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Abstract

Biochemical signal-transduction networks are the biological
information-processing systems by which individual cells, from neurons
to amoebae, perceive and respond to their chemical environments. We
introduce a simplified model of a single biochemical relay and analyse
its capacity as a communications channel. A diffusible ligand is released
by a sending cell and received by binding to a transmembrane receptor
protein on a receiving cell. This receptor-ligand interaction creates a
nonlinear communications channel with non-Gaussian noise. We model
this channel numerically and study its response to input signals of
different frequencies in order to estimate its channel capacity. Stochastic
effects introduced in both the diffusion process and the receptor-ligand
interaction give the channel low-pass characteristics. We estimate the
channel capacity using a water-filling formula adapted from the additive
white-noise Gaussian channel.

1 Introduction: The Diffusion-Limited Biochemical Signal-Relay
Channel

The termsignal-transduction networkrefers to the web of biochemical interactions by
which single cells process sensory information about their environment. Just as neural
networks underly the interaction of many multicellular organisms with their environments,
these biochemical networks allow cells to perceive, evaluate and react to chemical stim-
uli [1]. Examples include chemical signaling across the synaptic cleft, calcium signal-
ing within the postsynaptic dendritic spine, pathogen localization by the immune system,
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growth-cone guidance during neuronal development, phototransduction in the retina, rhyth-
mic chemotactic signaling in social amoebae, and many others. The introduction of quan-
titative measurements of the distribution and activation of chemical reactants within living
cells [2] has prepared the way for detailed quantitative analysis of their properties, aided
by numerical simulations. One of the key questions that can now be addressed is the fun-
damental limits to cell-to-cell communication using chemical signaling.

To communicate via chemical signaling cells must contend with the unreliability inherent
in chemical diffusion and in the interactions of limited numbers of signaling molecules
and receptors [3]. We study a simplified situation in which one cell secretes a signaling
molecule, orligand, which can be detected by a receptor on another cell. Limiting ourselves
to one ligand-receptor interaction allows a treatment of this communications system using
elementary concepts from information theory.

The information capacity of this fundamental signaling system is the maximum of the
mutual information between the ensemble of input signals, the time-varying rate of ligand
secretions(t), and the output signalr(t), a piecewise continuous function taking the values
one or zero as the receptor is bound to ligand or unbound. Using numerical simulation we
can estimate the channel capacity via a standard ”water-filling” information measure [4],
as described below.

2 Methods: Numerical Simulation of the Biochemical Relay

We simulate a biochemical relay system as follows: in a two-dimensional rectangular vol-
umeV measuring 5 micrometers by 10 micrometers, we locate two cells spaced 5 mi-
crometers apart. CellA emits ligand molecules from locationxs = [2.5µ, 2.5µ] with rate
s(t) ≥ 0; they diffuse with a given diffusion constantD and decay at a rateα. Both secre-
tion and decay occur as random Poisson processes, and diffusion is realized as a discrete
random walk with Gaussian-distributed displacements. The boundaries ofV are taken to
be reflecting. We track the positions of each ofN particles{xi, i = 1, · · · , N} at intervals
of ∆t = 1msec. Thelocal concentrationin a neighborhood of sizeσ around a locationx
is given by the convolution

ĉ(x, t) =
∫

V

N∑
i=1

δ(x′ − xi)g(x− x′, σ) dx′ (1)

whereg(·, σ) is a normalized Gaussian distribution in the plane, with mean 0 and variance
σ2. The motions of the individual particles causeĉ(x, t) to fluctuate about the mean con-
centration, causing the local concentration at cell B,ĉ(xr, t) to be a noisy, low-pass filtered
version of the original signals(t) (see Figure 1).

Cell B, located atxr = [7.5µ, 2.5µ], registers the presence of ligand through binding and
unbinding transitions, which form a two-state Markov process with time-varying transition
rates. Given an unbound receptor, the binding transition happens at a rate that depends on
the ligand concentration around the receptor:k+ĉ(xr, t). The size of the neighborhoodσ
reflects the range of the receptor, with binding most likely in a small region close toxr.
Once the receptor is bound to a ligand molecule, no more binding events occur until the
receptor releases the ligand. The receiver is insensitive to fluctuations inĉ(xr, t) while it is
in the bound state (see Figure 1). The unbinding transition occurs with a fixed ratek−.

