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Abstract The Category Fluency Test (CFT) provides
a sensitive measurement of cognitive capabilities in
humans related to retrieval from semantic memory. In
particular, it is widely used to assess progress of cog-
nitive impairment in patients with dementia. Previous
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research shows that, in the first approximation, the
intensity of tested individuals’ responses within a stan-
dard 60-s test period decays exponentially with time,
with faster decay rates for more cognitively impaired
patients. Such decay rate can then be viewed as a
global (macro) diagnostic parameter of each test. In the
present paper we focus on the statistical properties of
the properly de-trended time intervals between consec-
utive responses (inter-call times) in the Category Flu-
ency Test. In a sense, those properties reflect the local
(micro) structure of the response generation process.
We find that a good approximation for the distribution
of the de-trended inter-call times is provided by the
Weibull Distribution, a probability distribution that
appears naturally in this context as a distribution of
a minimum of independent random quantities and is
the standard tool in industrial reliability theory. This
insight leads us to a new interpretation of the concept
of “navigating a semantic space” via patient responses.

Keywords Category Fluency Test ·
Semantic memory · Cognitive impairment ·
Alzheimer’s disease · Statistical temporal structure ·
Weibull distribution · Inter response times

1 Introduction

1.1 Category Fluency Tests (CFT)

The Category Fluency Test (CFT) is a form of con-
trolled oral word association used by Neuropsychol-
ogists or Cognitive Scientists to sample phonemic or
semantic domains. One of the commonest category
fluency tests is the one minute animal naming task,
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wherein a subject is asked to name as many animals as
possible in the allotted time. Animal naming is well
developed for use in children and adults, routinely ap-
plied, and is sensitive to early cognitive changes in Mild
Cognitive Impairment and Alzheimer’s disease (AD);
it has been adapted as part part of the Neuropsychol-
ogy Battery of the Uniform Data Set designed by the
National Institute of Health, see, e.g., Caramelli et al.
(2007), Gomez and White (2006), Kramer et al. (2006),
Canning et al. (2004), Morris et al. (2006), Sauzeon
et al. (2004), Tombaugh et al. (1999), Diaz et al. (2003)
and Weiner et al. (2008).

The basic test metric of category fluency tests such
as one minute animal naming is the total number of
items (N60), although analyses of content relatedness
and number per unit time (e.g., number named per 15-s
epoch), have also been studied, see, Rohrer et al.
(1995), Troyer et al. (1997) and Lerner et al. (2009).

Rohrer et al. (1995) elegantly demonstrated expo-
nential decay in the intensity of tested individuals’ re-
sponses within a standard 60-s test with faster decay
rates for more cognitively impaired patients. Such de-
cay rates can be viewed as a global (macro) diagnostic
parameter of each test.

In the present paper we focus on the statistical prop-
erties of the properly de-trended times between consec-
utive responses, dubbed here “inter-call (iC) times”, in
the one minute animal naming task, whose properties
reflect the local (micro) structure of the response gen-
eration process.

The first surprising observation is that, after taking
into account the exponential trend, the inter-arrival
times’ distribution is not exponential thus eliminating
the stationary Poisson Markov hypothesis for the de-
trended response process. Instead, we found out that a
better approximation is provided by the Weibull Distri-
bution, a probability distribution that appears naturally
in this context as a distribution of the minimum of
independent random quantities and is a standard tool in
industrial reliability theory (Weibull 1951). This insight
leads us to a new interpretation of the concept of
“navigating a semantic space” via subject responses.
More importantly, we found significant differences
between the random structure of the times between
responses we interpret formally as “within the same cat-
egory” of animals and those corresponding to “category
switching”. In addition, we report here on differences
between younger adults and older adults.

The problem of the statistical distributions of what
has been often called in mathematical psychology inter-
response times (IRT) has been studied for a long time
going back to the pioneering and influential 1944 efforts
by Bousfield and Sedgwick (1944), although not neces-

sarily in the specific context of the Category Fluency
Tests. We will discuss the relationship of our work with
the previous studies in more detail in Section 6.

1.2 The recall sequence

For each tested individual, the times of recall of (cor-
rect) consecutive items form a sequence

0 = t0 < t1 < t2 < t3 < · · · < tN60 ≤ 60, (1.1)

which has a random structure varying from individual
to individual, and for tests applied to the same indi-
vidual at different times. Rohrer et al. (1995) argued
that, on the average, during the 60-s test the number
of responses, say, per 10-s bin, decreases exponentially
as the semantic space of each individual is being ex-
hausted. We accept their argument, call this phenom-
enon exponential exhaustion and take it as a starting
point of our work in which we will investigate statistical
properties of the random fluctuations of the inter-call
(iC) time interval sequence,

δt1 = t1 − t0, δt2 = t2 − t1, . . . , δtN60 = tN60 − tN60−1.

(1.2)

For the purposes of this paper, the hypothesis of Rohrer
et al., can be rephrased as a statement that the cumula-
tive number of recalls R(t), by the time t, 0 < t < 60,

(measured in seconds) is approximately

R(t) ≈ N∞(1 − e−t/τ ), (1.3)

with N∞ representing the “total (asymptotic) number
of items the individual could recall given infinite time”,
and the constant τ representing what is called in Rohrer
et al. (1995) the mean latency of the recall process.
The above quotation marks were inserted advisedly
as N∞ has nothing to do with the actual individual’s
supply of the names in a given semantic category; it is
just an artificial parameter in the exponential model.
Observe that the derivative R′(t) = N∞e−t/τ/τ is ex-
actly Rohrer’s function r(t), which represents the rate
at which the growth of the cumulative number of recalls
slows down with time.

In an analysis of concrete experimental data, the
parameters N∞ and τ must be estimated to provide
the best fit between the theoretical cumulative count
function (1.3), and the empirical cumulative count
function,

Re(t) =
N∑

k=1

U(t − tk), (1.4)
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where U(t) is the unit step function equal to 0, for t < 0,
and 1, for t ≥ 0. Re(t) jumps up by 1 each time an item
is called.

The primary goal of this paper is to provide a
more detailed analysis of the statistical structure of
random inter-call sequence δt1, δt2, . . . , δtN60 , defined
in Eq. (1.2), after the above exponential “exhaustion”
trend has been removed. It seems evident that this
structure is dictated by the underlying dynamics of the
cognitive process of retrieval from memory of consecu-
tive items named by the individual during the test.

1.3 The structure of the paper

In Section 2 we describe our data set which com-
prises tests for subpopulations of young adults (YA),
and older adults (OA), and provide estimation of the
global parameters, N∞, and τ , needed in formula (1.3).
Then we compare the distributions of the three global
parameters, N60, N∞, and τ , for the YA and OA
populations.

In Section 3, we reprocess our data to remove
the exponential global trend within each individual’s
CFT thus uniformizing different time scales at which
different individuals’ retrieval processes operate. This
nonlinear procedure permits us to see the local struc-
ture of the inter-call times independently of the indi-
viduals’ exponential exhaustion rates. Only then we can
justify pooling the de-trended inter-call times to study
their intrinsic statistical structure within the data sets of
statistically more significant sizes. The exploratory non-
parametric inference is conducted in Section 4, and the
parametric analysis involving the Weibull distribution
is conducted in Section 5.

Finally, Section 6, discusses our conclusions, their
relevance to the rich literature of the subject, and
the work in progress. The original data, and the
Mathematica program codes used in the paper, are
available, by request, from the corresponding author.

