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Summary. Let K be a convex body in R™ and let f: 9K — Ry be a continuous,
positive function with [, f(z)dpax (z) = 1 where par is the surface measure on
OK. Let Py be the probability measure on 0K given by dPy(z) = f(z)dpsxr (x). Let
k be the (generalized) Gauf-Kronecker curvature and E(f, N) the expected volume
of the convex hull of N points chosen randomly on K with respect to P¢. Then,
under some regularity conditions on the boundary of K
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where ¢, is a constant depending on the dimension n only.
The minimum at the right-hand side is attained for the normalized affine surface
area measure with density
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1 Introduction

1.1 Notation and Background. The Main Theorem
How well can a convex body be approximated by a polytope?

This is a central question in the theory of convex bodies, not only because
it is a natural question and interesting in itself but also because it is rele-
vant in many applications, for instance in computervision ([SaT1], [SaT2]),
tomography [Ga], geometric algorithms [E].

We recall that a convex body K in R” is a compact, convex subset of R"
with non-empty interior and a polytope P in R™ is the convex hull of finitely
many points in R”.

As formulated above, the question is vague and we need to make it more
precise.

Firstly, we need to clarify what we mean by “approximated”. There are
many metrics which can and have been considered. For a detailed account
concerning these metrics we refer to the articles by Gruber [Grl],[Gr3]. We
will concentrate here on the symmetric difference metric d; which measures
the distance between two convex bodies C' and K through the volume of the
difference set

ds(C, K) = vol,(CAK) = vol,,(C\ K) U (K \ O)).

Secondly, various assumptions can be made and have been made on the ap-
proximating polytopes P. For instance, one considers only polytopes con-
tained in K or only polytopes containing K, polytopes with a fixed number
of verices, polytopes with a fixed number of facets, etc. Again we refer to the
articles [Grl],[Gr3] for details.
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We will concentrate here on the question of approximating a convex body
K in R” by inscribed polytopes Py with a fixed number of vertices IV in the
ds metric. As we deal with inscribed polytopes the d; metric reduces to the
volume difference
vol, (K) — vol, (Pn)

and we ask how the (optimal) dependence is in this metric on the various
paramenters involved like the dimension n, the number of vertices N and so
on.

As a first result in this direction we want to mention a result by Bron-
shteyn and Ivanov [Brl].
There is a numerical constant ¢ > 0 such that for every conver body K in
R™ which is contained in the Fuclidean unit ball and for every N € N there
ezists a polytope Py C K with N wvertices such that

n vol, (K)

vol, (K) — vol,,(Py) < c =

The dependence on N and n in this result is optimal. This can be seen
from the next two results. The first is due to Macbeath and says that the
Euclidean unit ball B is worst approximated in the ds metric by polytopes
or more precisely [Mal:

For every convex body K in R™ with vol,,(K) = vol,(BY) we have

inf {ds(K, Py) : Py C K and Py has at most N vertices} <

inf {ds(BY, Py) : Py C BY and Py has at most N vertices}.

Notice that inf {ds(K, Py): Py € K and Py has at most N vertices} is
the ds-distance of the best approximating inscribed polytope with N vertices
to K. By a compactness argument such a best approximating polytope exists
always.

Hence to get an estimate from below for the Bronshteyn Ivanov result,
it is enough to check the Euclidean unit ball which was done by Gordon,
Reisner and Schiitt [GRS1], [GRS2].

There are two positive constants a and b such that for all n > 2, every
N > (bn)ﬁ, every polytope Py C BY with at most N vertices one has

n vol, (BY)

vol,,(BY) —vol,(Pn) > a ==

Thus the optimal dependence on the dimension is n and on N it is NV =4
The next result is about best approximation for large V.

Let K be a convex body in R™ with C?-boundary 0K and everywhere
strictly positive curvature k. Then
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lim inf{ds(K, Pn)|Pn C K and Py has at most N vertices}
i

N (4)="

n+1

n—1

= Ldel, (/BK m(x)nlldMaK(x)>

This theorem was proved by McClure and Vitale [McV] in dimension 2 and
by Gruber [Gr2] for general n. On the right hand side of the above equation
we find the expression [}, /ﬁ(x)ﬁd,um{(m) which is an affine invariant, the
so called affine surface area of K which “measures” the boundary behaviour of
K. It is natural that such a term should appear in questions of approximation
of convex bodies by polytopes. Intuitively we expect that more vertices of
the approximating polytope should be put where the boundary of K is very
curved and fewer points should be put where the boundary of K is flat to
get a good approximation in the ds-metric. In Section 1.3 we will discuss the
affine surface in more detail.

del,—1, which also appears on the right hand side of the above formula,
is a constant that depends on n only. The value of this constant is known
for for n = 2, 3. Putting for K the Euclidean unit ball in the last mentioned
theorem, it follows from the result above by Gordon, Reisner and Schiitt
[GRS1], [GRS2] that del,,—; is of the order n. del,,—; was determined more
precisely by Mankiewicz and Schiitt [MaS1], [MaS2]. We refer to Section 1.4.
for the exact statements.

Now we want to come to approximation of convex bodies by random
polytopes.

A random polytope is the convex hull of finitely many points that are
chosen from K with respect to a probability measure P on K. The expected
volume of a random polytope of N points is

E(]P’,N):/K~~-/Kvoln([ml,...,xN])d]P’(ml)...dIP’(xN)

where [z1,...,zy] is the convex hull of the points z1,...,zy. Thus the
expression vol, (K) — E(P, N) measures how close a random polytope and
the convex body are in the symmetric difference metric. Rényi and Sulanke
[ReS1], [ReS2] have investigated this expression for large numbers N of cho-
sen points. They restricted themselves to dimension 2 and the case that the
probability measure is the normalized Lebesgue measure on K.

Their results were extended to higher dimensions in case that the prob-
ability measure is the normalized Lebesgue measure. Wieacker [Wie] settled
the case of the Euclidean ball in dimenision n. Barany proved the result for
convex bodies with C3-boundary and everywhere positive curvature [Bal].
This result was generalized to arbitrary convex bodies in [Sch1] (see also Sec-
tion 1.4):

Let K be a convex body in R™. Then
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lim vol,, (K) — E(P,,, N)

N—oo (voln(K))ﬁ
N

— e1(n) /a R() T dpon (o),

where c1(n) is a constant that depends on n.

We can use this result to obtain an approximation of a convex body by a
polytope with at most N vertices. Notice that this does not give the optimal
dependence on N. One of the reasons is that not all the points chosen at
random from K appear as vertices of the approximating random polytope.
We will get back to this point in Section 1.4.

One avoids this problem that not all points chosen appear as vertices
of the random polytope by choosing the points at random directly on the
boundary of the convex body K.

This is what we do in this paper. We consider convex bodies in dimension
n and probability measures that are concentrated on the boundary of the
convex body. It is with respect to such probability measures that we choose
the points at random on the boundary of K and all those points will then be
vertices of the random polytope. This had been done before only in the case
of the Euclidean ball by Miiller [Mii] who proved the asymptotic formula
for the Euclidean ball with the normalized surface measure as probability
measure.

Here we treat much more general measures IP; defined on the boundary of
K where we only assume that the measure has a continuous density f with
respect to the surface measure pgr on 0K. Under some additional technical
assumptions we prove an asymptotic formula. This is the content of Theorem
1.1.

In the remainder of Section 1.1 we will introduce further notation used
throughout the paper. We conclude Section 1.1 by stating the Theorem 1.1.
The whole paper is devoted to prove this main theorem. In doing that, we
develop tools that should be helpful in further investigations.

In Section 1.2 we compute which is the optimal f to give the least value
in the volume difference

vol, (K) —E(Pf, N).

It will turn out that the affine surface area density gives the optimal mea-
sure: Choosing points according to this measure gives random polytopes of
greatest possible volume. Again, this is intuitively clear: An optimal measure
should put more weight on points with higher curvature. Moreover, and this
is a crucial observation, if the optimal measure is unique then it must be
affine invariant. There are not too many such measures and the affine sur-
face measure is the first that comes to ones mind. This measure satisfies two
necessary properties: It is affine invariant and it puts more weight on points
with greater curvature.

In Section 1.5 we compare random approximation with best approxima-
tion and observe a remarkable fact. Namely, it turns out that -up to a nu-
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merical constant- random approximation with the points chosen P ¢-randomly
from the boundary of K with the optimal f is as good as best approximation.

In Section 1.3 we propose an extension of the p-affine surface area which
was introduced by Lutwak [Lu] and Hug [Hu]. We also give a geometric
interpretation of the p-affine surface area in terms of random polytopes.

It was a crucial step in the proof of Theorem 1.1 to relate the random
polytope to a geometric object. The appropriate geometric object turned out
to be the surface body which we introduce in Chapter 2.

In Chapter 3 we review J. Miiller’s proof for the case of the Euclidean
ball. We use his result in our proof.

Chapter 4 is devoted to prove probabilistic inequalities needed for the
proof of Theorem 1.1 and finally Chapter 5 gives the proof of Theorem 1.1.

Now we introduce further notations used throughout the paper.

BY (x,r) is the Euclidean ball in R™ centered at x with radius r. We denote
By = B7(0,1). S"! is the boundary Bj of the Euclidean unit ball. The
norm || - || is the Euclidean norm.

The distance d(A, B) of two sets in R™ is

d(A,B) = nf{|lz — ||| € A,y € B}.

For a convex body K the metric projection p : R — K maps x onto the
unique point p(z) € K with

- = inf ||z — yl.
= = p(a)]| = inf o — ]

The uniqueness of the point p(x) follows from the convexity of K. If x € K
then p(z) = z.

For z,€ in R™ & # 0, H(x,{) denotes the hyperplane through z and
orthogonal to £. The two closed halfspaces determined by this hyperplane
are denoted by H~ (z,&) and HT(z,€&). H (z,€) is usually the halfspace
that contains z + £. Sometimes we write H, HT and H~, if it is clear which
are the vectors z and & involved.

