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Simultaneous constraints on pre- and post-synaptic cells couple cortical
feature maps in a 2D geometric model of orientation preference
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The most prominent feature of mammalian striate cortex (V1) is the spatial organization of response
preferences for the position and orientation of elementary visual stimuli. Models for the formation of
cortical maps of orientation and ‘retinotopic’ position typically rely on a combination of Hebbian or
correlation-based synaptic plasticity, and constraints on the distribution of synaptic weights. We con-
sider a simplified model of orientation and retinotopic specificity based on the geometry of the feed-
forward synaptic weight distribution from an ‘unoriented’ layer of cells to a first weakly oriented
layer. We model the feed-forward weight distribution as a system of planar Gaussian receptive fields
each elongated in the direction matching the preferred orientation of the postsynaptic cell. Under the
constraint of presynaptic weight normalization (each cell in the oriented layer receives the same net
synaptic weight) and a uniform retinotopic map (displacement of centres of mass of receptive fields
in the unoriented layer is strictly proportional to the displacement of the corresponding cells in the
oriented layer), we find that imposing a pattern of orientation preference forces the system to vio-
late postsynaptic weight normalization (each cell in the unoriented layer no longer sends forth the
same net synaptic weight). We study this deviation from uniformity of the postsynaptic weight, and
find that the deviation has a distinct form in the vicinity of the ‘pinwheel’ singularities of the orien-
tation map. We show that uniform synaptic coverage of the unoriented layer can be restored by in-
troducing a distortion in the retinotopic locations of the receptive fields. We calculate, to first order
in the relative elongation of the receptive fields, the retinotopic distortion vector field. Both the pat-
tern of postsynaptic weight non-uniformity and the corrective retinotopic distortion vector field fail to
possess the reflection symmetry commonly assumed to relate orientation singularities with topological
index ±π . Hence, we show that ‘right-handed’ and ‘left-handed’ orientation singularities are fun-
damentally distinct anatomical structures when full 2D synaptic architecture is taken into account.
Finally, we predict specific patterns of retinotopic distortion that should obtain in the vicinity of
±π -fold orientation singularities, if uniform pre- and post-synaptic weight constraints are strongly
enforced.
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1. Introduction

1.1 Anatomy of orientation and position preference in V1

The most prominent feature of mammalian striate cortex (V1) is the spatial organization of response
preferences for the position and orientation of elementary visual stimuli (Blasdel & Campbell, 2001;
Blasdel & Salama, 1986; Bonhoeffer & Grinvald, 1991; Hubel & Wiesel, 1974). The gross structure of
V1 can be approximated as several 2D sheets or layers of cells, distinguished by cell types, sources of
input and functional role. Layer IV (of six) receives input from the lateral geniculate nucleus (LGN)
of the thalamus, a relay between the retinal ganglion fibres and the cortex. Each thalamic cell is charac-
terized by its receptive field, the region of visual space in which a point stimulus can elicit a response
(Kandel et al., 1991). These receptive fields form an orderly, ‘topographic’ arrangement, with adjacent
cells covering overlapping regions of the visual field. The receptive fields of thalamic cells are highly
symmetric, being rotationally invariant about their own centres. Moreover, the response of thalamic
cells to oriented visual stimuli such as bars or gratings does not show any preference for one direction
over another; they are ‘unoriented’. In some animals (such as the macaque monkey), the first cells in the
visual system to show orientation-tuned responses appear in the ‘input layer’ (layer IV) of the cortex
(Angelucci et al., 2002). In others (such as the ferret), the input layer cells are unoriented and the first
oriented cells in the visual pathway occur in layer II/III, which receives synaptic projections from layer
IV (Mooser et al., 2004). In the simple geometrical model developed here, we will consider the synaptic
projection from an unoriented layer to an oriented layer; the model is intended to apply in both the cases
above.

By analogy with thalamic receptive fields, the classical receptive field of a cell in V1 is typically
taken to be the region of visual space in which a small bar turned to the optimal orientation elicits
a response significantly above the background firing rate. The mechanism of orientation tuning is still
debated: one class of models, originating with Hubel & Wiesel (1962), posits that the geometric arrange-
ment of feed-forward synaptic weight from the unoriented to the oriented layer provides the orientation
preference. In another class of models, orientation tuning arises from anisotropic lateral connections
within the oriented layer (Ben-Yishai et al., 1995; Shouval et al., 2000). Recent experimental evidence
has supported the Hubel–Wiesel model: Mooser et al. (2001, 2004) demonstrate that the presence of
anisotropy in the distribution of axon terminals from unoriented cells in layer IV to orientation-tuned
cells in layer II/III of ferret V1 is the principal source of feed-forward orientation bias in this pathway.
At the same time, there is evidence that lateral connections within layer II/III of the ferret play a large
role in shaping the response to visual stimuli (Chisum et al., 2003).

Receptive fields show a broad range of sizes even at the same point in visual space (Hubel & Wiesel,
1962); at parafoveal eccentricities, e.g. the classical receptive field of a layer IV cell in macaque V1
can range from 0.25◦ of visual angle (parvocellular pathway) to 1.5◦ of visual angle (magnocellular
pathway) (Angelucci et al., 2002).