1.4 Methods

Subjects Subjects were young adults, enrolled as un-
dergraduates at Case Western Reserve University,
and older, cognitively normal adults participating in
a longitudinal research registry at the Oregon Health
Sciences University in Portland, OR, or the Memory
and Cognition Center at University Hospitals Case
Medical Center in Cleveland, OH. All subjects pro-
vided signed consent.

Testing procedures All subjects were tested in accor-
dance with the procedures described previously. For

this study, non-animals and repeated items were not
excluded from analysis but were less than 1% of re-
sponses. The animal naming task was recorded and
each audio file was scored for time of onset of each
word using Apple GarageBand software (Apple, Inc.,
Cupertino, CA). Inter-rater reliability was 99%. The
time between onset of words is called here the inter-call
(iC) time and the average of the two raters was used
in subsequent analyses described herein. The Case data
were collected by the three first-named authors, at that
time enrolled as undergraduate students at Case, and
all the data were rated by them.

2 Experimental data and their exponential
global structure

We have conducted animal Category Fluency Tests for
17 healthy young adults (YA, all volunteer students
at Case Western Reserve University), and 17 healthy
older adults (OA, ages 45–65)). For each individual we
have recorded the exact timing of their N60 responses
and estimated the model parameters in Eq. (1.4): N∞,
representing individual’s “total recall capacity” allow-
ing infinite time for recall, and τ , which is the ex-
ponential time “latency” constant. The latter can be
conveniently thought of as the time by which the
individual reaches e−1 = 36.8% of his “total recall
capacity”.1

Remark We must emphasize again that the parame-
ter N∞ is called here the “total recall capacity” only
figuratively, with quotation marks applied advisedly.
The actual recall process cannot possibly extend its
exponential behavior to infinite time as a matter of
both mathematics and common sense. Accepting the
unlimited exponential behavior would practically mean
that after, say, one hour the individual’s recall ability
would be essentially zero, an obvious nonsense. So N∞
is just a useful parameter in the Rohrer model.

Our estimation procedure for the above two para-
meters does not use Rohrer’s 10-s-bins histograms. For
them, the constant N∞ represents the asymptotic value
at t = 0 which, given the relatively small data size for
each individual, is notoriously hard to estimate in our
context. Also, the binning procedure leads to some

1It would be more elegant to work here with the exponential
function of the form 2−t/τ (instead of e−t/τ ) in which case the
“latency constant”, τ , would be the time by which the individual
reaches 2−1 = 50% of his total capacity, but we elected not to do
it as such a choice would make other calculations more messy.

Author's personal copy



216 J Comput Neurosci (2012) 32:213–231

loss of information contained in the original data set.
Instead, we directly deal with the cumulative recall
function R(t), and our estimation makes an essential
use of all the data points, 0 = t0 < t1 < t2 < t3 < · · · < tN.

It is based on the exponentially penalized least-squares
method which we devised just for this purpose. It is
described in the following mathematical aside.

2.1 Penalized least-squares fit of the cumulative
count function

Our goal is to find parameters N∞, and τ , guaranteeing
the best least-squares fit between the sequence

R(tk) = N∞(1 − e−tk/τ ), k = 1, 2, . . . , N60,

and the sequence, k = 1, 2, . . . , N60. To simplify our
calculations we will operate with parameter ν = 1/τ

rather than τ itself. The first instinct is to minimize the
plain quadratic deviation function

L0(N∞, ν) =
N60∑

k=1

(R(tk) − k)2

=
N60∑

k=1

(
N∞(1 − e−tkν) − k

)2
.

For a perfect fit, shown in Fig. 1 below, the above ap-
proximation error would be zero. This straightforward
method puts equal weights on the early recall times
and the late ones. However, due to the exponential
exhaustion, there are many more of the former so that
the information contained in the latter is underutilized
in the estimation process, a bad thing for judging an
exponential decay. For the ideal example of exact expo-
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Fig. 1 An example of a perfect fit between the cumulative recall
process Re(t) = k, for tk ≤ t < tk=1, (cf. Eq. (1.4)), and the expo-
nential function N∞(1 − exp(−t/τ ). Here, N∞ = 20, and τ = 60,
and N, at t = 60, equals approximately 12

nential growth shown in Fig. 1 this does not matter. But
having used the plain least squares method for real CFT
data often resulted in a nonsensical estimate of N∞
that was smaller than the number N60 of responses in
the actual CFT 60-s test.2 To remedy this difficulty we
have increased weights of later responses exponentially
and thus the goal became to find parameters N∞, and
ν, which minimize the penalized quadratic deviation
function,3

L(N∞, ν) =
N60∑

k=1

e2tkν(R(tk) − k)2

=
N60∑

k=1

(
N∞(etkν − 1) − ketkν

)2
. (2.1)

Solution of the above minimization problem requires
finding N∞, and ν, satisfying the following two normal
equations,

∂L
∂ N∞

= 2
N60∑

k=1

(
N∞(etkν − 1) − ketkν

)

· (etkν − 1) = 0, (2.2)

and

∂L
∂ν

= 2
N60∑

k=1

(
N∞(etkν − 1) − ketkν

)

· (N∞ − k)tketkν = 0. (2.3)

Solving the first equation, Eq. (2.2), gives the estimator
N̂∞ as a function of ν,

N̂∞(ν) =
∑N60

k=1 k · etkν(etkν − 1)
∑N60

k=1(etkν − 1)2
. (2.4)

After substitution of N̂∞(ν) into Eq. (2.3) the estimator
ν̂ for ν can be found by solving the equation,

%(ν) :=
N60∑

k=1

(
N̂∞(ν)(etkν − 1) − ketkν

)

· (N̂∞(ν) − k)tketkν = 0 (2.5)

Clearly, there is no obvious analytic solution for
Eq. (2.5), but one can find the first approximation to
its root graphically. In Fig. 2, we are showing the plot of
the function %(ν) in the neighborhood of its root in the

2Even worse, as a result, the crucial de-trending process discussed
in Section 3 sometimes resulted in negative inter-arrival times.
3The coefficient 2 in the discounting exponential factor has been
chosen for mathematical convenience so that we can distribute
the two factors of etkν into the squared term in parentheses.
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Fig. 2 A plot of the function %(ν) from Eq. (2.5). The root ν̂
of the equation %(ν) = 0 is clearly about 0.017. Mathematica’s
FindRoot algorithm then gives ν̂ = 0.0167 which, in turn, yields
an estimator for τ , τ̂ = 1/ν̂ = 59.88

ideal case shown in Fig. 1.4 That first approximation can
then be used as a seed for the Mathematica numerical
algorithm FindRoot to find the actual value of ν̂.

Inspecting Fig. 2, we immediately find that the root
ν̂ of the equation %(ν) = 0 is about 0.017. Mathematica
FindRoot algorithm then gives ν̂ = 0.0167 which, in
turn, yields an estimator for τ , τ̂ = 1/ν̂ = 59.88 ≈ 60.
Substituting this value into formula (2.4) returns N̂∞ =
19.97 ≈ 20, both excellent estimates of the original pa-
rameters used in this simulation. In the next subsection
we will move from the above “toy example” of our
estimation procedure in the ideal world of perfect ex-
ponentials to the analysis of real data.

2.2 Estimating “total recall capacities” and the time
“latency” constants for YA and OA populations

Having described and verified our estimation proce-
dure for the parameters, N∞, and τ , in the exponential
model (1.3), we are now ready to apply it to the data
collected from 17 young adults (labeled, YA01, . . . ,
YA17), and 17 older adults (labeled, OA01, . . . , OA17).

