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THE CONVEX FLOATING BODY

CARSTEN SCHUTT* and ELISABETH WERNER

Summary.

We define the convex floating body of a convex body in R" and investigate its properties related to
the Gauss-Kronecker curvature and the affine surface area. We use a distributional version of
Blaschke’s rolling theorem.

Preliminaries.
For two vectors x, ye R" we define
[x,y]={tx+(1—-0yl0=t =<1}

More generally, the convex hull of two sets 4 and B is denoted by [A4, B].

By d(z, A) we denote the distance of a point z to a set A.

The Euclidean ball in R” with center x and radius p is B%(x, p). Let H be
a hyperplane in R". The two closed halfspaces determined by H are denoted by
H*and H™.

uis usually the surface measure on the boundary dK of a convex body K, the
restriction of the n — 1 dimensional Hausdorff measure to 0K [Fe].

The affine surface area of a convex body K in R" with sufficiently smooth
boundary is given by

1
f K(x)n+Tdu
0K
where y is the surface measure on dK and x(x) the Gauss-Kronecker curvature. It

was verified by Blascke [B] that this expression equals

lim c, vol, (K) —2V°ln (K1)
3-0 Sn+T

* supported by NSF Grant DMS 8602395
Received May 20, 1989.



276 CARSTEN SCHUTT AND ELISABETH WERNER

inthe case n = 3. Here K5 denotes the floating body introduced by Dupin [D] in
1822. K4 is a floating body of K if each supporting hyperplane of K5 cuts off
a set of volume 6 from K. If 9K is sufficiently smooth, then for sufficiently small
0 > 0 K4 exists. LeichtweiBl [L1] showed that the above expressions are also
equal for n > 3. Using this LeichtweiBl [L2] extended the definition of affine
surface area to all convex bodies.

Lutwak [Lu] extended the affine surface area at the same time to all convex
bodies in a quite different approach.

Petty gave a definition for the surface area of a certain class of convex bodies
[P].

We extend here LeichtweiB’s results. We define here the convex floating body
K ; as the intersection of all halfspaces whose hyperplanes cut off a set of volume
o0 from K. As long as the floating body is convex it coincides with the convex
floating body. Let x€ 0K and A(x, 6) the height of a slice of volume & cut off by
a hyperplane orthogonal to the normal N(x). Almost all the paper is devoted to
prove that

; vol,(K) — vol,(K;) J
lim ¢,
a—»o

-0 5n+1
0K

and Bj(0, 1) the Euclidean ball of radius 1.

n—1 n—
where ¢, = 2( vol, - B35 0; 1))) e

n+1
The limit under the integral sign equals the (n + 1)th root of the classical
Gauss-Kronecker curvature where dK is of the class C? and almost everywhere
the (n + 1)th root of the generalized Gauss-Kronecker curvature [Sch]. Both
expressions could be used for the definition of the affine surface area for all
convex bodies.

The convex floating body.

Let K be a convex body in R". The convex floating body K; of K is the
intersection of all halfspaces whose defining hyperplanes cut off a set of
volume 6 from the set K. Let 4 be the set of all (1), £€R" teR, so that
vol,{xeK|{(x,&) =t} = . Then we have

Ks= () {xeR"|<{x¢& <t}
(&Ded

For x € 0K, with a unique outer normal N(x), |[N(x)||, = 1, we denote the width
of the slice of volume J as A(x, §) where

vol,{yeK|[<{y,N(x)> Z {x, N(x)} — A(x,6)} = &
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Also, we require the width of a slice defined by a hyperplane H orthogonal to N(x)
A(x’H)= <X,N(x)> = <y,N(x)> foryEH'
We put

_ s
Cn=2<vol,,_1(Bg 1(0,1))>n+1 b

n+1

THEOREM 1. Let K be a convex body in R" and K4, 0 < § < %-vol, (K), its
convex floating body. Then we have

lim ¢, Yo (X) _ZVOI" (Ks) = f lim c,,Mdu(x)
-0 on+1 -0 On+l

0K

where i is the surface measure on 0K. The limit under the integral exists almost
everywhere and can be evaluated as in (12), (13).

If K has a C* boundary the limit under the integral the (n + 1)th root of the
Gauss-Kronecker curvature [L2]. By the Hahn-Banach theorem the convex
floating body is the same as the floating body [L1] as long as the floating body is
convex.