For points z1,...zx € R™ we denote by

N
ogAigl,lngN,Z/\i=1}

=1

[z1,...2n] = {)\1901 + -+ AnTN

the convex hull of these points. In particular, the closed line segment between
two points x and y is
[2,y] = Dz + (1 =Ny 0 <A <1}

The open line segment is denoted by

() ={ x4+ (1 -Nyl 0< A< 1}



Random Polytopes 7

Lox is the surface area measure on OK. It equals the restriction of the n — 1-
dimensional Hausdorff measure to 0K . We write in short p if it is clear which
is the body K involved. Let f : 9K — R be a integrable, nonnegative function
with
(x)dp = 1.
0K

Then we denote by Py the probability measure with dP; = fdusx and
E(f,N) = E(Ps, N). If f is the constant function (vol,_;(90K))™! then we
write E(OK,N) = E(P;, N). For a measurable subset A of 0K we write
vol,_1(A) for psr (A).

Let K be a convex body in R" with boundary K. For z € 0K we
denote the outer unit normal by Ny (x). We write in short N (x) if it is clear
which is the body K involved. The normal N(x) may not be unique. kgx ()
is the (generalized) Gaufl curvature at x (see also Section 1.5 for the precise
definition). By a result of Aleksandrov [Al] it exists almost everywhere. Again,
we write in short x(x) if it is clear which is the body K involved. The centroid
or center of mass cen of K is

S5 xda
vol, (K)'

cen =
We conclude Section 1.1 with the main theorem.

Theorem 1.1. Let K be a convex body in R™ such that there are r and R in
R with 0 < r < R < 0o so that we have for all x € OK

BY(x — rNsk(x),r) C K C BY(x — RNgk (z), R)

and let f : 0K — Ry be a continuous, positive function with [, f(x)dpox (x) =
1. Let Py be the probability measure on 0K given by dPs(x) = f(x)dpox (x).
Then we have

1

lim Voln(K) — E(f, N) —e / KJ(;E) w1
1¢)

N—oco (%)% K f(x)nfl

dpox ()

where K is the (generalized) Gauf-Kronecker curvature and

(n—l)%F<n+l+%)
2(n + 1)!(vol,,_o (OB} 1)) o1’

Cp =

The minimum at the right-hand side is attained for the normalized affine
surface area measure with density

Jas(@) =
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Fig. 1.1.1

The condition: There are » and R in R with 0 < r < R < oo so that we
have for all x € 0K

By (z —rNak(z),r) C K C BY(x — RNyk(z), R)

is satisfied if K has a C?-boundary with everywhere positive curvature. This
follows from Blaschke’s rolling theorem ([Bla2] , p.118) and a generalization
of it ([Lei], Remark 2.3). Indeed, we can choose

r= min min 7r;(x) R = max max r;(x)
z€OK 1<i<n—1 €K 1<i<n—1

where 7;(z) denotes the i-th principal curvature radius.
By a result of Aleksandrov [Al] the generalized curvature k exists a.e. on

every convex body. It was shown in [SW1] that K7 is an integrable function.
Therefore the density

( )"

1

=
fas(x) = :
Jox K@) T dpok (z)
exists provided that [, m(m)#ldua;{(x) > 0. This is certainly assured by
the assumption on the boundary of K.

1.2 Discussion of some Measures Py and the Optimality of the
Affine Surface Area Measure

We want to discuss some measures that are of interest.

1. The most interesting measure is the normalized affine surface area
measure as given in the theorem. This measure is affine invariant, i.e. for an
affine, volume preserving map 7" and all measurable subsets A of 0K
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1 1
[ 5 @dnanc(e) = [ wiity (@dnano @)
A T(A)
Please note that if the optimal measure is unique it should be affine invariant
since the image measure induced by 7" must also be optimal.

We show that the measure is affine invariant. To do so we introduce the
convex floating body. For ¢t € R, ¢ > 0 sufficiently small, the convex floating
body Cpy of a convex body C' [SW1] is the intersection of all halfspaces whose
defining hyperplanes cut off a set of n-dimensional volume ¢ from C. By [SW1]
we have for all convex bodies C'

1,(C) — vol, (C
o Yo (@) 2VO (Cpy) —d, Hac(ﬂ?)";“dﬂac(ﬂﬁ),
=0 tn+ ac
here d = 3 (ot )7 g ffine, vol i
where d,, = 3 (Voln,l(B;”)) . For an affine, volume preserving map
T we have
vol,(C) = vol,(T'(C)) and  vol,(Cly) = vol,(T(Cpy))- (1)

Thus the expression
1
/ koc(x) T dpac(z)
ac

is affine invariant. For a closed subset A of 0K where K is a convex body, we
define the convex body C' as the convex hull of A. For a point x € 9C with
x ¢ A we have that the curvature must be 0 if it exists. Thus we get by the
affine invariance (1) for all closed sets A

/ Koo () "+ dusc(z) = / Kor(c)(y) T duarc) (y)-
A aT(A)

This formula extends to all measurable sets. For the affine surface measure
we get

n+1

i Yoln(K) —E(f,N) _ o (/aK H(x)n_;ldﬂaK(x)) " @)

SN COh

We show now that the expression for any other measure given by a density
[ is greater than or equal to (2). Since [, f(z)dpaox (z) =1, we have

1
(volnl(é)K) /(9[(

1
|\ vol,,_4 (0K) /aK

n—1

)
f(x)?

(o)™

(i L b

dpox (3«“)) "

n+1 n+1

dpsrk () X

2

d,uaK(x)> T (voly_1 (9K)) 7T
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We have n+r1 + % = %1 and we apply Holder inequality to get

( L 1(81()/ 1dNaK( ))

1 1 o,
> n+1 - 7
B <V01n 1 aK 8KK w d’udK(x)> (vol,—1(0K))

n—1

which gives us
k()

L fep] w2 ([ serhamante)

2. The second measure of interest is the surface measure given by the
constant density

_1_
n—1

1
1@ = =Ry

This measure is not affine invariant and we get

1,(K) —E(f,N e
o BN o),
N—oo (voln,l(aK))ﬁ oK
N

3. The third measure is obtained in the following way. Let K be a convex
body, cen its centroid and A a subset of OK. Let

vol,, ([cen, A])

P(A) =
(4) vol, (K)
If the centroid is the origin, then the density is given by

< x,Nog(x) >
faK <z, Nok(z) > dpsr ()

flx) =

and the measure is invariant under linear, volume preserving maps. We have
L[ <@ N(x) > dpsx(x) = vol,(K) and thus

< x,Nak(z) >

@)= n vol, (K)
We get
1
. vol,(K) —E(f,N () n=T1
lim (K) (L) :cn/ (z) —dugk ().
N—oo (n volMK)) n—1 oK < x, Npg(x) >n1
N

We recall that for p > 0 the p-affine surface area O, (K) [Lu], [Hu] of a convex
body K is defined as (see 1.3 below for more details)
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fi(x)n%P

%m#/ Aok ().
OK < x, Npr(x) > v

Note that then for n > 2 the right hand expression above is a p-affine surface
area with p =n/(n — 2).

4. More generally, let K be a convex body in R™ with centroid at the
origin and satisfying the assumptions of Theorem 1.1. Let o and 3 be real
numbers. Let the density be given by

<z, Nor () >% k(x)?

fap(x) = Jox <@ Nok(z) > k(z)dpok (z)”

Then by Theorem 1.1

. ( /3 k(z) =T dugr () ) ( / <z, Nok (z) > H(z)ﬁduak($)>%~

2a
K < :L’,NaK(:E) >mn-1

The second expression on the right hand side of this equation is a p-affine

surface area iff .
o= _M and (= P
n-—+p n-—+p

Then
lim VOln(K) - E(fa N)

N=oo (0,007
N

n—p 2n(p—1)
= cn/ K(z) m=D0Fn) < x, Nog (x) >T-D0F dugi ().
OK

Note that the right hand side of this equality is a g-affine surface area with
=55

5. Another measure of interest is the measure induced by the Gaufl map.
The Gaufl map Ngg : 0K — 0BY maps a point z to its normal Npg (). As
a measure we define

P(A) = o{Nok(x)|x € A}

where o is the normalized surface measure on 9B%. This can also be written
as
pa) - Jar@)dnon (@)
VOln_l (833)

This measure is not invariant under linear transformations with determinant
1. This can easily be seen by considering the circle with radius 1 in R?. An
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affine transformation changes the circle into an ellipse. We consider a small
neighborhood of an apex with small curvature. This is the affine image of a
small set whose image under the Gaufl map is larger. We get

i Yola(K) —E(f, N)

2
N=oo (yol,_,(8Bg)\ "1
N

= cn/ /{(x)fﬁdua;((x).
oK

1.3 Extensions of the p-Affine Surface Area

The p-affine surface area O,(K') was introduced by Lutwak [Lu], see also Hug
[Hu]. For p = 1 we get the affine surface area which is related to curve evo-
lution and computer vision [SaT1, SaT2]. Meyer and Werner [MW1, MW2]
gave a geometric interpretation of the p-affine surface area in terms of the
Santal6 bodies. They also observed that -provided the integrals exist- the
definition of Lutwak for the p-affine surface area makes sense for —n < p <0
and their geometric interpretation in terms of the Santalé bodies also holds
for this range of p. They also gave a definition of the p-affine surface area for
p = —n together with its geometric interpretation.

In view of 1.2.4 we propose here to extend the p-range even further,
namely to —oo < p < 0o. Theorem 1.1 then provides a geometric inter-
pretation of the p-affine surface area for this whole p-range. See also [SW2]
for another geometric interpretation.

Let K be a convex body in R™ with the origin in its interior. For p with
p# —n and —oo < p < oo we put

_ K(x)
0l = [ N5 ()

and

k()7
OP(K) = / n(p—1) d/”'f‘)K(m)v
0K < x,Npg(x) > n¥r

provided the integrals exist.
If 0 is an interior point of K then there are strictly positive constants a and
b such that

a <<z, Nogg(x) ><b.

