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In this supplement we detail the derivations of analytical formulae given in the main text, we exhibit
an additional figure excluded from the main text due to space limitations, and we provide pseudocode
detailing the direction and entropy estimation algorithms.

1 Methods: supplemental

1.1 Analysis
1.1.1 Mutual information of the receptors

Let the random variables { B; } j:]}[ represent the states of the N cAMP receptors on the cell surface;
B; = 1 if the receptor is bound to a molecule of cAMP, otherwise B; = 0. Each receptor is taken
to lie on the surface of a sphere of radius R = 7.5um, with displacement from the center of the
cell in a direction given by a unit vector ¥ € S?. We set the center of the sphere to be the origin
of our coordinate system. Invoking the assumption of gradient linearity, we take the equilibrium
concentration of cAMP at  to be ¢(Z|g) = a+ b(Z - §) where § € S? is a unit vector in the direction
of the gradient. The parameter a is the mean concentration over the cell surface, and b = R|ﬁc| is
half the drop in concentration from one extreme on the cell surface to the other. Before the stimulus
occurs, the gradient direction is undefined.

At equilibrium, given a particular gradient direction g, the probability of finding the receptor at Z;
in the bound state is
A o7g)

P(B; = 1]g) = h(c(7]9)) m7

where Keq = koff/kon is the equilibrium constant for the ligand-receptor binding interaction, and
h(c) = ¢/(c+ Keq) is a first-order Hill function with half-saturation at ¢ = Keq.
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Letting ®[p] denote the binary channel entropy function,

¢[p]={ —(plogz(p)+(1—p)logz(l—p)%: 228;} 7

we can identify the uncertainty in the state of the j receptor, located at Z;, as ®[h(c(Z;]9))]-
Invoking independence and summing over all N receptors, the total entropy of the receptor states
{Bj;} approaches an integral over the sphere’s surface as IV becomes large:

TR a + bcos(0) sin(6)
H[{B;}|g) ~ N/e:o /¢—o(1> [a+bcos(9) T Keq) dm d¢df (as N — 00). (1)

To estimate the mutual information at the receptors we wish to compare the entropy of the receptor
states when the stimulus direction g has been specified, with the entropy when it remains indeter-
minate. This does not mean we compare the entropy of receptor states before and after stimulus
onset. Indeed, if the stimulus onset is accompanied by an increase in mean concentration (as is
often the case experimentally) the entropy of the receptors may initially be quite low (e.g., almost
all receptors may be in the unbound state) compared with the entropy after the applied gradient has
approached equilibrium. Instead we must compare the receptor activity under an imposed gradient
with the ensemble of receptor activities when all gradients are considered equally likely. With the
gradient indeterminate (g is uniformly distributed over S?) the probability of a given receptor being
bound is
P(B) = [ PBIP@= [ hel@ls) - i
ges? ges? m

where dQ represents the surface area element on the sphere, d€2 = sin(#)dfd¢. By rotational sym-
metry, when the gradient direction is indeterminate all receptors have the same a priori probability
of being bound or not. Hence with respect to the ensemble of possible gradient directions, the
uncertainty in the state of the receptors is:

ey : ]sz {/ /(as J<V _);j—) bcos(6) > sin(6) dqﬁde} )
0=0Jo a+bcos(0) + Keq 4

In both equation (1) and (2), the argument of ® is a probability taking values 0 < p < 1. In (1) the
values of ® are averaged over the sphere; in (2) ® is evaluated after averaging probabilities. Because
®[p] is convex for 0 < p < 1, the integral in equation 1 cannot exceed that in equation 2. Therefore
the mutual information

A
MI[{B;}; gl = H[{B;}] — H{B,}|g] = 0,
as expected upon receiving the signal. The analytic solution for equation (1) involves the polylog-
arithm function. For the parameters shown in the simulation (¢ = 1.078 nMol, b = .512 nMol,
Keq = 25 nMol), the mutual information with 980 receptors is 2.16 bits. As one would expect,

the mutual information peaks when the mean concentration is close to the Keq of the receptor,
exceeding 16 bits when a = 25,b = 12.5 and Keq = 25 (nMol).

1.1.2 Dimension reduction

As an alternative to the approximations necessary when treating the mutual information of the 980-
dimensional set of receptor states and the 3-dimensional gradient direction § € R, we construct a
directional estimator § from the spatiotemporal pattern of receptor binding events. Let {:?j}f[: 1 be
the spatial locations of the IV receptors on the cell’s surface. With each vector we associate a weight
w;. Whenever the jth receptor binds a cAMP molecule, w; is incremented by one; otherwise w;
decays with time constant 7. We construct an instantaneous estimate of the gradient direction from
the linear combination of receptor positions

N
0= w07



This procedure may be thought of as reflecting the release and accumulation of intracellular second
messengers from the cell membrane, and their dissipation or recycling on a given time scale. We
examine the evolution of the ensemble of directional estimates for time scales ranging over 20 <
7 < 2000 (msec).

Before the stimulus is applied, the weighted directional estimates g are small in absolute magnitude,
with direction uniformly distributed on S?. In order to determine the information gained as the
estimate vector evolves after stimulus application, we wish to determine the change in entropy in an
ensemble of such estimates. The uniform distribution on S? has entropy Hy = log, (47) ~ 3.6515
bits. As the cell gains information about the direction of the gradient signal from its receptors, the
entropy of the estimate should decrease, leading to a rise in mutual information.

