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Abstract

Chemical reaction networks by which individual cells gather and process informa-
tion about their chemical environments have been dubbed “signal transduction”
networks. Despite this suggestive terminology, there have been few attempts to
analyze chemical signaling systems with the quantitative tools of information the-
ory. Gradient sensing in the social amoeba Dictyostelium discoideum is a well
characterized signal transduction system in which a cell estimates the direction
of a source of diffusing chemoattractant molecules based on the spatiotemporal
sequence of ligand-receptor binding events at the cell membrane. Using Monte
Carlo techniques (MCell) we construct a simulation in which a collection of in-
dividual ligand particles undergoing Brownian diffusion in a three-dimensional
volume interact with receptors on the surface of a static amoeboid cell. Adapting
a method for estimation of spike train entropies described by Victor (originally due
to Kozachenko and Leonenko), we estimate lower bounds on the mutual informa-
tion between the transmitted signal (direction of ligand source) and the received
signal (spatiotemporal pattern of receptor binding/unbinding events). Hence we
provide a quantitative framework for addressing the question: how much could the
cell know, and when could it know it? We show that the time course of the mu-
tual information between the cell’s surface receptors and the (unknown) gradient
direction is consistent with experimentally measured cellular response times. We
find that the acquisition of directional information depends strongly on the time
constant at which the intracellular response is filtered.

1 Introduction: gradient sensing in eukaryotes

Biochemical signal transduction networks provide the computational machinery by which neurons,
amoebae or other single cells sense and react to their chemical environments. The precision of this
chemical sensing is limited by fluctuations inherent in reaction and diffusion processes involving a
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finite quantity of molecules [1, 2]. The theory of communication provides a framework that makes
explicit the noise dependence of chemical signaling. For example, in any reaction A + B → C,
we may view the time varying reactant concentrations A(t) and B(t) as input signals to a noisy
channel, and the product concentration C(t) as an output signal carrying information about A(t)
and B(t). In the present study we show that the mutual information between the (known) state of
the cell’s surface receptors and the (unknown) gradient direction follows a time course consistent
with experimentally measured cellular response times, reinforcing earlier claims that information
theory can play a role in understanding biochemical cellular communication [3, 4].

Dictyostelium is a soil dwelling amoeba that aggregates into a multicellular form in order to survive
conditions of drought or starvation. During aggregation individual amoebae perform chemotaxis, or
chemically guided movement, towards sources of the signaling molecule cAMP, secreted by nearby
amoebae. Quantitive studies have shown that Dictyostelium amoebae can sense shallow, static gra-
dients of cAMP over long time scales (∼30 minutes), and that gradient steepness plays a crucial role
in guiding cells [5]. The chemotactic efficiency (CE), the population average of the cosine between
the cell displacement directions and the true gradient direction, peaks at a cAMP concentration of 25
nanoMolar, similar to the equilibrium constant for the cAMP receptor (the Keq is the concentration
of cAMP at which the receptor has a 50% chance of being bound or unbound, respectively). For
smaller or larger concentrations the CE dropped rapidly. Nevertheless over long times cells were
able (on average) to detect gradients as small as 2% change in [cAMP] per cell length. At an early
stage of development when the pattern of chemotactic centers and spirals is still forming, individ-
ual amoebae presumably experience an inchoate barrage of weak, noisy and conflicting directional
signals. When cAMP binds receptors on a cell’s surface, second messengers trigger a chain of
subsequent intracellular events including a rapid spatial reorganization of proteins involved in cell
motility. Advances in fluorescence microscopy have revealed that the oriented subcellular response
to cAMP stimulation is already well underway within two seconds [6, 7]. In order to understand the
fundamental limits to communication in this cell signaling process we abstract the problem faced
by a cell to that of rapidly identifying the direction of origin of a stimulus gradient superimposed on
an existing mean background concentration. We model gradient sensing as an information channel
in which an input signal – the direction of a chemical source – is noisily transmitted via a gradient
of diffusing signaling molecules; and the “received signal” is the spatiotemporal pattern of binding
events between cAMP and the cAMP receptors [8]. We neglect downstream intracellular events,
which cannot increase the mutual information between the state of the cell and the direction of the
imposed extracellular gradient [9].