Assume now that K is such that the assumptions of Theorem 1.1 hold. Then
the above integrals are finite. We consider the densities
1 K(x)

fioo(x) - O:I:oo(K) < x,NaK(QS) >n

and for —co <p < o0, p# —n
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1 K(z)™5F

Op(K) < z, Nog () >7L51p-;p1) .

As a corollary to Theorem 1.1 we get the following geometric interpretation
of the p-affine surface area.
i YO~ E(fe N)
N—o00 Oioo(K)\ "1
N

n [ n(a) T < Nowe(o) > dpanelz) = O-(K)
oK

and

A
\_/

lim

ol (K
N —o0
(

2n(p—1)
/ ) =D ) <z, Nog () >0+ dpgg (x) = OQ(K)
where ¢ = ”+p 5
Thus each density f, gives us a g-affine surface area O, with ¢ = ni;f 5

as the expected difference volume. Note that for the density f_, 1o we get
O1o0(K). Conversely, for each g-affine surface area Oy, —o0 < g < +o0,

g # —n, there is a density f, with p = %quq such that

lim vol, (K) —E(fp, N

N=oo  (0,() )7
N

) = ¢, 04 (K).

1.4 Random Polytopes of Points Chosen from the Convex Body

Whereas random polytopes of points chosen from the boundary of a convex
body have up to now only been considered in the case of the Euclidean ball
[Mii], random polytopes of points chosen from the convex body and not only
from the boundary have been investigated in great detail. This has been done
by Rényi and Sulanke [ReS1, ReS2] in dimension 2. Wieacker [Wie] computed
the expected difference volume for the Euclidean ball in R™. Bérdny [Bal]
showed for convex bodies K in R" with C3-boundary and everywhere positive
curvature that

. voln(Ii) ~E(.N)
N —o0 (VO X](K))"_H

— ei(n) /8 ) dpon(@)

where P is the normalized Lebesgue measure on K, k(z) is the GauB-
Kronecker curvature, and



14 C. Schiitt and E. Werner

n+1
2(n + 3)(n + 1)lvol,,_1 (B}~ 1) =it

= 1)7 (n? + n + 2)(n? + 1)1 (24

Schiitt [Schl] verified that this formula holds for all convex bodies, where
k(x) is the generalized Gauf-Kronecker curvature.

The order of best approximation of convex bodies by polytopes with a
given number of vertices N is N = (see above). The above formula for
random polytopes chosen from the body gives N ~#+1 . Thus random approx-
imation by choosing the points from K does not give the optimal order. But
one has to take into account that not all points chosen from the convex body
turn out to be vertices of a random polytope. Substituting N by the num-
ber of expected vertices we get the optimal order [Ba2] for the exponent of
N in the case of a convex body with C3-boundary and everywhere positive
curvature. Indeed, for all convex bodies with a C3-boundary and everywhere
positive curvature the expected number of i-dimensional faces is of the order

N#+ [Ba2).

1.5 Comparison between Best and Random Approximation

Now we want to compare random approximation with best approximation in
more detail. We will not only consider the exponent of N but also the other
factors. It turns out that random approximation and best approximation with
the optimal density are very close.

McClure and Vitale [McV] obtained an asymptotic formula for best ap-
proximation in the case n = 2. Gruber [Gr2] generalized this to higher di-
mensions. The metric used in these results is the symmetric difference metric
ds. Then these asymptotic best approximation results are (see above for the
precise formulation):

If a convex body K in R” has a C%-boundary with everywhere positive
curvature, then

inf{ds(K, Pny)|Py C K and Py is a polytope with at most N vertices}

is asymptotically the same as

%deln,l </ H(m)nﬂduaK(as)) (N) .
oK

where del,,_1 is a constant that is related to the Delone triangulations and
depends only on the dimension n. Equivalently, the result states that if we
divide one expression by the other and take the limit for N to oo we obtain
1. It was shown by Gordon, Reisner and Schiitt in [GRS1, GRS2] that the
constant del,,_1 is of the order of n, which means that there are numerical
constants a and b such that we have for all n € N
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an < del,,_1 < bn.

It is clear from Theorem 1.1 that we get the best random approximation if
we choose the affine surface area measure. Then the order of magnitude for
random approximation is

n+1

o ) (1)

Since

1

(voln,Q(aBgﬂ))n: ~= and T (n +1+ %) ~I(n+1)(n+ 1)%31
n

random approximation (with randomly choosing the points from the bound-

ary of K) is of the same order as

n (/dK n(m)nlﬂduax(x)) o (%) -

which is the same order as best approximation.
In two papers by Mankiewicz and Schiitt the constant del,,_; has been
better estimated [MaS1, MaS2]. It was shown there
_ 2

nlyol,_1(By )T < del,_y < (1+ <Bn)nzlyol, (BT,

. . . . del,,_
where ¢ is a numerical constant. In particular, lim, ., —2=% = ;L =

n 2me
0.0585498.... Thus

(1 _ Cln_n) Jim voly (K) = E(fus: )
n —00 1\n—1
(%)
< lim N#=27 inf{dg(K, Py)|Py C K and Py

is a polytope with at most N vertices}.

In order to verify this we have to estimate the quotient

(n—1)%r(n+1+%)
7 (del, 1)
2(n + 1)!(vol,,_2(dBy 1)) a1

Since Z—*ivoln_l(Bg_l)_% < del,,_1 the quotient is less than %F(n +1+

+
—2-). Now we use Stirlings formula to get
Fn+1+4 2
M <1+ Cln—n-
n! n
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1.6 Subdifferentials and Indicatrix of Dupin

Let U be a convex, open subset of R™ and let f : i/ — R be a convex function.
df(x) € R™ is called subdifferential at the point g € U, if we have for all
relu

f(@o)+ < df(zo),x — zg >< f(2).

A convex function has a subdifferential at every point and it is differentiable
at a point if and only if the subdifferential is unique. Let U be an open,
convex subset in R™ and f : U4 — R a convex function. f is said to be twice
differentiable in a generalized sense in xo € U, if there is a linear map d2 f(zo)
and a neighborhood U(xo) C U such that we have for all x € U(zp) and for
all subdifferentials d f(x)

ldf () — df(z0) — d*f(zo)(x — z0)|| < Ollz — wol) |z — woll,

where © is a monotone function with lim; .o ©(t) = 0. d%f(xo) is called
generalized Hesse-matrix. If f(0) = 0 and df(0) = 0 then we call the set

{z e R"|2'd*f(0)x = 1}

the indicatrix of Dupin at 0. Since f is convex this set is an ellipsoid or a
cylinder with a base that is an ellipsoid of lower dimension. The eigenval-
ues of d2f(0) are called principal curvatures and their product is called the
GauB-Kronecker curvature x. Geometrically the eigenvalues of d?f(0) that
are different from 0 are the lengths of the principal axes of the indicatrix
raised to the power —2.

The following lemma can be found in e.g. [SW1].

Lemma 1.1. Let U be an open, convex subset of R™ and 0 € U. Suppose

that f : U — R is twice differentiable in the generalized sense at 0 and that

f(0) =0 and df(0) = 0.

(i) Suppose that the indicatriz of Dupin at 0 is an ellipsoid. Then there is a

monotone, increasing function ¢ : [0,1] — [1,00) with lims_o 9 (s) = 1 such
¥(s)

that
{(ac,s)
C{(z, )| f(x) < s} C{(x,9)]z"d>f(0)x < 2s¢)(s)}.

(ii) Suppose that the indicatriz of Dupin is an elliptic cylinder. Then for
every € > 0 there is sqg > 0 such that we have for all s with s < sg

z'd?f(0)x < 25 }

{(z,5) |2"d*f(0)x + efjz|* < 25} € {(,5)|f(2) < s}.



Random Polytopes 17

Lemma 1.2. Let K be a convezx body in R"™ with 0 € 0K and N(0) = —e,.
Suppose that the indicatriz of Dupin at 0 is an ellipsoid. Suppose that the
principal azes bie; of the indicatriz are multiples of the unit vectors e;, i =
1,...,n—1. Let £ be the n-dimensional ellipsoid

2\ 2
n-! 1’2 (an - (H:;l bZ) ”21) n—1 %
E={zeR ;b—2+ o= < (]j[l bi>

Then there is an increasing, continuous function ¢ : [0,00) — [1,00) with
#(0) = 1 such that we have for all t

{(W,...,W;),Q xeg,xnzt}
C KN H((0,....0,t), N(0))
- {(d)(t)xlv . '7¢(t)xnflat)|x S g,xn = t} .

We call £ the standard approximating ellipsoid .

Proof. Lemma 1.2 follows from Lemma 1.1. Let f be a function whose graph
is locally the boundary of the convex body. Consider (x, s) with

' d®f(0)x = 2s

which is the same as

—
i=1
Then
2\ 2
n— n—1
n—1 o (fn - (Hi:ll bz) )
_; n— _2
i=1 b; (HiL:ll bi)»=T
2\ 2
n—1 n—1 2
(s — (HPl bl) ) 2 n—1 \ n-T
=25+ — = —— + H b;
N D
O

Let us denote the lengths of the principal axes of the indicatrix of Dupin
by b;, i =1,...,n— 1. Then the lengths a;, i = 1,...,n of the principal axes
of the standard approximating ellipsoid £ are
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1 2
n—1 n—1 n—1 n—1
ai:bi<Hbi> i=1,....,n—1 and an:<Hbi> .
i=1 =1
(3)

This follows immediately from Lemma 1.2. For the Gau3-Kronecker curvature
we get

s
L
)

(4)

i=1

This follows as the Gauf}-Kronecker curvature equals the product of the eigen-
values of the Hesse matrix. The eigenvalues are bi_2, i=1,...,n—1. Thus

m|3

n—1 n—1 2n71 n—1 ﬁ - n—1
[ () T0 (e () ) -T0%
=1 i=1 k=1 i=1

i=1 i

N

In particular, if the indicatrix of Dupin is a sphere of radius ,/p then the
standard approximating ellipsoid is a Euclidean ball of radius p.
We consider the transform 7' : R™ — R"

oo [ et . n—1 2T
T(z) = | 2% b; R b; o |- 5
=) i (1) @

This transforms the standard approximating ellipsoid £ into a Euclidean ball
T(&) with radius r = ([]/," )%/ (*~1. This is obvious since the principal
axes of the standard approximating ellipsoid are given by (3). The map T is
volume preserving.