COROLLARY 2. Let K be a convex body in R" such that the surface measure of the
extreme points of K is zero. Then we have
. vol,(K) — vol,(Kj)
lim 2 =
-0 6;1 o |

0

LeMMA 3. Let K, and K, be convex bodies in R" such that Q is an interior point of
K, and K, = K,. Then we have
) du(x)

The following is a quantitative version of Blaschke’s rolling theorem. It is very
close to a result of McMullen [McM].

X112
llx12

vol, (K.) — vol, (K;) = - f <x,N(x)>(1 &
0K,

where x € 0K 1, x' € 0K, and x' € [0, x].

LEMMA 4. Let K be a convex body in R" that contains the Euclidean ball of radius
1 and with O as center and for every x € dK let r(x) be the radius of the Euclidean
sphere that is contained in K and that contains x. Then we have

vol,_;{xedK|r(x) 2t} = (1 — t)" ' vol,_,(0K)
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The inequality is optimal.

LEMMA 5. We have for all a,0 < o < 1,

fr(x)_“ du(x) < oo
0K

where  is the surface measure on 0K.

Suppose that 0 is an interior point of the convex floating body K; of K. If
x € 0K then x; is the unique element with x;€ 0K; and x;€ [0, x].

LEMMA 6. Suppose that 0 is an interior point of the convex body K. There is
8o > 0 so that we have for all x with r(x) > 0 and all 6 with0 < é < d,

llx5l2
B4P}

0= %6‘2/"‘+“<x,N(x))<1 —

) < Crin 57t

where C does not depend on x and 6.

LEMMA 7. Suppose that 0 is an interior point of the convex body K. Then we have
for almost all xe 0K

Ixsllz
lIxl2

1) 1im%5-% {x, N(x)) <1 o

-0

> g A0}

2/(n+1)
-0 6

The right hand limit exists almost everywhere [L2, p. 450].

PRrROOF OF THEOREM 1. We may assume that 0 is an interior point of K;. By
Lemma 3 we have
) du(x).

1,(K) — vol, (K 1

MR st fa—#oc,zv(x»(l =

n
(5n +1

By Lemma 5 and 6 the functions under the integral signs are uniformly bounded

by L functions and by Lemma 7 they are converging pointwise almost every-

where. We apply Lebesgue’s convergence theorem.

[l x5l 2
[l 2

0K

The proof of Lemma 3 is similar to the proof of the equality

vol, (Ky) = - f 6 NG du(x)
0K,

ProOF oF LEMMA 4. We consider first the case of a polytope P. Let

Pt) = () {yeR"|<N(x),y> < (N(x),x> — t}

xe0P



THE CONVEX FLOATING BODY 279
where the intersection is taken only over those x where N(x) exists. We observe
that we have for t, 0 < t < 1, that (1 — t) P = P(t). Therefore we have that

vol,_1(0P(t)) = (1 — t)" ' vol,_, (6P)
Moreover, we have
{xedP|r(x) 2t} o {y + tN(y)| ye dP(t) and y has a unique normal}
This implies that
vol,_{x€dP|r(x) 2 t}
2 vol,_;{y + tN(y)| ye 0P(t) and y has a unique normal}
= vol,_1(6P(t) = (1 — )" ! vol,_, (0P)

The general case follows by approximating K by polytopes. In the case of the
n-dimensional cube B’ with side length 2 we have

vol,_{x€dB" |r(x) =t} =2n2 = 2t)* ' =n2"(1 —ty"*
= (1 =" *vol,_,(dB%)

Lemma 5 is an immediate consequence of Lemma 4. Indeed, Lemma 4 implies
that

vol,_ 1 {x|r(x)"* 2 t~*} < (n — 1)tvol,_,(0K).

LeEMMA 8 ([L1 p.459]). Let C(p,A)be a cap of a sphere withradius p and height

A in R". Then there is a continuous function g with lim,_,¢ g(t) = \/5 so that for
0<A<p

n+

vol,_ (B3 (0, 1) A"z

n—1

1
p 2

A n+1
vol,(C(p, A)) = g(;) =

PROOF OF LEMMA 6. There is a > 0 so that

(2) B’ (0, %) < K < B5(0,a)

We choose d, smaller than {vol, <B’5<0, %)) We show first that
1 = 31
< 2a2(voln_1(B"z“(o, —))) Ix — xsl A+ L.
20

llxsl2
lIx]l2

&) %6‘# ¢x, N(x)}(l ™
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Let H be a supporting hyperplane of 0K ; at x; that cuts off of K a set of volume
1 ;
o. If H intersects B’} <0, 2—) then K n H* and K n H™ contain both a Euclidean
o