The spatial arrangement of orientation preferences features columns spanning the cortical layers
in which cells are tuned to similar orientations over a range of roughly 100 µm laterally (Blasdel,
1992a,b). These columns are arranged around a disordered lattice of orientation preference singularities,
about which the orientation preference changes smoothly by ±π (Bonhoeffer & Grinvald, 1991). The
overall pattern has an intrinsic spatial scale given by an approximate repeat length, the distance typically
separating nearest columns of like orientation preference. This repeat distance is approximately 700 µm
in macaque (Lund et al., 2003; Obermayer & Blasdel, 1993).

As in the thalamus, the map of visual space in V1 is arranged topographically, with a regular pro-
cession of the centres of receptive fields through visual field or ‘retinotopic’ position as position in the



COUPLED CORTICAL MAPS 3 of 20

cortex varies (Hubel & Wiesel, 1974). It has been reported that the ‘retinotopic map’ in the oriented cell
layer in cat deviates from a uniformly regular progression at sites that correlate with the locations of the
‘pinwheel’ singularities in the orientation map, however, this finding remains controversial (Bosking
et al., 2002; Buzás et al., 2003; Das & Gilbert, 1997; Hetherington & Swindale, 1999; Yu et al., 2005).
Blasdel & Fitzpatrick (1984) observed that in Layer IV of the macaque, cells with more uniformly
round receptive fields (similar to the receptive fields of unoriented thalamic cells) also enjoyed a more
precise retinotopic arrangement. These results suggest the possibility that the development of orientation
preferences might interfere in some manner with maintaining a completely regular retinotopic map.

1.2 Models of orientation and position preference

Models for the formation of cortical maps of orientation and retinotopic position typically suppose a
Hebbian or correlation-based mechanism of synaptic plasticity, formulated as a constrained optimiza-
tion problem. The objective function can reflect the goal of maximizing correlations (Miller, 1994),
minimizing an energy function (Durbin & Mitchison, 1990; Goodhill & Willshaw, 1990), minimizing
the wiring length required to connect similar and dissimilar columns (Koulakov & Chklovskii, 2001)
or ‘coverage’, the equal representation of all combinations of position, orientation and other features
within the cortex (Swindale, 1991).

In a large class of cortical map models, tuning preferences for orientation, retinotopic position and
other features of visual stimuli are treated as abstract scalar or vector fields mapped as functions of
cortical coordinates x ∈ R2 (Durbin & Mitchison, 1990; Goodhill & Willshaw, 1990; Kohonen, 1982;
Obermayer et al., 1990; Swindale, 1992; Yu et al., 2005). In another class of model, response preferences
arise from the feed-forward architecture of afferent fibres to the cortex (or within the cortex) from an
input layer to a ‘receiving layer’ (Miller et al., 1989). Even though each cortical locus may be assigned
to a preferred orientation and retinotopic location (see below), the spread of feed-forward fibres across
a local region of the cortex allows for the representation of more than one feature (e.g. orientation)
at a given retinotopic location. Indeed, the spread of afferent fibres in cortex is broad enough that
the imprecision in the retinotopic map at any point, when transformed via the retinocortical magnifi-
cation, is roughly equal to the distance that must be traversed to go around a full cycle of orientations
(Blasdel & Campbell, 2001; Obermayer & Blasdel, 1993). By mapping these two properties on different
scales, it is possible for every combination of ‘location’ and ‘angle’ to be represented in cortex.

Classical Hebbian mechanisms, in which correlated firing leads to increased connectivity, generate
unstable positive feedback loops that require additional constraining mechanisms (Miller & MacKay,
1994). For example, a model may enforce a hard limit on the total amount of synaptic weight a given
postsynaptic cell may receive (Miller et al., 1989). Alternatively, the growth of synaptic weight can be
limited by competition for neurotrophic resources (Elliott & Shadbolt, 1998; Harris et al., 1997; Miller,
1998).

Swindale (1991) introduced an optimality principle based on the coverage of the input space by the
oriented cortical layer, supposing that it be constrained to represent every combination of orientation,
retinotopic position and ocular dominance as uniformly as possible. In this formulation, orientation
functions as an abstract label attached to points in the cortex, rather than as a property emerging from an
underlying pattern of synaptic weights. By way of analogy, we can consider the ‘input’ to the represent-
ing layer to be the afferent fibres themselves, in which case ‘uniform coverage’ might be reinterpreted to
mean: each presynaptic cell being allotted an equal amount of influence on the activity of the receiving
layer. Requiring that each point in the unoriented layer projects the same total feed-forward synaptic
weight (or fan-out) to the oriented layer is a natural condition to impose (Goodhill, 1993; Miller et al.,
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1989), but has not been systematically investigated before in the context of the orientation and retino-
topic maps.

This condition of uniform fan-out weight is similar to the requirement that the net weight received
by each cell in the cortical layer (the net fan-in weight) be uniform. Miller & MacKay (1994) showed
that such uniformity constraints on the net input weights, when applied to a dynamical realization of
Hebbian learning, lead to different final weight distributions depending on whether the constraint is
enforced multiplicatively or subtractively. Miller further showed that because the constraint surfaces in
synaptic weight space corresponding to presynaptic and postsynaptic normalization are not orthogonal
to each other, the two constraints can interfere with one another. However, this interference can be
controlled by choosing an appropriate set of orthogonal basis directions for subspaces normal to each
constraint surface (K. D. Miller, personal communication; see also Miller, 1997).