The analysis of any signal transmission system depends on precise representation of the noise cor-
rupting transmitted signals. We develop a Monte Carlo simulation (MCell, [10, 11]) in which a sim-
ulated cell is exposed to a cAMP distribution that evolves from a uniform background to a gradient
at low (1 nMol) average concentration. The noise inherent in the communication of a diffusion-
mediated signal is accurately represented by this method. Our approach bridges both the transient
and the steady state regimes and allows us to estimate the amount of stimulus-related information
that is in principle available to the cell through its receptors as a function of time after stimulus
initiation. Other efforts to address aspects of cell signaling using the conceptual tools of informa-
tion theory have considered neurotransmitter release [3] and sensing temporal signals [4], but not
gradient sensing in eukaryotic cells.

A typical natural habitat for social amoebae such as Dictyostelium is the complex anisotropic three-
dimensional matrix of the forest floor. Under experimental conditions cells typically aggregate on
a flat two-dimensional surface. We approach the problem of gradient sensing on a sphere, which
is both harder and more natural for the ameoba, while still simple enough for us analytically and
numerically. Directional data is naturally described using unit vectors in spherical coordinates, but
the ameobae receive signals as binding events involving intramembrane protein complexes, so we
have developed a method for projecting the ensemble of receptor bindings onto coordinates in R3.
In loose analogy with the chemotactic efficiency [5], we compare the projected directional estimate
with the true gradient direction represented as a unit vector on S2. Consistent with observed timing
of the cell’s response to cAMP stimulation, we find that the directional signal converges quickly
enough for the cell to make a decision about which direction to move within the first two seconds
following stimulus onset.



2 Methods

2.1 Monte Carlo simulations

Using MCell and DReAMM [10, 11] we construct a spherical cell (radius R = 7.5µm, [12]) cen-
tered in a cubic volume (side length L = 30µm). N = 980 triangular tiles partition the sur-
face (mesh generated by DOME1); each contained one cell surface receptor for cAMP with bind-
ing rate k+ = 4.4 × 107 sec−1M−1, first-order cAMP unbinding rate k− = 1.1 sec−1 [12] and
Keq = k−/k+ = 25nMol cAMP.

We established a baseline concentration of approximately 1nMol by releasing a cAMP bolus at time
0 inside the cube with zero-flux boundary conditions imposed on each wall. At t = 2 seconds we
introduced a steady flux at the x = −L/2 wall of 1 molecule of cAMP per square micron per
msec, adding signaling molecules from the left. Simultaneously, the x = +L/2 wall of the cube
assumes absorbing boundary conditions. The new boundary conditions lead (at equilibrium) to a
linear gradient of 2 nMol/30µm, ranging from ≈ 2.0 nMol at the flux source wall to ≈ 0 nMol at
the absorbing wall (see Figure 1); the concentration profile approaches this new steady state with
time constant of approximately 1.25 msec. Sampling boxes centered along the planes x = ±13.5µm
measured the local concentration, allowing us to validate the expected model behavior.

Figure 1: Gradient sensing simulations performed with MCell (a Monte Carlo simulator of cellu-
lar microphysiology, http://www.mcell.cnl.salk.edu/) and rendered with DReAMM (Design, Render,
and Animate MCell Models, http://www.mcell.psc.edu/). The model cell comprised a sphere tri-
angulated with 980 tiles with one cAMP receptor per tile. Cell radius R = 7.5µm; cube side
L = 30µm. Left: Initial equilibrium condition, before imposition of gradient. [cAMP] ≈ 1nMol
(c. 15,000 molecules in the volume outside the sphere). Right: Gradient condition after transient
(c. 15,000 molecules; see Methods for details).

2.2 Analysis

2.2.1 Assumptions

We make the following assumptions to simplify the analysis of the distribution of receptor activities
at equilibrium, whether pre- or post-stimulus onset:

1. Independence. At equilibrium, the state of each receptor (bound vs unbound) is independent
of the states of the other receptors.

2. Linear Gradient. At equilibrium under the imposed gradient condition, the concentration
of ligand molecule varies linearly with position along the gradient axis.

3. Symmetry.

1http://nwg.phy.bnl.gov/∼bviren/uno/other/



(a) Rotational equivariance of receptor activities. In the absence of an applied gradient
signal, the probability distribution describing the receptor states is equivariant with
respect to arbitrary rotations of the sphere.

(b) Rotational invariance of gradient direction. The imposed gradient seen by a model
cell is equally likely to be coming from any direction; therefore the gradient direction
vector is uniformly distributed over S2.

(c) Axial equivariance about the gradient direction. Once a gradient direction is imposed,
the probability distribution describing receptor states is rotationally equivariant with
respect to rotations about the axis parallel with the gradient.

