It is here
where an entropy duality result is deduced from a statement about the mean width. We
need the following auxiliary result in the spirit of [5], [7] and [12].

Proposition 6 Let k < n, and let K C IR"™ be a symmetric convex body verifying
log N(K,D) < k and M*(K N D) < \/k/n. Then, for a generic rank k orthogonal
projection P, we have

KnNy/k/n P~'D C CyD, (6)

where Cy > 0 is a universal numerical constant.

Now consider the setting of Conjecture 1 with U = D. Putting x := log N(V, D), we
need to show that log N(D,bV°) < k. Since, as we noted at the end of §4, entropy
duality does hold if log N(-,-) 2 the dimension, we only need to consider the case
k K n. Let S be a set of cardinality < 2% such that V C § + D; we may assume that
S C V and, at the price of replacing x by « + 1, that S is symmetric. Let K = conv S.
An elementary argument shows that, for any p > 0, N(D, (p+2)V°) < N(D, pK°) and
so we just need to establish that log N(D, pK°) < k for some (universal) p > 0. Noting
that N(K, D) < N(V, D) and appealing to Conjecture 2 (which we assume), we see that
the assumptions of Proposition 6 hold for the present choice of K and some k < k. Let
P be a (generic rank k) projection guaranteed by the Proposition and let F' be its range.
We then have

Cy'D Cconv(K°Uy/n/k (DNF)) C K°+4/n/k(DNF),



the first inclusion being just the dualized assertion of the Proposition. Hence
N(D,pK°) = N(C,'D,C,'pK®)
< N(K°+/n/k(DNF),Cy'pK°)
= N(yn/k(DNOF),(p/Co—1)K®). (7)

Set 7 = 2(p/Cy — 1)71, then the last quantity in (7) is < N(r\/n/k(D N F),K° N F),
which involves covering numbers inside the k-dimensional space F'. Using again the fact
that entropy duality does hold if log N(-,-) 2 the dimension, and observing that the
polar of K° N F (inside F) is PK, we see that the logarithm of that quantity is < &
whenever log N(PK, 3v/k/n D) < k (for some 3 > 0; with 7, hence p, depending on 3),
which in turn can be deduced by an argument similar to that of §5.

7. The proof of Theorem 3. This is by far the most involved part of the argu-
ment and so we shall only hint the “highlights”. The functional M*(-) can be related
to Gaussian processes and ideal norms. Specifically, for U C R™, M*(U) is, up to a
normalizing factor, the same as the expected value of the supremum of the Gaussian
process indexed by U (or the so-called -norm of the formal identity considered as act-
ing from /% to (IR",|| - ||zo)). Not surprisingly, our arguments parallel those used in
the study of regularity of Gaussian processes (e.g., [11], [12]). The tools include the
so-called “Sudakov minoration”, which — in our setting — asserts that, for U C IR",
log N(U,eD) < (M*(U°)/e)?n and its “constructive” variant, “Maurey’s lemma” (see
[9]), which says that, additionally, the covering family of balls may be chosen so that
the centers are averages of “few” extreme points of U. At the first glance it may seem
that these estimates “go the wrong way” as it is the M*(-) quantity that needs to be
majorized, but in fact we do use them as ingredients in a “bootstrap” scheme, involving
iteration and a priori estimates. The iteration procedure implements a “multiresolution
analysis” of the set K, the aim of which is to combine contributions to M*(K N D) com-
ing from different levels of resolution. A single step of the iteration uses the following
fact, which we shall state as it is exactly there where the two assumptions, small number
of vertices of K and smallness of N(K, D), are being put together.

Proposition 7 If R>0,n€ IN and K =convS C RD C IR", then

MUK D) < (R\/logN(K,D)\/log#S)
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