For concreteness, we take values forD,α, k−, k+, and σ appropriate for cyclic AMP
signaling betweenDictyosteliumamoebae, a model organism for chemical communica-
tion: D = 0.25µ2msec−1, α = 1 sec−1, σ = 0.1µ, k− = 1 sec−1, k+ = 1

2πσ2 sec−1.
Kd = k−/k+ is the dissociation constant, the concentration at which the receptor on av-
erage is bound half the time. For the chosen values of the reaction constantsk±, we have



Figure 1:Biochemical Signaling Simulation.
Top: Cell A secretes a signaling molecule (red dots) with a time-varying rater(t).
Molecules diffuse throughout the two-dimensional volume, leading to locally fluctuating
concentrations that carry a corrupted version of the signal. Molecules within a neighbor-
hood of cellB can bind to a receptor molecule, giving a received signals(t) ∈ {0, 1}.
Bottom Left: Input signal. Mean instantaneous rate of molecule release (thousands of
molecules per second). Molecule release is a Poisson process with time-varying rate.
Bottom Center: Local concentration fluctuations, as seen by cell B, indicated by the num-
ber of molecules within 0.2 microns of the receptor. The receptor is sensitive to fluctuations
in local concentrations only while it is unbound. While the receptor is bound, it does not
register changes in the local concentration (indicated by constant plateaus corresponding to
intervals whenr(t) = 1 in bottom right panel.
Bottom Right: Output signalr(t). At each moment the receptor is either bound (1) or
unbound (0). The receiver output is a piecewise constant function with a finite number of
transitions.



Kd ≈ 15.9molecules
µ2 ≈ 26.4nMol, comparable to the most sensitive values reported for

the cyclic AMP receptor [2]. At this concentration the volumeV = 50µ2 contains about
800 signaling molecules, assuming a nominal depth of1µ.

3 Results: Estimating Information Capacity via Frequency Response

Communications channels mediated by diffusion and ligand receptor interaction are non-
linear with non-Gaussian noise. The expected value of the output signal,0 ≤ E[r] < 1, is
a sigmoidal function of the log concentration for a constant concentrationc:

E[r] =
c

c + Kd
=

1
1 + e−(y−y0)

(2)

wherey = ln(c), y0 = ln(Kd). The mean response saturates for high concentrations,
c � Kd, and the noise statistics become pronouncedly Poissonian (rather than Gaussian)
for low concentrations.

Several different kinds of stimuli can be used to characterize such a channel. The steady-
state response to constant input reflects the static (equilibrium) transfer function. Concen-
trations ranging from100Kd to 0.01Kd occupy 98% of the steady-state operating range,
0.99 > E[r] > 0.01 [5]. For a finite observation timeT the actual fraction of time spent
bound,r̄T , is distributed aboutE[r] with a variance that depends onT . The biochemi-
cal relay may be used as a binary symmetric channel randomly selecting a ‘high’ or ‘low’
secretion rate, and ‘decoding’ by setting a suitable threshold forr̄T . As T increases, the
variance of̄rT and the probability of error decrease.

The binary symmetric channel makes only crude use of this signaling mechanism. Other
possible communication schemes include sending all-or-none bursts of signaling molecule,
as in synaptic transmission, or detecting discrete stepped responses. Here we use thefre-
quency responseof the channel as a way of estimating the information capacity of the
biochemical channel.

For an idealized linear channel with additive white Gaussian noise (AWNG channel) the
channel capacity under a mean input power constraintP is given by the so-called “water-
filling formula” [4],

C =
1
2

∫ ωmax

ω=ωmin

log2

(
1 +

(ν −N(ω))+

N(ω)

)
dω (3)

given the constraining condition∫ ωmax

ω=ωmin

(ν −N(ω))+ dω ≤ P (4)

where the constantν is the sum of the noise and the signal power in the usable frequency
range,N(ω) is the power of the additive noise at frequencyω and (X)+ indicates the
positive part ofX. The formula applies when each frequency band(ω, ω+dω) is subject to
noise of powerN(ω) independently of all other frequency bands, and reflects the optimal
allocation of signal powerS(ω) = (ν − N(ω))+, with greater signal power invested in
frequencies at which the noise power is smallest. The capacityC is in bits/second.

For an input signal of finite durationT = 100 sec, we can independently specify the am-
plitudes and phases of its frequency components atω = [0.01 Hz, 0.02 Hz, · · · , 500 Hz],
where500 Hz is the Nyquist frequency given a 1 msec simulation timestep. Because the
population of secreted signaling molecules decays exponentially with a time constant of
1/α = 1 sec, the concentration signal is unable to pass frequenciesω ≥ 1Hz (see Fig-
ure 2) providing a natural high-frequency cutoff. For the AWGN channel the input and



Figure 2:Frequency Response of Biochemical Relay Channel.The sending cell secreted
signaling molecules at a mean rate of1000 + 1000 sin(2πωt) molecules per second. From
top to bottom, the input frequencies were 1.0, 0.5, 0.2, 0.1, 0.05, 0.02 and 0.01 Hz. The
total signal duration wasT = 100 seconds.
Left Column: Total number of molecules in the volume. Attenuation of the original signal
results from exponential decay of the signaling molecule population.
Right Column: A one-second moving average of the output signalr(t), which takes the
value one when the receptor molecule is bound to ligand, and zero when the receptor is
unbound.