Berg and Purcell [1] calculate the inaccuracy in concentration estimates due to nonindependence of
adjacent receptors; for our parameters (effective receptor radius = 5nm, receptor spacing ∼ 1µm)
the fractional error in estimating concentration differences due to receptor nonindependence is neg-
ligible (. 10−11) [1, 2].

Because we fix receptors to be in 1:1 correspondence with surface tiles, spherical symmetry and
uniform distribution of the receptors are only approximate. The gradient signal communicated via
diffusion does not involve sharp spatial changes on the scale of the distance between nearby re-
ceptors, therefore spherical symmetry and uniform identical receptor distribution are good analytic
approximations of the model configuration. By rotational equivariance we mean that combining
any rotation of the sphere with a corresponding rotation of the indices labeling the N receptors,
{j = 1, · · · , N}, leads to a statistically indistinguishable distribution of receptor activities. This
same spherical symmetry is reflected in the a priori distribution of gradient directions, which is
uniform over the sphere (with density 1/4π). Spherical symmetry is broken by the gradient signal,
which fixes a preferred direction in space. About this axis however, we assume the system retains
the rotational symmetry of the cylinder.

2.2.2 Mutual information of the receptors

In order to quantify the directional information available to the cell from its surface receptors we
construct an explicit model for the receptor states and the cell’s estimated direction. We model the
receptor states via a collection of random variables {Bj} and develop an expression for the entropy
of {Bj}. Then in section 2.2.3 we present a method for projecting a temporally filtered estimated
direction, ĝ, into three (rather than N ) dimensions.

Let the random variables {Bj} N
j=1 represent the states of the N cAMP receptors on the cell surface;

Bj = 1 if the receptor is bound to a molecule of cAMP, otherwise Bj = 0. Let ~xj ∈ S2 represent
the direction from the center of the center of the cell to the jth receptor. Invoking assumption 2
above, we take the equilibrium concentration of cAMP at ~x to be c(~x|~g) = a+b(~x ·~g) where ~g ∈ S2

is a unit vector in the direction of the gradient. The parameter a is the mean concentration over the
cell surface, and b = R|~∇c| is half the drop in concentration from one extreme on the cell surface to
the other. Before the stimulus begins, the gradient direction is undefined.

It can be shown (see Supplemental Materials) that the entropy of receptor states given a fixed gradi-
ent direction ~g, H[{Bj}|~g], is given by an integral over the sphere:

H[{Bj}|~g] ∼ N

∫ π

θ=0

∫ 2π

φ=0

Φ
[

a + b cos(θ)
a + b cos(θ) + Keq

]
sin(θ)

4π
dφ dθ (as N →∞). (1)

On the other hand, if the gradient direction remains unspecified, the entropy of receptor states is
given by

H[{Bj}] ∼ NΦ
[∫ π

θ=0

∫ 2π

φ=0

(
a + b cos(θ)

a + b cos(θ) + Keq

)
sin(θ)

4π
dφ dθ

]
(as N →∞), (2)

where Φ[p] =
{
− (p log2(p) + (1− p) log2(1− p)) , 0 < p < 1

0, p = 0 or 1

}
denotes the entropy for a

binary random variable with state probabilities p and (1− p).

In both equations (1) and (2), the argument of Φ is a probability taking values 0 ≤ p ≤ 1. In (1) the
values of Φ are averaged over the sphere; in (2) Φ is evaluated after averaging probabilities. Because



Φ[p] is convex for 0 ≤ p ≤ 1, the integral in equation 1 cannot exceed that in equation 2. Therefore
the mutual information upon receiving the signal is nonnegative (as expected):

MI[{Bj};~g] ∆= H[{Bj}]−H[{Bj}|~g] ≥ 0.

The analytic solution for equation (1) involves the polylogarithm function. For the parameters shown
in the simulation (a = 1.078 nMol, b = .512 nMol, Keq = 25 nMol), the mutual information with
980 receptors is 2.16 bits. As one would expect, the mutual information peaks when the mean
concentration is close to the Keq of the receptor, exceeding 16 bits when a = 25, b = 12.5 and
Keq = 25 (nMol).