By repeating multiple runs (M = 600) of the simulation we obtain samples from the ensemble
of direction estimates, given a particular stimulus direction, g. When a probability distribution on
R is not known exactly, its entropy may be efficiently approximated from a set of samples of the
distribution. In the method of Kozachenko and Leonenko [1], adapted for the analysis of neural
spike train data by Victor [2] (“KLV method”), the cumulative distribution function is approximated
directly from the observed samples, and the entropy is estimated via a change of variables trans-
formation (see below). This method may be formulated in vector spaces R? for d > 1 ([1]), but it
is not guaranteed to be unbiased in the multivariate case [3] and has not been extended to curved
manifolds such as the sphere. In the present case however, we may exploit the symmetries inherent
in the model (rotational invariance and axial equivariance assumptions (see main text)) to reduce the
empirical entropy estimation problem to one dimension.

Suppose that a probability distribution on S2, P(6, ¢), depends only on 6. For example, if we select
a true gradient direction ¢, we may parametrize the sphere with 6 representing the colatitude with
respect to g, and ¢ representing the longitude. Then by axial symmetry (see Assumptions in main
text) the resulting expected receptor activities would depend only on 6. The area element on the
sphere in this coordinate system is dQ2 = (sin(#) d¢)(d6), and the marginal distribution in 6 is by
definition

A 27
Py(9) 2 /¢ P(6, 6)sin(0) do.

=0

The assumption of axial symmetry is therefore tantamount to setting P(0, ¢) = 2:;([;9()0). The en-

tropy of P (0, ¢) is minus the expected value of the log likelihood:

H=-— /S Plogy(P)d = —Ey {logQ (2::1(119()9)” : 3)

where Eg|[ f f o—o | (0) do is expectation with respect to the marginal Py.

Given a set of M observed samples from a distribution P (6, ¢) which we know a priori to be sym-
metric with respect to ¢, we use the observed colatitudes {61, - - - , 05/} to estimate the expectations
in equation 3. Following the KLV method, we approximate Eg log,(P) via the invertible change in

variables: y(6) = fte:o Py(t) dt. Because dy = Py(0) d, the entropy integral becomes

T L P (L8 PRV

This approximation amounts to replacing the true cumulative distribution function y(6) with the
piecewise constant cumulative distribution given by the samples {y(6x) = k/M}. Next, we sort the
sample data into a monotonic sequence and approximate Py(6)) by relating the probability density

near 6, to the expected value of the nearest neighbor distance, A 2 min(|0; — Ox+1]) [2]. The
resulting estimate for the entropy from the sample data is:

M
H ~ % kz::l <10g2()\k) +logy(2(M — 1)) + logZ( 3) +1oga(2m) + logQ(sin(Gk))> (as M — o0)

6))
where v is the Euler-Mascheroni constant. As shown in Figure 2, this approximation agrees with
the analytic result for the uniform distribution, H, ;¢ = log,(4m) ~ 3.651.



2 Results: supplemental

See Supplemental Figure 1.

3 Direction and entropy estimation algorithms

3.1 Direction estimation

The algorithm we use for creating an estimated direction vector at each timestep is to first calculate
for each receptor a Weights vector that is 0 before the receptor binds, 1 at the timestep when the
receptor binds, and decays exponentially after a binding. The weight is cumulative, so that a receptor
can have a weight above 1. After assembling the weights we then assemble a Directions vector
for the run which is created by taking a weighted average across all receptor locations. Note that we
do not normalize our weighted average, leaving it simply as a weighted sum. The weights decay at
arate given by rate = 1/7.

foreach Receptor R
create a zero vector, W, of length timesteps
foreach binding event B
W[B.time] += 1
foreach timestep t, from B.time+l to timesteps
W[t] %= (l-ratex*dt)

create a zero vector of Points in R3, D, of length timesteps
foreach timestep t
foreach Receptor R
D[t].x += R.W[t] * R.location.x-component
D[t].y += R.W[t] x R.location.y-component
D[t].z += R.W[t] » R.location.z-component

3.2 Entropy estimation

To compute the entropy, first, for each run, we construct the Direct ion vector as outlined above,
then construct from that an Angles vector giving the angle between the estimate at each time t
from the correct direction. Then, for each timestep, take the collection of angles from all runs, and
apply our adaptation of the method presented by Victor, Kozachenko, and Leonenko (see main text;
“KLV method”).

create a matrix M with height num.runs and width num_timeSteps
foreach simulation run
create the direction vector, d, as described in §3.1
fill in the corresponding row in M with acos(cos(d, [-1, 0, 0]))
To Estimate Entropy for each timestep
take from M the corresponding column, C
initialize a count of the entropy, Ent = 0
sort C so that each entry will be next to its nearest neighbor
foreach entry in C, #, at index i
Dist = min( abs(8 - C[i+1]), abs(d - C[i—11))
Ent += log,(Dist)
Ent += log,(sin6)
Ent = Ent x length(C) + logy(2m) + logy(2 X (length(C)-1)) + Eﬁ%ﬁ
As in the main text, v is the Euler-Mascheroni constant. Algorithm implemented in C++ using the
GNU STL.
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Average estimated direction 1 = 500 msec
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Figure 1: Population timecourse of the directional estimate vector.

Top: Average of M = 600 directional estimate vectors §,, 7 = 500msec. The average length is
close to zero when the cAMP signal is uniformly distributed; after the stimulus is applied the average
estimate grows in the —x direction (descending trace) but not in the y or z directions, indicating that
gr provides an unbiased estimate of the gradient direction. Similar results obtain for each value of
T tested.

Bottom: Mean resultant length [4] versus time. The mean resultant length is the average of the
unit vectors §,/|g,| obtained by normalizing the directional estimates §,, and has length bounded
between zero (when ¢ are uniformly distributed) and one (when g are highly clustered in direction).
The timecourse of the mean resultant length mirrors that of the mutual information.