&= {x e R

and let H = H((an,—A)en, ). Then for all A with A < %an the intersection
ENH is an ellipsoid whose principal azes have lengths

Lemma 1.3. Let

n

2.

i=1

%

o=
~
Il
\.P—‘
S
|
—

(20,4 - £2)

€27
Moreover,

vol,—1(ENH) <vol,_1(0ENH™)

2Aa3
<4/1 n l,,— H
_\/ +(aan)2 svol,_1(EN H)

minlgign_l a;



and

volu_1 (€ N H) = vol,_1 (B2~ (H-;

_ VOln,l(B;"_l

K“(anen)

where K is the Gauf3-Kronecker curvature.

Random Polytopes

a-2)”
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Proof. The left hand inequality is trivial. We show the right hand inequality.
Let p., be the orthogonal projection onto the subspace orthogonal to e,,. We

have

vol, 1(OENHT) = /
£

where 4, = y;, i =1,...,n—1, and

ni < en, Nog(y) >

1
dy

Therefore we get

vol,_1(EN H)

VOln_l(ag N Hi) <

mingepeng- < emNas(x) >

<.
—

1—

an

2
an

‘We have "
()
).
Noe(a) = —L=L
dic 53]
Therefore we get
T
a2
< en,Nag(l') > = ninz -
i1 |5 2
> |1+
33 m1n1<1<n 1 a
<1 + : (
22 minj<j<,_1 a?
(1 T

_1
2
m1n1<z<n la Ty,

(6)
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The last expression is smallest for z,, = a,, — A. We get

a?(24a,, — A?) >_%

< en, Nog(x >2<1—|— -
" () (@, — A)?minj<j<,—1 a?

2Aa? 3
> (1 n .
- < * (an — A)?mini<i<n—1 a?)

The equalities are proved using

n—1

k(anen) = H Z .

i=1 ¢

3

=N

Lemma 1.4. Let K be a convex body in R™ and xy € K. Suppose that the
indicatriz of Dupin at xg exists and is an ellipsoid. Let £ be the standard
approximating ellipsoid at xg. Then for all € > 0 there is Ag such that for all
A< Ag

vol,_1 (K N H(xg — ANagk (20), Nok (%0))) <

vol,—1 (0K N H™ (g — ANpk (z0), Nok (z0))) <

2Aa3
(1+6)\/1+ (a —A)zminrll<'< . a2VOlnfl(KmH(xo—ANaK(xo),N@K(l‘o))),

%

where ay, . ..,a, are the lengths of the principal azes of £.

Proof. We can assume that K is in such a position that Ny (z¢) coincides
with the n-th unit vector e, and that the equation of the approximating

ellipsoid is
2
< } |

Then the proof follows from Lemma 1.2 and Lemma 1.3. O

n
Lq

a;

Sz{xeR”

i=1

Lemma 1.5. Let H be a hyperplane with distance p from the origin and s
the area of the cap cut off by H from BY. r denotes the radius of the n — 1-
dimensional Fuclidean ball H N By . We have

e -1
% =— (rn_gvoln_g(aBg_l))_l =— ((1 —pQ)Tsvoln_g(aBg_l)> .
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Proof. Using (6) and polar coordinates, we get for the surface area s of a cap
of the Euclidean ball of radius 1

1 T t’n72 1 1—p? tn72
= vol,_2(0By~ ———dt = vol,,_2(0By~ —dt.
S VOoly, 2( 2 )/0 (1—t2)% Vol 2( 2 )/0 (1—t2)%

This gives

n—

ds 7V01n—2(533_1)(1 - p

i ) T = —r"3vol,_o(dBy ).

O

Lemma 1.6. (Aleksandrov [Al]) Let K be a convexr body in R™. Then its
boundary is almost everywhere twice differentiable in the generalized sense.

For a proof of this result see [Ban], [EvG], [BCP].

At each point where 0K is twice differentiable in the generalized sense
the indicatrix of Dupin exists. Therefore the indicatrix of Dupin exists almost
everywhere.

Lemma 1.7. (John [J]) Let K be a convex body in R™ that is centrally sym-
metric with respect to the origin. Then there exists an ellipsoid & with center
0 such that

ECKCVné&.

Lemma 1.8. Let K and C be convez bodies in R™ such that C C K and 0
1s an interior point of C. Then we have for all integrable functions f

s @I < v NG >
(@)dusc (z) = /8 ) S ()

f
oc

where {z(y)} = [0,y] N OC.

2 The Surface Body

2.1 Definitions and Properties of the Surface Body

Let 0 < s and let f : 9K — R be a nonnegative, integrable function with
faK fdp=1.
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The surface body K7y s is the intersection of all the closed half-spaces H+
whose defining hyperplanes H cut off a set of Py-measure less than or equal
to s from OK. More precisely,

Kfo= N =
P;(OKNH~)<s

We write usually K, for K  if it is clear which function f we are considering.
It follows from the Hahn-Banach theorem that Ky C K. If in addition f is
almost everywhere nonzero, then Ky = K. This is shown in Lemma 2.1.(iv).

Fig. 2.1.1

We say that a sequence of hyperplanes H;, ¢ € N, in R™ converges to a
hyperplane H if we have for all x € H that
lim d(x, H;) =0,
where d(z, H) = inf{||x —y|| : y € H}. This is equivalent to: The sequence of
the normals of H; converges to the normal of H and there is a point © € H
such that
lim d(x, H;) = 0.

11— 00

Lemma 2.1. Let K be a conver body in R™ and let f : 0K — R be a a.e.
positive, integrable function with [, fdu=1. Let £ € S" 1.
(i) Let xo € OK. Then
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Pp(0K N H™ (z0 —18,€))

18 a continuous function of t on

0,max < xg —y, & >) .
yeK

(ii) Let x € R™. Then the function
Pr(OK N H™ (x —1£,£))

18 strictly increasing on

min < x —y, £ > max < x —y,& >| .
yeK yeK

(iti) Let H;, i € N, be a sequence of hyperplanes that converge to the hyper-
plane Hy. Assume that the hyperplane Hy intersects the interior of K. Then
we have

lim Py(OK NH; ) =P;(0KNHy).

(iv)
K< | K.
0<s

In particular, K = K.

Proof. (i)
vol,—1 (0K N H™ (zo — t&,&))

is a continuous function on
0,max < xzg —y,& > | .
yeK

Then (i) follows as f is an integrable function.
(ii) Since H~ (z,£) is the half space containing = + £ we have for t; < o

H™(z —1:8,8) G H™ (z — 12€, ).

If
Py (OK N H™ (z — t:£,€)) = Py (0K N H™ (z — t2€,£))

then fis a.e. 0 on K N H ™ (z — t2£,&) N HY (x — t1£,€). This is not true.
(iii) Let H; = Hi(x;,&), 1 =0,1,.... We have that

lim i = Xo lim fi == 607
17— 00 i—00
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where g is an interior point of K. Therefore

VYe>03digVi>ig:
6KﬂH‘(a:0 —|—€§0,fo) - 8KQH_(Z‘Z',€¢) - 8KHH_($0 — 650,&0).
This implies
]Pf (8K n H_(IEO + 650,50)) S I[Df (8K n H_((E“gl))
<P (0K NH™ (w0 — €&, &0)) -

Since zq is an interior point of K, for € small enough g — €y and zg + €&
are interior points of K. Therefore,

H(zo — €£0,&) and  H(xo + €o,&0)

intersect the interior of K. The claim now follows from (i).

(iv) Suppose the inclusion is not true. Then there is x €K with z ¢
Uo<s Ks- Therefore, for every s > 0 there is a hyperplane H, with x € H,
and

P;(OKNH;) <s.

By compactness and by (iii) there is a hyperplane H with € H and
P;(OKNH™)=0.

On the other hand, vol,,_1 (0K N H~) > 0 which implies
P;(OKNH™)>0

since f is a.e. positive.
(o)
We have K = K because K| is a closed set that contains K. 0O

Lemma 2.2. Let K be a convex body in R™ and let f : 0K — R be a a.e.
positive, integrable function with [y, fdu=1.

(i) For all s such that Ks # 0, and all z € 0KsN K there exists a supporting
hyperplane H to 0K, through x such that Pp(OK NH™) = s.
(i) Suppose that for all x € OK there is R(x) < oo so that

K C BY(z — R(x)Nyk (), R(x)).

Then we have for all 0 < s that K CI%.

Proof. (i) There is a sequence of hyperplanes H; with K, C Hf and Py (0K N
H;) < s such that the distance between x and H; is less than % We check
this.
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Since x € 0K, there is z ¢ K, with ||z — z|| < 1. There is a hyperplane
H,; separating z from K satisfying

P;(OKNH)<s and K, C Hj'

We have

d(w, Hy) < o — 2| < L.
By compactness and by Lemma 2.1 .(iii) there is a subsequence that converges
to a hyperplane H with z € H and P;(OK N H~) < s.

If P¢(OK N H™) < s then we choose a hyperplane H parallel to H such
that P;(OK N H~) = s. By Lemma 2.1.(i) there is such a hyperplane. Con-
sequently, x is not an element of K. This is a contradiction.

(ii) Suppose there is ¢ € 0K with ¢ € K; and 0 < s. By K C BY(z —
R(2)Nox (x), R(z)) we get

vol,—1 (0K N H(z, Npk(x))) = 0.

By Lemma 2.1.(i) we can choose a hyperplane H parallel to H(z, Naok(z))
that cuts off a set with P;(0K N H~) = s. This means that « ¢ K,. O

Lemma 2.3. Let K be a convex body in R™ and let f : 0K — R be a a.e
positive, integrable function with faK fdu=1.

(i) Let s;, i € N, be a strictly increasing sequence of positive numbers with
lim; oo 8; = 8g. Then we have

zg:ﬂ&r
=1

(it) There exists T with0 < T < % such that K is nonempty and vol,(K7) =
0 and vol, (K;) > 0 for allt <T.

