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Phase Resetting in an Asymptotically Phaseless System: On the Phase Response
of Limit Cycles Verging on a Heteroclinic Orbit∗

Kendrick M. Shaw†, Young-Min Park‡, Hillel J. Chiel§, and Peter J. Thomas¶

Abstract. Rhythmic behaviors in neural systems often combine features of limit-cycle dynamics (stability
and periodicity) with features of near heteroclinic or near homoclinic cycle dynamics (extended
dwell times in localized regions of phase space). Proximity of a limit cycle to one or more saddle
equilibria can have a profound effect on the timing of trajectory components and response to both fast
and slow perturbations, providing a possible mechanism for adaptive control of rhythmic motions.
Reyn [“Generation of limit cycles from separatrix polygons in the phase plane” in Geometrical
Approaches to Differential Equations, Lecture Notes in Math. 810, Springer, New York, 1980, pp.
264–289] showed that for a planar dynamical system with a stable heteroclinic cycle (or separatrix
polygon), small perturbations satisfying a net inflow condition will generically give rise to a stable
limit cycle (see also [J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems,
and Bifurcations of Vector Fields, 3rd ed., Appl. Math. Sci. 42, Springer-Verlag, Berlin, 1990]). Here
we consider the asymptotic behavior of the infinitesimal phase response curve (iPRC) for examples
of two systems satisfying Reyn’s inflow criterion, (i) a smooth system with a chain of four hyperbolic
saddle points and (ii) a piecewise linear system corresponding to local linearization of the smooth
system about its saddle points. For system (ii), we obtain exact expressions for the limit cycle and
the iPRC as functions of a parameter µ > 0 representing the distance from a heteroclinic bifurcation
point. In the µ → 0 limit, we find that perturbations parallel to the unstable eigenvector direction
in a piecewise linear region lead to divergent phase response, as previously observed [E. Brown,
J. Moehlis, and P. Holmes, Neural Comput., 16 (2004), pp. 673–715]. In contrast to previous work,
we find that perturbations parallel to the stable eigenvector direction can lead to either divergent
or convergent phase response, depending on the phase at which the perturbation occurs. In the
smooth system (i), we show numerical evidence of qualitatively similar phase specific sensitivity to
perturbation. Having the exact expression for the iPRC for the piecewise linear system allows us
to investigate its stability under diffusive coupling. In addition, we qualitatively compare iPRCs
obtained for systems (i) and (ii) to iPRCs for the Morris–Lecar equations near a bifurcation from
limit cycles to a saddle-homoclinic orbit.
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1. Introduction. Animals often generate specific sequences of behavior, such as the move-
ments of the limbs during walking, the feeding apparatus while chewing and swallowing, or
body undulations in swimming. When a repeated sequence of motions can be produced
reliably, the pattern generator circuit controlling the behavior is typically modeled as an au-
tonomous system of ordinary differential equations admitting a stable isolated periodic orbit,
i.e., a limit-cycle oscillator [34, 74]. Limit-cycle oscillators have played a fundamental role in
understanding the generation and control of repetitive motions underlying swimming in the
lamprey [13, 16]; neural activity and bursting [18, 35]; the gaits of quadrupeds [14, 31], bipeds
[46], and monopeds [9, 15]; as well as cardiac and respiratory activity [20, 55, 56].

Another class of systems generating reproducible sequences of activity has been proposed
under the rubric of stable heteroclinic sequences [5] or stable heteroclinic channels [49]. A
dynamical system possesses a heteroclinic sequence if there exists a chain of hyperbolic saddle
fixed points for which the unstable manifold of each saddle intersects the stable manifold of
the next [2]; they generalize the notion of a stable heteroclinic cycle, an attractor comprising
a finite collection of saddle points with heteroclinic connections linking them in a repeating
chain [7, 32, 63, 64]. A heteroclinic cycle is stable or attracting when the product around
the cycle of the saddle values {Vi} is strictly greater than unity [4]; the saddle value for a
hyperbolic saddle point with eigenvalues λu > 0 > λ1s ≥ λ2s ≥ · · · ≥ λn−1

s is the ratio −λ1s/λu.
We let Vi denote the saddle value for the ith saddle. Stable heteroclinic sequences and cycles
have been proposed to provide a framework within nonlinear dynamics for understanding a
range of phenomena, including olfactory processing in insects [48], search behavior in the
marine mollusk Clione limacina [73], “winnerless competition” in neural circuits [1, 4] and
ecological models [2], genesis of network-dependent bursting activity [45], and the balance of
emotion and cognition in behavioral control [3] as well as other areas [50].

Because they require the intersection of one dimensional unstable and codimension one
stable manifolds, the saddle connections comprising a heteroclinic cycle are structurally un-
stable [6]. For planar systems, Reyn showed that a phase portrait containing a separatrix
polygon generically forms a limit cycle when subject to a perturbation satisfying a net inflow
condition [53], provided that the unperturbed heteroclinic cycle is attracting. Trajectories
near an unperturbed attracting heteroclinic cycle traverse the cycle with longer and longer
return times; the trajectory along the heteroclinic cycle itself has “infinite period.” Similarly,
for limit cycles arising from perturbations satisfying the net inflow condition, the smaller the
size of the perturbation, the longer the period of the limit cycle.

As an example, consider the system defined on the 2-torus 0 ≤ yi ≤ 2π, i ∈ {1, 2}:

dy1
dt

= f(y1, y2) = cos(y1) sin(y2) + α sin(2y1),(1.1a)

dy2
dt

= g(y1, y2) = − sin(y1) cos(y2) + α sin(2y2).(1.1b)

As shown in Figure 1(a), this system has four saddle points connected by heteroclinic connec-
tions. The saddles have identical eigenvalues λu = 1 − 2α, λs = −1 − 2α, so the product of
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Figure 1. Parametric perturbation of an attracting heteroclinic cycle to a stable limit cycle. The solid line
is the x-nullcline, and dashed is the y-nullcline. (a) A trajectory of the smooth toroidal system given by (1.1),
passing near four distinct saddles each with eigenvalues λs = −1− 2α and λu = 1− 2α. The trajectory shown
begins near the unstable spiral point at location (π,π) near the center of the plot. The trajectory was integrated
for a total time of 200 units using α = 7/30 and µ = 0. It passes closer to each successive saddle, slowing
progressively. (b) The perturbed system (1.2) when α = 7/30 and µ = 0.01 forms a stable limit cycle passing
close to the four saddle points. Please see the corresponding movie 82897 01.mpg [local/web 6.13MB]; this
animation cycles through phase portraits for the smooth system for values of µ varying from 0 to 1/2 and back
again. At µ = 2α the limit cycle collapses via a Hopf bifurcation to a single stable fixed point located between
the four surrounding saddles.

the saddle values, V =
∏4

i=1 Vi, is V = (1+2α
1−2α )

4. If α ∈ (0, 1/2), then V > 1, indicating that
the heteroclinic 4-cycle is attracting.

Although the heteroclinic cycle connecting the four saddle points is structurally unstable,
any perturbation of the vector field that pushes the unstable manifold of each saddle towards
the interior of the cycle relative to the stable manifold of the next saddle will generically lead
to the formation of a stable limit cycle. For example, consider the effects of “rotation” of the
flow of equations (1.1) parametrized by 1 > µ > 0:

dy1
dt

= f(y1, y2) + µg(y1, y2),(1.2a)

dy2
dt

= g(y1, y2)− µf(y1, y2).(1.2a)

We will refer to this system as the smooth system, in contrast to the piecewise linear system to
be introduced subsequently. As shown in Figure 1(b), for µ > 0 the heteroclinic connections
are broken, but a limit cycle has been created inside of the saddles that passes near each of
the saddle points.

For any small positive value of µ, system (1.2) will have a stable limit cycle, γ(t) = γ(t+T ),
with period T (µ) → ∞ as µ → 0+. For µ > 0 we may identify a phase θ ∈ [0, θmax) with

82897_01.mpg
http://link.aip.org/mm/SJADAY/110828976/82897_01.mpg
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Figure 2. Time plots of limit cycle trajectories of the smooth system with various values of µ. When µ # 1
the time plots exhibit prolonged dwell times due to slow transits past the saddle points and relatively rapid transits
between them. As µ increases, the limit cycle moves away from the saddle points, and the speed becomes more
uniform (note the change in horizontal scale). As a result, the time plots become more sinusoidal, resembling
an Andronov–Hopf oscillator. The first and second ordinates are shown in black and gray, respectively, with
α = 7/30. From top to bottom µ = 10−3, 0.1, 0.3, 0.45. Compare Figure 5.

each point on the limit cycle by choosing an arbitrary point γ0 to have phase θ(γ0) = 0
and requiring dθ/dt = θmax/T (µ). Typically one chooses θmax to equal either 2π or unity.
Because of the fourfold symmetry of the systems considered here it will be convenient to set
θmax = 4 throughout, so that traversal of each quarter of the limit cycle will correspond to a
unit increment in phase. Figure 2 illustrates the time course of trajectories of equations (1.2)
for α = 7/30 and µ ∈ {10−3, 0.1, 0.3, 0.45}.

To each point ξ0 = (x0, y0) in the basin of attraction of the limit cycle we may assign
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an asymptotic phase φ(ξ0) ∈ [0, 4) satisfying ||ξ(t) − γ(t − θ(ξ0)T/4)|| → 0 as t → ∞, where
ξ(t) and γ(t) are solutions of (1.2) satisfying initial conditions ξ(0) = ξ0 and γ(0) = γ0,
respectively, and ||(x, y)|| = |x|+ |y|. The level curves of φ, called isochrons, foliate the basin
of attraction; see [35] for examples.

An important question for understanding the dynamics of control in central pattern gen-
erators (CPGs) is how such systems combine robustness to perturbation with flexibility to
adapt behavior to variable environmental or physiological conditions.1 Many biological sys-
tems combining repetitive behavior and behavioral or metabolic control exhibit limit-cycle
behavior that is strongly influenced by passage of trajectories near one or more unstable fixed
points or quasi equilibria. A recent model for the generation of multiple rhythmic states in
a respiratory CPG [55] provides an example. This model examined dynamic reconfiguration
of a CPG network by external inputs as a mechanism for adaptive alteration of patterned
rhythmic output. During normal rhythmic activity, trajectories of the system decomposed
into a series of slowly varying components separated by rapid switching, for instance from an
expiratory to an inspiratory phase of activity. Control of the rhythm through changes in the
period as well as the duration of different functional phases could be effected by modulatory
signals making small changes to the dynamics of escape and release from inhibition, thereby
changing the paths of trajectories in the vicinity of quasi equilibria. Similarly, control of the
net speed of motion produced by a model locomotory CPG coupled to an explicit muscu-
loskeletal system resulted from the adjustment of CPG trajectories in proximity to unstable
fixed points of the model [40, 59, 60]. Patterns of biting, swallowing, and rejection in Aplysia
may be understood in terms of sequential traversals between neuromechanical equilibrium
points [65, 66]. During normal cell growth and proliferation a living cell passes repeatedly
through several phases (including cell division), yet the cell “cycle” is typically described not
as a standard limit cycle but as a sequence of traversals between quasi equilibria that act as
checkpoints [70].2 In the vicinity of each quasi equilibrium, the cell cycle dynamics slow for an
indefinite period of time, until a regulating condition is met [44]. In each of these examples,
although the flow, strictly speaking, forms a deterministic limit cycle, the behavior may be
actively managed through the introduction of variable dwell times that function as control
points along trajectories.