1
ball of radius Zla-' This cannot be since ¢ is strictly smaller than vol,,<B’5<0, E))

Therefore

1
4 B3 0,— ) =
4) Hn 2( ; 2a> 0

1
Let C be the cone that is the convex hull of x and B<0, 5{;) intersected by the

hyperplane orthogonal to x and passing through 0. C is contained in K. Since

20
K n H* contains the tip of the cone C n H* (or vice versa). Because of (4) the
volume of C n H* would be minimal if H were orthogonal to x, i.e., if H were
parallel to the base of the cone. Therefore we get

(%) d=vol(KnH*") = % ||x_ix'jnzvol,,_l(Bg_‘<0,L>>

(B 2a

; 1 > 1
H does not intersect B’ (0, E) we have that K n H™ contains B} (0, —) and

By (5), llxll2 = llx — x5ll2 + lIx,ll and (1 — 8)" = 1 — ns we get

1 n

_5—#<X,N(x)><1— Ll )

n llx1l 2
éié"fi—lllez(l—ll—-M >

n : x|l

2
SO0+ ||x — x4 2

2
1 T 2(n—1) _n—1
nni1<voln_1<3'§_1<0,—>>) - a2t (o — 203l 2 F"
20
2
s 1 ol _n—1
2oc2<vol,._1<B'5 1<0’E>>> 2= xfl, 7"}

The inequality we just established certainly serves well if ||x — x;||, is not
smaller than a~2r(x). We consider now the case where |x — x4/, £ a™ 2 r(x).
Now we observe that

IIA

IIA

©) o NG 2
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because of (2) and the convexity of K. If we denote the angle between x and N(x)
by @ we have cos ® = a2 Bj(x — r(x) N(x), r(x)) is the maximal ball inside

K that contains x.

N(z)

r(z)

z —r(z)N(z)

According to the figure a = r(x) «~ 2. Therefore we have for y and

N(z) A
V’

0B3(z — r(z)N(z),7(2))

z-r(z)N(=z)

thaty+/3;%.

According to the figure the distance A of x; to the boundary of Bj(x — r(x) N(x),n(x))
is

T sin f§

: [x — x5l 2 = sin B [|x — x;]|>.
sin y
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Because of y + ﬁg%andﬁ+ ] =ywehave2ﬂg%—@. We get

. (O
(7 525111(?—7) llx — xsll2
with & =2 < cos @. Therefore we get

(8) 8 = vol,(K n H*) = vol,(C(r(x), A))

2

< 2g<;(%>_2 vol, (B340, 1)) #+Tsin (% = %)1 (9 hTE

This inequality together with (3) proves Lemma 6

Now we get by (7), (8) and Lemma 8

llxsl2
llx1l2

%5-”% ¢x, N(x)> (1 —

2
S 6T |Ix — x4 2

A convex function ¢ on an open subset of R" is said to be twice differentiable in
a generalized sense at xo[Ba, L2, Sch] if there is a linear map d* ¢(x,) from R" into
itself so that we have for all x in a neighborhood U(x,) and for all subdifferentials

dg(x)
ldp(x) — d(x0) — d*P(x0)(x — Xo)ll2 = c(llx = Xoll2) IX — Xoll

where c is a properly chosen function from R *+ into itself with lim c(f) = 0. Since
t—0

a convex function is almost everywhere differentiable [R] we actually deal only

with the case that ¢ is differentiable or that the subdifferentials are unique. Let

K be a convex body in R" withOe 6K and N(0) = (0,...,0, — 1) and for sufficient-

ly small values x, let K be given by
Xn = d)(xla' e axn~1)

We say that the quadratic form

(9) (dz(b(o)(YI:'"ayn~l))(y1""ayn—l)= 1
is the indicatrix of Dupin [L2, Sch]. We put
(10) M, = {yeR" ' |(@ Oy = 1}

LEMMA 9. Let K be a convex body in R" with 0e 0K and N(0) = (0,...,0, —1).
Lot B, = x| %, =1}.
(i) Suppose that the indicatrix of DupinatOisan — 1 dimensional sphere with
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radius \/; Then there is a monotone function f on R* withlim f(t) = 1, so that we
t—0
have for sufficiently small t > 0