Proof. (i) Since we have for all i € N that K, C K;,, we get

s

K., C (K,

i

=1

We show now that both sets are in fact equal. Let us consider = ¢ K. If
¢ K, then z ¢ (N2, Ks,, as

K:&Qﬁ&r
=1

If r € K and z ¢ K, then there is a hyperplane H with x eH~, K,, C H™,
and
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Pr(KNH) < s.

There is a hyperplane H; that is parallel to H and that contains x. There is
another hyperplane Hs that is parallel to both these hyperplanes and whose
distance to H equals its distance to H;. By Lemma 2.1.(ii) we get

0<P;OKNH) <P(OKNHy) <Pr(OKNH) < sq.

Let s, = P;(OK N Hy ). Tt follows that

x ¢ N HY =K.
Py (H—NOK)<s,

Therefore = ¢ K, for s; > 56.
(ii) We put
T = sup{s|vol,(Ks) > 0}.

Since the sets K are compact, convex, nonempty sets,

n

vol, (K.)>0

is a compact, convex, nonempty set. On the other hand, by (i) we have

KT:ﬂKS: ﬂ K.

s<T vol,, (K4)>0

Now we show that vol,, (K1) = 0. Suppose that vol, (Kz) > 0. Then there is

o GI%T. Let
to = 1nf{Pf(8KOH_)|xO S H}

Since we require that o € H we have that P¢(0K NH ™) is only a function of
the normal of H. By Lemma 2.1.(iii), Py (0K N H ™) is a continuous function
of the normal of H. By compactness this infimum is attained and there is Hy
with x¢g € Hy and

P;(OK N Hy) = to.

Moreover, tg > T. If not, then K+ C HJ and xg € Hp, which means that

xo € 0K, contradicting the assumption that xg €K .
Now we consider K(i/9)(71¢,)- We claim that zo is an interior point of
this set and therefore

vl (K1 7, 1) > 0,

contradicting the fact that T is the supremum of all ¢t with

vol,, (K;) > 0.
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We verify now that xq is an interior point of K(y,2y(r4¢,)- Suppose zg is
not an interior point of this set. Then in every neighborhood of x( there is

x ¢ Ky (Tto)” Therefore for every € > 0 there is a hyperplane H, such that
5 0
Pr(OKNH_) < 3(T +to), x € H, and |z — zol <e.

By Lemma 2.1.(iii) we conclude that there is a hyperplane H with zg € H
and
Pr(OK NH™) < (T +to).

But this contradicts the definition of tg. O

In the next lemma we need the Hausdorfl distance dy which for two
convex bodies K and L in R™ is

(8, 1) = o { i o~ 1. i o~ 1}

Lemma 2.4. Let K be a convex body in R™ and let f : 0K — R be a positive,
continuous function with faK fdu=1.
(i) Suppose that K has a C'-boundary. Let s be such that K, # 0 and let

T € 8Ksﬂlo(. Let H be a supporting hyperplane of K at x such that Py (0K N
H~) = s. Then x is the center of gravity of 0K NH with respect to the measure

JWpornm(y)
< Noknmu(y), Nok (y) >

i.€e.
yf(y)dpoxnu (y)
- OKNH <Nornu(y),Nox(y)>

B f)dpornu (y)
OKNH <Noknu(y),Nok (y)>

)

where Nok (y) is the unit outer normal to 0K aty and Noxnm(y) is the unit
outer normal to 0K N H at y in the plane H.

(ii) If K has a C'-boundary and K, C IO{, then K is strictly conver.

(iti) Suppose that K has a C'-boundary and Ky C IO( Then Kt consists
of one point {x} only. This holds in particular, if for every x € OK there
are r(z) > 0 and R(xz) < oo such that By (x — r(x)Nok (x),r(z)) C K C
BY(x — R(z)Nox (x), R(z)).

(iv) For all s with 0 < s < T and € > 0 there is 6 > 0 such that
dH(KS,KS+5) < €.

We call the point zp of Lemma 2.4.(iii) the surface point. If K7 does not
consist of one point only, then we define 7 to be the centroid of K.
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Proof. (i) By Lemma 2.2.(i) there is a hyperplane H with s = P;(0KNH ™).
Let H be another hyperplane passing through x and e the angle between the
two hyperplanes. Then we have

s=Pr(0KNH™) <Pp(dKNH).

Let ¢ be one of the two vectors in H with [|{]| = 1 that are orthogonal to
H N H. Then
0<P;(OKNH")—P;(dKNH™)
_/ <y-—x,> f(y)tane
17}

xkna < Noxnu(y), Nox (y) >

dpornm(y) + o(e).

We verify the latter equality. First observe that for y € 0K N H the “height”
is <y —z,& > tane. This follows from the following two graphics.

Fig. 2.4.1

H

<y—uz,§>tane
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A surface element at y equals, up to an error of order o(¢), the product
of a volume element at y in 0K N H and the length of the tangential line
segment between H and H at y. The length of this tangential line segment
is, up to an error of order o(e),

<y—x,&>tane
< Nornmu(y), Nox (y) >

<y—x,&>tane

Nornm(y)

Fig. 2.4.3

Therefore,

0</ <y—uxz,&> fly)tane
= Joxnn < Noxnmu(y), Nox (y) >

dpornm(y) + o(e).

We divide both sides by € and pass to the limit for € to 0. Thus we get for all

3
0</ <y-z¢>f@y)
= Joxnu < Noxnu(y), Nox (y
Since this inequality holds for £ as well as —¢& we get for all £
)

knr < Noxnu(y), Nox (y

) >dHaKmH(y)-

7> dpornm(y)

or

xknu < Norxnu(y), Nok (y) >

0= </d v —2)/(y) duamH(y)7£> :

Therefore,
f yf(y)dpoxnm (y)
v = OKNH <Noxnu(y),Nok (y)>

fy)dpoxnm (y)
OKNH <Nokxnuy),Nox (y)>
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(i) Suppose that K is not strictly convex. Then 0K contains a line-segment

[u,v]. Let x € (u,v). As K CK it follows from Lemma 2.2.(i) that there exists
a support-hyperplane H = H(z, N, (x)) of K, such that P;(OK NH ™) = s.
Moreover, we have that u,v € H.

By (i)

f yf (y)dpoxnu (y)
_ JOKNH <Noknu (), Nox (y)>

fy)drornm(y)

OKNH <Nornu(y),Nox (y)>
(iii) By Lemma 2.3.(ii) there is T such that K has volume 0. Suppose that
K7 consists of more than one point. All these points are elements of the
boundary of Kp since the volume of K is 0. Therefore K7 contains a
line-segment [u, v] and cannot be strictly convex, contradicting (ii).

The condition: For every x € 0K there is r(z) < oo such that K D
B (x — r(z)Nak (x),r(x)), implies that K has everywhere unique normals.
This is equivalent to differentiability of K. By Corollary 25.5.1 of [Ro] 0K is
continuously differentiable. The remaining assertion of (iii) now follows from
Lemma 2.2.(ii). O

r=u="v

aK s \\\

0K

Fig. 2.4.4

We have the following remarks.
(i) The assertion of Lemma 2.2.(i) is not true if x € 9K. As an example
consider the square S with sidelength 1 in R? and f(z) = % for all z € 9S.
For s = % the midpoints of the sides of the square are elements of S} /16, but
the tangent hyperplanes through these points contain one side and therefore
cut off a set of Ps-volume % (compare Figure 2.4.4). The construction in
higher dimensions for the cube is done in the same way.

This example also shows that the surface body is not necessarily strictly
convex and it shows that the assertion of Lemma 2.2.(ii) does not hold with-
out additional assumptions.
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(ii) If K is a symmetric convex body and f is symmetric (i.e. f(x) = f(—xz)
if the center of symmetry is 0), then the surface point 7 coincides with the
center of symmetry.

If K is not symmetric then T' < % is possible. An example for this is a
regular triangle C' in R2. If the sidelength is 1 and f = %, then T' = % and
C% consists of the barycenter of C.

(iii) In Lemma 2.4 we have shown that under certain assumptions the
surface body reduces to a point. In general this is not the case. We give an
example. Let K be the Euclidean ball By and

f= Xc + X-c
2V01n_1(0)

where C'is a cap of the Euclidean ball with surface area equal to vol,,_1 (0B%).
Then we get that for all s with s < % that K contains a Euclidean ball with
positive radius. On the other hand K/, = 0.

2.2 Surface Body and the Indicatrix of Dupin

The indicatrix of Dupin was introduced in section 1.5.

Lemma 2.5. Let K be a convex body in R™ and let f : 0K — R be a a.e.
positive, integrable function with fak fdp = 1. Let g € OK. Suppose that
the indicatriz of Dupin exists at xo and is an ellipsoid (and not a cylinder).
For all s such that K, # 0, let the point x5 be defined by

{zs} = [z, zo) N OKS.

Then for every € > 0 there is s. so that for all s with 0 < s < s. the points
x5 are interior points of K and for all normals Nak_ (xs) (if not unique)

< N@K(-’L‘O)aNc’?Ks (.%‘S) >>1—e.

If xy is an interior point of an (n — 1)-dimensional face, then, as in the
example of the cube, there is sy > 0 such that we have for all s with 0 < s < 59
that xg € 0K,. Thus x5 = zg.