Families of limit cycles verging on a heteroclinic (or homoclinic) cycle such as the limit
cycles of the one parameter family of systems given by (1.2) provide an opportunity for
studying the role of saddle points in the control of timing of rhythmic behaviors. As a
first step, it is natural to consider the structure of the infinitesimal phase resetting curves
which reflect the sensitivity of the return time along the limit cycle to small instantaneous
perturbations. When µ = 0 the flow of (1.2) does not admit a periodic solution with finite

1Whether originating endogenously (neural noise, internal control mechanisms) or exogenously (environ-
mental fluctuations), perturbations of the system’s dynamics occur on a variety of time scales. For clarity we
will limit discussion to two extremes of fast and slow perturbations. Perturbations occurring on slow time
scales relative to other system dynamics will be referred to below as static or parametric perturbations, for
example fixing a value µ > 0 in (1.2). Fast perturbations will be approximated as instantaneous trajectory
dislocations.

2Strictly speaking, the system may be viewed as a limit cycle if the dynamics are embedded in a larger space
encompassing the control variables as well; the point remains that the periodic behavior is strongly influenced
by passage near unstable equilibria or near-equilibria, which function to regulate the timing of the system.
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period; consequently the asymptotic phase and hence the phase response is not well defined.
However, for any µ > 0 we can define the phase response, and we can study its behavior as
the family of limit cycles approaches the heteroclinic cycle.

To fix terminology, for 1 ' µ > 0, consider a trajectory ξ(t) following a stable limit cycle
γ : t ∈ [0, T ) → γ(t) ∈ Rn. Suppose that the trajectory is perturbed by a small instantaneous
displacement, taking x(t−) = γ(t + θ0T/4) to x(t+) = γ(t + θ0T/4) + (r. Provided that the
new initial condition x(t+) remains within the basin of attraction of the limit cycle, the orbit
will approach the limit cycle with ||x(t)−γ((t+θ1T/4)mod T )|| → 0 as t → ∞, for some new
phase θ1 ∈ [0, 4), resulting in a shift in asymptotic phase equal to (θ1 − θ0)mod 4. The limit
cycle’s sensitivity to weak instantaneous perturbations typically varies both with the phase
at which the perturbation occurs, θ0(t) = 4((t/T )mod 1), and with the direction in which it
occurs, η = (r/||(r|| ∈ Rn. Differences in sensitivity at different phases, which are important for
understanding possible control mechanisms, are captured by the infinitesimal phase response
curve or iPRC, defined as

(1.3) Z(θ, µ, η) = lim
ε→0

(θ − φ(γ(θT/4) + εη))mod 4

ε
.

As above, φ(ξ) is the asymptotic phase associated with a point ξ in the basin of attraction
for the limit cycle, θ is the phase at which the instantaneous perturbation is applied, µ is the
parameter controlling proximity to the heteroclinic, η is the direction of the fast perturbation,
γ is the limit cycle trajectory and T is its period; the latter two entities are functions of µ. In
order to study the behavior of the phase response as the system approaches the heteroclinic
configuration, it is important to emphasize that the limit defining the iPRC in (1.3) is taken
before the subsequent limit µ → 0.

Analytic calculation of the iPRC is typically accomplished via an adjoint equation method,
and exact solutions are known in very few cases [26, 35]. In order to perform the analysis
required to gain qualitative insight into the behavior of the phase response under the sequential
limits ε→ 0, µ → 0, we construct a piecewise linear approximation to the smooth system. The
iris system, described below, is topologically equivalent on an open set including the family
of limit cycles and the saddle points, and it qualitatively captures the behavior of the smooth
system. For the iris system we obtain exact results including the form of the limit cycle for
positive µ and an explicit formula for the iPRC. Our main result, stated in Theorem 1 below,
shows that for the iris system the sensitivity to small displacements parallel to the direction
of the stable manifold has two regions with distinct sensitivity behavior. In the limit, as the
family of orbits approaches the heteroclinic orbit, there is an interval of phases ϕ ∈ [0,ϕc] for
which the infinitesimal phase response goes to zero. This interval is separated by a critical
phase ϕc from a second interval ϕ ∈ (ϕc, 1] for which the iPRC diverges to +∞. The junction
ϕ ≡ 0 (mod 1) corresponds to the boundary between regions on which we define a piecewise
linear dynamics. We show numerically that qualitatively similar results hold for the smooth
system.3

Limit cycles in piecewise linear (PWL) dynamical systems have been studied previously in
several contexts. For instance, in the context of Glass networks [22, 29, 30], PWL systems have

3See also section 8.3 for numerically computed iPRCs for the Morris–Lecar system near a bifurcation from
a family of limit cycles to a homoclinic orbit.
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(a) (b)

Figure 3. Construction of the iris system from the smooth system. (a) The flow near each saddle point of
the smooth system (1.2) is approximately linear in a square region aligned with the (orthogonal) eigenvectors.
By virtue of the fourfold symmetry of the system, we can extend each square until it has a side of length 2b,
remaining centered on the saddle. Depending on the extent of the rotational (parametric) perturbation of the
vector field, there will be square of side a forming a gap around the unstable spiral point. (b) We extend the
linearized flow for each saddle throughout the corresponding square of side 2b, creating a PWL vector field
defined on the plane with the squares of side a removed. The ith square is centered on the ith saddle, xi

(i = 1, 2, 3, 4). In each square the inward arrows indicate W s
loc, and the outward arrows indicate W u

loc, parallel
to the stable and unstable eigenvector directions, respectively.

been used to represent the dynamics of idealized genetic regulatory systems. In this case, the
structure is somewhat different from that considered here, in that the fixed point driving the
flow in each PWL region is strictly attracting and lies outside the region, rather than having
one unstable eigendirection and lying inside the corresponding flow region. Consequently,
families of limit cycles verging on a heteroclinic cycle do not appear in Glass networks. PWL
planar dynamical systems in which a fixed point and a limit cycle coexist do occur in models
approximating the FitzHugh–Nagumo equations; such systems were used to study traveling
wave phenomena [41] and period adding bifurcations under periodic forcing [19]. Neither
homoclinic nor heteroclinic cycles appear in these systems, however. Recently, Coombes
investigated phase response curves for limit cycles in both the PWL McKean–Nagumo model
and a new model related to the Morris–Lecar system [17]; this paper exploited the existence
of exact solutions for the iPRC to study synchronization in gap-junction coupled networks,
in both the strong and weak coupling limits. The PWL Morris–Lecar system does contain
a homoclinic bifurcation; to the best of our knowledge, however, the analysis presented here
is the first to obtain exact results for the scaling of the iPRC as a system of limit cycles
approaches a saddle-homoclinic or heteroclinic orbit.

2. The PWL iris system. As µ → 0+, the period of the limit cycle in system (1.2) diverges,
and the asymptotic phase may no longer be defined. Nevertheless, the response of the system
to small, transient perturbations remains of interest. To explore behavior analogous to phase
resetting in the µ → 0+ limit, we introduce a PWL planar dynamical system analogous to the
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smooth system in (1.1). Figure 3(a) illustrates the construction: we tile the plane with large
squares of size 2b centered on each saddle, and smaller squares of size a between them. When
the rotation parameter µ is zero, the large squares align, and the square of side a vanishes.
As the vector field “rotates” in the vicinity of each saddle, the squares rotate, and a increases
from zero. Within each square, we introduce coordinates ξ = (s, u). With respect to these
coordinates, the local flow obeys the linear equations

ds/dt = −λs,(2.1)

du/dt = u.(2.2)

Here λ > 0 is the eigenvalue corresponding to the eigenvector (1, 0) tangent to the stable
manifold W s

loc = {(s, 0)| − b < s < b}. The unstable manifold W u = {(0, u)| − b < u < b}
is tangent to the eigenvector (0, 1) corresponding to the unstable eigenvalue, which without
loss of generality is set to 1. The stable and unstable eigenvectors are arranged so that when
a > 0 the flow on the inner quadrants of each square moves clockwise; the flow leaving the
square around the ith saddle enters the square around the i + 1st saddle (mod 4), as shown
in Figure 3.

Formally, for k ∈ {1, 2, 3, 4} let the center of the kth square, (xk, yk), be given by the real
and imaginary parts, respectively, of zk =

√
2(−i)k(be−iπ/4 + (a/2)eiπ/4), where 0 ≤ a < b.

Define the kth square to be Sk = {(x, y) : |x − xk| ≤ b & |y − yk| ≤ b}. In the interior of
the first square, the flow satisfies ẋ = −λ(x − x1) and ẏ = y − y1. The flow in the interior
of squares two through four is defined so that the vector field is equivariant with respect to
fourfold rotation about the origin. Adjacent squares form a boundary of length (2b − a). At
the boundary between Sk and Sk+1, the flow leaves Sk and enters Sk+1, by construction. The
vector field is discontinuous across these boundaries. For definiteness, we take the flow at
points on the mutual boundary Sk ∩Sk+1 of adjacent squares to be defined so that the vector
field is continuous when approached from square Sk+1, the square into which the trajectories
enter.4

The four offset squares may be repeated to form a partial tiling of the plane, leaving a
complementary set composed of smaller squares of size a. We will view the entire system as
confined to the 2-torus, however. We leave the flow unspecified in the interiors of the small
squares, and we take any egress points from a large square into a small square to be absorbing;
i.e., the flow is set to zero at the boundary of the small squares. Since we are interested in
the phase response of limit cycles whose basins of attraction are entirely contained within
the larger squares, the flow in the smaller squares is of no consequence. Figure 4 illustrates
the system and shows sample trajectories for different values of a. We will refer to the PWL
system as the iris system because it resembles the iris of a camera, opening and closing as a
increases or decreases.

It is clear that the iris system will form a stable heteroclinic orbit when a = 0 (corre-
sponding to µ = 0 in the smooth system); we will show in section 3.2 that it also exhibits

4Formally, the piecewise linear flow defined here is an example of a differential inclusion [11, 27, 39]. In our
case, the component of the flow transverse to a domain boundary does not change sign across the mutual edge
of adjacent boxes; therefore the technical machinery of differential inclusion theory is not needed to specify the
flow unambiguously.
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θ = 0 θ = 0

(a) (b)

θ = 0

(c) (d)

Figure 4. The behavior of the iris system depends on the offset a. The system is shown rotated through
an angle of − tan−1(a/b) for easier visual comparison with the smooth system. (a) a = 0. When the offset a is
0, the unstable manifold of each saddle connects to the stable manifold of the next, forming a stable heteroclinic
orbit. (Thin blue line: sample trajectory. All trajectories proceed clockwise.) (b) a = 0.05. When 0 < a # 1,
a stable limit cycle exists that passes close to the saddles. Its basin of attraction extends inward to a small,
unstable limit cycle around the center (red curve and arrow). (c) a = 0.2. As a increases, the limit cycle
becomes more rounded and the flow along the limit cycle more regular. (d) a = 0.255. If a continues to
grow, the stable and unstable limit cycles disappear in a fold bifurcation. Please see the corresponding movie
82897 02.mpg [local/web 5.90MB]; this animation cycles through phase portraits of the iris system for values
of a ranging from 0 to 0.255 and back again.

stable limit cycles passing near the saddles for small values of a > 0 (corresponding to µ > 0),
as shown in Figure 4. When the limit cycle exists, as above, we assign a phase θ to each point
γ in the cycle as the fraction of the cycle’s period (scaled by θmax = 4) required to reach that

82897_02.mpg
http://link.aip.org/mm/SJADAY/110828976/82897_02.mpg
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point from a defined starting point γ(0) = γ0 on the cycle, i.e.,

(2.3) θ(ν) =
4

T
min

(
{t > 0 | γ(t) = ν}

)
,

where T is the period, i.e., T = min({t > 0 | γ(t) = γ0}). It is clear that, with this
transformation, dθ/dt is constant and equal to 4/T . We define the point where the limit cycle
first enters the bottom left square (surrounding saddle S1) as γ0.

Because the flow is PWL, we may derive analytically the form of the phase response curve
for any values of λ > 1 > a > 0 for which a stable limit cycle exists.

Theorem 1. Let λ > 1 > a > 0, let the iris system be defined as in section 2, and define
the function

(2.4) ρ(u) = uλ − u+ a.