{(f(t)_lxla-- .,f(t)—lx,,_,,t)IxEB’i((O,...,O,p), P) and xn = t}
c KnH,
< {(f(t)xl’- . 1f(t)xn—.l,t)|XEB'£((0a- .. aoa P)aP) and Xp = t}

(ii) Suppose that the indicatrix of Dupin is a cylinder R* x B3~ *~1(0, \/;_)) and
assume that ¢ > 0. Then we have for sufficiently smallt > 0

B5%(©...,0,p —¢),p —e)n H,c KnH,

Lemma 9 is a standard result that is e.g. implicity contained in [L2]. Let us
comment briefly on it. As explained in [L2, p. 443 and 451] the surface M, of

1
(11) M!={ﬁ(}ﬁv",yn—l)l(yla--'ay'l—lat)EK}
converges in the case (i) uniformly towards the quadratic (9), i.e. there is a func-

tion f with lim f(f) = 1 and

t—0
fOT'M, = My = f(t) M,
If (10) is actually a Eucidean sphere with radius \/; we get
KAH = {xeR"|(xs,. ., X_1)Ex/2t My, X, = 1}
S {x€R"|(X1,. .., Xs_1)€S() "1 /2t Mo, X, = t}
S {xe R | (%1, - %) f () 1 B30;...,0,p)p), %, = t}
The other inclusion is shown in the same way.

LemMA 10 ([L2, p. 450]). Let K be a convex body in R".
@) If the indicatrix of Dupin at x is a n — 1 dimensional sphere with radius
\/;_) then
A(x, 0 n-
(12) limc, (x; ) _ -2t

820 ST

(i) If the indicatrix at x is an elliptic cylinder then

(13) lim C,M =

320 Gn¥T

0
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LeEMMA 11. Let K be a convex body in R" with 0 € 6K and N(0) = (0,...,0, —1).
Suppose that the indicatrix of Dupin at 0 exists and is a n — 1 dimensional sphere

with radius \/;_) Let f be as in Lemma 9 and let { be an interior point of K.
(i) Let H be the hyperplane orthogonal to N(0) and passing through z€[0,(].
Then we have for0 < z, < p

vol,(K nH™) < f(z,)"~ " vol(C(p, z,))

(ii) Let dg = d(z, B3((0,...,0,p),p)). There is ¢ > 0 so that we have for all
ze[0,{] with ||z|; = &

242

£
< ||:||2’N(°)>

(iii) Thereis e > 0and c > 0 so that we have for all z€ [0, (] with ||z||, < ¢ and
all hyperplanes H passing through z

vol,(K N H™) 2 f(y)™"" ! vol,(C(p, do(1 — c(f(?) — 1))

wherey = 4. /2 pd,.

d0§2n§d0+

2

p

PRrOOF. (i) Let Ty(x) = (sxy,...,8X,—1,X,). Because of Lemma 9 we have

Zn

vol KNnH") = Jvol,,_l (K nH,)dt
(1]

Zn

é jVOIn— l(Tf(t)(B;((os oo oy Oa p)’ p) N HI) dt
0

< f@)" ! voly(B3(O, - .., 0,p),p) " H™)

(ii) Since ¢ is an interior point of K we have that f = ‘<L N (0)>\ > 0.

nen’

Therefore we can choose ¢ > 0 so small that [0,z] = B3((0,...,0,p),p) and
2dyp — d3 < p?B?, where d, is the distance of z to the boundary of
2((0,. .., 0, p). This means

do=p—lz—00,...,0,p)ll

or

n—1
(14) do — pI? = X lzil* + |za — pI.

i=1
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z > ki
(i) =i vo)}

n=1
2B - 1) = ¥ lal.

Also we have

Zy = <Z,(0,...,0, 1)> = ”ZHZ

That is

This and (14) give

Z'l
43— 2dop = ’7

2dyp —d3\¥2
o118

Fort < 1wehave (1 — t)*/2 2 1 — 1t — 4% Therefore we get by the choice of ¢

2dop — dj 2dop — dg \?
Zy < ﬂ2<% +13
n=p 02 B2 02 2
d2

| FOAEE Ko

vl
(iii) Let H be a hyperplane passing through z. Since { is an interior of K and
z€[0,{] we can choose ¢ so small that K n H™, the part containing 0, has
a smaller volume than K n H~. Moreover, we assume that ¢ is so small that