For each individual, the CFT was administered ask-
ing each individual to name, within a 60-s time period,
as many animals as they could recall. Each session was
recorded on Apple’s MacBook Pro laptop using the
Garage Band software which turned out to be perfectly
suited for the purpose as it provided accurate timing of

4All computing and graphing in this paper has been done in the
symbolic manipulation language Mathematica.
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Fig. 3 A plot of the function %(ν) from Eq. (2.5) in the case of
data from the younger adult YA05. The root ν̂ of the equation
%(ν) = 0 is just above 0.015. Mathematica FindRoot algorithm
then gives ν̂ = 0.0148 which gives an estimator for τ , τ̂ = 1/ν̂ =
67.4

each sound recorded.5 The timing of the beginning of
each recalled name was read off the recording manually
providing us with the recall sequence

0 < t1 < t2 < t3 < · · · < tN < 60, (2.6)

specific for each individual. The beginning of the test
was marked as t0 = 0. The rough original data are avail-
able from the corresponding author, WAW, by request.

To illustrate how the algorithm from Section 2.1
works for the experimental data, we have selected the
older adult YA05, for whom the total number of re-
sponses in the CFT was N60 = 32, and the sequence of
recall times (1.1) was

1.4, 2.3, 2.8, 4, 4.8, 5.8, 7.8, 8.6,
9.7, 10.2, 11.4, 12.5, 13.9, 21.7,
23.4, 24.5, 25.6, 27.5, 28.4, 31.9,
32.3, 33.9, 37.8, 39.8, 41.8, 43.7,
47.6, 48.9, 52.8, 54.6, 55.6, 56.5

For this set of recall times the plot of the function
%(ν) is shown in Fig. 3. Here the root ν̂ of the
equation %(ν) = 0 is clearly about 0.015. The formal
Mathematica FindRoot algorithm then gives ν̂ =
0.0148 which yields an estimator for τ , τ̂ = 1/ν̂ = 67.4.
Substituting this estimate into Eq. (2.4) we obtain
N̂∞ = 54.6.

The fit between the cumulative recall process
Re(t) = k, for tk ≤ t < tk=1, (cf. Eq. (1.4)) for YA05, and

5The idea of using the Garage Band originated with our student
coauthors (JM, and TS) who administered actual CFTs for young
adults YA 01–17, and older adults OA 01–17. The data for OA
01–09 were supplied by another of our coauthors (JK).
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Fig. 4 The fit between the cumulative recall process Re(t) = k,
for tk ≤ t < tk=1, (cf. Eq. (1.4)) for YA05, and the model ex-
ponential function (1.3) R(t) = N∞(1 − exp(−t/τ )), with N∞ =
51.8, and τ = 109

the model exponential function (1.3), R(t) = N∞(1 −
exp(−t/τ ), with N∞ = 54.6, and τ = 67.4, obtained by
the above estimation algorithm, is shown in Fig. 4. The
plot of the empirical Re(t) ends at t = 60 s, but, for the
sake of the illustration, we extrapolated the theoretical
model R(t) up to t = 100 by which time R(t) reaches
about 58% of the “total recall capacity”, N∞. Here, for
the first time, we will note the “burstiness” of the recall
sequence data. It is a “second-order” effect related, pre-
sumably, to “category switching” which will be formally
analyzed under our model in subsequent sections. For
an in-depth, semantics based study of the problem, see

Troyer et al. (1997), and also our concluding remarks in
Section 6.

The inter-call sequences for all tested YA and OA
individuals were then run through the above estimation
procedure. The resulting estimates for the parameters,
N∞, and τ , are presented in Table 1 together with the
original word counts, N60.

The table shows that all three global parameters
discriminate well between the YA and OA popula-
tions. The Student’s T-test p-values for the difference
between YA and OA, being zero, for N̂60, N̂∞, and
τ̂ , are respectively < .00007, .0014, and .012. All three
global parameters are significantly higher for the YA
population than for the OA population.

Another interesting observation is, that the
coefficients of variations σ/µ, for parameters N̂∞,
and τ̂ , for the YA are much higher than those for the
OA, whereas, for N60, the same coefficient remains
relatively low (at around 0.2), and similar, for both YA,
and OA. Simply put, the YA population has higher
word counts, higher “total recall capacity”, and higher
“latency” constants (i.e., shows less “exponential
exhaustion”).

The compressed visual representation of the data in
Table 1 is shown in Fig. 5 in the form of the so-called
Box-and-Whiskers Plots for the estimators N60, N̂∞, τ̂

of the three global parameters. Recall that the stan-
dard Box-and-Whiskers Plot creates a graphical dis-
play with a box that spans the distance between two
quartiles surrounding the median with the vertical lines

Table 1 Estimates of the
“total recall capacities” N∞,
and time “latency” constants
τ , for young adults (Y A) and
older adults (OA) in tested
subpopulations

The original word counts N60,
as well as the means, standard
deviations, coefficients of
variations, minimum and
maximum statistics for Y A
and OA subpopulations are
also included in the table

YA N60 N̂∞ τ̂ OA N60 N̂∞ τ̂

YA01 21 51.8 109 OA01 14 25.0 69.3
YA02 29 43.6 56.1 OA02 21 27.0 34.5
YA03 21 112 227 OA03 20 25.3 39.1
YA04 23 37.4 66.4 OA04 14 20.7 27.6
YA05 32 54.6 67.4 OA05 11 14.0 33.4
YA06 26 28.5 23.8 OA06 24 34.0 52.2
YA07 36 110 153 OA07 23 28.8 38.9
YA08 21 36.9 69.5 OA08 12 13.6 29.4
YA09 24 45.7 70.8 OA09 18 24.6 40.1
YA10 32 67.4 92.9 OA10 26 45.1 65.9
YA11 23 28.2 29.6 OA11 20 25.0 38.3
YA12 20 21.3 20.9 OA12 15 20.1 28.4
YA13 17 21.7 35.9 OA13 15 16.2 22.1
YA14 29 34.9 33.8 OA14 13 14.1 23.5
YA15 22 30.2 42.1 OA15 15 19.5 41.7
YA16 27 54.0 67.3 OA16 17 22.0 37.6
YA17 26 31.3 35.8 OA17 21 36.2 70.6

µYA 25.2 47.6 70.7 µOA 17.6 24.2 40.7
σYA 5.1 26.9 52.7 σOA 4.6 8.47 15.2
σYA/µYA 0.20 0.56 0.75 σOA/µOA 0.25 0.35 0.37
minYA 17 21.3 20.9 minOA 11 13.6 22.1
maxYA 36 112 227 maxOA 26 45.1 70.6
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Fig. 5 Each of the three
graphics compares the
Box-and-Whiskers Plots for
the YA (on the left) and the
OA (on the right)
populations: the left-most
graphic, for the word count
N60, the center, for the
parameter N̂∞, and the right,
for the parameter τ̂ . For each
of the three global
parameters, the interquartile
boxes for YA and OA
populations do not overlap,
reinforcing our conclusion
that the differences between
the global parameters for
those two populations are
significant

YA OA

15

20

25

30

35

N60

YA OA

20

40

60

80

100

N

YA OA

50

100

150

200

τ

(“whiskers”) that extend to span the data set excluding
outliers. Then near outliers (marked here by triangles)
are defined as points beyond 3/2 times the interquantile
range from the edge of the box. Far, or extreme, out-
liers (marked by squares) are defined as points beyond
three times that range.