1. If the function ρ has two isolated positive real roots, then the iris system has a stable
limit cycle. Let u denote the smallest positive real root of (2.4). The limit cycle
trajectory enters each square at local coordinates (1, u) and exits each square at local
coordinates (s, 1), where s = uλ. The period of the limit cycle is T = 4 log(1/u).

2. Let θ ∈ [0, 4) be the phase of an instantaneous perturbation in direction η, and let
θ = k + ϕ, where ϕ ∈ [0, 1) and k ∈ {0, 1, 2, 3}. If k = 0, then the infinitesimal phase
response of the limit cycle is

(2.5) Z(η,ϕ, a) =
η · β(ϕ)

log(1/u)(u − λs)
,

where β(ϕ) = (s(1−ϕ), uϕ) and η = (ηs, ηu) is a unit vector in the L1 norm. If k ∈
{1, 2, 3}, then the infinitesimal phase response is given by Z(η′,ϕ, a), where η′ = Rkη
and R = ( 0 −1

1 0 ). The magnitudes of the phase responses to perturbations parallel to
the stable and unstable eigenvector directions is greatest at phases corresponding to
boundaries between PWL regions.

3. As a → 0 for fixed λ, the entry coordinate scales as u = a + o(a), the infinitesimal
phase response to perturbations parallel to the unstable eigendirection in a given square
diverges, and the response to perturbations parallel to the stable eigendirection diverges
when ϕ ∈ (1 − 1/λ, 1); otherwise, it converges to zero.

Figure 5 illustrates the time course of trajectories of the iris system for λ = 2 and a ∈
{10−3, 0.1, 0.2, 0.24}.

While a general consideration of phase resetting in the vicinity of a heteroclinic bifurcation
on an invariant circle (or, similarly, near a homoclinic bifurcation) is beyond the scope of this
paper, it is natural to conjecture that the limiting behavior of phase response curves near
such bifurcations may be similar to that observed here. We discuss the form analogous results
might take in a higher dimensional setting in section 8.5.

Lemmas 3 and 4 in section 3 provide necessary and sufficient conditions to guarantee the
existence of a stable limit cycle. Lemmas 6, 7, and 8 in section 4 develop the response of a
limit-cycle trajectory to a small transient perturbation, leading to direct calculation of the
iPRC. Lemmas 10 and 11 in section 5 describe the asymptotic behavior of the iris system in
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Figure 5. Time plots of limit cycle trajectories of the iris system with various values of a. When a # 1
the trajectories slow dramatically when passing near the saddles and travel more quickly between them, resulting
in time plots with prolonged dwell times. As a increases, the limit cycle moves away from the saddle points,
and the limit cycle trajectory becomes faster and more uniform in speed, resulting in time plots with a more
sinusoidal character (note the change in horizontal scale). The horizontal and vertical ordinates are shown in
black and gray, respectively, with λ = 2. From top to bottom a = 10−3, 0.1, 0.2, 0.24. Compare Figure 2.

the heteroclinic limit, i.e., as a → 0. In section 5 we also compare analytic and numerical
results for the phase response curves of the iris system. In section 6 we numerically explore
the isochrons of the iris system. In section 7 we numerically obtain phase response curves
for the smooth system given by (1.1) and compare their structure with those of the iris
system. In order to make a qualitative comparison between our results and a system enjoying
direct biological motivation, in section 8.3 we show iPRCs obtained numerically for the planar
Morris–Lecar system near a bifurcation from a family of limit cycles to a saddle homoclinic
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orbit. In section 8.4 we confirm numerically and analytically that the iPRCs obtained for
our PWL iris system successfully predict the stability of the synchronous solution for pairs of
identical iris systems with diffusive coupling.

In [12] Brown, Moehlis, and Holmes studied phase response curves for limit cycles near
the four codimension one bifurcations leading to periodic firing in standard neuronal models
(saddle-node bifurcation of fixed points on a periodic orbit, supercritical Hopf bifurcation,
saddle-node bifurcation of limit cycles, and homoclinic bifurcation). Their analysis of the
homoclinic bifurcation corresponds to our analysis of the iris system in a certain limit; for a
detailed comparison, see section 8.2.

3. Limit cycles in the iris system. We now prove several results about the PWL iris
system that we will need to prove Theorem 1. We start by studying the trajectory within
one of the square regions to construct a map from the time and position of entry into the
region to the time and position of egress out of the region. Next, we connect four of the
linearized regions together. We then prove the existence of a limit cycle for sufficiently small
values of a > 0. We also examine the effects of a perturbation of the trajectory within the
neighborhood on the exit time and exit position. We use the maps thus derived to show that
a stable limit cycle exists, and use the perturbation results to determine the asymptotic effect
of a small perturbation on the phase of the oscillator (i.e., the phase response curve). First,
we will examine the dynamics within a single linear region around a saddle of the iris system.

Remark 2 (nondimensionalization). Assume that each saddle of the iris system has two real
orthogonal eigenvectors, one stable and one unstable. Assume that the region around each
saddle is a square aligned with these vectors and centered on the saddle with a length of 2L
along each side (so that the saddle is a distance of L away from each edge). We will refer
to the unstable eigenvalue of the saddle as λu > 0 and the stable eigenvalue as λs < 0. The
trajectories within the region have the dynamics

ds

dt
= λss,

du

dt
= λuu.(3.1)

Assume that when a trajectory leaves the edge of one region at position xf = (sf , uf ) =
(sf , L), it enters the next region with an offset of a, i.e., xi = (si, ui) = (L, sf + a). (See the
construction in Figure 3.) We assume that there is a cycle of four regions which the trajectory
may traverse this way.

We can nondimensionalize the system by defining the new state variables s∗ = s/L and
u∗ = u/L, by rescaling time as t∗ = λut and the offset as a∗ = a/L. We may define λ =
−λs/λu as the saddle ratio, which will play a critical role in stability (section 3.2). Using
these definitions, the governing equations become

ds∗

dt∗
= −λs∗, du∗

dt∗
= u∗.(3.2)

We will use the nondimensionalized version of the system for the remainder of the paper.
For simplicity of notation, we will omit the asterisks in what follows.

3.1. Dynamics within a linear region. Within a single square region surrounding a given
saddle point, we will use the local coordinates (s, u) to represent the displacement parallel to
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the stable and unstable eigenvectors, respectively. The line segments {(s, 0) ∈ R2|0 ≤ s ≤ 1}
and {(0, u) ∈ R2|0 ≤ u ≤ 1} are part of the stable and unstable manifolds of the saddle,
respectively, forming separatrices of the flow in the square. We will restrict attention to flow
entering the square along the edge {(1, u) ∈ R2|0 < u < 1}. It is easy to see that a trajectory
entering at an initial point xi ≡ (si, ui) = (1, ui) at time ti with ui > 0 will exit at point
(sf , uf ) = (sf , 1) = (uλi , 1) at time log(1/ui). We define the map fl : R → R from an entry
position along the s = 1 edge to an exit position along the u = 1 edge of the region of linear
flow, and a function T1(ui) representing the transit time from an entry position (1, ui):

fl(ui) = uλi , T1(ui) = log(1/ui).(3.3)

Note that fl is a monotonically increasing function of ui and that T1 is a monotonically
decreasing function of ui.

The closest approach of a trajectory to the saddle point occurs when the position x = (s, u)
is perpendicular to the velocity v = (−λs, u), or 0 = −λ exp[−2λt] + u2i exp[2t]. Similarly, one
may calculate the time at which the speed of the trajectory is minimal. These times are

(3.4) tclosest =
log λ− 2 log ui

2(λ+ 1)
, tslowest =

3 log λ− 2 log ui
2(λ+ 1)

.

We can examine the position of closest approach by integrating the system from the entry
position for a time tclosest, which gives the location

uclosest = uie
tclosest = ui

(
λ/u2i

)1/(2λ+2)
,

sclosest = e−λtclosest =
(
u2i /λ

)λ/(2λ+2)
.

Taking the ratio of the two coordinates, we find

uclosest = λ1/2 sclosest,(3.5)

and thus the point of closest approach of each trajectory in this quadrant lies along a line
passing through the saddle. A similar calculation using tslowest shows that the slowest points
lie along the line

uslowest = λ3/2 sslowest,(3.6)

which also passes through the saddle point at the origin of the local coordinate system.

3.2. Dynamics across regions. We will next explore the conditions under which the iris
system contains a limit cycle.

Lemma 3. The iris system described in section 2 contains a limit cycle iff the function

ρ(u) = uλ − u+ a

has isolated real roots u†, u‡ ∈ (0, 1), with u† ≤ u‡. These roots exist iff λ > 1 and

λλ/(1−λ) − λ1/(1−λ) + a ≤ 0.
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Proof. To track crossings between regions, we will add a subscript to the variable names
indicating how many region crossings have occurred since time t = 0, so that ui,3 is the ingress
location (ui) immediately after the third crossing.

When a > 0, trajectories leaving one region enter the next with an offset a, i.e., (si,n+1,
ui,n+1) = (1, sf,n + a). We therefore have a second monotonically increasing map from the
point of egress along the edge of one square to the entry point along the edge of the next
square, fe : sf,n → ui,n+1 = sf,n + a.

We can now form a map from the entry position along the edge of one linear region to the
entry position along the edge of the next region via the composition

(3.7) h(ui) = (fe ◦ fl)(ui) = (ui)
λ + a.

As the composition of two monotonically increasing maps, h is also monotonically increasing.
Noting that the entry edges form a transversal section of the flow, it is clear that h4, the
fourfold composition of h, forms a Poincaré map for any cycles crossing this edge. Limit
cycles will form isolated fixed points in this map, so to find potential limit cycles we look for
points where ui = h4(ui). Because h is composed of four identical monotonic maps, the limit
cycles will also be fixed points in these component maps, and thus we have a fixed point at
ui = u iff u = h(u) = uλ + a or, equivalently, ρ(u) ≡ uλ − u+ a = 0 (cf. (2.4)).

We now consider the potential values of λ, which by definition must be positive. First,
consider 0 < λ < 1. Rewriting ρ(u) as uλ(1− u1−λ) + a and remembering that u ∈ (0, 1), we
can see that ρ(u) is now the sum of a positive product and a nonnegative parameter and thus
cannot be zero. Next, consider λ = 1. In this case ρ(u) becomes just a, and thus ρ = 0 implies
a = 0. Note that ρ is independent of u, and thus every u ∈ (0, 1) is a solution corresponding
to a one parameter family of neutrally stable, nonisolated orbits. Therefore λ must be greater
than one if a limit cycle exists.

Differentiating ρ twice with respect to u, we find that ρ is convex for all u > 0 when λ > 1,
and differentiating it once, we find that ρ has a minimum at

(3.8) (ui)min = λ1/(1−λ).

Because ρ(u) is continuous and equal to a when u = 0 or u = 1, by the midpoint theorem it
will have a root between 0 and (ui)min and a root between (ui)min and 1 iff

(3.9) 0 ≥ ρ((ui)min) = (ui)
λ
min − (ui)min + a = λλ/(1−λ) − λ1/(1−λ) + a.

We will call the smaller root u† and the larger (possibly identical) root u‡.
Figure 6 illustrates the map h = fe ◦ fl when λ = 2 and a = 0.2.
We now examine the stability of the roots u† and u‡.
Lemma 4. If the roots u† and u‡ of (2.4) exist and are distinct, u† gives the entry position

of a stable limit cycle along the s = 1 edge of a region, and u‡ gives the entry position of an
unstable limit cycle along the same edge.