8d, < p. We show first that

(15) BY(0,...,0,p) N T (HY) 0 {x€R"|x, 2 7} =

if KN H* has the smallest possible volume and if ¢ > 0 is so small that

11
fy) < T
contains 0 because H * contains 0. Moreover, the radius of this cap is greater than
/2 because we assume that (15) is not true. Therefore this cap contains a cap with
radius equal to y/2 and that also contains 0. This implies that this cap is contained
in {xeR"|x, < y}. By this we get

. Assume that (15) is not true. The cap B5((0,...,0,p), p) N Ty}, (H")

Y
vol, (K nH*) > Jvol,,_l(K NnH" nH,)dt

0

Y

2 JVOln— 1Ty ro»(B3(O,...,0,p) nH™ N Hy)dt

0
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?

2 fp—""! fvol..- (B3O, ...,0,p), p) n Ty//,,(H") N H,)dt

0
2 f(y)™"" ! vol, (Clp, 4do))-

The last inequality follows because y = 4./2pd, and therefore the height ofa cap
with radius y/2 is greater than 4d,. Since we assumed that vol,(K N H *) is
minimal we get a contradiction in view of (i) and (ii). Thus (15) must hold.

Assume now that H passes through z and vol,(K n H™) is minimal. Then we
get

Y
vol KnH") > Jvoln_l(K NnH* nH,)dt
0

¥

2 fvoln- (T (BHQ, ..., 0, p), p) N HY  Hdt

0

b4
= fVOln— 1(B3(O,...,0,p),p) 0 Ty /y(H) N Hy)dt
0
By (15) we get
vol,(K nH*) = f(y)™"*  vol(B5((0,. . ., p), p) 0 Ty fi,y(H™)

Since z € H we have (f(y)z1, - - - » f () Za— 1, Za) € Ty} (H). Therefore the height of
the cap B3((0,...,0, p), p) N Ty;/,,(H™) is at least

n—1 1/2
do — (f(7) — 1)(;1 Izi|2>

As in the proof of part (ii) we see that this expressions equals

C —2_ )1/2
<ncnz’N(°’> 1

Because of (ii) this is greater than or equal to

-2 1/2
&% 1—(f(v)—1)(<L,N(0)> —1> 1 g0 e
it ”K : N(0)>
it

PROOF OF LEMMA 7. Let H be the hyperplane passing through x; and being

do — (f(») — 1)Z..<
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)

orthogonal to N(x). We shall show that there is a ¢ > 0 so that

16) (1_C|lx—xa||z>n A(x, H) ga-#q,zv(x»(l—

112 vol,(K N H*)ﬁ

[l xsll 2
llx]l2

(x,N(x))(l —

Every hyperplane that cuts a set of volume & off the set K has an empty
intersection with the interior of K ;. Therefore, a hyperplane passing through x,
cuts off a set of volume equal to or greater than §. Therefore vol,(K n H™) is
equal to or greater than 6.
On the other hand, since x; is a multiple of x
x5l 2 ) o (x,N(x)><1 s ’1 o lIx — x5l >
%12 lIx1l2
= n<L N(x)> lIx = xgll, — (">< # N(x)> Jx =l
lxll2” oo v Py x>
> n<L,N(x)> I — xa||z(1 _ cw)
lIx1l2 lIx1l2
=nA(x, H)(l - cllx—*x,,llz>
(BYP}

Now we consider the inverse inequality. We show that
242 T
vol, (C [ p,dy + g > 4
p <L N(x)>
< 1*) lIxIl2 = A(x, H)

vol,(C(p, do(1 — c(f() — 1)) vol,(K n H*)i+t

ll x5l 2
llx|l 2

17) 5-nfl<x,N(x)>(1 o

provided that the indicatrix of Dupin is an Euclidean sphere with radius \/;_) In
fact, if the indicatrix of Dupin is an ellipsoid we may assume that it is a Euclidean
sphere with radius \/;) To see this we apply first an operator T that is a compo-
sition of a translation and rotation with T(x) =0 and N(T(x)) = N(0) =
(0,...,0 —1). Then we apply a linear transform S with S(0,...,0,1) = (0,0,...,0,1)
and det § = 1 so that ST(K) has in S(T(x)) = 0 an indicatrix which is a Euclidean
sphere. We have to show that