The model presented here treats orientation and retinotopy as emerging from simple geometrical
properties of the feed-forward synaptic weight distribution. The simplicity of our system allows us to
examine the architecture of synaptic plasticity constraints governing connections from a 2D ‘geniculate’
layer to a 2D ‘cortex’. Beginning with a system of unoriented receptive fields in the ‘cortical’ layer, we
explore the effects of introducing a perturbation in the form of slightly elongating each receptive field in
a direction specified by the nascent orientation preference map. This approach is consistent with experi-
mental results showing that the orientation map emerges gradually, with weak orientation tuning at an
early stage of development followed by later sharpening (Chapman & Stryker, 1993). Within our simple
geometric model of orientation preference, this perturbation cannot be imposed without violating one of
three constraints: uniform pre-synaptic weight, uniform post-synaptic weight and uniform retinotopic
mapping. The 2D geometry of feed-forward connections imposes consistency requirements that limit the
uniformity of the fan-out or divergence of fibres when the other two constraints are held fixed. In what
follows, we show how relaxing the regularity constraint on the retinotopic map allows us to accomodate
orientation preference while preserving pre- and post-synaptic weight constraints.

2. Retinotopy and orientation in a feed-forward model

First, we illustrate the interaction of orientation and fan-out given uniform retinotopy. In the simplest
feed-forward model, the synaptic weight from a point r ∈ R2 in the first layer to a point x ∈ R2 in the
second layer is given by a non-negative scalar w(x, r). The retinotopic map R(x) corresponding to the
centres of the receptive fields of cortical points is given by the ‘centre of mass’ of the synaptic weights

R(x) =
∫

r rw(x, r)dr∫
r w(x, r)dr

. (1)

We denote the net ‘fan-in’ or ‘convergence’ to cortical point x by�(x) = ∫
r∈R2 w(x, r)dr (see Fig. 1 for

illustration). Conversely, the ‘fan-out’ or ‘divergence’ from geniculate point r is�(r) = ∫
x∈R2 w(x, r)dx

and the centre of the ‘projective field’ (Lehky & Sejnowski, 1988) is

X (r) =
∫

x∈R2 xw(x, r)dx

�(r)
. (2)

As illustrated in Fig. 2, the overlap of the receptive fields of neighbouring cortical points x and x ′
depends not only on the vector separating those points on the cortical surface, (x − x ′), but also on the
values of the orientation map φ(x), φ(x ′). Let us suppose each cortical cell has an identical receptive
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FIG. 1. Two views of the synaptic weight function w(x, r) (in colour online). Left: The fan-in or receptive field is the distribution
of synaptic weights afferent to a cortical location x0, w(x0, r). Each of nine output-layer cells (asterisks) is shown receiving 50
contacts from the geniculate layer, with positions drawn from rotationally symmetric Gaussian distributions. Right: The fan-
out or projective field (Lehky & Sejnowski, 1988) is the distribution of synaptic weights efferent from a geniculate location r0,
w(x, r0). Each of nine input-layer cells (asterisks) is shown making 50 contacts with the cortical layer, with positions drawn from
rotationally symmetric Gaussian distributions.

FIG. 2. Geometric model of feed-forward orientation and retinotopic tuning. The figure illustrates the distribution of feed-forward
synaptic weight afferent from cells in the non-oriented layer (‘LGN’) to two cells in the oriented layer (cortex), labelled A and B.
The overlap of the synaptic weight distributions w(xA, r), w(xB , r) is negligible; the distributions could overlap significantly if
the orientations or retinotopic locations were varied. Arbitrary units.

field, up to rotation, described by

w(x, r |φ(x)) = G(R−φ(x)[x − r ]). (3)

Here, w(x, r |φ) refers to the weight distribution w(x, r) corresponding to a given orientation map φ(x).
Rφ[u] denotes rotation by φ acting on a planar vector u, and the stereotyped receptive field is described
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by a non-negative function G with total integral one and mean centred at the origin

0 � G(u), (4)

1 =
∫

u∈R2
G(u)du, (5)

0 =
∫

u∈R2
G(u)u du. (6)

The overlap between cortical cells at locations x and x ′, given an overall weight distribution w(x, r), is

P(x, x ′) =
∫

r∈R2
w(x, r)w(x ′, r)dr. (7)

The overlap P(x, x ′) is not invariant with respect to an arbitrary relabelling of orientation φ(x) →
φ(x) + ψ , unless the receptive-field profile G(u) is rotationally invariant. However, the amount of
overlap is invariant under a certain rotation operation, namely the transformation

φ(x) → φ(x) + ψ,

φ(x ′) → φ(x ′) + ψ,

x →Rψ x,

r →Rψr,

for arbitrary rotations ψ . Rψ denotes the planar rotation matrix
( cos(ψ) − sin(ψ)

sin(ψ) cos(ψ)

)
. This transformation

preserves P(x, x ′) because

P(Rψ x,Rψ x ′) =
∫

r∈R2
w(Rψ x,Rψr |φ(x) + ψ)w(Rψ x ′,Rψr |φ(x) + ψ)dr

=
∫

r∈R2
G(R−(φ(x)+ψ)[Rψ(x − r)])G(R−(φ(x ′)+ψ)[Rψ(x ′ − r)])dr

=
∫

r∈R2
G(R−(φ(x)+ψ)+ψ [x − r ])G(R−(φ(x ′)+ψ)+ψ [x ′ − r ])dr

=
∫

r∈R2
G(R−φ(x)[x − r ])G(R−φ(x ′)[x

′ − r ])dr

=
∫

r∈R2
w(x, r |φ(x))w(x ′, r |φ(x))dr

= P(x, x ′).