Proof. We can determine the stability of the two points by examining the derivative of h
at these points; if |dh/dui| > 1, the fixed point will be unstable, and if |dh/dui| < 1, the point
will be stable. Because the existence of the roots implies λ > 1, we know dh/dui = (ui)λ−1λ
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Figure 6. The map h = fe ◦ fl from the entry position of a trajectory along the edge of a square to its
entry position along the edge of the next square forms a map analogous to a return map (blue curve). This
map is continuous and monotonically increasing, so a limit cycle can exist only where a trajectory enters the
next square at the same position it entered the current square (green line indicates the identity map). In this
example there are two intersections corresponding to the stable and unstable limit cycles. Here a = 0.2 and
λ = 2. The blue curve meets the vertical axis at the offset between squares a, and changing the offset raises or
lowers the blue curve without changing its shape. Varying a allows for 0, 2, or 1 limit cycles (corresponding to
Figure 4(d), Figure 4(c), and the fold bifurcation that occurs between them).

will be positive. Differentiating h a second time, we see that d2h/du2i = (ui)λ−2(λ − 1)λ is
always greater than zero, and thus dh/dui is monotonically increasing. Since a fixed point in
a map is stable iff the magnitude of the derivative at that point is greater than one, we find
the point where dh/dui passes through 1:

1 = dh/dui = λ(ui)
λ−1

or
ui = λ1/(1−λ).

This, however, is just (ui)min from (3.8). Because this lies between the two roots, dh/dui|u† <
dh/dui|(ui)min

= 1, and thus u† is a stable fixed point of h, and 1 = dh/dui|(ui)min
< dh/dui|u‡ ,

and thus u‡ is an unstable fixed point of h. Because h is a Poincaré map at the entry plane
of the region, these fixed points correspond to the entry points of a stable and unstable limit
cycle, respectively.
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Figure 7. Two parameter bifurcation diagram for the iris system. When the stable-to-unstable eigenvalue
ratio λ is sufficiently large relative to a, a stable and an unstable limit cycle coexist (region labeled “stable limit
cycle”). As a increases, the two limit cycles are destroyed in a fold bifurcation (line labeled “fold bifurcation”).
As a approaches 0, the system approaches a heteroclinic orbit (line labeled “heteroclinic orbit”). When a is
sufficiently large or λ < 1, trajectories spiral into the center as shown in Figure 4(d) (area labeled “trajectories
spiral into center”). When λ = 1 and a = 0, the system becomes a square filled with neutrally stable orbits
(point labeled “neutrally stable orbits”).

Remark 5. Lemmas 3 and 4 together establish Theorem 1, part 1.
As just shown, for small positive a two limit cycles exist—one stable and one unstable.

As a → 0, the stable limit cycle is destroyed in a heteroclinic bifurcation, and the unstable
limit cycle collapses to a point at the center of the system. As a increases, the two limit
cycles collide in a cycle-cycle fold bifurcation. The collision occurs when the inequality (3.9)
becomes an equality. The two roots converge to (ui)min as the two limit cycles that cross the
section at the two roots merge. Figure 7 shows the bifurcation diagram.

4. Effects of a small instantaneous perturbation. We now examine the effects of a small
perturbation of a trajectory starting on the limit cycle. We will first explore the effects on the
exit time and exit position from the square, and then extend our analysis to the asymptotic
effect of the perturbation on phase over many cycles (the phase response curve).

4.1. Initial effects of a small perturbation. Assume that a trajectory begins on the stable
limit cycle at position x0 = (1, u†) at time t = 0 and receives a small perturbation of size r
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in the direction of a unit vector η = (ηs, ηu) at time t′. We will consider only perturbations

that occur before the trajectory leaves the square (i.e., 0 ≤ t′ < T1(u†) = T †
1 ); earlier or

later perturbations can be reduced to this case by an appropriate time shift and discrete
rotation. We will also require that the perturbation not push the trajectory out of the basin
of attraction of the limit cycle. The iPRC that we calculate below is obtained in the limit of
small perturbations; for finite a > 0, the basin of attraction has finite width, and trajectories
that escape the limit cycle’s attracting set are not assigned an asymptotic phase.

It is straightforward to calculate the effects of the perturbation on the time and posi-
tion at which the trajectory leaves the square. We first consider the typical case where the
perturbation does not push the trajectory across the border of the square.

Lemma 6. Consider a trajectory initially on the stable limit cycle γ of the iris system such
that γ(0) = (1, u†), and a perturbation ∆x of size ||∆x|| = r in the direction of unit vector

η = (ηs, ηu) = ∆x/r at time 0 < t′ < T †
1 . Assume that the perturbation does not push the

trajectory out of the basin of attraction or into another square. Then the perturbation will
result in a change in the position of entry to the next square,

(4.1) ∆u′1 =
(
ηs(u

†et
′
)λ + ηuλ(u

†)λ−1e−t′
)
r + o(r),

and a change in transit time of the square,

(4.2) ∆T ′
1 = −(ηue

−t′/u†)r + o(r),

as r → 0.
Proof. Immediately before the perturbation occurs, the trajectory will be at the point

lim
t→t′−

x(t) = (e−λt
′
, u†et

′
).

The perturbation shifts the position to

lim
t→t′+

x(t) = (e−λt
′
+ rηs, u

†et
′
+ rηu).

The trajectory will exit the square once xu grows to 1 at time

T ′
1 = t′ +

(
− log(u†et

′
+ rηu)

)

and enter the next square along the s = 1 edge at position

u′1 = a+ (e−λt
′
+ rηs)e

−λ(T ′
1−t′) = a+ (e−λt

′
+ rηs)(u

†et
′
+ rηu)

λ.

For r , 1, we may write

T ′
1 = t′ − log(u†et

′
)− (ηue

−t′/u†)r + o(r),

u′1 = a+ (u†)λ +
(
ηs(u

†et
′
)λ + ηuλ(u

†)λ−1e−t′
)
r + o(r)
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as r → 0. Noting that t′ − log(u†et
′
) = − log(ui) = T †

1 and a+ (u†)λ = u†, these expressions
may be viewed as the exit time and position for the limit cycle with a linear correction and
additional higher order terms in r. That is,

T ′
1 = T †

1 − (ηue
−t′/u†)r + o(r),

u′1 = u† +
(
ηs(u

†et
′
)λ + ηuλ(u

†)λ−1e−t′
)
r + o(r).

Subtracting T †
1 and u† respectively then gives our result.

Perturbations that push the trajectory across the boundary between two squares can be
handled without much additional difficulty. For example, we can treat a perturbation that
crosses into the next square as an advancement of the trajectory to the point that it enters the
next square followed by a perturbation to the new location in the new square. Perturbations
to the previous square can be handled in a similar fashion, as can perturbations to the diagonal
square. However, for any finite a > 0 and any perturbation time other than t′ = 0 or t′ = T †

1 ,
the perturbed point will remain in the same square as the unperturbed point for sufficiently
small r > 0. Therefore the additional cases do not alter the calculation of the phase response
curve except possibly at a finite set of points, and they will be omitted.

4.2. Subsequent effects of a perturbation. In the absence of perturbation, the limit cycle
passing through γ(0) = (1, u†) will exhibit a (constant) sequence of edge crossing locations

ui,n = u†, n = {0, 1, 2, . . .}, at a sequence of crossing times T †
n = nT †

1 at constant intervals

∆T †
n ≡ T †

1 . A single perturbation ∆x = r(ηs, ηu) at time t′ will lead to a new sequence of
edge crossings {u′i,n} and crossing times {T ′

n}. Following the perturbation, the time spent
between the nth and n+1th crossings is offset from the unperturbed dwell time: T ′

n+1−T ′
n =

T †
1 + ∆T ′

n+1. Next we calculate the change in entry position for subsequent edge crossings
(∆u′n = u′i,n − u†) and the dwell time offsets for subsequent squares (∆T ′

n+1).
Lemma 7. Under the conditions of Lemma 6, the entry position after the nth crossing

(n ≥ 1) will be offset by

(4.3) ∆u′n =
(
λ(u†)λ−1

)n−1 (
ηs(u

†et
′
)λ + ηuλ(u

†)λ−1e−t′
)
r + o(r),

and the time spent in that square will be offset by

(4.4) ∆T ′
n+1 = −(u†)−1

(
λ(u†)λ−1

)n−1 (
ηs(u

†et
′
)λ + ηuλ(u

†)λ−1e−t′
)
r + o(r)

as r → 0.
Proof. A perturbed trajectory will enter the nth edge with an offset ∆u′n. This situation

is equivalent to a trajectory entering along the limit cycle that experiences a perturbation in
the u direction (η = (0, 1)) of magnitude r = ∆u′n immediately upon entering the square. We
can thus use (4.1) with t′ = 0 to find the entry position along the next (n+ 1th) edge:

∆u′n+1 = λ(u†)λ−1∆u′n + o(∆u′n).
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Therefore to leading order the sequence of offsets follows a geometric series, with closed form

∆u′n =
(
λ(u†)λ−1

)n−1
∆u′1 + o(∆u′1)

=
(
λ(u†)λ−1

)n−1 (
ηs(u

†et
′
)λ + ηuλ(u

†)λ−1e−t′
)
r + o(r)

as r → 0. Substitution into (4.2) provides the deviation in the time of passage through each
square, compared with that for the limit cycle trajectory. Again setting η = (0, 1), r = ∆u′n,
and t′ = 0 gives

∆T ′
n+1 = −(u†)−1∆u′n + o(u′n)

= −(u†)−1
(
λ(u†)λ−1

)n−1 (
ηs(u

†et
′
)λ + ηuλ(u

†)λ−1e−t′
)
r + o(r).

We now examine the asymptotic effect of the perturbation at long times. Because u† is
less than one, both ∆u and ∆t will approach zero for large n. This is equivalent to saying
that the orbit will asymptotically return the stable limit cycle, as expected. It may, however,
return with a different phase than the unperturbed trajectory.

Lemma 8. Under the conditions of Lemma 6, the cumulative change in crossing times after
n crossings is

(4.5) ∆C ′
n = −

ηs(u†et
′
)λ

(
1−

(
λ(u†)λ−1

)n−1
)
+ ηue−t′

(
1−

(
λ(u†)λ−1

)n)

u† − λ(u†)λ
r + o(r),

which converges to

(4.6) ∆C ′
∞ = −ηs(u

†et
′
)λ + ηue−t′

u† − λ(u†)λ
r + o(r)

as n → ∞.
Proof. The cumulative change in crossing times is the sum of the dwell time offsets in the

previous squares:

∆C ′
n =

n∑

k=1

∆T ′
k = ∆T ′

1 +
n∑

k=2

∆T ′
k.

Substituting into (4.2) and (4.4) yields the result

∆C ′
n = −ηue

−t′

u†
r +

n∑

k=2

−r

u†

(
λ(u†)λ−1

)k−2 (
ηs(u

†et
′
)λ + ηuλ(u

†)λ−1e−t′
)
+ o(r)

=
−1

u†

(
ηue

−t′ +
(
ηs(u

†et
′
)λ + ηuλ(u

†)λ−1e−t′
) n−2∑

k=0

(
λ(u†)λ−1

)k
)
r + o(r)

=
−1

u†

(
ηue

−t′ +
(
ηs(u

†et
′
)λ + ηuλ(u

†)λ−1e−t′
)1−

(
λ(u†)λ−1

)n−1

1− λ(u†)λ−1

)
r + o(r)

= −
ηs(u†et

′
)λ

(
1−

(
λ(u†)λ−1

)n+1
)
+ ηue−t′

(
1−

(
λ(u†)λ−1

)n)

u† − λ(u†)λ
r + o(r).
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Recalling that 0 < u† < 1 and λ > 1, taking the limit as n → ∞ gives

∆C ′
∞ = −ηs(u

†et
′
)λ + ηue−t′

u† − λ(u†)λ
r + o(r),

as required.
The limit cycle enters each square at location (1, u†) and exits at ((u†)λ, 1), so it is natural

to define the exit coordinate along the stable eigenvector axis as s† = (u†)λ. Recalling that
u† = s† + a, (4.6) may be simplified as

(4.7) ∆C ′
∞ = −ηs(s

†eλt
′
) + ηue−t′

u† − λs†
r + o(r) = − η · β

u† − λs†
r + o(r).