Each of the three graphics in Fig. 5 compares the
Box-and-Whiskers Plots for the YA (on the left),
and the OA (on the right) populations: the left-most
graphic, for the word count N60, the center, for the
parameter N̂∞, and the right, for the parameter τ̂ . For
each of the three global parameters, the interquartile
boxes for YA and OA populations do not significantly
overlap, reinforcing our conclusion that the differences
between the global parameters for those two popula-
tions are significant.

3 Detrending the recall sequence

To study the intrinsic statistical properties of the ran-
dom inter-call times δt1, . . . , δtN , N = N60, we need to
remove the individual’s exponential exhaustion (corre-
sponding to different time scales at which each indi-
vidual’s retrieval processes operate) from the random
recall times t1, . . . , tN (see Eq. (1.2)). Otherwise, the
inter-call times, say, δt1, . . . , δt12, in Fig. 1, cannot be
thought of as representing random quantities with sim-
ilar probability distribution, and be used in the deriva-
tion of the common underlying statistical characteristics
of the inter-call times, which we feel represent the es-
sential information about the retrieval-from-semantic-
memory process.

The detrended recall sequence, T1, . . . , TN , is de-
signed to grow approximately linearly as if the re-
sponses were produced at a steady pace throughout
the test at the rate of one response per unit of the
(new, rescaled) time. Then the detrended random inter-
call times, δT1, . . . , δTN , can be reasonably thought
of (again, within the area of validity of the Rohrer’s
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Fig. 6 The ideal exponential case. The cumulative response func-
tion in the original, natural time t, was shown in Fig. 1. Here, the
same empirical cumulative response count Re(t), is shown as a
function Re(t(s)) of the new, nonlinearly rescaled time s. It grows
linearly at the rate of one response per unit of the (new) time.
Here, and in Fig. 1, N60 = 12
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Fig. 7 Left The time
transformation, t = t(s), for
data YA05 shown in Fig. 4. In
this case, N60 = 32. Right The
resulting empirical
cumulative response count
Re(t(s)) for YA05, as a
function of the new,
nonlinearly rescaled time s
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exponential model) as being similarly distributed. In
the ideal nonrandom case shown in Fig. 1 their size
would be exactly equal to 1. The latter ensemble of ap-
proximately identically distributed, and independent6

random quantities can then be used for statistical infer-
ence about their distributional properties. The above
properties will also justify aggregation of the detrended
data across the YA and OA populations to increase
sample sizes in our statistical inference procedures.

The algorithm implementing the detrending process
is as follows: The goal is to find the nonlinear time-
stretching function t = t(s) such that t(0) = 0, and
t(N60) = 60, so that the detrended exponential re-
sponse function R(t(s)) becomes a linear function of the
new time s. This leads to the equation

N60
1 − e−t(s)/τ

1 − e−60/τ
= s,

which can be easily solved for t(s), giving us the loga-
rithmic time transformation,

t(s) = −τ log
(

1 − s
N60

(1 − e−60/τ )

)
. (3.1)

The normalization condition, t(N60) = 60, standard-
izes the rescaled time so that it increases by one unit

6Some sort of independence, perhaps fairly week, within the
sequence δt1, . . . , δtN , and thus, δT1, . . . , δTN , is needed to justify
employment of the standard statistical inference tools here. This
is a delicate issue as consecutive responses are probably not
completely statistically independent, and the problem is related
to the global temporal structure of the category fluency tests. On
the other hand, one can reasonably assume that the detrended
inter-call sequences for different individuals are statistically inde-
pendent.

with each response in the idealized exponential case
shown in Figs. 1 and 6.7

For data YA05 shown in Fig. 4, the time transforma-
tion t = t(s) is shown in Fig. 7(left). The resulting de-
trended empirical cumulative response count Re(t(s)),
as a function of the new, nonlinearly rescaled time s,
is shown in Fig. 7. In this case, N60 = 32. Again, even
after the detrending process, the cumulative response
count function shows burstiness which we will discuss
later on.

At this point we will apply the above detrending
algorithm to the times-of-recall sequences, t1, . . . , t60,
for each of the tested individuals, YA1 through YA17,
and OA1 through OA17, thus producing random de-
trended inter-call times sequences δT1, . . . , δTN60 , for
each of them. In the next section we will provide a pre-
liminary nonparametric comparison of their statistical
properties.

4 Exploratory nonparametric analysis of detrended
inter-call (dTiC) times

Comparison of probability distributions of detrended
intercall times for different individuals at a respectable
significance level is limited by the small sizes, N60, of
the samples, typically around 20. Here is where our
detrending processing comes in handy, justifying aggre-
gation of all YA, and OA, δT data. This creates aggre-
gated samples of detrended intercall (dTiC) times of
size NY A = 412, for the young adults, and NOA = 291,

7Note that the information about the total number of responses
in each test is already embedded in the usual parameter N60, we
do not need it anymore.
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for the older adults. For ideal data showing perfect
“exponential exhaustion” the means of the YA, and
OA, δT samples should both be standardized to 1. For
our data the mean for the YA data turns out to be
0.963, and that for the OA data, 0.971. Both of them
are reasonably close to 1 given the empirical nature of
our data obtained from widely varying human subjects.

So, at this point of our study, our goal is to compare
more subtle distributional properties for dTiC times for
the YA, and OA populations, and the obvious first step
is a construction of the Q-Q plot for them. The latter
is shown in Fig. 8. Recall, that it is the 2-D parametric
plot of the curve,

(QY A(p), QOA(p)), 0 < p < 1,

where QY A(p), and QOA(p), are, respectively, the
quantile functions for the aggregated YA, and OA data.

The first surprising observation is that that the YA
and OA data have similar distributions for small values
of dTiC times. The cutoff point is about 1.3, and about
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Q−Q plot: YA vs.OA aggregated dTiC times

Fig. 8 The Q–Q-plot comparison of the OA and YA aggregated
dTiC times data. For values up to approximately 1.3 the two
distributions are similar whereas they diverge for larger values.
The phenomenon seems to be related to the animal category
switching. This suggests that the dTiC data smaller than the cut-
off point 1.3 are produced by a different recall mechanism than
those above it. If the two data sets were identically distributed,
the Q–Q plot would follow the thick diagonal straight line with
slope 1

77% of the data fall below it. Above that point the
distributions diverge. This leads us to the hypothesis
that the small values, presumably corresponding to
dTiC times between animal names within the same
category, are produced by a different mechanism than
the large values corresponding to intercall times re-
lated to switching between different animal categories.
This definition, resulting from the purely statistical ex-
ploration of the dTiC data, makes us independent of
the particular definition of what constitutes a seman-
tic category. The remainder of the paper will discuss
the above formal hypothesis using various statistical
evidence. For the sake of convenience, formally, but
admittedly somewhat arbitrarily, we shall refer to the
times less than 1.3 as intra-category dTiC times and
those larger than 1.3 as inter-category dTiC times. The
worthwhile investigation of the question to what extent
our formal classification corresponds to the actual se-
mantic category switching as defined and studied, for
example, by Troyer et al. (1997), Pollio et al. (1969)
and Graesser and Mandler (1978), is in our future plans;
also, see Section 6.

In Fig. 9 we show plots of the empirical cumulative
distribution functions (CDFs) of intra-category dTiC
times (left top) and inter-category dTiC times (right
top) for YA (thin lines), and OA (thick lines). The
deviations between CDFs in both cases between YA
and OA populations are pictured directly beneath the
corresponding CDF plots. The maximum absolute de-
viation for the inter-category CDFs is about two times
larger than that for the intra-category CDFs. Moreover,
the intra-category OA CDF is located to the left of that
of YA, while the opposite is true for the inter-category
CDFs.