Proof. Let us first observe that for all s with 0 < s < T where T is given by
Lemma 2.3.(ii) the point x4 is an interior point of K.
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T

Fig. 2.5.1

First we observe that xy # xp since the indicatrix of Dupin at xg is an
ellipsoid. Again (see Figure 2.5.1), since the indicatrix of Dupin at xq is an
ellipsoid, (21, xg) is a subset of the convex hull of a cap contained in K and

. Thus (21, o) CK. Lemma 2.1.(i) assures that
P;(OK N H(xg — tNok (z0), Nok (z0)))

is a continuous function on [0, maxyex < o — Y, Nox (xo) >).
We claim now

V8§ > 03ss > 0Vs,0 < s < s5 :< Nor(20), Nok,(xs) >>1—0.
Suppose that is not true. Then there is a sequence s,, n € N, such that

lim s, =0 lim Nk, (zs,)=¢

n—oo n—oo

where £ # Nok (z¢). By Lemma 2.1.(iv) lim,,_,o 25, = 2. Thus we get

lim s, =0 lim z,, = xo lim Nog, (zs,)=¢.

n—oo n—oo

Since the normal at z( is unique and & # Nyx (xg) the hyperplane H (zo, &)
contains an interior point of K. There is y € K and a supporting hyperplane
H(y,&) to K at y that is parallel to H(zg,&). There is € > 0 and ng such
that for all n with n > ng

B3 (y,€) N H' (s, Nox., (vs,)) = 0.

Thus we get
By(y,o)n | J K., =0.

n>ngo

On the other hand, by Lemma 2.1.(iv) we have

U K. 2K .
>0

This is a contradiction. 0O
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Lemma 2.6. Let A : R" — R™ be a diagonal matriz with a; > 0 for all
i=1,...,n. Then we have for all x,y € R™ with ||z| = ||y|| =1

H H <maX1<Z<TL aZ) ||.T—y||
1Az]l T Ay] ming <<, a;

In particular we have
A A . N 2
_ <_m _y> <3 (M) o — .
[ Az|" | Ayl min<i<n @i

Proof. We have
[Az — Ayl < (max ai)llz -y

HIAwII AyIIH HIIAJJII IAxH HHA%I IAyIIH

(masicicnanlle —yl Azl — Ayl
= | Az] [ Az{|]| Ay
- 2(m&X1§i§n a)||lz -yl
|| Az|]
Since ||z]| = 1 we have |[Az| > mini<i<p [ag||lz]]. O

By Lemma 2.5 the normal to 0K, at x4 differs little from the normal to
K at z¢ if s is small. Lemma 2.7 is a strengthening of this result.

Lemma 2.7. Let K be a convez body in R™ and xy € OK. Let f : 0K — R
be an integrable, a.e. positive function with faK fdu =1 that is continuous
at xg. Suppose that the indicatriz of Dupin exists at xo and is an ellipsoid
(and not a cylinder). For all s such that Ky # 0, let x5 be defined by {xs} =
[.TT, 3?0} NoK,.

(i) Then for every e > 0 there is s so that for all s with 0 < s < s, the points
x5 are interior points of K and

s <Py(OK N H™ (x5, Nor (20))) < (1 +¢)s.

(i) Then for every e > 0 there is se so that for all s with 0 < s < s, and all
normals Nag_ (zs) at x

s <P(OK NH (x5, Nok,(zs))) < (1 +¢€)s.
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Proof. We position K so that xg = 0 and Npx(xg9) = e,. Let b;, i =
1,...,n — 1 be the lenghts of the principal axes of the indicatrix of Dupin.

Then, by Lemma 1.2 and (3) the lengths of the principal axes of the standard
approximating ellipsoid & at x( are given by

n—1 ﬁ n—1 %
aizbi<Hbi> i=1,....,n—1 and an:<Hbi> .
i=1 i=1

We consider the transform 7 : R” — R" (5)

2 2
n—1 n—1 n—1 n—1
T(z) = Z—i (H bi> L It (H bi> x| (7)
i=1

In-1 \iZ1

This transforms the standard approximating ellipsoid into a Euclidean
ball with radius r = (H?;ll b;)?/"=V . T is a diagonal map with diagonal
N Van

elements LR et R T
Let € > 0 be given. Let § > 0 be such that

(1+0)3
(1—6)(1 - c2)

3 < 1+e¢,
where
bi
max {maxlgign_l Vi 1}
2 .
i i ) bi
min § mMinj <;<np—1 Van

As f is continuous at z( there exists a neighborhood Bj(zg,a) of xg such
that for all x € BY(xg, ) N OK

f(wo) (1=0) < f(x) < f(wo) (1+0). (8)

By Lemma 2.5, for all p > 0 there exists s(p) such that for all s with 0 < s <
s(p)

C =

<N8K(930)7N8K5(33s) >> 1—p (9)

and the points =4 are interior points of K.

Therefore, for § > 0 given, it is possible to choose s(d) such that for all
s with 0 < s < s(9), Nak(x0) and Nyg, (zs) differ so little that both of the
following hold

OK NH™ (x5, Nok, (25)) € By (zo, @) (10)

and
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< NBK(xO)vNOKS (335) >>1-9. (11)

Indeed, in order to obtain (11) we have to choose p smaller than §. In order
to satisfy (10) we choose s(d) so small that the distance of 5 to xg is less
than one half of the height of the biggest cap of K with center z( that is
contained in the set K N B (xo, ). Now we choose p in (9) sufficiently small
so that (10) holds.

As the points xs are interior points of K, by Lemma 2.2.(i), for all s with
0 < s < s(9) there is Ngg, (z5) such that

s =Pr(0K N H(zs, Nok, (x5)). (12)

Please note that

T~ (Nox, (x5))
[T~ (Nox, ()|

is the normal of the hyperplane
T(H(zs, Nok, (5)))-

We observe next that (9) implies that for all p > 0 there exists s(p) such that
for all s < s(p)

T_lt(NBKS (zs)) 2
(oo ey ) 2 1 a4

where T~ is the transpose of the inverse of T' and ¢ the constant above.
Indeed, since

< NBK(xO)vNBKS(l's) > Z 1 —p

we have

[Nok (x0) — Nox, (xs)|| < v/2p.
Now we apply Lemma 2.6 to the map T~ 'f. Since Nyx(ro) = e, =
T~ (e,) = T~ (Nax(x0)) we obtain with

b;
max{maxi<j<p—1 NS 1}

c=2— - b |
min{min; <;<p—1 T }

that

[t ~ et ]| < v

which is the same as

T~"(Nox, (x5)) > .

1—cp< <N(')K(-TO)7 ||T*1t(]\73](S (xs))”
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By Lemma 1.4, for § given there exists t; such that for all ¢t with ¢ < ¢4

vol,—1 (K N H(zg —t Nok(x0), Nor(x0)))
<vol,_1(0K N H™ (z9 —t Nax(20), Nox (20))) (15)

2ta3
< (1+6)/1 &
- ( * )\/ * (an — t)2 minlgign,1 a?

XVOlnfl(K N H(l’o -t ]\/v(il'())7 N(l’o)))

Recall that r is the radius of the approximating Euclidean ball for T'(K) at
xg = 0. For § given, we choose 1 = 1(9) such that

1—(1—c28)nt
7 < min r(—c);,é . (16)
14 (1—¢2)n7
Then, for such an 7, by Lemma 1.2, there is t3 > 0 so that we have for all ¢
with 0 <t < g
By (xo — (r = n)Nox (o), — 1) NT(H(xo — t Nox (o), Nox (0)))
CT(K)NT(H(xzo —t Nak(xo), Nox (x0))) (17)
C By (zo — (r+n)Nox (o), +n) NT(H(xo —t Nox (z0), Nox (0)))-
Let to = min{tl,tg}.

By (14) we can choose s(n) such that for all s < s(n), Nok(z) and the
normal to T(H (zs, Nok.(zs))) differ so little that both of the following hold

t(Na ( )) 2 2
<N3K(LEQ) T (Noxc ( ))||>21—c7721—06 (18)
and
min{yn|y = (y1,..-,yn) € T(H (25, Nox, (2s))) (19)

NB3 (zo — (r — n)Nox (z0), 7 —n)} = —to.
Then we get by (17) for all s with 0 < s < s(n)

By (zo — (r —=n)Nox (o), r —n) N T(H(xs, Nok, (25)))
CT(K)NT(H(zs, Nok,(zs))) (20)
C By (zo — (r+n)Nox (o), r +n) N T(H(zs, Nok, (25)))-
The set on the left hand side of (20) is a (n — 1)-dimensional Euclidean ball
whose radius is greater or equal

20— mhs — 2 (21)

where hg is the distance of T'(z,) to the boundary of the Euclidean ball
By (xo — (r — n)Nax (x0),r — n). See Figure 2.7.1. The height of the cap
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KNH™ (zs, Nok (x0))
is denoted by As. It is also the height of the cap
KnNH (T(xs), Nox (z0))

because T does not change the last coordinate. Let 6 be the angle between
xo — T'(zr) and Nyk(xo). Then we have by the Pythagorean theorem

((r=m) = he)* = ((r =) = As)* + (A, tan )

and consequently

2 2
b ) 1_\/(1_ AS> +<Astan6‘)
r=n r=n

B (xg — (r—n)N(zo),r—n)

zo— pN (%0)
Fig. 2.7.1

xo and T'(xg) are in the plane that can be seen in Figure 2.7.1. We use
now /1 —-t<1-— %t to get that

1 A2
he > Ag — = —=
= 2

(1+tan®6). (22)

Now we prove (i). The inequality
s <Py(0KNH (x5, Nox(x0)))

holds because H passes through ;. We show the right hand inequality. Let
€,0 and 1 be as above. We choose ss5 such that
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1. ss < min {3(5),3(77) }

n 25 4¢28(r —
2. A, Smin{to,%,(r—n) az c?6(r —mn)

"8 minj<;<(p—1) b (n —1)(1+ tan?® )’
1+ (1 — 25t

2 7“—17—+( ) 5 .
1— (1 - c25)m

We have for all s < s5
vol,—1 (0K N H™ (x5, Nog_(x5))) > vol,—1 (K N H(zs, Nox,(zs)))-

Now note that

voly,—1(pe, (K N H(xs, Nok,(x5))))

VOlnfl(KmH(ms;NaKs(mS))) = < NaK(xo) NBK (117 ) >

(23)

2 volyp—1(pe, (K N H(zs, Nok,(5))))  (24)

where p, is the orthogonal projection onto the first n — 1 coordinates.