The vector β = (s†eλt
′
, e−t′) may be thought of as a solution to the same differential equation

as a trajectory within the first square, ξ = (s, u), but with time reversed and initial conditions
set to the far end of the square. That is,

dξ

dt
=

(
−λ 0
0 1

)
, ξ(0) =

(
1
u†

)
,

dβ

dt
=

(
λ 0
0 −1

)
, β(0) =

(
s†

1

)
.

4.3. The iPRC. We now derive the iPRC. Initially, we restrict our attention to perturba-
tions occurring within the first quarter cycle, i.e., within the first square. The phase response
curve for perturbations occurring after k additional border crossings is obtained via a discrete
rotation operation.

We define the phase of a point on the limit cycle as in (2.3), i.e., as the smallest amount of
time required to reach that point from the point where the limit cycle enters the first square.
Therefore the asymptotic shift in crossing times translates into an asymptotic shift in phase
as

∆ϕ = − 4

T
∆C ′

∞ = − ∆C ′
∞

log(1/u†)
,

recalling that T = 4T †
1 = 4 log(1/u†). Since e−t = (u†)ϕ we may write β in the form

(4.8) β(ϕ) = (βs(ϕ),βu(ϕ)) =
(
(u†)λ(1−ϕ), (u†)ϕ

)
=

(
(s†)(1−ϕ), (u†)ϕ

)
,

simplifying the subsequent analysis. Thus the asymptotic change in phase for a perturbation
at phase ϕ ∈ [0, 1) is

∆ϕ =
η · β(ϕ)

log(1/u†)(u† − λs†)
r + o(r).

The iPRC, obtained by taking the limit of ∆ϕ/r as r → 0, is therefore

Z(η,ϕ, a) =
η · β(ϕ)

log(1/u†)(u† − λs†)
,

which is (2.5).
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For a perturbation at phase ϕ ≥ 1, let k be the number of boundary crossings preceding
the perturbation, i.e., the positive integer satisfying ϕ ∈ [k, k + 1). Define a k-fold quarter
rotation operation on the phase variable and the direction of the perturbation by

ϕ→ ϕ′ = ϕ− k,(4.9)

η → η′ = Rkη,(4.10)

where R = ( 0 −1
1 0 ). Then the infinitesimal phase response due to a perturbation in direction

η at phase θ > 0 is given by Z(η′,ϕ′, a).
The dependence of the phase response curve on the phase is entirely contained in the term

η · β. Consider the components of the response to perturbation in the horizontal and vertical
directions. When ϕ ∈ [0, 1), the component βs along the direction of the stable eigenvector
corresponds to βx, the component in the horizontal direction. Similarly the components along
the unstable direction βu and the vertical component βy are identical. Moving clockwise
around one full orbit, we observe that

when ϕ ∈ [0, 1), βx = βs and βy = βu;
when ϕ ∈ [1, 2), βx = βu and βy = −βs;
when ϕ ∈ [2, 3), βx = −βs and βy = −βu;
and when ϕ ∈ [3, 4), βx = −βu and βy = βs.

For each component the resulting phase response curve consists of two continuous segments
separated by a jump proportional to (u† + s†), with antisymmetry β(ϕ + 2) = −β(ϕ). The
horizontal response component, βx, peaks at βx(1) = 1 and is strictly positive for ϕ ∈ [0, 2).
Similarly, βy peaks at βy(0) = 1 and is strictly positive for ϕ ∈ [0, 1) ∪ [3, 4). Hence the
extrema of both components occur at phase values corresponding to the boundaries between
adjacent squares.

Remark 9.This concludes the proof of Theorem 1, part 2.
Figure 8 shows examples of the full iPRCs as a function of θ ∈ [0, 4) for λ = 2 and

a ∈ {10−3, 0.1, 0.2, 0.24}.

5. Asymptotic phase resetting behavior as a → 0. We wish to study the asymptotic
behavior of the phase resetting curve at the heteroclinic limit, that is, as the parameter a → 0.
This limit corresponds, at least by analogy, with the limit µ → 0 in the smooth vector field
system of equations (1.2).

Lemma 10. Under the conditions of Lemma 6, the limit-cycle entry value scales as u† =
a+ o(a) as a → 0.

Proof. Recall that u† is the smaller root of ρ(u), so u† = a + (u†)λ. Since λ > 1, clearly
u† = a+ o(u†) as u† → 0, and u† > a whenever u† > 0. For sufficiently small a > 0 we have
u† as an implicitly defined function of a. It is straightforward to see that du†/da = 1 when
u† = 0. We wish to show that u† = a + o(a) as well, i.e., that lima→0(u† − a)/a = 0. Since
u† = a+ o(a), for any ε > 0 we can find a δ > 0 such that 1− a/u† < min[ε/2, 1/2] whenever
0 < u† < δ. If a < δ, then (u† − a)/a = 1/(1 − (1 − a/u†)) − 1 = 1/(1 − x) − 1 = x/(1 − x),
where x = 1 − a/u†. Since x < min[ε/2, 1/2], we are guaranteed that x/(1 − x) < ε, as
required.
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Figure 8. The iPRCs for the iris system with various values of a. As a becomes small and the limit cycle
approaches the heteroclinic orbit, the phase response curve becomes dominated by peaks at the edges between
squares where flow changes from compressing trajectories outward to expanding them inward. As a grows
and the flow along the limit cycle becomes more uniform, the iPRC becomes less sharply peaked. Line (dark
blue): analytically obtained iPRC for a perturbation in the positive x direction. Points (dark blue): numerical
iPRC, calculated using an instantaneous perturbation of 10−4 in the horizontal direction. From top to bottom,
a = 10−3, 0.1, 0.2, 0.24. The light gray curve represents the corresponding iPRC for perturbations in the vertical
(positive y) direction. The discontinuities between the positive and negative portions of each curve are steps of
height (u† + s†) (see section 4.3 for further details).

As a decreases, the peaks of the iPRC grow, while their width shrinks. The integral under
each strictly positive region is

(5.1) V =

∫ 2

0
βx(ϕ) dϕ =

1 + λ− λu† − (u†)λ

λ log(1/u†)
,
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which goes to zero as u† → 0 or equivalently as a → 0. Lemma 11 characterizes the behavior
of the “normalized” iPRC α(ϕ) = β(ϕ)/V as a → 0.

Lemma 11. For the iris system the vector α(ϕ) = β(ϕ)/V has the following properties as
a → 0:

1. For ϕ = 1 or 3, αx → ±∞, respectively. For ϕ .∈ {1, 3}, αx → 0.
2. For ϕ = 0 or 2, αy → ±∞, respectively. For ϕ .∈ {0, 2}, αy → 0.

3.
∫ 4
0 ||α(ϕ)|| dϕ = 4 (in the L1 norm).

Proof. As a → 0 both V → 0 and u† → 0. At ϕ = 1, βx ≡ 1 for all a > 0, so as
a → 0 the ratio βx(1)/V → +∞. On the other hand, for fixed ϕ ∈ [0, 2)\{1}, βx(ϕ)/V → 0
as u† → 0. The behavior of αx or αy within the other intervals follows from the symmetry
relations discussed in the preceding paragraph. Thus 1 and 2 are established. For 3, note
that by construction each interval of length two centered on a peak of one component makes
a unit contribution to the integral. That is,

1 =

∫

[0,2)
αx(ϕ) dϕ = −

∫

[2,4)
αx(ϕ) dϕ = −

∫

[1,3)
αy(ϕ) dϕ =

∫

[3,4)∪[0,1)
αy(ϕ) dϕ.

The integral of the L1 norm ||α(φ)|| is the sum of these terms.
Remark 12. Lemma 11 and the symmetry of α together imply that each component of α

converges weakly to a sum of delta function distributions on the circle:

αx(ϕ) → δ(ϕ − 1)− δ(ϕ − 3),(5.2)

αy(ϕ) → δ(ϕ) − δ(ϕ − 2)(5.3)

as a → 0.
Rewriting the full phase response curve in terms of α gives

(5.4) Z(η,ϕ, a) =
η · α(ϕ)V

log(1/u†)(u† − λs†)
= (η · α(ϕ))M(u†),

where M(u†) = 1+λ−λu†−(u†)λ

λ(log(1/u†))2(u†−λ(u†)λ)
. The function M represents the magnitude of the phase

response curve and diverges as (u† log2(u†))−1 as u† → 0.
The asymptotic phase response to an arbitrary instantaneous perturbation in direction η

is a sum of the responses to the perturbation component along the stable eigenvector direction,
ηs, and along the unstable eigenvector direction, ηu, within whichever square the perturbation
occurs. The asymptotic behavior of the phase response in the heteroclinic limit for each
component is distinct. We rewrite the phase response curve to emphasize these contributions
thus (restricted, for convenience, to the lower left square, or ϕ ∈ [0, 1)):

(5.5) Z(η,ϕ, a) =
ηs

(
(s†)(1−ϕ)

)
+ ηu

(
(u†)ϕ

)

log(1/u†)(u† − λs†)
.

First consider the response to perturbation along the unstable direction. Recall that, for
any p > 0, up log u → 0 as u → 0+. It follows after a brief calculation that for any ϕ ∈ [0, 1)

lim
u→0+

∣∣∣∣
uϕ

log(1/u)(u − λuλ)

∣∣∣∣ = +∞.
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This result means that, regardless of the phase of the perturbation, the sensitivity of the
asymptotic phase to small displacements parallel to the unstable eigenvector diverges as the
system approaches the heteroclinic bifurcation. The result is intuitively appealing because
when the system is close to the heteroclinic bifurcation the long period leads to a larger
“compounding” effect, enhancing the cumulative result of a small perturbation within a given
square. However, as is often the case when dealing with nested limits, intuition can be
misleading. In contrast to the preceding situation, consider the response to perturbation
along the stable direction. The behavior of the limit now depends on the parameter λ:

lim
u→0+

∣∣∣∣∣
uλ(1−ϕ)

log(1/u)(u − λuλ)

∣∣∣∣∣ =
{

0, ϕ ∈ [0, 1 − 1/λ],
+∞, ϕ ∈ (1− 1/λ, 1).

Thus, in the heteroclinic limit, small perturbations parallel to the stable eigenvector become
inconsequential if they occur at an early enough phase. At a particular phase,

(5.6) ϕ∗ = 1− 1

λ
,

the response becomes highly sensitive to arbitrarily small perturbation.
Remark 13. This concludes the proof of Theorem 1, part 3.
For comparison we can obtain from (3.4) the fractional phases at which the trajectory is

closest to the saddle point (in the first square) or moving at the slowest speed:

ϕclosest =
1− log λ/(2 log u†)

λ+ 1
, ϕslowest =

1− 3 log λ/(2 log u†)

λ+ 1
.

As u† → 0 both phases converge to ϕ0 = 1/(λ+1), which is distinct from the phase at which the
phase response curve’s asymptotic sensitivity to perturbations in the stable direction changes.
Curiously, the asymptotic value ϕ0 of the phases of the slowest and closest point along the
trajectory coincides with ϕ∗, the critical phase for sensitivity, precisely when λ is equal to the
golden ratio, (1 +

√
5)/2 ≈ 1.618 . . ., because under those conditions 1− 1/λ = 1/(λ + 1).