More formally, denoting by

FY A<1.3(t), FOA<1.3(t), FY A>1.3(t), and FOA>1.3(t),

the empirical CDFs of, respectively, aggregated intra-
category dTiC times for YA„ and OA, and inter-
category dTiC times for YA, and OA (shown in Fig. 9),
and by

NY A<1.3, NOA<1.3, NY A>1.3, and NOA>1.3,

the corresponding populations’ sizes, the Kolmogorov–
Smirnov statistics (see, e.g., Denker and Woyczynski
1998) for the hypothesis of equality of two empirical
distributions are

K<1.3 =
√

NY A<1.3 · NOA<1.3

NY A<1.3 + NOA<1.3

· max
t

∣∣FY A<1.3(t) − FOA<1.3(t)
∣∣ ≈ 1.03
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Fig. 9 Plots of the empirical cumulative distribution functions
(CDFs) of aggregated intra-category dTiC times (left top) and
inter-category dTiC times (right top) for YA (thin lines), and OA
(thick lines). The deviations in both cases between YA and OA
populations are pictured directly beneath the corresponding CDF

plots. The maximum absolute deviation for the inter-category
CDFs is about two times larger than that for the intra-category
CDFs. Moreover, the intra-category OA CDF is located to the
left of that of YA, while the opposite is true for the inter-category
CDFs

for the intra-category dTiC times, and

K>1.3 =
√

NY A>1.3 · NOA>1.3

NY A>1.3 + NOA>1.3

· max
t

∣∣FY A>1.3(t) − FOA>1.3(t)
∣∣ ≈ 1.15

for the inter-category dTiC times. At 15% significance
level the critical value for the Kolmogorov–Smirnov
test is Kcr(0.15) = 1.14, so that we have

K<1.3 < Kcr(0.15) < K>1.3.

Hence the conclusion is that the hypothesis of the
equality of the distributions of the inter-category dTiC
times for YA and OA populations,

H0 : FY A>1.3(t) = FOA>1.3(t),

can be rejected, while a similar hypothesis for intra-
category dTiC times for YA and OA populations,

H0 : FY A<1.3(t) = FOA<1.3(t),

cannot be rejected.

However, at 10% significance level the critical value
for the Kolmogorov–Smirnov test is Kcr(0.10) = 1.22,
so that we have

K<1.3 < K>1.3 < Kcr(0.10).

Hence at that significance level the conclusion is
that the hypothesis of the equality of the distribu-
tions of the inter-category dTiC times for YA and OA
populations cannot be rejected for either the inter-
category or inter-category dTiC times, On the other
hand, at 25% significance level, when the critical value
for the Kolmogorov–Smirnov test is Kcr(0.25) = 1.02,
the equality hypotheses can be rejected for both, inter-
catogory and intra-category cases. So, the situation is
delicate and we will study this problem in the next
section via more quantitative parametric tools.

The more subtle effects of dominations of CDFs
observed in Fig. 9 (top) correspond to the formal prob-
ability theory concept of strong domination of random
quantities, see Kwapien and Woyczynski (1992, p. 111).
Recall, that if X and Y are two positive random quanti-
ties, then X is said to be strongly dominated by Y, if for
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Fig. 10 The Box-and-Whiskers plot comparisons of the YA
(plot 1) and OA (plot 2) aggregated dTiC times data. Again,
the evidence is strong that the intra-category dTiC times for
YA subpopulation dominate those for the OA subpopulations
(plot in the left f igure). The reverse is true for the inter-category
dTiC times (plot in the right f igure). Also, note the presence of
numerous outliers for the inter-category dTiC times, and their
absence for intra-category dTiC times

each t ≥ 0, the tail probabilities of Y are greater than
the tail probabilities of X, that is,

Pr(X > t) ≤ Pr(Y > t),

or, equivalently, FX(t) ≥ FY(t) for the CDFs, and
QX(p) ≤ QY(p), for the corresponding quantile func-
tions. Thus, in view of Fig. 9, considered as random
quantities, the YA intra-category dTiC times strongly
dominate the OA intra-category dTiC times, and the
reverse is true for the inter-category dTiC times. How-
ever, the effect is slight for the intra-category times and
quite pronounced in the inter-category data.

The Box-and-Whiskers plots comparisons of the OA
and YA aggregated dTiC times data in Fig. 10 reinforce
the above conclusions.

5 A parametric model for detrended inter-call times:
Weibull probability distribution

5.1 Why Weibull distribution?

Our hypothesis is that the detrended inter-call times,
δT1, . . . , δTN60 , follow the Weibull probability distri-
bution. We have arrived at this hypothesis by some
exploratory data analysis but also being guided by the
likely nature of the process of recall from the semantic
memory. Here, our admittedly simplistic, “first-past-

the-post” model8 corresponds to the picture of multiple
names (or categories) stored in the semantic memory
starting, at the beginning of each recall cycle, a race
through the neural network of the brain. The one with
best (smallest, always random) “arrival time” wins by
being called out.9

The above picture of the name recall process corre-
sponds to the following formal statistical model: Con-
sider a sequence of independent random variables,
'1, . . . , 'N , with positive values identically distributed
with a CDF, F'(t), and define a new random quantity

'min,N = min
1≤i≤N

'i. (5.1)

Note that we have returned here to denoting the time
variable by the letter t, although from now onwards it is
the nondimensional detrended time.

In view of the independence assumption, the tail
cumulative distribution function

1 − F'min,N (t) = Pr('min,N ≥ t) = Pr( min
1≤i≤N

'i, ≥ t)

= PrN('1 ≥ t) = (1 − F'(t))N, (5.2)

which depends both on N, and the initial distribution,
F'(t), of each '1, . . . , 'N . However, it is a remarkable
result in Large Sample Theory (for a simple proof, see,
e.g., the compactly written book by Ferguson 1996)
that, under a mild restriction demanding a power decay
of the tails10 of the original c.d.f. F'(t), there exists a
universal (that is, independent of F'(t)) limit distribu-
tion of the minima, as the sample size N → ∞. It is of
the form

W(t) = F'min,∞(t) = lim
N→∞

F'min,N (t)

= 1 − e−
(

t−γ
η

)β

, for t > γ > 0, (5.3)

and equal to zero for t ≤ γ , with the corresponding
p.d.f.

w(t) = f'min,∞(t)

= β

η

(
t − γ

η

)β−1

e−
(

t−γ
η

)β

, for t > γ > 0, (5.4)

8A more subtle parametric model that automatically takes into
account the burstiness of the recall process will be studied in
another paper.
9We have found recently, that a similar argument was used by
Logan (1995) in the context of what he calls the “instance theory
of automaticity”.
10This property is often called the heavy-tail property, and
it means that the probabilities of big values are much larger
than the corresponding probabilities for Gaussian or exponential
distributions.
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Fig. 11 Examples of CDFs
(left) and the corresponding
PDFs (right) of the Weibull
distribution for the following
selected values of the shape
parameter: β = 0.5, 1, and 2,
(thin, dashed, and thick lines,
respectively). Parameter γ is
set at zero, and η = 1
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and zero for t ≤ γ , and it is known as the Weibull
distribution. Parameter β is usually called the shape
parameter, and η is called the scaling parameter. Given
its analytic shape, the Weibull distribution is sometimes
called the stretched exponential distribution; for β = 1 it
becomes just the standard exponential distribution.