2.2.3 Dimension reduction

The estimate obtained above does not give tell us how quickly the directional information available
to the cell evolves over time. Direct estimate of the mutual information from stochastic simulations
is impractical because the aggregate random variables occupy a 980 dimensional space that a limited
number of simulation runs cannot sample adequately. Instead, we construct a deterministic function
from the set of 980 time courses of the receptors, {Bj(t)}, to an aggregate directional estimate
in R3. Because of the cylindrical symmetry inherent in the system, our directional estimator ĝ is
an unbiased estimator of the true gradient direction ~g. The estimator ĝ(t) may be thought of as
representing a downstream chemical process that accumulates directional information and decays
with some time constant τ . Let {~xj}N

j=1 be the spatial locations of the N receptors on the cell’s
surface. Each vector is associated with a weight wj . Whenever the jth receptor binds a cAMP
molecule, wj is incremented by one; otherwise wj decays with time constant τ . We construct an
instantaneous estimate of the gradient direction from the linear combination of receptor positions,
ĝτ (t) =

∑N
j=1 wj(t)~xj . This procedure reflects the accumulation and reabsorption of intracellular

second messengers released from the cell membrane upon receptor binding.

Before the stimulus is applied, the weighted directional estimates ĝτ are small in absolute magni-
tude, with direction uniformly distributed on S2. In order to determine the information gained as the
estimate vector evolves after stimulus application, we wish to determine the change in entropy in an
ensemble of such estimates. As the cell gains information about the direction of the gradient signal
from its receptors, the entropy of the estimate should decrease, leading to a rise in mutual informa-
tion. By repeating multiple runs (M = 600) of the simulation we obtain samples from the ensemble
of direction estimates, given a particular stimulus direction, ~g. In the method of Kozachenko and
Leonenko [13], adapted for the analysis of neural spike train data by Victor [14] (“KLV method”),
the cumulative distribution function is approximated directly from the observed samples, and the
entropy is estimated via a change of variables transformation (see below). This method may be
formulated in vector spaces Rd for d > 1 ([13]), but it is not guaranteed to be unbiased in the mul-
tivariate case [15] and has not been extended to curved manifolds such as the sphere. In the present
case, however, we may exploit the symmetries inherent in the model (Assumptions 3a-3c) to reduce
the empirical entropy estimation problem to one dimension.

Adapting the argument in [14] to the case of spherical data from a distribution with rotational sym-
metry about a given axis, we obtain an estimate of the entropy based on a series of observations of
the angles {θ1, · · · , θM} between the estimates ĝτ and the true gradient direction ~g (for details, see
Supplemental Materials):

H ∼ 1
M

M∑
k=1

(
log2(λk) + log2(2(M − 1)) +

γ

loge(2)
+ log2(2π) + log2(sin(θk))

)
(3)

(as M →∞) where after sorting the θk in monotonic order, λk
∆= min(|θk − θk±1|) is the distance

between each angle and its nearest neighbor in the sample, and γ is the Euler-Mascheroni constant.
As shown in Figure 2, this approximation agrees with the analytic result for the uniform distribution,
Hunif = log2(4π) ≈ 3.651.

3 Results

Figure 3 shows the results of M = 600 simulation runs. Panel A shows the concentration averaged
across a set of 1µm3 sample boxes, four in the x = −13.5µm plane and four in the x = +13.5µm



Figure 2: Monte Carlo simulation results and information analysis. A: Average concentration pro-
files along two planes perpendicular to the gradient, at x = ±13.5µm. B: Estimated direction vector
(x, y, and z components; x = dark blue trace) ĝτ , τ = 500 msec. C: Entropy of the ensemble of di-
rectional vector estimates for different values of the intracellular filtering time constant τ . Given the
directions of the estimates θk, φk on each of M runs, we calculate the entropy of the ensemble using
equation (3). All time constants yield uniformly distributed directional estimates in the pre-stimulus
period, 0 ≤ t ≤ 2 (sec). After stimulus onset, directional estimates obtained with shorter time
constants respond more quickly but achieve smaller gains in mutual information (smaller reductions
in entropy). Filtering time constants τ range from lightest to darkest colors: 20, 50, 100, 200, 500,
1000, 2000 msec.

plane. The initial bolus of cAMP released into the volume at t = 0 sec is not uniformly distributed,
but spreads out evenly within 0.25 sec. At t = 2.0 sec the boundary conditions are changed, causing
a gradient to emerge along a realistic time course. Consistent with the analytic solution for the
mean concentration (not shown), the concentration approaches equilibrium more rapidly near the
absorbing wall (descending trace) than at the imposed flux wall (ascending trace).

Panel B shows the evolution of a directional estimate vector ĝτ for a single run, with τ = 500
msec. During uniform conditions all vectors fluctuate near the origin. After gradient onset the
variance increases and the x component (dark trace) becomes biased towards the gradient source
(~g = [−1, 0, 0]) while the y and z components still have a mean of zero. Across all 600 runs
the mean of the y and z components remains close to zero, while the mean of the x component
systematically departs from zero shortly after stimulus onset (not shown). Hence the directional



estimator is unbiased (as required by symmetry). See Supplemental Materials for the population
average of ĝ.