This combined action of rotation on position and angle coordinates is an example of the so-called ‘shift-
twist’ symmetry that plays an important role in cortical pattern formation (Bressloff et al., 2001a,b,
2002; Thomas, 2000; Thomas & Cowan, 2004) as well as computer vision algorithms (Zweck &
Williams, 2004). Figure 3 illustrates the shift-twist symmetry that preserves the spatial relationships
between a pair of nearby receptive fields.

Figure 4 shows a schematic region of an orientation map with four orientation singularities. Super-
imposed are ellipses representing oriented receptive fields of cortical points located on a regular grid,
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FIG. 3. Shift-twist symmetry preserves the spatial relationship between adjacent receptive fields (in colour online). The spatial
overlap between neighbouring receptive fields is preserved under simultaneous translation (not shown) and by a combined rotation
of spatial coordinates and orientation angle. Overlap is not preserved by rotation of spatial coordinates or orientation alone. A:
Two receptive fields (retinal coordinates). B: Rotation of the spatial coordinates by π/4, keeping the orientation angles fixed. C:
Rotation of the preferred orientations by π/4, keeping the retinotopic locations fixed. D: Rotation of both position and orientation
by a common angle preserves the alignment, spacing and overlap of the receptive fields.

with each receptive field having a common size and eccentricity. These receptive field profiles are plot-
ted in visual field coordinates under the assumption of an undistorted retinotopic map, R(x) = x/µ,
where µ is a constant retinocortical magnification factor converting from degrees of visual angle to cor-
tical millimetres. (For convenience, we will set µ = 1.) The dependence of overlap on the geometry
of both orientation and cortical separation is particularly evident near the pinwheels. If we describe the
orientations at location θ relative to the centre of a pinwheel as φ(θ) = ±θ/2+φ0, the pattern of overlap
will depend both on ± and on φ0. In the four-singularity pattern in Fig. 4, the preferred orientation in
each quadrant varies around the pinwheel centre as follows:

φ(θ) = −θ/2 φ(θ) = (+θ + π)/2
φ(θ) = +θ/2 φ(θ) = (−θ + π)/2

We can evaluate �(r) numerically, given the orientation and retinotopic maps. The shape of the
receptive field (see Fig. 2) may be described approximately by its covariance matrix

Q(x) =
(

Q11(x) Q12(x)
Q12(x) Q22(x)

)
(8)

= 1

�(x)

∫
r∈R2

w(x, r)vv� dr, (9)
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FIG. 4. Left: A pattern of four orientation pinwheels represented by the RGB colour wheel (red = horizontal; green = 120◦;
blue = −120◦; see also Fig. 5.). Ellipses (long axis / short axis = 2.0) representing corresponding receptive fields are selected
at regular cortical intervals, and plotted in visual-field coordinates. Given undistorted retinotopy, i.e. R(x) = x , the degree of
overlap of the receptive fields from neighbouring cortical points varies systematically depending on the orientation map. Note
the importance of treating orientation geometrically rather than as an abstract quantity: the variations in overlap would change
completely if the orientation map was shifted by a constant angle. Right: Projective fields for three points in the lower (LGN)
layer. Even though the receptive fields in the cortex are all regular Gaussian ellipses with regularly spaced centres and smoothly
varying orientations, the projective fields may be richly structured. The top right and lower right projective fields represent the
fan-out weight that would be seen upon injection of an anterograde tracer in cells whose retinotopic position corresponded to a
point near the top right and lower right orientation singularities, respectively. Note the lack of reflection symmetry relating the
projective fields near the upper (+π ) and lower (−π ) singularities. (15) and (16) can account for this asymmetry. The centre left
projective field reflects the weight projecting from a point corresponding to the centre left of the orientation map, not directly
beneath an orientation singularity; nevertheless it is also non-Gaussian in profile.

where v(x, r) = (r − R(x)) ∈ R2 is the displacement of r from the retinotopic centre of mass R(x),
and vv� is the symmetric 2 × 2 matrix given by the outer product of v with itself.

It will be convenient to write Q in terms of its total variance, σ 2(x) = Tr(Q(x)), and a traceless
symmetric component

Q(x) = 1

2
{σ 2(x)I2 + q(x)Φ2(φ(x))}, (10)

where the scalar fields q(x) and φ(x) satisfy

Q11(x) − Q22(x) = q(x) cos(2φ(x)),

2Q12(x) = q(x) sin(2φ(x)).
(11)

Here, I2 is the 2 × 2 identity matrix and Φ2(φ) is the traceless symmetric 2 × 2 matrix that reflects the
plane across a line at an angle φ

Φ2(φ) =
(

cos(2φ) sin(2φ)
sin(2φ) − cos(2φ)

)
. (12)

The variance σ 2(x) bounds q(x); the latter is strictly positive except when the receptive field afferent
to point x is circularly symmetric about R(x), in which case q(x) = 0. For 0 < q(x) < σ 2(x), the



COUPLED CORTICAL MAPS 9 of 20

receptive field is elongated along a direction corresponding to the angle φ(x). We take φ(x) to represent
a rudimentary preference for orientation, with q(x) representing the strength of the preference. For
q(x) = σ 2(x), the distribution of afferent weight collapses to a straight line in the input layer.