Weibull distribution first appeared in studies of reli-
ability of complex devices, see Weibull (1951). It is not
hard to see why. Think of a ball bearing with N balls,
each subject to independent random wear and thus
having an independent random lifetime before failing.
The whole ball bearing fails when the first ball in the
device wears out. Thus the lifetime of the whole ball
bearing is the minimum of the lifetimes of independent
balls it incorporates. There is a vast body of work
applying Weibull distribution in different contexts, the
most relevant for us being studies of the random access
times in searches from computerized data bases (see,
e.g., Shirani-Mehr et al. 2008).

The Weibull distribution has three parameters. Pa-
rameter γ > 0 is the cutoff point; the probability of
values below γ is zero. For us it is an important quantity
as it represents the minimal time needed for recall in
each individual (or group of individuals). We will call
it reaction time. Parameter η permits a change of scale.
One would have to adjust it when one wants to change
time measurement units from, say, seconds to minutes.
With detrended standardized inter-call data, it will play
a lesser role in what follows; intuitively speaking it
should be not too far to 1, given that the mean value of
the Weibull distribution is η+(1 + 1/β), with parameter
β varying in our data between 1 and 2. Finally, β is
the key parameter affecting the shape of the Weibull
distribution and the qualitative behavior of the corre-
sponding recall process, especially as β crosses the β =
1 threshold. It should be observed that any Weibull ran-

dom quantity can be obtained from an exponential ran-
dom quantity via the stretching transformation t (→ tβ ,
a useful observation for simulations of the Weibull
data. Figure 11 shows examples of CDFs, and PDFs of
the Weibull distribution for selected values of the shape
parameter β.

5.2 Parametric estimators for Weibull distribution:
general principles

There exists a vast literature (mostly generated by the
reliability theory research in engineering) on paramet-
ric inference for the Weibull distribution. We have
tried several approaches and settled on the maximum
likelihood estimation (MLE) procedure which was pio-
neered by Leone et al. (1960);11 for more recent work,
see. e.g., Thoman et al. (1969) and Wu (2002).

For a sample of size N of dTiC times, δT1, . . . , δTN ,
the estimator γ̂ for the cut-off parameter γ is

γ̂ = min
1≤i≤N

δTi. (5.5)

This value will then be subtracted from each data point
so that in what follows, we will simply assume that
γ = 0, and the estimation problem is then reduced to
the two parameters, β and η. In this case, see, e.g.,
Wu (2002), the maximum likelihood estimator β̂ for
the shape parameter β is a solution of the following
transcendental equation,

1

β̂
+ 1

N

N∑

i=1

log δTi −
∑N

i=1 δT β̂
i log δTi

∑N
i=1 δT β̂

i

= 0, (5.6)

11Coincidentaly, the paper was written fifty years ago when Fred
Leone was director of the Statistical Laboratory here at Case.
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Table 2 Estimates of the Weibull distribution parameters of intra- and inter-category dTiC times, for for young adults (YA), and older
adults (OA), in tested subpopulations

YA γ̂ β̂ η̂ OA γ̂ β̂ η̂

Y A < 1.3 0.02 2.41 0.72 OA < 1.3 0.04 2.33 .067
Y A > 1.3 1.30 1.01 0.84 OA > 1.3 1.31 1.08 1.06

which, unfortunately, can only be solved numerically.
Then the MLE η̂ for the scaling parameter η can be
calculated from the formula

η̂ =
(

1
N

N∑

i=1

δT β̂
i

)1/β̂

. (5.7)

5.3 Estimates of Weibull parameters for the empirical
dTiC times

In view of our preliminary nonparametric exploration
of the dTiC in Section 4, the above estimation process
has been then implemented12 for the four aggregated
data sets:

(a) the aggregated YA, and OA, intra-category dTiC
times, denoted, respectively Y A < 1.3, and OA <

1.3, and
(b) the aggregated YA, and OA, inter-category dTiC

times, denoted, respectively Y A > 1.3, and OA >

1.3.

The results are shown in Table 2, below.
The parametric estimates in Table 2 reflect the

domination effects mentioned in Section 4. For intra-
category times,

β̂Y A<1.3 = 2.41 > β̂OA<1.3 = 2.33,

η̂Y A<1.3 = 0.72 > η̂OA<1.3 = 0.67.

YA parameters dominate the OA parameters but the
differences are slight. The reverse inequalities are true
for the inter-category times,

β̂Y A>1.3 = 1.01 < β̂OA<1.3 = 1.08,

η̂Y A<1.3 = 0.84 < η̂OA<1.3 = 1.06.

and the differences are more pronounced.
The differences are most striking between the intra-

and inter-category estimates for the crucial shape pa-
rameter β indicating, perhaps, different mechanisms of
the recall from the semantic memory in those two cases.
Indeed, β̂’s in the intra-category case hover around
2.4 whereas they are close to 1 for the inter-category
data. The latter fact gives rise to an interesting obser-
vation: For inter-category data for both, YA and OA

12Here we used the FindRoot facility in Mathematica.

populations, the distributions of dTiC times are close
to those in the most elementary Poisson process-like
exponential model. To a lesser extent the results also
indicate a more subtle difference between how category
switching operates in younger adults and older adults.

In Fig. 12 we show parametric Weibull CDF fits
(thick lines) for the the empirical CDFs of aggregated
YA intra-category dTiC times (left top), OA intra-
category dTiC times (right top), YA inter-category
dTiC times (left bottom), and OA inter-category dTiC
times (right bottom). The inter-category CDFs have
been shifted to the left by 1.3 to allow better compar-
ison of their shapes with those of the intra-category
CDFs. The empirical CDFs are plotted as thin lines.
The plots show good fits between the theoretical
Weibull distributions and the empirical data. The dra-
matic differences between the intra-category (Y A <

1.3, OA < 1.3) and inter-category (Y A > 1.3, OA >

1.3) CDFs reflect the parametric estimates shown in
Table 2.

Finally, to conclude this section, we provide in
Table 3 MLEs for the Weibull parameters γ ,β,
and η, for the dTiC times for all the individuals,
YA 1–17, and OA 1–17. This was done without sepa-
rating the intra-category and inter-category dTiC times
for each individual; the sample sizes seemed too small
for a meaningful statistical analysis. Although the data
in Table 2 are interesting in their own right, in view of
the small sample size, the reliability of these estimators
is somewhat limited; note the large values of the calcu-
lated coefficients of variation σ/µ. But the calculation
of the mean values of the parameters still shows that the
shape parameter β for the YA population dominates,
on the average, that for the OA population,

µY A(β̂) = 1.29 > µOA(β̂) = 1.07

thus reinforcing its value in the study of local properties
of the CFT process.