6. Isochrons. Provided a > 0 in the iris system, we may define isochrons as the level sets
of the asymptotic phase function θ(x) for any point x in the basin of attraction of the limit
cycle. As described in [12, 32, 35] and elsewhere, the points on a given isochron will converge
over time to a single point on the limit cycle with a particular phase. Thus, in a sense, they
represent points with the same asymptotic “time.” As discussed above, given a limit cycle
{γ(t)}Ta

t=0, the asymptotic phase of a point x0 is defined as the unique value in θ ∈ [0, θmax)
such that the limit

(6.1) lim
t→∞

|x(t)− γ(t+ θ(x0))| = 0,

where x(0) = x0 is the initial condition for the trajectory. The usual approach for finding
isochrons is based on an adjoint equation method; cf. [12, Appendix A] and [26, Chapter 11].
From the chain rule, the phase field must satisfy

(6.2)
d

dt
θ(x(t)) =

[(
(∇θ

)
(x(t))

]
· dx
dt

=
θmax
T (a)

,
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where T (a) is the period of the limit cycle for a given value of a > 0. Let (0 ≤ s ≤ 1, 0 ≤ u ≤ 1)
be local coordinates relative to any saddle of the iris system, i.e., such that the flow satisfies
ṡ = −λs, u̇ = u. Writing θv for ∂θ/∂v, equation (6.2) reads

(6.3) −λsθs + uθu = θmax/T (a).

By virtue of the fourfold rotational symmetry of the iris system, the following boundary
conditions are required in addition to the PDE (6.2): for 0 < s < 1− a,

(6.4) θ(s, 1) = θ(1, s+ a) + 1.

The boundary condition renders the PDE nonlinear, and a simple closed form solution is not
available. Solving the PDE numerically, however, is equivalent to finding the isochrons via
direct simulation of trajectories for a suitable grid of initial conditions. We used a 400×400
square mesh of initial conditions within each square, tracking solutions until they either left
the system of large squares (initial conditions on the interior of the unstable limit cycle) or
converged with a suitable tolerance to a small neighborhood of the limit cycle, at which point
the asymptotic phase could be assigned. Figure 9 shows an example of the isochrons generated
with this technique.

7. Smooth system. In order to compare the family of iPRCs obtained for the iris system
with that of a family of continuous vector fields experiencing a similar heteroclinic bifurcation
with fourfold symmetry, we numerically evaluated the phase response for small instantaneous
perturbations in the horizontal and vertical directions for limit cycles given by system (1.1) for
positive values of the twist parameter µ. Figure 10 shows good qualitative agreement with the
concentration of phase response sensitivity at points along the trajectory near integer values
of the phase ϕ; cf. Figure 8.

8. Discussion. The iris system introduced here is one of only a handful of nonlinear dy-
namical systems for which an explicit form for the limit cycle or the phase response curve
is known. For this system we show analytically that the sensitivity of the response to small
instantaneous perturbations depends (as one would expect) on the distance to the hetero-
clinic bifurcation, on the phase at which the perturbation occurs, and on the direction of
the perturbation in the phase plane. In addition, we find the intuitively appealing result
that, regardless of phase, as the static perturbation away from the heteroclinic vector field
diminishes, the phase response as measured by the iPRC becomes hypersensitive to any small
perturbation parallel to the unstable eigenvector direction, in that the iPRC diverges as the
bifurcation parameter of the iris system a → 0. Unexpectedly, however, we also find that for
perturbations along the stable eigenvector direction, the response to some will diverge while
the response to others will have no effect in the limit as a → 0. The system appears ultrasensi-
tive in this case to the phase at which the perturbation occurs, with perturbations sufficiently
far in advance of the approach towards the saddle point effectively absorbed by the flow, in
contrast to perturbations beyond a critical phase, ϕ∗ = 1−1/λ, which diverge as a → 0. From
a biological point of view, this dual sensitivity to the timing and direction of the transient
perturbation is significant if flows structured by fixed points are to be exploited in nature
as control points for rhythmic behaviors. In neural systems, for instance, it is commonplace
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Figure 9. Isochrons for the iris system obtained via numerical iteration of the map from initial conditions
to a sequence of boundary crossing. The iris system on the torus has two distinct stable limit cycles for a > 0,
illustrated here in two color schemes (green-blue and fuschia-violet). The tiling of the plane by periodic extension
of the basic torus system is shown. Solid lines indicate the stable limit cycles; dashed lines indicate the unstable
limit cycles. All limit cycles rotate clockwise. The flow inside the small squares is not defined, and points inside
the unstable limit cycles are not part of the basin of attraction of the stable limit cycles. The stable manifolds of
each saddle comprise the separatrices between the basins of attraction of distinct stable limit cycles. The system
shown has a = .2 and λ = 2. Colors indicate the phase. Note the compression of the level curves near the
boundaries between adjacent squares, which correspond to peaks in the phase response curve. Note also that the
isochrons are not strictly parallel to the stable eigenvalue direction (cf. the discussion in section 8.2). Please see
the corresponding movie 82897 03.mpg [local/web 9.36MB]; this animation illustrates the flow together with the
isochron structure, by evolving points of equal phase forward together in time. After five seconds the animation
changes to showing isochron structures for different values of the unstable/stable manifold offset parameter a,
from a = 0 to a = 0.247 and back again.

82897_03.mpg
http://link.aip.org/mm/SJADAY/110828976/82897_03.mpg
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Figure 10. The iPRCs for the smooth system with various values of µ. As µ becomes small and the limit
cycle approaches the heteroclinic orbit, the phase response curve becomes dominated by peaks much like the iris
system shown in Figure 8. As µ grows, the phase response curve becomes sinusoidal as the system approaches
an Andronov–Hopf bifurcation. Points connected by dashed line (dark blue): numerical iPRC, calculated using
an instantaneous perturbation of 10−4 in the horizontal direction. Dots (dark blue): iPRC for perturbations
in the horizontal direction. Light gray: iPRC for perturbations in the vertical direction. From top to bottom,
µ = 10−3, 0.1, 0.3, 0.45.

to consider perturbations restricted to a single dimension in a multidimensional flow, namely
perturbations along the dimension of membrane potential [12]. When a neuron’s membrane
potential lies in the linear regime, its dynamics are typically dissipative due to membrane con-
ductances, tending to align the voltage direction with the stable direction for a subthreshold
fixed point, at least for some portion of the flow. In general, if slowly adaptive modulatory
processes within an organism’s control circuitry can impose quasi-static perturbations of an
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existing vector field to move trajectories closer to or farther away from a homo- or heteroclinic
bifurcation point, the modulatory processes can filter which perturbations the system becomes
sensitive to at different phases of the ongoing oscillation. Investigating these possibilities in
specific systems such as the feeding CPG of the marine mollusk Aplysia will make it possible
to test this prediction empirically.

8.1. Sensitivity and control. Our results suggest that, for systems in which a control
parameter can change the approach of trajectories towards a hyperbolic saddle fixed point
with a one dimensional unstable manifold, the sensitivity to specific kinds of perturbations
could be actively managed by manipulating the critical phase ϕ∗. This is a novel kind of
control for rhythmic behaviors; additional mechanisms for control include manipulating the
period of a typical trajectory by controlling the time spent near a saddle point, and regulating
the variable dwell time in different states for a limit cycle trajectory passing near multiple
unstable fixed points.

Oscillations arising from codimension one bifurcations other than a saddle node-homoclinic
have phase response curves near the bifurcation point that are smooth and sinusoidal. In con-
trast, many phase response curves observed in real systems show sharp transitions between
small and large responses, even in systems generating highly regular behaviors such as swim-
ming in the lamprey. Lamprey motor units participating in the CPG underlying smooth
swimming show broad regions of near zero phase response combined with steep changes in
sensitivity in other regions, going from zero to peak phase response in an interval correspond-
ing to about 10% of the limit cycle duration (cf. Figure 6 of [72]). Preliminary data obtained
from the marine mollusk Aplysia californica during feeding behavior show extended, variable
dwell times in preferred regions of phase space separated by rapid transitions from region to
region [57], suggesting the possibility that this CPG’s dynamics may resemble those of a limit
cycle making close encounters with a series of unstable fixed points.

The iPRC is equal to the gradient of the asymptotic phase function evaluated at the limit
cycle. For the iris system, the level curves appear to pinch together at the boundaries where
they abruptly change direction, and this pinching means the density of the level curves is
highest at the square boundaries. One might naively expect that the phase response should
be most sensitive to perturbations immediately adjacent to the saddle points; instead the
peak sensitivity occurs at boundaries between regions dominated by one or another saddle.
This effect is qualitatively present both in the PWL iris system and in the smooth system
considered here. Within the PWL regions of the iris system the flow is homogeneous; it is
the boundaries that make the system nonlinear, and it should not be surprising that that is
where the greatest sensitivity occurs. In addition, the boundaries between PWL regions are
the points at which the stable and unstable manifolds of adjacent saddles make their closest
approach. In the sine system, it appears that near the saddles the flow is governed by the
local linear approximation, while in the region between saddles the flow is “more nonlinear,”
coinciding with greater sensitivity to perturbation.

8.2. Comparison to the phase response curve near a homoclinic bifurcation. While the
structure and asymptotic behavior of the phase response curve described in Theorem 1 were
derived specifically for the iris system, we expect the qualitative picture to hold for generic
one parameter families of limit cycles verging on a heteroclinic or a homoclinic bifurcation of
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Table 1
Phase response curves for the standard homoclinic system (as in [12]), the quadratic integrate-and-fire

(QIF) neuron, and the iris system, compared. For clarity, we write u, 0 < u < 1, for u† = ε/∆, and the phase
0 ≤ ϕ ≤ 1 for both the iris and the standard homoclinic systems. Here s = uλ; in the λ → ∞ limit s → 0, and
the systems coincide (up to a scaling factor νx/∆ related to the choice of perturbation direction). The iPRC
for perturbations parallel to the unstable (resp., stable) eigenvector direction is given by Zu (resp., Zs). The
perturbation in the “stable” direction is not defined for the QIF model. See text for interpretation.

System Zu(ϕ) Zs(ϕ)

Saddle homoclinic [12]
(νx/∆)uϕ

u log(1/u)
0

Iris heteroclinic
uϕ

(u− λs) log(1/u)
s(1−ϕ)

(u− λs) log(1/u)

QIF “saddle” homoclinic [35]
((µ+ 2)/µ)1−ϕ + ((µ+ 2)/µ)ϕ−1 − 2

2 ln ((µ+ 2)/µ)
-

C1 vector fields as well. Treating the general case lies beyond the scope of this paper (but
see section 8.5). However, it will be useful to compare our results with the analysis of phase
resetting near a homoclinic bifurcation given in [12, section 3.1.3]. In section 8.3 we investigate
the iPRC for the Morris–Lecar system near its homoclinic bifurcation. In the present section,
we consider two analytic approximations of the iPRC for a “generic” near homoclinic orbit
appearing in the literature [12, 35].

In [12] the authors consider a vector field on Rn with a hyperbolic saddle fixed point
at the origin with a single unstable eigenvalue λu and stable eigenvalues λs,j with λu <
λs = minj |λs,j|. For positive values of a bifurcation parameter µ, the system is assumed to
have a limit cycle that spends the overwhelming majority of its time in a box B = [0,∆]n.
Trajectories exit the box when the coordinate along the unstable eigendirection x = ∆ and
are instantaneously reinjected with x = ε. When n = 2 the geometry is similar to that of
the iris system (compare Figure 3 of [12] with our Figure 3(b)). The main difference is that
in the homoclinic system, the value of the injection point along the unstable limit coordinate
is assumed to be independent of the egress point, whereas in the iris system its dependence
is specified by the map h = fe ◦ fl (Figure 6). Equivalently, it is as if the derivative of the
function h were zero at the fixed point u† rather than having finite slope. This situation would
occur for the homoclinic system if the compression of the flow taking trajectories from the
egress boundary to the ingress boundary were sufficiently great. However, in analyzing the
homoclinic system, one must also assume that the time spent along the portion of the limit
cycle outside the box B is vanishingly small. Reconciling these two limiting processes for the
general homoclinic case remains an interesting problem.