We henceforth describe receptive fields with the maximum entropy distribution consistent with a
given set of zeroth, first and second moments. We assume each cortical locus x has a definite value of
fan-in (�(x)), retinotopy (R(x)), width (σ(x)), orientation preference and tuning strength (φ(x), q(x)),
and that these maps are smoothly differentiable save at a finite set of points (e.g. at the singularities in the
orientation map). Thus, we take the receptive fields to have the form of ellipsoidal bivariate Gaussians

w(x, r) = �(x)

2π
√

det Q(x)
exp

[
−1

2
(r − R(x))�Q−1(x)(r − R(x))

]
, (13)

where det Q(x) = (σ 4(x) − q2(x))/4, and the map of preferred orientation φ(x) enters via the covari-
ance matrix

Q−1(x) = 2σ 2(x)I2 − 2q(x)Φ2(φ(x))

σ 4(x) − q2(x)
. (14)

In what follows we will give examples showing that uniform fan-in and retinotopy (�(x) = 1;
R(x) = x) and a non-trivial orientation map φ(x) with q(x) > 0 naturally give rise to loss of uniformity
of the fan-out �(r). We analyse the pattern of fan-out non-uniformity in the vicinity of the positive and
negative pinwheel singularities that typically occur in the observed orientation preference maps, and
show that the detailed structure of the afferent weights in these two cases fails to exhibit the mirror
symmetry that one intuitively expects. Finally, we show that uniform fan-out and uniform fan-in may
coexist if one gives up uniform retinotopy, by adding a perturbation R(x) → x + s(x). We develop a
series expansion for the retinotopic distortion s(x) in terms of a small orientation tuning strength q � 1,
and numerically determine the first-order distortion for some representative orientation maps.

3. Methods

We performed numerical and analytical calculations for two stereotypical orientation map patterns. We
used Matlab (The Mathworks) to create multi-dimensional arrays representing the synaptic weights be-
tween N × N grids of input and output layers, assign weights given by specific orientation maps and
numerically evaluate the fan-out integrals for these maps. Analytic evaluation of the fan-out integrals
was possible near the centre of two types of singularities; the first-order correction to the retinotopic map
needed to smooth the fan-out non-uniformity introduced by a given orientation map also was obtained
analytically. We set the net fan-in to have unit value for all cortical loci x and fixed the width σ and
the tuning strength q to be constant. Using the (presumed small) tuning strength parameter as the scale
for our expansion, we set q = ε and introduced a series expansion for the retinotopic distortion vector
s(x) = εs1(x)+ε2s2(x)+O(ε3). Analytic expressions were obtained by hand and checked using Math-
ematica (Wolfram Research). The retinotopic distortion fields given by these calculations were checked
numerically by testing the fan-out uniformity of receptive fields created with perturbed retinotopy, again
using Matlab. A typical run of the numerical routines took 230 s on a 2.5-GHz G5 running Matlab 7.4
on OS X 10.3.9 Panther (Apple).
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4. Results

4.1 Uniform fan-in, non-uniform fan-out

Having computed w(x, r) numerically for the 100 × 100 sample orientation pattern in Fig. 4, we can
compute the projective fields w(x, r)|(r fixed) and the net fan-out �(r) = ∫

x∈R2 w(x, r)dx . Figure 4

FIG. 5. Left: The net fan-out from each point r in the lower (LGN) layer, calculated as the integral over the cortex x of the
synaptic weight projecting from r , for different orientation maps. Right: Level curves of the geniculate fan-out superimposed
on the map of orientation preference at corresponding cortical loci. The four-singularity pattern in the first and second rows are
related by a shift of π/6 in the orientation at each point. The third row shows a ‘roll pattern’ representing a single Fourier mode
in the orientation map. Parameters: receptive-field width σ = 0.2 mm; orientation repeat length λ = 0.8 mm; major to minor axis
ratio = 2.0 (strong orientation bias) giving q/σ 2 = 0.6, or q = 0.024 mm2. The entire cortical region shown is 1.6 × 1.6 mm2.
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shows three typical projective fields, and Fig. 5 shows the net distribution of fan-out corresponding to
the four-singularity pattern. Note that the fan-out and orientation patterns are unchanged by a π -fold
rotation. The maximal overrepresentation, i.e. the peak of �(r), occurs near but not precisely at the +π
singularities, while the maximal underrepresentation occurs in the saddle zones between sets of four
singularities.

4.2 Asymmetry of +π and −π pinwheel singularities

Let the orientation tuning strength q(x) = q0, the net fan-in�(x) = 1 and the receptive-field width σ be
constant in the vicinity of an orientation map singularity at x = 0. Let (‖x‖, θ) be the polar coordinate
representation of x ∈ R2 centred on the singularity, and let the orientation preference map φ± have the
form

φ±(‖x‖, θ) = ±θ

2
+ φ0,

where ‘±’ indicates a +π or −π singularity, respectively, and φ0 is an arbitrary offset given by
φ±(‖x‖, θ) at θ = 0. As φ± is here assumed to be independent of ‖x‖, we shall also refer to it as
φ±(θ).

Substituting φ± into expression (12), we obtain

Φ2(θ) = Φ2(φ0) cos θ ∓ Ψ2(φ0) sin θ,

where

Ψ2(φ) =
(

sin(2φ) cos(2φ)
cos(2φ) − sin(2φ)

)
.