Figure 13 shows the Box-and-Whisker Plots for the
local parameters from Table 2 for the tested individuals
in the YA (the left plot in each of the three graphics)
and the OA (the right plot) populations. The left-most
graphic shows the picture for the reaction time para-
meter γ̂ , the center, for the Weibull shape parameter
β̂, and the right, for the Weibull scaling parameter
η̂. In contrast to the Box-and-Whiskers plots for the
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Fig. 12 Parametric Weibull CDF fits (thick lines) for the the
empirical CDFs of aggregated YA intra-category dTiC times
(left top), OA intra-category dTiC times (right top), YA inter-
category dTiC times (left bottom), and OA inter-category dTiC
times (right bottom). The empirical CDFs are plotted as thin lines.
The inter-category CDFs have been shifted to the left by 1.3 to

allow better comparison of their shapes with those of the intra-
category CDFs. The plots show good fits between the theoret-
ical Weibull distributions and the empirical data. The dramatic
differences between the intra-category and inter-category CDFs
reflect the parametric estimates shown in Table 2

Table 3 Estimates of the
Weibull distribution
parameters of detrended
inter-call (dTiC) times
sequences, for individual
young adults (Y A), and older
adults (OA), in tested
subpopulations

Included at the bottom are
their summary statistics:
means, standard deviations,
coefficients of variation,
minima, and maxima

YA γ̂ β̂ η̂ OA γ̂ β̂ η̂

YA01 0.11 1.22 1.00 OA01 0.11 0.75 0.79
YA02 0.02 1.13 1.03 OA02 0.23 1.01 0.76
YA03 0.14 1.04 0.77 OA03 0.44 0.90 0.58
YA04 0.02 1.11 1.05 OA04 0.33 1.04 0.49
YA05 0.20 1.20 0.84 OA05 0.20 0.69 0.67
YA06 0.07 1.87 1.06 OA06 0.24 0.91 0.78
YA07 0.29 1.33 0.80 OA07 0.12 1.21 0.99
YA08 0.33 1.25 0.75 OA08 0.07 0.99 1.05
YA09 0.12 1.18 0.91 OA09 0.24 0.59 0.42
YA10 0.04 1.16 1.01 OA10 0.16 2.02 0.98
YA11 0.25 1.43 0.80 OA11 0.09 0.99 0.98
YA12 0.11 2.08 1.04 OA12 0.50 1.07 0.41
YA13 0.36 1.25 0.75 OA13 0.15 1.73 1.07
YA14 0.21 1.28 0.90 OA14 0.24 0.88 0.84
YA15 0.29 1.31 0.88 OA15 0.12 1.36 1.00
YA16 0.21 1.11 0.71 OA16 0.21 1.12 0.86
YA17 0.14 1.00 0.91 OA17 0.29 1.05 0.77

µYA 0.17 1.29 0.89 µOA 0.22 1.07 0.79
σYA 0.11 0.28 0.12 σOA 0.12 0.36 0.21
σYA/µYA 0.65 0.21 0.13 σOA/µOA 0.53 0.26 0.27
minYA 0.02 1.00 0.71 minOA 0.04 0.59 0.41
maxYA 0.36 2.08 1.06 maxOA 0.50 2.02 1.07
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Fig. 13 The Box-and-Whiskers Plots for the local parameters
from Table 2 for the tested individuals in the YA (the left plot
in each of the three graphics) and the OA (the right plot) popu-
lations. The left-most graphic shows the picture for the reaction
time parameter γ̂ , the center, for the Weibull shape parameter
β̂, and the right, for the Weibull scaling parameter η̂. In contrast

to the Box-and-Whiskers plots for the global parameters shown
in Fig. 5, the interquartile boxes for the estimators of local
parameters γ̂ , and η̂ largely overlap, and it is only the shape
parameter β̂ that clearly distinguishes between the YA and OA
populations

global parameters shown in Fig. 5, the interquartile
boxes for the estimators of local parameters γ̂ , and
η̂ largely overlap, and it is only the shape parameter
β̂ that clearly distinguishes between the YA and OA
populations.

6 Concluding remarks, future work

Our study of the local random structure of the One
Minute Animal Naming Task permits a more detailed
analysis of the differences between various statistical
properties of CFT response processes for younger and
older adult populations as well as the nature of the
differences between probability distributions for what
we called (for lack of better words) intra-category
and inter-category responses. Clearly, subtly different
mechanisms are involved in the retrieval from semantic
memory in the intra-category and inter-category situa-
tions. We worked within the “exponential exhaustion”
model developed by Rohrer et al. (1995). It worked
reasonably well for our data and permitted the de-
trending operation which gave us a larger, statistically
more significant pool of “homogenized” aggregated
data to work with.

It is important to re-emphasize that our goal was
not to find the best possible analytic fit for our data
as this could be trivially accomplished by using ex-
pressions with more and more parameters; it would

have no scientific significance. Instead we sought a rel-
atively simple model providing some rationale for the
mechanism of the recall processes. Here, the Weibull
model introduced in Section 5 seemed natural to us in
the context of CFT and relied on the common-sense
intuition that recall from semantic memory involves a
supply of “names” which are searched independently
of each other and the one with the minimum search
time is the one retrieved. The three-parameter Weibull
distribution helped us quantify the above mentioned
differences. We settled here on the maximum likeli-
hood estimation of Weibull parameters but other meth-
ods are possible, and we also experimented with the
linear regression fit in the log-log scales; it gave similar
results to the MLE method.

Roughly speaking the basic conclusions are:

(i) The probability distributions of the intra-
category inter-call times dominate those of the
inter-category times;

(ii) The probability distributions of the younger adult
inter-call times dominate those of the older adult
times; and

(iii) The Weibull distribution has a simple jus-
tification and is a reasonably well-fitting choice
describing statistical properties of inter-call
times, while the Weibull shape parameter β is
a sensitive parameter which could be used to
evaluate the differences mentioned in (i) and (ii).
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However, one should remember that the testing
protocols were only as rigorous and consistent as was
possible given a variety of human participants. So, the
(three-digit) accuracy of the numbers appearing in our
tables is somewhat illusory and should be taken with a
grain of salt. What matters are the differences between
various phenomena exhibited by those numbers.

Finally, we would like to place our work in the
context of the rich literature on the subject of prob-
ability distributions of inter-call times. First, the issue
of terminology. In mathematical and experimental psy-
chology papers, various terms have been employed to
describe similar concepts; reaction times in e.g. McGill
and Gibbon (1965), inter-response times (IRT) in,
e.g., Rouder et al. (2008), Van Zandt (2000), or la-
tency times in Ratcliff and Murdock (1976). We settled
on a different, communication theory influenced term
“inter-call (iC) times” because our precise definition
signified time intervals between the start of the pro-
nunciation of consecutive words (onsets) rather than
the time intervals between the end of the pronunciation
of the previous word (offset) and the onset of the next
word, as used for example by Murdock and Okada
(1970). Also, for anybody studying the recall prob-
lems, an extensive review of the empirical literature in
field by Wixted and Rohrer (1994) should be required
reading.

The Weibull model is, of course, not the only one
that has some justification here although some of the
more recent work by Cousineau et al. (2002) strength-
ens the reasoning behind its use as an approximate
distribution of the minimum even in the case when the
individual random quantities are not identically distrib-
uted. Also Rouder et al. (2008) analyzed a hierarchical
approach for fitting curves to the response times mea-
surements using Weibull distribution although their
motivation was different from ours.

From the very beginning of our work we have also
considered “building a better mousetrap” and model
the recall-from-semantic-memory-process as a random
walk process with a positive drift. Our main modeling
effort developed in this paper was based on a simple
idea: the item recalled first is the one that wins in the
competition for the shortest recall times between all the
items stored in the semantic memory, sort of, first-past-
the-post concept. A more subtle model can be based on
the following idea: once the effort to recall an item from
the semantic memory is initiated different competing
items perform a “random walk”, or “diffusion”, in the
“subconscious” domain (or neural network) reinforced
by a positive drift of our effort to get the item into
the “conscious” domain where it could finally be pro-
nounced. The item that crosses first a certain threshold

between the “subconscious” and “conscious” domains
is the one named first.