For purposes of comparison, note that ε/∆ in [12] corresponds to u† for the iris system,
and the phase θ ∈ [0, 2π) in [12] corresponds to 2πϕ in the iris system. Table 1 compares the
iPRCs for the two systems. In [12] the perturbation is assumed to be in a particular direction,
corresponding to a voltage deflection in a neural model; the factor νx arises in the change of
coordinates from the direction of voltage perturbations relative to the unstable eigenvector
direction. The flow is assumed to be infinitely compressive during the time between egress
and reinjection, and consequently it is assumed that only components of the perturbation
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along the unstable eigendirection contribute to the iPRC. This assumption holds for the iris
system in the limit as the stable-to-unstable eigenvalue ratio −λs/λu = λ → ∞, but not for
finite values of λ. The λ < ∞ case includes additional corrections; see Table 1.

Finally, assuming that the phase response is independent of displacement along the stable
eigenvector direction is equivalent to assuming that the isochrons run parallel to the stable
eigenvector throughout the box B. For the iris system the slopes of the isochrons do approach
zero as λ → ∞, becoming more and more parallel to the stable eigenvector, but for λ = ∞
the asymptotic phase and the isochrons are no longer well defined. For finite values of λ
the isochrons are well defined but are not parallel to the stable eigenvector. Compare the
isochrons in the lower left quadrant of the iris system shown in Figure 9.

Another example of a system with a saddle homoclinic bifurcation is the quadratic integrate-
and-fire (QIF) model neuron [35]. For example, consider the QIF system defined by the voltage
equation

(8.1) v̇ = v2 − 1

with reset to v0 = 1 + µ whenever v → ∞, which happens in finite time. For µ > 0, this
model produces a sequence of action potentials, or voltage resets, at times tk = t0 + kT (µ)
with period

(8.2) T (µ) =
1

2
ln

(
µ+ 2

µ

)
;

the period diverges logarithmically as µ → 0+. The iPRC may be derived by taking the
limit of small instantaneous perturbations of the voltage at times between resets. Defining
the phase of the perturbation at time t∗ as ϕ = (t∗ − t0)/T (µ) mod 1, one can show that the
iPRC is

(8.3) Z(ϕ, µ) =

(
µ+2
µ

)1−ϕ
+

(
µ+2
µ

)ϕ−1
− 2

2 ln
(
µ+2
µ

) .

This quantity corresponds to the iPRC in the “unstable” direction for the planar homoclinic
and heteroclinic iris systems. Because the QIF is a scalar model, there is no analogue of
perturbations in the “stable” direction. If we evaluate the expression (8.3) at ϕ ≡ 1, corre-
sponding to the “top” of the spike, we find for all µ > 0 that Z(0, µ) = 0. For all other phases
0 ≤ ϕ < 1, the iPRC diverges to +∞ as

(8.4) Z(ϕ, µ) ∼ (2/µ)1−ϕ

2 ln (2/µ)
(as µ → 0+),

consistent with the calculation for the iris system and the standard planar homoclinic.

8.3. Qualitative comparison with a biological model: iPRCs for the Morris–Lecar sys-
tem. Preparations are underway in our laboratory to test the sensitivity of rhythmic feeding
behavior in the marine mollusk Aplysia californica, in both intact animals and in a semi-intact
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suspended buccal mass preparation, to perturbations in the form of variable mechanical load-
ing of the buccal mass during feeding. By using a servomotor to apply controlled forces to
seaweed strands while the sea slug is ingesting them, it is possible to examine changes in
the timing of the feeding rhythm in response to variable operating conditions. While the
suspended buccal mass preparation includes the mouthparts and the ganglion comprising the
feeding CPG, much of the proprioceptive feedback from the periphery to the central circuit
is removed. Preliminary data show that the CPG of the reduced preparation produces qual-
itatively similar rhythms, but with longer dwell times at a sequence of quasi equilibria [57],
suggesting the hypothesis that the underlying CPG lies closer to a homoclinic or heteroclinic
structure in the absence of peripheral feedback. How well can we expect the differential sen-
sitivity of the simple model systems considered here to compare with phase response curves
in real biological systems operating near heteroclinic, or, more generically, homoclinic orbits?
As a first step towards answering this question, we studied the iPRCs for a family of limit
cycles verging on a homoclinic orbit in the classical Morris–Lecar equations [42, 54]. These
equations describe the evolution of the voltage v and potassium gate w, and include a fast
calcium current with gating variable m as well:

dv

dt
=

1

C
(Iapp − gCam∞(v)(v − vCa)− gKw(v − vK)− gL(v − vL)) ,(8.5)

dw

dt
=

w∞(v)− w

τ(v)
.(8.6)

The terms m∞, w∞, and τ satisfy (for convenience we define ξ = (v − vc)/vd)

m∞ =
1

2

(
1 + tanh

(
v − va
vb

))
,(8.7)

w∞(v) =
1 + tanh ξ

2
,(8.8)

τ(v) =
1

φ cosh(ξ/2)
.(8.9)

We used standard parameters from [26], near the bifurcation of a stable limit cycle to a saddle
homoclinic orbit,

vK = −84, vL = −60, vCa = 120,(8.10)

gK = 8, gL = 2, C = 20,(8.11)

va = −1.2, vb = 18,(8.12)

vc = 12, vd = 17.4, φ = 0.23, gCa = 4,(8.13)

and studied the iPRC numerically for various values of the applied current, Iapp. Figure 11
shows the numerically computed limit cycle trajectory for the Morris–Lecar system for applied
currents Iapp ∈ {40, 36.2, 35.05, 35.009}. For a modest injected current (Iapp = 40) the model
produces spikes with a period of T = 24.0 time units, and the iPRC is smooth and small, with
values ranging from −0.6 to 0.4 (Figure 12, bottom). As Iapp decreases, the interval between
spikes increases, with T = 39.0 for Iapp = 36.2, T = 75.25 for Iapp = 35.05, and T = 110.25 for
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Figure 11. Time plots of limit cycle trajectories of the Morris–Lecar system with various values of Iapp.
Left: voltage v and recovery variable w as functions of time (v: black trace, left scale; w: gray trace, right
scale). Right: limit cycle trajectories in the (v, w) phase plane. Small circles indicate unstable fixed points
(unstable nodes inside the limit cycles, and hyperbolic saddle fixed points outside). When Iapp ! I∗ ≈ 35.0067
the time plots exhibit prolonged dwell times near the hyperbolic saddle (small circle near the bottom left of the
limit cycle in the phase plane plot). As Iapp increases, the limit cycle moves away from the saddle point, and
the speed becomes more uniform. From top to bottom Iapp = 35.009, 35.05, 36.2, 40. Compare Figures 2 and 5.

Iapp = 35.009. The limit cycle undergoes a saddle-homoclinic bifurcation at approximately
Iapp = I∗ ≈ 35.0067, at which point T → ∞.

We obtained numerical estimates of the iPRC by applying small perturbations at different
phases, with customized codes using open source tools (the scipy/numpy numerical libraries;
see [36]). As the applied current is reduced towards this point, the iPRC grows in magnitude,
reaching a range from −100 to +75 for Iapp = 35.009. This dramatic increase in sensitivity is
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Figure 12. The iPRCs for the Morris–Lecar system (equations (8.5)–(8.13)) with various values of the
applied current Iapp. Left: iPRC for voltage perturbations. The phase is normalized to the scale 0 ≤ φ ≤ 1,
with φ = 0 set to the maximum of the voltage trajectory. Right: trajectories in the (v,w) plane, with unstable
fixed points denoted by open circles, as in Figure 11. Trajectories move counterclockwise about the interior
fixed point. From bottom to top: Iapp = 40.0, 36.2, 35.05, and 35.009. The homoclinic bifurcation occurs at
approximately Iapp = 35.0067 (equations integrated numerically with a Runge–Kutta scheme in XPP). As the
applied current lessens, the limit cycle trajectory passes closer to the saddle point, and the iPRC grows larger.
However, the most rapid growth in the iPRC appears to occur for phases away from the saddle (phases near
φ = 0), even as the system spends a growing fraction of time in small neighborhoods of the saddle. The saddle
point is absent for Iapp = 40.

qualitatively consistent with our results, as well as with previous analyses of phase response
curves near a homoclinic bifurcation (see [12] and [35, online section 10.4.3 and Figure 8.3]).
However, we hasten to point out that the extrema of the iPRCs, plotted in Figure 12, appear
to occur at phases ϕ lying outside a small neighborhood of the saddle point. For this system
we define the zero phase as the phase corresponding to the peak of the voltage spike; hence
the portion of the trajectory near the saddle point corresponds roughly to the broad flat
region, e.g., 0.2 " ϕ " 0.9 in the top panel of Figure 12. If we define a small neighborhood U
enclosing the saddle point, it may be that the phase response diverges for phases ϕ such that
(v(t(ϕ)), w(t(ϕ))) ∈ U , but our numerical results do not give strong evidence for or against
this claim.
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It is interesting to compare this situation with the iPRC for the QIF model (section
8.2). Referring to expression (8.3), we see that for any fixed value of µ > 0 the greatest
sensitivity to perturbation in the QIF model occurs immediately following the reset. Indeed,
it is easy to show, for 0 ≤ ϕ < 1 and µ > 0, that ∂Z(ϕ, µ)/∂ϕ < 0. In section 10 of [35]
(the online portion of the text), Figure 10.39 shows that the iPRC predicted by the QIF
model diverges from that obtained numerically for a planar conductance-based model, with
the greatest discrepancy between the two occurring immediately following the peak of the
spike. Clearly, there is an opportunity for additional analysis of the asymptotic behavior
of the sensitivity to perturbations in saddle-node homoclinic systems such as occur in the
Morris–Lecar equations.

8.4. Stability of synchronous solutions for two iris systems with diffusive coupling. The
iPRC is of interest for several reasons. One major application is analysis of synchronization
behavior of coupled oscillators [25]. Dissipative or diffusive coupling—for instance, coupling of
two oscillatory model neurons through a resistive linkage such as a gap junction—can lead to
counterintuitive effects. Sherman and Rinzel [58] showed that while strong electrical coupling
of bursting cells leads, as expected, to synchronous spiking within bursts, weak electrical
coupling leads to antiphase synchrony of spikes within bursts. Moreover, this “microscopic”
effect on spike timing leads to “macroscopic” effects such as extended burst duration, because
appearance of the homoclinic trajectory in the slow variable, providing the mechanism for
burst termination, was delayed by the shift in the trajectories caused by electrotonic coupling
[21, 58]. The effect of weak coupling on convergence or divergence of nearby trajectories in
pairs of cells typically varies around the limit cycle representing the oscillating uncoupled cell
[37]; the coupling function (see (8.23) below) obtained by averaging around the limit cycle
accounts for the net effect. A similar situation can arise when coupling two systems each of
which follows a limit cycle that passes near a homoclinic orbit [37, Figure 2.8].

Consequently, it is interesting to investigate the stability of the synchronized solution for
two iris systems coupled with diffusive coupling in one of the coordinates, for instance the
horizontal coordinate, x. Consider an uncoupled iris system with a stable limit cycle described
by a pair of ODEs

ẋ = F (x, y; a),(8.14)

ẏ = G(x, y; a),(8.15)

where a > 0 is the bifurcation parameter (the gap between the unstable and stable manifolds,
W u andW s for successive saddles). As derived above, the limit cycle corresponds to an ingress
point u relative to any given square, and an egress point s = uλ, where λ > 1 is the saddle
value. The ingress point for the limit cycle satisfies

(8.16) uλ − u+ a = 0.