Returning to the expression (13) for the synaptic weights, we obtain

w±(x, r) = 1

π
√

σ 4 − q2
exp

[
−(r − x)�

(
σ 2 I2 − qΦ2(φ±(θ))

σ 4 − q2

)
(r − x)

]
,

w+(x, r) = 1

π
√

σ 4 − q2
exp

[ −1

σ 4 − q2
(σ 2‖r − x‖2 − q(‖x‖2 cos(2φ0 − θ)

− 2‖x‖‖r‖ cos(2φ0 − η) + ‖r‖2 cos(2φ0 − 2η + θ)))

]
, (15)

w−(x, r) = 1

π
√

σ 4 − q2
exp

[ −1

σ 4 − q2
(σ 2‖r − x‖2 − q(‖x‖2 cos(2φ0 − 3θ)

− 2‖x‖‖r‖ cos(2φ0 − η − 2θ) + ‖r‖2 cos(2φ0 − 2η − θ)))

]
. (16)

Because the orientation preference map has a singularity at ‖x‖ = 0, the distribution of synaptic weights
afferent to a given postsynaptic location x does not converge to a unique distribution as ‖x‖ → 0.
Approaches along different angles θ approach limiting distributions corresponding to Gaussian ellipses
elongated in different directions, corresponding to φ±(θ). In other words, w(x, r) is not a continuous
function of x at the singularity. On the other hand, the distribution of synaptic weights efferent from



12 of 20 P. J. THOMAS AND J. D. COWAN

a given presynaptic location r does converge to a definite projective field distribution, i.e. w(x, r) is
continuous in r .

It is worth noting that the synaptic weight distributions underlying ‘right-handed’ and ‘left-handed’
singularities are not related by a reflection symmetry. In particular, we can compare the projective fields
of presynaptic cells located at r = 0, the retinotopic position corresponding to the centre of the orien-
tation map pinwheel in the postsynaptic layer, for both the right- and left-handed cases. The weight
distribution efferent from this location is given, respectively, by w±(x, 0)

w+(x, 0) = 1

π
√

σ 4 − q2
exp

[
−‖x‖2(σ 2 − q cos(2φ0 − θ))

σ 4 − q2

]
, (17)

w−(x, 0) = 1

π
√

σ 4 − q2
exp

[
−‖x‖2(σ 2 − q cos(2φ0 − 3θ))

σ 4 − q2

]
. (18)

The fan-out distribution�±(r) induced by each singularity can be determined by integrating expres-
sions (15,16) for w±(x, r) numerically in the x variable. Figure 6 shows the variation in fan-out near
isolated +π and −π singularities.

4.3 Distorting the retinotopic map can restore fan-out uniformity

The imbalance in fan-out representation can be remedied by shifting the receptive-field centres away
from regions of excessive receptive-field overlap, and towards areas of deficient receptive-field overlap.
In exchange, the retinotopic map loses its uniform character and develops small distortions on a length
scale similar to that of the orientation map. The size of the distortions required to smooth the fan-
out will depend on the eccentricity of the ellipsoidal profiles of the receptive fields. As the orientation
tuning strength q → 0, the receptive fields become isotropic and the fan-out is uniform with s ≡ 0. As a
small amount of elongation is introduced, the compensating retinotopic distortion will grow accordingly;

FIG. 6. Distribution of fan-out in the vicinity of (Left) a +π orientation singularity and (Right) a −π orientation singularity
(in colour online). Superimposed for reference (in blue) is a sampling of receptive fields on regularly spaced retinotopic centres.
Lighter regions reflect larger than average fan-out; darker regions reflect smaller than average fan-out.
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hence, we view the vector field s(x) as depending on the small parameter q. Experimental evidence
suggests that the strength of orientation tuning of individual cells does not vary as one moves closer to
the pinwheel singularities (Maldonado et al., 1997). We therefore take q to be constant with respect to
cortical location x . Subsequently, we will expand s(x) as a series in powers of q.

Taking the fan-out �(r) to depend on both the retinotopic distortion vector field s(x) = R(x) − x
and the orientation map φ(x), we write

�(r |s, φ) =
∫

x∈R2
w(x, r |s(x))dx

=
∫

x∈R2

�(x)

2π
√

det Q(x)
exp

[
−1

2
(r − (x + s))�Q−1(x)(r − (x + s))

]
dx

=
∫

x∈R2

�(x)

π
√

σ 4 − q2
exp

⎡
⎣− (r − (x + s))�(σ 2 I2 − qΦ2(φ))(r − (x + s))

σ 4 − q2

⎤
⎦ dx . (19)

In order to preserve uniform fan-out as q increases from zero, we require the gradient of the fan-out
∇r � (r) to remain zero, i.e.

∇r � (r) = −
∫

x∈R2
w(x, r |s)

(
− 2

σ 4 − q2
· (σ 2 I2 − qΦ2(φ))(r − (x + s(x)))

)
dx = 0. (20)

We take the receptive-field width σ to be constant and set the net fan-in �(x) ≡ 1. We set q = ε and
expand s and ∇r � (r) in powers of ε

s(x ; ε) = εs1(x) + ε2s2(x) + ε3s3(x) + O(ε4). (21)

Substituting s(x ; ε) into (20), we obtain a hierarchy of equations. The terms of zeroth order in ε are
satisfied automatically because at q = 0 the receptive fields are isotropic

0 =
∫

x∈R2
(r − x) exp

[
−|r − x |2

σ 2

]
dx .