Mathematically, in the simplest form, the above rea-
soning calls, in the continuum limit, for the analytic
description by the stochastic diffusive process,

X(t) = a · t + σ · B(t), t > 0, (6.1)

where a > 0 is a deterministic drift coefficient, σ > 0
is the diffusion coefficient, and B(t) is the continuous-
time random walk normalized by the condition Var
B(1) = 1 (the standard Brownian motion process). It
is well known (see, e.g., Sashadri 1993) that, for a
given threshold level, L > 0, the probability distribu-
tion function fθ ((t) of the (random) time θ = min{t >

0 : X(t) = L}, when the process X(t) crosses the level
L for the first time, is of the form

fθ (t) = L√
2πσ 2

t−3/2 exp
(

− (at − L)2

2σ 2t

)
, t > 0.

The above distribution is known as the Inverse
Gaussian, or Wald, PDF. The mean mθ , and the vari-
ance σ 2

θ of the first level-L crossing time θ are given by
the formulas,

µθ = L
a

, σ 2
θ = Lσ 2

a
. (6.2)

In the next step of our crude experimentation with
the random walk model we calculated the empirical
mean and variance of our aggregated young adult
detrended intercall time intervals obtaining the mean
value 0.078 and variance 0.48. Substituting these values
into Eq. (5.2) we obtained the following estimates:

σ̂ 2 = .62, â = 1.28,

for parameters in the Inverse Gaussian distribution (the
parameter L was set, arbitrarily, at L = 1).13 We did
not separate the inter-category and intra-category data.
The resulting fit, as well as the 90 percent confidence
bands are shown below in Fig. 14 (left), and the corre-
sponding Inverse Gaussian p.d.f., in Fig. 14 (right).

The Inverse Gaussian fit of Fig. 14 shows the accu-
racy not dissimilar to the one we obtained previously
for the Weibull distribution. In a related experiment,
see Fig. 15, below, we made a direct comparison of
the deviations of the empirical CDF of the detrended
iC times, δT1, . . . , δTN60 (aggregated for all Young
Adults (YA)) from Weibull CDF fit (left), and the
corresponding Inverse Gaussian CDF fit (right). The

13In statistics, this approach to parameteric estimation is called
the Method of Moments.
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Fig. 14 Left The 90-% confidence band for the Kolmogorov–Smirnov goodness-of-fit test for the Inverse Gaussian CDF fitted to dTiC
times δT1, . . . , δTN60 aggregated for all Young Adults (YA). Right The PDF of the fitted Inverse Gaussian CDF shown on the left

accuracies in both cases are similar although the
Weibull fit performed better for small values of the
detrended inter-call time intervals, and the Inverse
Gaussian fit was slightly better for the large ones.
Could that be a sign that intra-category recall process
is governed by the “first-past-the post”, Weibull model,
and the inter-category switching by the random walk,
Inverse Gaussian model?

As it turned out, thanks to the information provided
by the referees who reviewed the first version of this
paper, we were just rediscovering the magisterial work
on the diffusion-based theory of memory retrieval de-
veloped in 1978 by Ratcliff (1978), and pursued subse-
quently by him and his collaborators, see, e.g., Ratcliff
and Murdock (1976), Ratcliff et al. (1999, 2004), and
most recently White et al. (2010).

In another direction, Rohrer (1996) provided a good
fit of a portion of the IRT distribution by using a mix-
ture of a Gaussian and an exponential distribution; and
Gamma distribution makes its appearance in the work
of McGill and Gibbon (1965) as a natural distribution

of the cumulative response times once the exponential
distribution is assumed for the individual IRTs. Also,
in 2007, Rhodes and Turvey (2007) suggested modeling
human memory retrieval as Lévy foraging. The use of
Lévy, and, in particular Lévy α-stable processes, 0 <

α < 2, for modeling anomalous jump-diffusive random
dynamics, has a long, and honorable tradition in science
and engineering, see. e.g., a review by Woyczynski
(2001), and the literature cited therein, and the above
mentioned authors argue for its appropriateness in the
retrieval-from-memory context. Without expressing an
opinion about the physiological merits of the model we
would like to point out that the α-stable cumulative
distributions, Fα(x), have the probability tails decay-
ing at the power rate 1/xα , so that the corresponding
minima, see Section 5.1, are also asymptotically ap-
proximated by the Weibull distributions. Thus there is
some commonality in the two fits. We refrained from
running those models for our data because, for reasons
explained above, the race for the best fit was not on our
agenda.
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Fig. 15 Deviations of the empiirical CDF of the detrended iC times, δT1, . . . , δTN60 (aggregated for all Young Adults (YA)) from the
fitted Weibull CDF (left), and from the fitted Inverse gaussian CDF (right). The accuracies in both cases were similar
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There are several interesting issues that we would
like to pursue in the future.

(a) Our designation of “inter-category”, and “intra-
category” iC times was purely formal and mathe-
matical. So the natural next step is to investigate
to what extent these “inter-category” switching
times correspond to the actual semantic category
switching as studied, for example, by Troyer et al.
(1997), Pollio et al. (1969) and Graesser and Man-
dler (1978). We are currently doing some pre-
liminary work in this direction but the problem
does not seem to have a unique and well defined
solution as any definition of what constitutes a
category within the individual’s semantic memory
is contestable. Our initial efforts gave somewhat
scattered results depending on what types of cat-
egories were considered (say, habitat, vs. taxon-
omy). However, the problem is outside the scope
of this paper.

(b) Also, there is a question of the “burstiness” of
the process which may, or may not be related
to category switching. Our classification of intra-
category and inter-category times is only the first
and somewhat superficial step. But it is possible
to construct other seamless models that would
incorporate those effects. The Weibull model with
shape parameter β < 1 does display a bursty,
intermittent behavior but our estimates of the
shape parameters were greater than 1. A very
interesting analysis of the burstiness vs. category
switching is contained in a 2002 paper on the
dynamics of memory retrieval in older adulthood
by Wingfield and Kahana (2002). We see here an
opening for stochastic models based on the more
general Markov processes that were employed in
the past in traffic studies where the bunching-up
behavior is the essential part of the dynamics of
the phenomenon.

(c) A more futuristic exploration would combine the
Brownian motion-based random walk approach
originated by Ratcliff with the Lévy nonlocal jump
diffusion used by Rhodes and Turvey while in-
cluding some nonlinear effects. We believe there
is a good physiological argument for such an
approach; shock waves that can appear in such
models can explain some of the burstiness in the
data and the category-switching paradigm. The
nontrivial mathematics for such an approach has
been developed only recently but is available, see,
e.g., Woyczynski (2005), Piryatinska et al. (2005),
Karch and Woyczynski (2007) and Jourdain et al.
(2008). An even more ambitious project, would

consider the diffusions of multidimensional (or
even infinite-dimensional) manifolds. Physiologi-
cally, given the structure of the neural network
in the brain, this approach may be even more
justified than all the previously considered mod-
els. The mathematics here has been developed for
a while, see, e.g. Ellworthy (1982), but is rather
intricate. Applying it to and interpreting it for real
data will be a daunting task.

Out hope is that the above sensitive techniques can
be now used to evaluate individuals with various form
of dementia. We did not have a large enough collection
of data from, for example, Alzheimer patients to carry
this out but also plan to do this in the future.

In brief, compared to previous efforts, our work
includes a systematic use of nonparametric approach,
employs the tool of detrending to create larger pools of
inter-call data in the context of Category Fluency Tests,
and uses Weibull parametric model justified by a very
simple recall from semantic memory model.
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