For instance, when λ = 2 and a = 0.01 we have u ≈ 0.0102 . . . and s ≈ 1.0205 × 10−4. The
period of the limit cycle is T = 4 ln(1/u), and we define the phase as φ(t) = 4t/T , with zero
phase chosen to be the point of ingress to the lower left square. Hence we have φ ∈ [0, 1) for
the first (lower left) square, φ ∈ [1, 2) for the second square, φ ∈ [2, 3) for the third square,



384 K. M. SHAW, Y.-M. PARK, H. J. CHIEL, AND P. J. THOMAS

and φ ∈ [3, 4) for the last square. The iPRC for perturbations in the horizontal direction is
given by

(8.17) Z(φ) =






Ks1−φ, φ ∈ [0, 1),
Kuφ−1, φ ∈ [1, 2),

−Ks3−φ, φ ∈ [2, 3),
−Kuφ−3, φ ∈ [3, 4),

where K > 0 is a constant that is common to all terms, namely K = [ln(1/u)(u− λs)]−1 > 0.
A pair of iris systems with diffusive coupling is now described by four equations:

ẋ1 = F (x1, y1; a) + k(x2 − x1),(8.18)

ẋ2 = F (x2, y2; a) + k(x1 − x2),(8.19)

ẏ1 = G(x1, y1; a),(8.20)

ẏ2 = G(x2, y2; a).(8.21)

If x = u(t), y = v(t) is a stable limit cycle solution for an uncoupled iris system (for a > 0), we
wish to know whether or not for k > 0 the synchronous solution x1 = x2 = u(t), y1 = y2 = v(t)
is stable.

Following standard weak coupling arguments [26], we can represent the solutions to the
coupled systems in terms of their phases as defined for the uncoupled system, x(φ) and y(φ).
The two coupled systems with a (small) phase difference χ = φ2 − φ1 evolve according to

(8.22) χ̇ = H(−χ)−H(χ) + o(χ),

where the H-function is defined as

(8.23) H(χ) =
k

4

∫ 4

φ=0
Z(φ)(x(φ+ χ)− x(φ)) dφ.

The roots of the expression H(−χ) − H(χ) = 0 are fixed points for the evolution of χ, and
χ = 0 corresponds to the synchronous solution. The stability of the synchronous solution
depends on the sign of d/dχ(H(−χ)−H(χ)) = −2H ′(0) at χ = 0. If this quantity is negative,
we have stable synchrony. If it is positive, synchrony is unstable.

For the PWL iris system, we have explicit expressions for the trajectory x(φ), using s = uλ:

(8.24) x(φ) =






u−s
2 − (1− sφ), φ ∈ [0, 1),

s−u
2 − (1− u2−φ), φ ∈ [1, 2),

s−u
2 + (1− sφ−2), φ ∈ [2, 3),

u−s
2 + (1− u4−φ), φ ∈ [3, 4).

Figure 13 shows the trajectory x(φ), iPRC (x-component) Zx(φ), and derivative of the tra-
jectory dx/dφ, for a = 0.02.
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Figure 13. The iPRC and trajectory for the iris system (x-component) with twist parameter a = 0.02.
Top: the x-component of the iPRC, Zx(φ) (neglecting a positive constant K). Middle: the x-component of the
trajectory, x(φ) (blue), and the same trajectory lagged by ∆φ = 0.1 (red). Bottom: the derivative dx/dφ(φ).

It is straightforward to obtain the necessary derivative at χ = 0, namely,

(8.25) H ′(0) =

[
k

4

∫ 4

φ=0
Z(φ)

(
x′(φ+ χ)

)]∣∣∣∣
χ=0

=
k

4

∫ 4

0
Z(φ)

dx

dφ
(φ) dφ.

The derivatives of the trajectory x with respect to the phase φ are

(8.26)
dx

dφ
=






sφ ln s, φ ∈ [0, 1),
−u2−φ lnu, φ ∈ [1, 2),
−sφ−2 ln s, φ ∈ [2, 3),
u4−φ lnu, φ ∈ [3, 4).

Remarkably, the φ-dependence drops out of the integrands, giving the following (recalling that
K = [ln(1/u)(u − λs)]−1 > 0 and s = uλ):

φ ∈ I Z(φ) dx
dφ Z(φ) dx

dφ

∫
I

(
Z(φ) dx

dφ (φ)
)
dφ

I = [0, 1) Ks1−φ sφ ln s Ks ln s Ks ln s

I = [1, 2) Kuφ−1 −u2−φ ln u −Ku ln u −Ku lnu

I = [2, 3) −Ks3−φ −sφ−2 ln s Ks ln s Ks ln s

I = [3, 4) −Kuφ−3 u4−φ ln u −Ku ln u −Ku lnu

Therefore,

(8.27) H ′(0) =
k

4
K (2s ln s− 2u ln u) =

k

2

λs lnu− u lnu

ln(1/u)(u − λs)
=

k

2
.
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Thus for k > 0 this result indicates stabilization of the synchronous solution, for this system,
under weak diffusive coupling along the x-direction. This result was confirmed by numerical
simulations.

Remark 14.While the calculation above holds at a finite distance from the heteroclinic bi-
furcation (i.e., setting the twist parameter a > 0), the results do not appear to carry over to
the heteroclinic bifurcation point (a = 0). Indeed, for the piecewise linear iris system, in this
case the unperturbed trajectories coincide with the stable/unstable manifolds of each saddle.
Because of the system geometry, diffusive coupling in the x-coordinate alone will cause nearby
trajectories to approach each other if they are separated in phase, but they will never leave the
orbit connecting two adjacent saddles and hence remain “synchronized.” On the other hand,
if one trajectory is perturbed off the uncoupled orbit by a small amount towards the interior
of the heteroclinic cycle, that trajectory will pass the next saddle point in finite time. If it
only exerts a perturbation parallel to the horizontal direction, say, on the other trajectory,
it will not help the other get around the corner. Therefore one trajectory will orbit near the
heteroclinic path, while the other trajectory oscillates back and forth on the line connecting two
horizontally displaced saddles. This situation will hold for any transverse initial perturbation
(near the zero phase point, for example) no matter how small, and hence the diffusive coupling
does not stabilize the “synchronous” solution in this case.

This situation is dependent on the particular geometry of the iris system, and would not
necessarily obtain in systems with different geometry. The coupling could, for instance, per-
turb trajectories along a different direction. For the Morris–Lecar system near the homoclinic
bifurcation, one can apply a change of coordinates at the saddle point with respect to which
the stable and unstable eigenvectors become orthogonal. In the new coordinates, “diffusive”
coupling mediated by the voltage difference acts along a direction at some angle with respect
to the stable and unstable eigenvectors, ξs and ξu. Whether diffusive coupling stabilizes or
destabilizes the synchronous solution then depends on the detailed geometry of the trajecto-
ries near the homoclinic. If we consider diffusive-like coupling in an arbitrary direction for
a pair of identical iris systems, when they are located at the heteroclinic point we have an
evolution given by 24 sets of linear maps in subsets of R4. Intuitively, many complicated and
interesting trajectories, both periodic and aperiodic, could occur.

8.5. Generalization to higher dimensional systems. Consider a smooth dynamical sys-
tem dynamical system in Rn, ẋ = F (x, µ). Suppose there are constants µ− < 0 < µ+ and an
interval I = {µ|µ− < µ < µ+} for which the following assumptions hold:

• For all µ ∈ I, there is a hyperbolic saddle fixed point at the origin, F (0, µ) = 0, with
one dimensional unstable manifold W u and (n− 1) dimensional stable manifold W s.

• For µ > 0 and µ ∈ I, there is a smooth family of orbitally stable limit cycles colliding
transversely with a saddle homoclinic loop at the origin, at µ = 0.

• For all µ ≥ 0, µ ∈ I, the single unstable eigenvalue λu(µ) > 0 is smaller than −λs(µ),
where λs is the stable eigenvalue with negative real part closest to zero.

• For all µ ∈ I, there is an open neighborhood U ⊂ Rn of the origin within which
the flow is “sufficiently close” (in some appropriate sense) to the linear flow given by
ẋ = DF (0, µ) · x.

Suppose we define, for this system, “zero phase” to be the phase at which the limit cycle
enters the (fixed, small) neighborhood U enclosing the origin. Under the hypotheses above,
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it would not be unreasonable to anticipate the following:
• The iPRC, Zu(φ;µ), for perturbations parallel to the unstable eigenvector direction

diverges as µ → 0+ for all phases φ with corresponding trajectory location x(φ) ∈ U .
• There will be a subspace S1 of Rn tangent to x = 0, and a phase φ1, such that the iPRC,

Z1(φ;µ), for perturbations restricted to S1 will converge to zero as µ → 0+ for phases
φ ∈ (0,φ1]. For phases φ > φ1 we would anticipate the existence of perturbations
within S1 that lead to divergent phase responses.

• There may be additional subspaces Sk+1 ⊂ Sk and phases φk+1 > φk with the prop-
erty that the iPRC, Zk(φ, µ), for perturbations restricted to the subspace Sk will
converge to zero for phases φ ∈ (0,φk] as µ → 0+. For phases φ > φk we expect that
perturbations within Sk\Sk+1 will diverge as µ → 0+.

If this intuition should be borne out, it would indicate the existence of a nested hierarchy
of subspaces at the saddle point, corresponding to greater and greater ability to “absorb”
perturbation applied in particular directions. The reasoning behind this conjecture is that
near a saddle point the (n− 1) dimensional stable manifold will be converging towards x = 0
at different exponential rates along different eigendirections of the linearization DF (0, µ).
Perturbations in directions corresponding to more rapidly decaying components, i.e., those
with larger negative eigenvalues, will be damped more quickly, and therefore will be less
destabilizing, than perturbations in other more unstable directions.

8.6. Phase resetting in the absence of an asymptotic phase. The ability to produce
a wide variety of stable phase relationships (intermediate phase locked states; cf. [71]) is an
important aspect of CPGs and may be important for their adaptive control. As an exam-
ple, Szücs et al. [67] observed synchronization of pairs of CPGs in separate animals coupled
artificially through a variety of configurations using extended dynamic clamp [47]. Simu-
lated diffusive (electrical) coupling led to synchronization only for sufficiently large simulated
conductances, while simulated contralateral inhibition from lateral pyloric (LP) to pyloric dila-
tor (PD) pacemaker neurons was more effective at inducing 1:1 synchronized phase locking,
as was mutual inhibition between the PD neurons. Mutually inhibitory reciprocal synaptic
connections between bursting cells can be one mechanism for generating stable heteroclinic
sequences [45]. Prolonged intervals separating switches between distinct phase-locked states
was also studied in terms of a heteroclinic loop in a coupled oscillator system in [38].

Although many applications of phase response curve calculations focus on coupling, the
iPRC is a helpful conceptual tool in other settings as well. For instance, Nadim et al. [43]
showed that inhibitory feedback within a CPG served to reduce the variability in duration of
a specific burst phase by flattening the iPRC, providing a mechanism for control and phase
stabilization of a CPG.

Deterministic limit cycles are not the only way to represent (approximately) periodic
biological rhythms. Alternatives include heteroclinic or homoclinic attractors perturbed by
small amplitude noise [8, 64] as well as fixed points of spiral sink type subject to small
noisy perturbations [10, 35]. A system comprising a deterministic flow with a stable spiral
fixed point, when perturbed by small to modest amounts of noise, will show noisy oscillatory
trajectories that can be difficult to distinguish from a small amplitude limit cycle [10]. For
example, the small oscillations in membrane potential of a nerve cell brought near to firing
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by a steady depolarizing current of modest size may be due either to “noisy spiral sink”
dynamics or to “noisy small limit cycle” dynamics [61]. The classical definition of asymptotic
phase breaks down for noisy systems, for spiral sinks, and for heteroclinic or homoclinic orbits.
Nevertheless “phase resetting” is actively studied in such systems both experimentally [23, 24,
61, 62] and theoretically [33, 52, 51]. For the Bonhoeffer–van der Pol equations, for example,
Rabinovitch and Rogachevskii showed how to define an analogue of the classical isochron, for
points converging to a spiral sink along a distinguished trajectory (a “T-attractor”) [52] (see
also [33]). Generally speaking, noise effects can expose the structure of bifurcations in neural
systems through stochastic resonance [28] or spike time bifurcations [68, 69], and it would be
useful to have a broader theory of “phase response” going beyond the case of deterministic
limit cycles.
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