The first-order terms in (20) give a convolution equation relating the first-order retinotopic distortion
s1(x) to the orientation preference map φ(x). Using coordinates u(r, x) = r − x to denote the displace-
ment from the centre of mass (in the unperturbed retinotopy), we have

0 = σ 2
∫

x∈R2
exp

[
−‖u‖2

σ 2

]
(σ 2 I2 − 2uu�)s1(x)dx

+
∫

x∈R2
exp

[
−‖u‖2

σ 2

]
(σ 2 I2 − uu�)Φ2(φ(x))u dx . (22)

This integral equation has the form

h(r ; φ) =
∫

u∈R2
F(u)s1(r − u)du, (23)
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where the left-hand side vector h(r ; φ) depends on the orientation map φ(x). The solution s1(x) may
be formally obtained from the Fourier transforms of the 2 × 2 matrix of convolution kernels F and the
vector h

h(r ; φ) = −
∫

u∈R2
exp

[
−‖u‖2

σ 2

]
(σ 2 I2 − uu�)Φ2(φ(r − u))u du, (24)

F(u) = σ 2 exp

[
−‖u‖2

σ 2

]
(σ 2 I2 − 2uu�). (25)

In order to solve (23) for s1(x), we assume the orientation map φ(x) is periodic on a square planar lattice
with period 2λ. For the sake of comparison of the roll pattern with the four-singularity pattern, we will
take λ to be the period of the rolls or the spacing between adjacent pinwheels, respectively. Denoting
the frequency domain vector by k, we take Fourier transforms F[·] of both sides of (23), obtaining

F̃(k) = σ 8

4
exp

[
−σ 2

4
‖k‖2

]
kk�,

h̃(k) = −iσ 8

16
exp

[
−σ 2

4
‖k‖2

]
kβ(k; φ),

β(k; φ) = ((k2
1 − k2

2)F[cos(2φ(x))] + (2k1k2)F[sin(2φ(x))]),

(kk�) s̃1(k) = −i

4
kβ(k; φ). (26)

As a matrix, (26) is underdetermined; we resolve the ambiguity by choosing the smallest amplitude
solution vector s̃ at each frequency k

s̃1(k) = −i

4
k
β(k; φ)

k�k
. (27)

Given an orientation preference map φ(t) sampled on a cartesian grid, we calculate the discrete Fourier
transform of its vector components cos(2φ(x)), sin(2φ(x)), apply Formulae (26) and (27), and find a
numerical approximation of s1(x) via the inverse discrete Fourier transform (Matlab, The Mathworks).
The first-order correction to the retinotopic vector field obtained for the four-singularity pattern in Fig. 4
is shown in Fig. 7. Applying the first-order term smoothes the fan-out substantially, as shown in Fig. 8.

In order to preserve the smoothest possible feed-forward distribution of fan-out �(r) at all points in
the input layer, the retinotopic map must be distorted in a specific pattern, particularly in the vicinity of
the orientation pinwheels. Figure 7 shows the overall pattern in the vicinity of two pinweels super-
imposed on the imposed orientation preference pattern. Note the pattern is not symmetric between
the right-handed or +π (top right and bottom left) and left-handed or −π (top left and bottom right)
orientation singularities. For the roll pattern, the first-order correction term reduces the deviation of the
fan-out more dramatically; the average magnitude of the gradient of the fan-out drops by 90%.

For larger receptive fields (σ � λ), the pattern of fan-out non-uniformity appears significantly
low-pass filtered in the spatial-frequency domain, and the difference between right- and left-handed
singularities diminishes.
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FIG. 7. Top: The retinotopic distortion vector field s(x) required to smooth the fan-out�(r) after imposition of a four-singularity
orientation map. The small arrows represent the vector field, which is smallest in magnitude where the orientation map has a
saddle or stationary point, and large near the orientation singularities. RGB colour denotes orientation preference, as indicated.
Insets are enlarged below. Bottom: Expanded view of retinotopic distortion vector field in the vicinity of a +π singularity (Left)
and a −π singularity (Right). Note the lack of reflection symmetry between the two vector field insets.
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FIG. 8. Smoothing of the fan-out or postsynaptic weight distribution by applying a first-order shift in retinotopic position. Top:
the distribution of fan-out with uniform (uncorrected) retinotopy, after an isotropic set of receptive fields is perturbed by imposing
an orientation preference map. Bottom: the distribution of fan-out after application of the first-order retinotopic shift s1(x). The
left column shows the distribution of net fan-out �(r) at different presynaptic (LGN) locations, plotted on a common grayscale
axis. Each figure represents a square 280 µm on a side (presynaptic), corresponding to a square region 1.4 mm on a side in the
postsynaptic region (presuming a 5:1 magnification factor from LGN to V1). The right column shows a histogram of the fan-out
distribution. Applying the retinotopic shift R(x) = x → R(x) = x + qs1(x) reduces the standard deviation of the postsynaptic
fan-out by roughly 50%. For the case shown, σ = 0.2 mm and q = 0.095, σ 2 = 0.0038 mm2, corresponding to a ratio of major
to minor receptive field axes of 1.1 (weak orientation bias). The orientation map imposed is the four-singularity pattern shown in
the top row of Fig. 5.

5. Discussion

By considering a simple geometrical model of feed-forward orientation tuning, we have shown how
three natural constraints on the distribution of synaptic weight interact with one another in the presence
of a non-trivial orientation map. Introducing elongated Gaussian receptive fields with uniform fan-in and
a uniform retinotopic map induces non-uniformity in the net fan-out projected from different cells in the
unoriented or geniculate layer. The fan-out can be smoothed by introducing a compensating distortion
of the retinotopic map that shifts receptive-field centres away from regions that are overrepresented in
the feed-forward pathway.