Figure 3:Frequency Transmission SpectrumNoise powerN(ω), calculated as the total
power inr(t)−r̄ in all frequency components save the input frequencyω. Frequencies were
binned in intervals of 0.01 Hz =1/T . The maximum possible power inr(t) over all fre-
quencies is 0.25; the power successfully transmitted by the channel is given by0.25/N(ω).
The lower curve isN(ω) for input signals of the forms(t) = 1000+1000 sin 2πωt, which
uses the full dynamic range of the receptor. Decreasing the dynamic range used reduces the
amount of power transmitted at the sending frequency: the upper curve isN(ω) for signals
of the forms(t) = 1000 + 500 sin 2πωt.

output signals share the same units (e.g. rms voltage); for the biological relay the in-
put s(t) is in molecules/second while the outputr(t) is a function with binary range
{r = 0, r = 1}. The maximum of the mean output power for a binary functionr(t)

is
(

1
T

∫ T

t=0
|r(t)− r̄| dt

)2

≤ 1
4 . This total possible output power will be distributed be-

tween different frequencies depending on the frequency of the input. We wish to estimate
the channel capacity by comparing the portion of the output power present in the sending
frequencyω to the limiting output power0.25. Therefore we set the total output power
constant toν = 0.25. Given a pure sinusoidal input signals(t) = a0 + a1 sin(2πωt), we
consider the power in the output spectrum atω Hz to be the residual power from the input
and the rest of the power in the spectrum ofr(t) to be analogous to the additive noise power
spectrumN(ω) in the AWNG channel. We calculateN(ω) to be the total power ofr(t)− r̄
in all frequency bands exceptω. For signals of lengthT = 100 sec, the possible frequen-
cies are discretized at intervals∆ω = 0.01 Hz. Because the noise powerN(ω) ≤ 0.25, the
water-filling formula (3) for the capacity reduces to

Cest=
1
2

∫ 1Hz

0.01Hz

log2

(
0.25
N(ω)

)
dω. (5)

As mentioned above frequenciesω ≥ 1 Hz do not transmit any information about the
signal (see Figure 2) and do not contribute to the capacity. We approximate this in-
tegral using linear interpolation oflog2(N(ω)) between the measured values atω =
[0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1.0] Hz. (See Figure 3.) This procedure gives an estimate
of the channel capacity,Cest= 0.087 bits/second.

4 Discussion & Conclusions

Diffusion and the Markov switching between bound and unbound states create a low-pass
filter that removes high-frequency information in the biochemical relay channel. A general



Poisson-type communications channel, such as commonly encountered in optical commu-
nications engineering, can achieve an arbitrarily large capacity by transmitting high fre-
quencies and high amplitudes, unless bounded by a max or mean amplitude constraint [6].
In the biochemical channel, the effective input amplitude is naturally constrained by the
saturation of the receptor at concentrations above theKd. And the high frequency trans-
mission is limited by the inherent dynamics of the Markov process. Therefore this channel
has a finite capacity.

The channel capacity estimate we derived,Cest = 0.087 bits/second, seems quite low
compared to signaling rates in the nervous system, requiring long signaling times to transfer
information successfully. However temporal dynamics in cellular systems can be quite
deliberate; cell-cell communication in the social amoebaDictyostelium, for example, is
achieved by means of a carrier wave with a period of seven minutes. In addition, cells
typically possess thousands of copies of the receptors for important signaling molecules,
allowing for more complex detection schemes than those investigated here.

Our simplified treatment suggests several avenues for further work. For example, signal
transducing receptors often form Markov chains with more complicated dynamics reflect-
ing many more than two states [7]. Also, the nonlinear nature of the channel is probably not
well served by our additive noise approximation, and might be better suited to a treatment
via multiplicative noise [8].

Whether cells engage in complicated temporal coding/decoding schemes, as has been pro-
posed for neural information processing, or whether instead they achieve efficient com-
munication by evolutionary matching of the noise characteristics of sender and receiver,
remain to be investigated. We note that the dependence of the channel capacityC on such
parameters as the system geometry, the diffusion and decay constants, the binding constants
and the range of the receptor may shed light on evolutionary mechanisms and constraints
on communication within cellular biological systems.
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