= (ST(x) — ST(0), N(ST(x))> (1 &

lIxsll2
11l 2

{x, N(x)) (1 —

I(ST(x)s — STO)I,
IST(x) — ST(O),

)
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where (ST(x)); € 8((ST(K));) lies on the line through ST(x) and ST/(0). Since ST is
affine and measure preserving we have (ST(x)); = ST(x;). Moreover, since x; is
amultiple of x the right factor of the left hand expression equals the right factor of
the right hand expression. On the other hand,

(ST(x) — ST(0), N(ST(x)))

= (ST(x) — ST(0),(0,...,0, — 1)}
= (T(x) — T(0),(0,...,0, —1)>
= (T(x) — T(0), N(T(x))>

= <% N(x))

Therefore we may assume that the indicatrix of Dupin at x is a sphere with
radius \/;) Moreover, we may assume that 0 is an interior point. We have

")gn< = ,N(x)> Ix — x5l = nA(x, H)

lIxll2

llxsll2
llx1l2

{x, N(x))(l —

where H is the hyperplane orthogonal to N(x) and passing through x;. More-
over, we have because of Lemma 11 (iii)

82 f7" () vol,(C(p,do(l — c(f(?) — 1))

From this and Lemma 11 (i) and (ii) the inequality (17) follows. It follows from
(16), (17), and Lemma 10 that the left hand of (1) exists and is equal to the right
hand if the indicatrix of Dupin exists and is an ellipsoid. Since the indicatrix of
Dupin exists almost everywhere [L2] and r(x) > 0 (Lemma 4) the indicatrix of
Dupin exists almost everywhere and is an ellipsoid or an elliptic cyclinder. It is
left to consider the case of the elliptic cylinder.

By Lemma 10 the right hand limit of (1) is 0. We have to show that the left hand
limit is also 0. As above we show that the elliptic cylinder can be assumed to be
a spherical cylinder, i.e., the product of a k-dimensional plane andan — k — 1
dimensional Euclidean sphere of radius p. In fact, by the same argument we can
make p arbitrarily large. By Lemma 9 (ii) and similar considerations as used for
proving (17) we can show that also the left hand limit in (1) equals 0.

We derive now Corollary 2 from Theorem 1. For this we need the following
lemma.

LEMMA 12. Let K be a convex body in R" and suppose that x € 0K is not an
extreme point of K. Assume that r(x) > 0 (Lemma 4). Then

g 200, L

320 Sa¥T

0



THE CONVEX FLOATING BODY 289

PRrROOF. Since x is not an extreme point of K there are y, ze 0K so that
x = 4(y + 2z). We may assume that x = 0, N(x) = (0,...,0, — 1),y = (5,0,...,0),
and z = (—n,0,...,0). By assumption B%((0,...,0,7),r) = K with r = r(x).

Therefore the convex hull of y and B%((0,...,0,r),r) is contained in K.

[y, B5(0,...,0,r))] = K
[z, B5((0,...,0,r)] = K

It is easy to show that this implies

n l L _r_
B2<<2,0,...,0,2>, 2>CK
sl U N

Bz<< 2,0,...,0,2>,2>CK

Thus a hyperplane H orthogonal to N(x) cuts off a set of volume 6 from K that
contains a cylinder whose base is a n — 1 dimensional cap. The rest follows from
Lemma 8.

Let1 <p < ooand B} = {xeR"I._Z Ix|P < 1}.

i=1

PROPOSITION 13. Let 1 < p < 0. Then we have

fim ¢, YO (B5) = vol,(B})y)

D)
-0 on+1

S8 -t _f (fPAB— TV p nsd (58
TR <r< p(n+1>><<" 560 B >)

ProOF. The Gauss-Kronecker curvature at xe 0B}, x > 0, is

nt1

B 1)"_1(H?=1Xf’_2)<i x?"_2>- -
i=1

Let 0B"" = 0B" n {xeR"| x > 0}. By Theorem 1 we get
p p

vol,(Bjp) — vol,((B})s)

lim ¢
5-0 st
A(x, o
o f 1imc,,¥du(x)
540 Gu+T
0B}

P

n— n -4
= 2(p— 1yt f (nle:"’)»in(fo"") du()
i=1
”)Rnt
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n—1 1/p
Putting x, = (1 -y x?) the last expression equals

i=1

n—1 o PR "t \arhe
M(p— vt | (GIixETAmT(1— Y X dx

i=1
0B,
By [GR, p. 621] we obtain
_2 n—1
1 i+1 i n—np—1 n—np—1
Mp— Darip "I\ M\ r<1+—_———> rit+——
p (n+1p (n+1p
) =1
St !
+(n-1)
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