The model’s simplistic view of orientation tuning is both its greatest strength and its principal draw-
back. A more complicated model could take into account the structure of input from on- and off-centre
geniculate subfields, and the role played by lateral inhibition, anisotropic long-range connections on
shaping orientation tuning (Chisum & Fitzpatrick, 2004; Shouval et al., 2000) and anisotropic dis-
tribution of feedback connections from V1 to the LGN (Murphy et al., 1999). Further complicating
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matters, receptive-field size is not an absolute quantity, but depends significantly on contrast and mask-
ing effects (Kapadia et al., 1999). However, if we restrict receptive fields to a stereotyped structure (up to
rotation), we expect that our main conclusions will not change: a uniform orientation map would yield
uniform synaptic coverage; a non-uniform orientation map would introduce fan-out heterogeneities;
specific retinotopic distortions could restore a smooth fan-out distribution; the nature of the distortions
would be distinct near right- and left-handed orientation singularities. In addition to orientation and
visual field location, ocular dominance, or preferential sensitivity to stimuli communicated by one or
the other eye, is organized topographically across the cortex. Incorporating some of these additional
elements into the model should be straightforward. Imposing a pattern of ocular dominance while main-
taining constraints on the net fan-in to the cortex and the net fan-out from separate geniculate layers
representing each eye would induce a shift in retinotopy that might provide a natural substrate for pro-
cessing information about ocular disparity and depth. If similar pre- and post-synaptic weight limits
constrain the plasticity of lateral as well as feed-forward weights, we could apply our approach to sys-
tems going beyond the Hubel–Wiesel model.

The relative importance of the three constraints considered here is not known; we have assumed
that fan-in and fan-out weights provide the strongest constraint on synaptic plasticity. On the other
hand, if fan-out weight uniformity and uniform retinotopy were more strictly enforced, then imposing
orientation preferences via elongated feed-forward weight distributions would require some cortical
populations to receive more net input than others. Such fan-in non-uniformity would vary on a scale
similar to the orientation singularities, possibly providing an origin for the cytochrome oxidase ‘blob’
pattern observed in V1 (Livingstone & Hubel, 1984).

Also unknown is the precise relationship between the key geometric parameters in the model: λ, the
length scale governing the spacing of iso orientation patches and pinwheel singularities in V1; σ , the
width parameter underlying the spatial reach of afferent inputs and q, the deviation of the input weight
distribution from circularly symmetric receptive fields. Angelucci and colleagues (Angelucci et al.,
2002; Lund et al., 2003) review several candidate anatomical structures that could underly receptive-
field size and orientation tuning in primary visual cortex in Macaque. They report that axons in the
magnocellular pathway in the macaque can spread their terminals over a region up to 1.2 mm in diam-
eter. In order to estimate the value of σ in the geometric model corresponding to such a maximal spread,
we assume the that receptive field is described by a Guassian distribution and apply order statistics
(Hogg & Craig, 1965) to estimate the width parameter σ given the largest observed deviate. Drawing
a thousand samples from a circularly symmetric planar Gaussian distribution of width σ (roughly the
number of contacts each presynaptic cell makes in the postsynaptic layer), one expects the largest deviate
to be roughly 4σ from the centre of the distribution. Hence, a maximum diameter of 1.2 mm would be
consistent setting σ in the range 150–300 µm in the model. Receptive-field widths vary systematically
through layer IVC while the orientation map does not. Consequently, there is a range in the value of
λ/σ , from 0.25 to 4.0. At the high end of this range (probably typical of the magnocellular pathway
in macaque), the fan-out non-uniformity is insignificant and unlikely to play a role in constraining
synaptic plasticity, while at the low end (probably typical of the parvocellular pathway) the fan-out non-
uniformity is large enough that a constraint mechanism could couple the feature maps as described here.
Alternatively, the coupling we predict between orientation and retinotopy might be more pronounced in
regions tuned for higher spatial frequency stimuli.

By virtue of its simplicity, our approach allows us to reach surprising and testable conclusions. We
find that the deviation from uniform fan-out has a distinct form in the vicinity of pinwheel singularities
in the orientation preference map. We show that uniform synaptic coverage of the unoriented layer can
be restored by introducing a distortion in the retinotopic locations of the receptive fields. Our geometric
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model is simple enough that we can calculate, to first order in the relative elongation of the receptive
fields, the retinotopic distortion vector field required to smooth the fan-out distribution.

Surprisingly, we find that both the pattern of post-synaptic weight non-uniformity and the cor-
rective retinotopic distortion vector field fail to possess the reflection symmetry commonly assumed
to relate orientation singularities with topological index ±π . Most models of cortical map develop-
ment treat orientation preference as an abstract label rather than an emergent property derivative from
an underlying geometric arrangement of synaptic weights. In such abstract models, which include
energy-minimization (Durbin & Mitchison, 1990; Goodhill & Cimponeriu, 2000), wire-length mini-
mization (Chklovskii, 2000; Koulakov & Chklovskii, 2001), Kohonen maps (Kohonen, 1982) and
centre-surround convolution models (Swindale, 1992), orientation map singularities with topological
indices ±π are equivalent up to reflection. Taking into account the 2 × 2 dimensional architecture of
feed-forward weights, we show that right-handed and left-handed orientation singularities are distinct
anatomical structures. Finally, we predict specific patterns of retinotopic distortion that should obtain
in the vicinity of ±π -fold orientation singularities, if uniform pre- and post-synaptic weight constraints
are strongly enforced.
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