Pe,, (K N H(zs, Nor_(25)))

Fig. 2.7.2

Since T' o p,, = pe,, o1 and since T' is volume preserving in hyperplanes
that are orthogonal to e, we get

vol,—1 (0K N H™ (x4, Nox, (25)))
> volp—1(pe, (T(K) NT(H (x5, Nok, (25))))

T~ "(Nox, (z5)) >
=( Nyk(x 2 vol T(K)NT(H(zs, Nok,(xs))).
< aK( 0) ||T 1t( 9K, ms))H n— 1( ( ) ( ( GK( )))
The last equality follows from (13) and (23). By (18) we then get that the

latter is greater than or equal to
(1 —¢26) vol,_1(T(K)NT(H(zs, Nog. (25)))),

which, in turn, by (20) and (21) is greater than or equal to
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(1= c20)vol,_1 (BE™Y) (2(r — n)he — h2) "

n—1
By (22) and as the function (2(r —n)A — A?) 2 is increasing in A for A <
r — 1, the latter is greater or equal

n— 1 +tan20 As n_;l n;l
(1 — 026)V017L_1(BQ 1) (1 — ﬂ) (2(7' — n)Aé — Af) .

(25)

In the last inequality we have also used that (1 — %)% <1.

A < (nff;(i(% implies that

2 ot 2\ %
1_% >(1-— 2c 5 > 1 — 2.
2(r—mn) n—1

_2
Ay <2 (r — n%) implies that
1—(1—c28)n—1

2r —m) =2+ 0)(1 = E0)TT > A1~ (1= E0)7T)
which is equivalent to
20— 1) — Ad) = (1= c26)77 (2(r + 1) — A,)

and
n-1 n_t
(2(r —n)As — Ag) 7 > (1-c%) (2(r +n)As — A?) 2
Hence we get for all s < s5 that (25) is greater than

n—1
2

(1= 26)>vol,_1(By~Y) (2(r +m)As — A2)
= (1 —c?0)3vol,_1(BY(xo — (r + 1) Nax (x0),7 + 1)
NH (zg — AsNox (20), Nor (70)))
= (1 —c*)3vol,,_1 (B (xo — (r +n)Nax (x0),r + 1)
N T(H(zo — AsNok (0), Nox (0)))),

as T does not change the last coordinate. By (17) the latter is greater than

(1 — ¢28)3vol,_1(T(K) N T(H(zo — AsNok (20), Nox (z0)))
= (1 — 025)3V01n_1(K N H(JZO — AsNBK(Z‘O); NaK(Jjo)))
(1 —¢26)? vol,_1(0K N H™ (xg — AsNax (z0), Nox (70)))

= 14 :
2A,a3 2
(1 + (an—As)2 ming<;<(n-1) af)
(1—c26)3 -
>~ vol, 1 (0K N H (xg — AsNax (z0), Nox (70))).

(144)2
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The second last inequality follows with (15) and the last inequality follows
A<
as A = 8 minj<i<(n_1)bi’

Therefore we get altogether that

volo_1 (0K N H™ (24, Nox. (z5))) (26)
> wvol 1(8K n Hi(IEO — A N@K(IO) NaK(I‘())))
= (1 —i—é)% n— s )

Hence, by (12)

s =B (0K N H™ (ae, Noi, (2.))) = | F(@)dp
OKNH~ (xs,Nok, (xs))
By (8)
s> (1 — 5)f(x0)voln_1(8K n Hi(xs,NaKs (l‘é)))
By (26)

. (1-9a —3025)3
(1+4)2

f(wo)vol,—1 (0K N H™ (z0 — AsNok (o), Nok (70))))-

By (8) and (10)

(1—=6)(1—c%)3 /

1+ 5)% OKNH~ (z9g—AsNok (z0),Nox (z0)))
1—-08)(1—¢%5)3
_ (1)5_ 5 ) Pr(0K N H™ (20 — AsNox (w0), Nox (20))))-

s =

f(z)dp

For e given, we choose now s. = s5. By our choice of ¢, this finishes (i).

(ii) We assume that the assertion is not true. Then
Jde > 0Vse > 03s,0 < s < s.INox, (zs) : Pr(OKNH (x5, Nog,(xs))) > (1+¢€)s.

We consider y; € H(xs, Nok, (x5)) such that T'(ys) is the center of the n — 1-
dimensional Euclidean ball

By (xo = (r —n)N(xo),r —n) NT(H(zs, Nok, (5)))-

Since ys € H(zs, Nok.(zs)) we have y, ¢ IO( s. Consequently, by the definition
of K, there is a hyperplane H such that y, € H and Py(0K NH™) < s.

On the other hand, we shall show that for all hyperplanes H with ys € H
we have Py(OK N H~) > s which gives a contradiction.

We choose ¢ as in the proof of (i) and moreover so small that e > 106 and
ss small enough so that the two following estimates hold.
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(1—|—€)3 ]P’f(aKﬂHf(xé,NaKs(xa)))

<
< (14 0)f(xo)vol,—1(OK N H™ (x5, Nok.(zs)))

We verify this. As f is continuous at xg, for all 6 > 0 there exists « such that
for all © € B¥(xq, ) N OK

(1=0)f(zo) < f(x) < (14 6)f(x0).
By Lemma 2.5, for all p > 0 there is s, such that for all s with 0 <s <,
< NE)K(«TO),N(’)K,(I's) >>1-np.

Moreover, the indicatrix at xo exists and is an ellipsoid. Therefore we can
choose s, sufficiently small so that for all s with 0 < s <,

OK NH™ (zs, Nok,_(zs)) C B (xo, ).

Thus there is ss such that for all s with 0 < s < s§

Py (0K O H™ (24, Nog. (¢4))) = / f(@)dp(z)
OKNH~ (zs,Nok4(xs))

< (140)f(zo)volp,—1(OK N H™ (x5, Nox.(zs)))-

Thus
(14¢€)s < (140)f(zo)volp_1(OK N H™ (zs, Nok.(s)))-

Since the indicatrix at xo exists and is an ellipsoid for all p there is s, such
that for all x € 0K N H™ (x5, Nok, (z5))

< Nog(x), Nok, (zs) > >1—p.
Therefore
(I4+¢€)s < (1420)f(zg)vol,—1(K N H(xs, Nk, (x5)))
which by (23) equals

voln 1 (pe, (K N H(wy, Nox, ()

(1 + 25)f($0) < NaK(xO)’ ]\Za[(S (Z‘s) >

By Lemma 2.5 for all s with 0 < s < s5
(14+¢€)s < (14 308)f(zg)voly—1(pe, (K N H(xzs, Nog,(25)))).

Since T o pe, = pe, o1 and since T is volume preserving in hyperplanes that
are orthogonal to e, we get

(I4+€)s < (14 30)f(xo)voly—1(pe, (T(K)NT(H(zs, Nor.(zs)))))-
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Since

T(K)NT(H(zs, Nok,(25))))
C By (o — (r +n)Nox (x0), 7 +n) N T(H(zs, Nok, (25))))

we get
(1+e€)s
< (1+ 30) f (0)vlu1 (pe, (B3 (x0 — (r + 1) Nog (x0), 7 + 1))
NT(H(xs, Nox,(25))))
and thus
(I+¢€)s

< (1+49)f (wo)voln—1(pe, (B3 (xo — (r — n)Nox (z0), 7 — 1)
NT(H (zs, Nox, (z5)))))-

Since T'(ys) is the center of
By (xo — (r = n)Noxk (z0), — 1) N T(H (x5, Nox, (25))))
we have for all hyperplanes H with y, € H

(1+¢€)s
< (L+449) f(zo)voln—1(pe, (B3 (xo — (r — n)Nox (x0),7 —n) NT(H)).
Thus we get for all hyperplanes H with y, € H and
By (zo — (r —n)Nok (o), —n) NT(H) € T(K) NT(H)
that
(14+€)s<(1+55)P(OKNH).

Please note that ¢ > 105. We can choose s5 so small that we have for all s
with 0 < s < s5 and all hyperplanes H with y; € H and

By (zo — (r —n)Nox (z0),r —n) NT(H) £ T(K) N T(H)
that
s < ]P)f(aK N Hi).
Thus we have s < P;(0K N H™) for all H which is a contradiction. O

Lemma 2.8. Let K be a convex body in R™ and x¢g € OK. Suppose that the
indicatriz of Dupin at xg exists and is an ellipsoid. Let f : 0K — R be a a.e.
positive, integrable function with [ fdp =1 that is continuous at zo. Let € be
the standard approximating ellipsoid at xg. For 0 < s < T let x5 be given by
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{zs} =[x, 0] N OK,
and s by
{Zs} = H(zs, Nok,(xs)) N {x0 + tNok (zo)|t € R}.
The map @ : 0K N H(xs, Nok.(xs)) — 0E N H(xs, Nok_(xs)) is defined by
[@(y)} = 0€ N {7 + t{y — z,)It = O},

Then, for every € > 0 there is s such that we have for all s with 0 < s < s,
and all z € O N H(x4, Nok,(x5))

1 1

V1= < Noe(2), Nok(@5) 2 /1= < Nox (@ 1(2)), Nox, (25) >

< )
V1= < Nag(2), Nok, (z5) >2

Proof. During this proof several times we choose the number s, sufficiently
small in order to assure certain properties. Overall, we take the minimum of
all these numbers.

Note that Z, € K and by Lemma 2.7.(i) =, is an interior point of K for s
with 0 < s < s.. Therefore the angles between any of the normals are strictly
larger than 0 and the expressions are well-defined.

Let zs be given by

{zs} = {0 + tNox (zo)|t € R} N H(zs, Nok (x0)).

Fig. 2.8.1

In Figure 2.8.1 we see the plane through zy spanned by Ngk(x¢) and
Nok.(zs). The point x4 is not necessarily in this plane, but z, is. The
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point x4 is contained in the intersection of the planes H(x,, Nk (xs)) and
H(zs, Nok (0)).