Panel C shows the time course of the entropy of the ensemble of normalized directional estimate
vectors ĝτ/|ĝτ | over M = 600 simulations, for intracellular filtering time constants ranging from 20
msec to 2000 msec (light to dark shading), calculated using equation (3). Following stimulus onset,
entropy decreases steadily, showing an increase in information available to the amoeba about the
direction of the stimulus; the mutual information at a given point in time is the difference between
the entropy at that time and before stimulus onset.

For a cell with roughly 1000 receptors the mutual information has increased at most by ∼ 2 bits of
information by one second (for τ = 500 msec), and at most by ∼ 3 bits of information by two sec-
onds (for τ=1000 or 2000 msec), under our stimulation protocol. A one bit reduction in uncertainty
is equivalent to identifying the correct value of the x component (positive versus negative) when the
stimulus direction is aligned along the x-axis. Alternatively, note that a one bit reduction results in
going from the uniform distribution on the sphere to the uniform distribution on one hemisphere.
For τ ≤ 100 msec, the weighted average with decay time τ never gains more than one bit of infor-
mation about the stimulus direction, even at long times. This observation suggestions that signaling
must involve some chemical components with lifetimes longer than 100 msec. The τ = 200 msec
filter saturates after about one second, at ∼ 1 bit of information gain.

Longer lived second messengers would respond more slowly to changes from the background stim-
ulus distribution, but would provide better more informative estimates over time. The τ = 500 msec
estimate gains roughly two bits of information within 1.5 seconds, but not much more over time.
Heuristically, we may think of a two bit gain in information as corresponding to the change from a
uniform distribution to one covering uniformly covering one quarter of S2, i.e. all points within π/3
of the true direction. Within two seconds the τ = 1000 msec and τ = 2000 msec weighted aver-
ages have each gained approximately three bits of information, equivalent to a uniform distribution
covering all points with 0.23π or 41o of the true direction.

4 Discussion & conclusions

Clearly there is an opportunity for more precise control of experimental conditions to deepen our
understanding of spatio-temporal information processing at the membranes of gradient-sensitive
cells. Efforts in this direction are now using microfluidic technology to create carefully regulated
spatial profiles for probing cellular responses [16]. Our results suggest that molecular processes
relevant to these responses must have lasting effects ≥ 100 msec.

We use a static, immobile cell. Could cell motion relative to the medium increase sensitivity to
changes in the gradient? No: the Dictyostelium velocity required to affect concentration perception
is on order 1cm sec−1[1], whereas reported velocities are on the order µm sec−1[5].

The chemotactic response mechanism is known to begin modifying the cell membrane on the edge
facing up the gradient within two seconds after stimulus initiation [7, 6], suggesting that the cell
strikes a balance between gathering data and deciding quickly. Indeed, our results show that the
reported activation of the G-protein signaling system on the leading edge of a chemotactically re-
sponsive cell [7] rises at roughly the same rate as the available chemotactic information. Results
such as these ([7, 6]) are obtained by introducing a pipette into the medium near the amoeba; the
magnitude and time course of cAMP release are not precisely known, and when estimated the cAMP
concentration at the cell surface is over 25 nMol by a full order of magnitude.

Thomson and Kristan [17] show that for discrete probability distributions and for continuous distri-
butions over linear spaces, stimulus discriminability may be better quantified using ideal observer
analysis (mean squared error, for continuous variables) than information theory. The machinery of
mean squared error (variance, expectation) do not carry over to the case of directional data without
fundamental modifications [18]; in particular the notion of mean squared error is best represented
by the mean resultant length 0 ≤ ρ ≤ 1, the expected length of the vector average of a collection of
unit vectors representing samples from directional data. A resultant with length ρ ≈ 1 corresponds
to a highly focused probability density function on the sphere. In addition to measuring the mutual
information between the gradient direction and an intracellular estimate of direction, we also cal-
culated the time evolution of ρ (see Supplemental Materials.) We find that ρ rapidly approaches 1



and can exceed 0.9, depending on τ . We found that in this case at least the behavior of the mean
resultant length and the mutual information are very similar; there is no evidence of discrepancies
of the sort described in [17].

We have shown that the mutual information between an arbitrarily oriented stimulus and the direc-
tional signal available at the cell’s receptors evolves with a time course consistent with observed
reaction times of Dictyostelium amoeba. Our results reinforce earlier claims that information theory
can play a role in understanding biochemical cellular communication.
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