As in the proof of Lemma 2.7 let b;, i = 1,...,n — 1 be the lenghts of the
principal axes of the indicatrix of Dupin. Then, by Lemma 1.2 and by (3)
in the standard approximating ellipsoid £ at x( the lengths of the principal
axes are given by

1 2
n—1 n—1 n—1 n—1
ai:bi<Hbi> i=1,....,n—1 and an:<Hbi> .
i=1 i=1

We can assume that zop = 0 and Ngg (z¢) = e,. The standard approximating
ellipsoid £ is centered at z¢ — a, Nok (x¢) and given by

n—1 le
2+ <L
n

a

2
T
ai

=1

We consider the transform 7" : R" — R"

T n—1 % z n—1 %
T(z) = a_i (H bi> R (H bi> T
=1 =1

Up—1

See (5) and (7). This transforms the ellipsoid into a Euclidean sphere with
2
radius p = (H?;ll bi) " e
T(E) = Bg ((0’ s ,0, _p)vp) .

Let 6 > 0 be given. Then there exists s5 such that for all s with 0 < s < s5
and all normals Nyg,_ (zs) at s (the normal may not be unique)

F(20) volu—1 (T(E) N T(H (s, Norc, (w,))) < (1 +8)s. (27)
Indeed, by Lemma 2.7.(ii) we have
Py (0K N H (v, Nox. (2,)) < (1+6)s.
Now
(1+96)s >Pr(0KNH (x5, Nk, (xs)))

f(z)dpsr (x).

/BKOH(xS,NaKs (zs))
By continuity of f at zq

(1+6)%s > f(xo)vol,_1(OK N H™ (x4, Nox.(5)))
> f(xg)vol,—1 (K N H(xs, Nok,(x5))).
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We have Nyk (xo) = e,. By (23) we see that the latter equals

vol, 1 (pe, (K N H(xy, Nok,(7))))
< Noxk(z0), Nok, (zs) > .

f(xo)

Since < Nk (o), Nok.(zs) ><1
(1+6)%s > f(xo)vol,_1(pe, (K N H(xs, Nog,(25)))).
Since T' is volume preserving in all hyperplanes orthogonal to Ny ()
(1+6)%s > f(wo)voln—1(T(pe, (K N H(ws, Nox, (25)))))-

Since T o pe, =pe, o T
(1+5)2szf(:co)volnfl(pen(T( ) T(H(ws, Nox, (25)))))
o ey T o (1)
= f(=zo) <N8K( 0); ||T (Nox. (s ))|>
xvol, 1 (T(K)NT(H(zs, Nok, (xs))))-

The latter equality follows since e,, = Ny (xg). As in the proof of Lemma
2.7. (i) we get

(146)%s > f(zo)vol, 1 (T(K)NT(H(zs, Nok. (75))))-

T(€) approximates T(K) well as £ approximates K well. By Lemma 2.5 we
have < Npk (zo), Nok.(zs) >> 1 — 4. This and Lemma 1.2 give

(1+8)*s > f(zo)vol, 1 (T(E) NT(H(xs, Nok, (25)))).

Now we pass to a new 0 and establish (27).
Zs is the point where the plane H(zs, Nok,(xs)) and the line through zg
with direction Ny (o) intersect.

{Zs} = H(zs, Nok, (xs)) N {zo + tNok (w0)[t € R}
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Bg((ov s 707 *P),P)

To— [)N(TO)
Fig. 2.8.2

In Figure 2.8.2 we see the plane through zy spanned by the vectors
Nog (w9) and T~ (Nax. (z5)). The point z, is also contained in this plane.
The line through zg, T'(xs), and T'(z7) is not necessarily in this plane. We
see only its projection onto this plane. Also the angle 6 is not necessarily
measured in this plane. 6 is measured in the plane spanned by Ny (z0) and
xg — T(xr).

« is the angle between the hyperplanes

T(H(xs, Nok(zs))) and H(zs, Nog(z0)).
Please observe that z, = T'(Zs), zs = T(zs) and that the plane
T(H(zs, Nok, (25)))

is orthogonal to T~ (Npk. (z5)).
We observe that for small enough s5 we have for s with 0 < s < s5

[0 = %5 = (1 = &)[lwo — 2| (28)
which is the same as
lzo = T(Z)Il = (1 = 0) ][0 — 2s]-
We check the inequality. Figure 2.8.2 gives us that
|Zs — zs|| < tanftan al|zg — 25]|-

We would have equality here if the angle 8 would be contained in the plane
that is seen in Figure 2.8.2. The angle 6 is fixed, but we can make sure that
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the angle « is arbitrarily small. By Lemma 2.5 it is enough to choose ss
sufficiently small. Thus (28) is established.
By Figure 2.8.2 the radius of the n — 1-dimensional ball

Bj(zo — pNok (z0), p) NT(H (x5, Nok, (75)))

2 _
with p = (H:-:ll bi) " equals

V2 = (p = llzo — z5])? cos? &

which by (28) is greater than or equal to

V= (p— (A=)l — )2 cos?a

- \/p2 (o= (=00 = 2 Noc(ao)

T—'(Npk, (xs)) >2
NT(Nox, (z))ll /-

By (27) we get with a new ¢

—1t p T e
[pz —(p— (1= 6)||mo — 2s||)? <N6K(”30)’ |;1tg22 Ex:§§ll > ]

XVOln_l(Bg_l)

< vol,— 1 (T(E) N H(T(xs), T~ (Nok, (z5)))) <

On the other hand,
s <P(OK NH (x5, Nox(x0))) =Pr(0K NH (zs, Nox(20)))
f(@)du(z).

/BKDH—(zS,NgK(a:O))
Now we use the continuity of f at xg and Lemma 1.4 to estimate the latter.
s < (149)f(xo)vol,—1 (K N H(zs, Nox(20)))

As above we use that T is volume-preserving in hyperplanes orthogonal to
Nok (xo). Note that T'(H (zs, Nox (x0))) = H(zs, Nox (x0)).

s < (14 0)f(xo)voly—1(T(K) N H(zs, Nox (0)))
Since T'(€) approximates T'(K) well (Lemma 1.2)
5 < (14 6)2f(wo)vol,_1(T(E) N H(zs, Nor (x0)))-

Therefore (29) is less than



48 C. Schiitt and E. Werner

(14 6)3vol,_1(T(E) N H(zs, Nag (20)))
= (1+0)*(p® = (p— l|lzo — 2[)?)*T vol,_1 (B ™)
= (14 6)%(2p]lw0 — 2]l — llw0 — 2:[2) 7 voln_1(BE ™).

From this we get

—1t z 2
p2 _ (p _ (1 — 5)“3:0 — z:s”)2 <N6K($O)’ |§1t5x2§: Exji” >

< (1+8)77 (2pl|lzo — 26| — |0 — 25]1?)
which gives us
T (Nog, () >
—(1-96 —321—<N zo), s '8
= =)l Z'”( o100 0 N, ()]
< (14 8)77 (2pl|lzo — 25| — [lwo — 2s|?)
—2(1 — &)pllao — 2| + (1 — 6)2[|zo — 2%

This is less than ¢dp||zg — 2s|| where ¢ is a numerical constant.

By (w0 = (p +mN, 1 (%0), p+ 1)

0K

/ 4 T \

To — ﬂNaK(‘E(J) ’

Fig. 2.83

Thus we have

vy, T Wor @) \* o pllae =zl
1= (Moo [ o) <5 e

If we choose sg sufficiently small we get for all s with 0 < s < s5
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T-Y(Nok, (25) \*
1— (N, LI <4d — Zs||-
< aK(IO)v ||T_1t(N8KS(xs>)||> = ||‘T0 Z || (30)
This is equivalent to
T_lt(NaK (z5))
— (N s <46 — 2 31
(oo e ey ) < Sl =1 31
which is the same as
YNogk. (2s))
[Norcton) - rmmaeeeto | < Va0 . (32)

||T 1t NE)K 3?3

Now we show that for every € > 0 there is s, such that we have for all s with
0<s<s,

[Nok (7' (2)) — Noe(2)|| < ey/llzo — 2s]. (33)

By Lemma 2.6 it is enough to show

1t NaK 1(2))) Tflt(Nag(Z)) ) —
HIIT T(Nowe (@ 1(2)] ||T—1t<zvag<z>>||HS o = 2]l

T transforms the approximating ellipsoid £ into the Euclidean ball T'(£) =
By (xo — pNak (x0), p). We have

T~ (Nox (271(2)))
[T~ (Nor (271(2)))l

Nork (T(®7'(2))) =
and )
T~(Nae(2))
[T (Nog (2))]]

Therefore, the above inequality is equivalent to

[ Norx (T(®71(2))) — Nore (T (2))|| < ey/[lz0 — 2]l-

T(z) and T(®~1(z))) are elements of the hyperplane T(H (x4, Nok,(zs)))
that is orthogonal to T~ (N, (xs)). We want to verify now this inequality.
It follows from Lemma 1.2 that for every n there is a § so that

By (o — (p — n)Nax (x0), p —n) N H™ (20 — INak (70), Nox (20))
- T(K) N H_(LL'() — 5N3K($0), NaK(LL'())) (34)
C By (o — (p+n)Nok (wo), p+n) N H ™ (z0 — 6Nok (20), Nok (0))-

Nore(T(2)) =

For s, sufficiently small we get for all s with 0 < s <5,
T(H™ (s, Nox,(x5))) N By (zo — (p + n)Nox (o), p + 1)
C H™ (x0 — 2[lxo — 2s[Nox (20), Nox (20)) (35)
NB3 (xo — (p+ 1) Nok (x0), p+1).
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We verify this. By (30) the angle 8 between the vectors

T~"(Nox. (z5))
[T~ (Nox, (25))]l

Nok (xo) and

satisfies sin® 8 < 6||zg — 2| In case (35) does not hold we have

1 s
tan g > L+, [P0 =%l
4 p+n

This is true since T'(H (x5, Nok, (xs))) intersects the two hyperplanes H (zo —
lxo—zs|| Nok (x0), Nox (x0)) and H (z¢—2||xo—2s||Nok (o), Nox (z0)). Com-
pare Figure 2.8.4.

Zo

""""""""""""""""""""""""""""""""" T H(wo — ||lwo — 25 ]| Nox (20), Nox (%0))

memmfemeeeeee o ETorrzzIIIIIIIIIIIIIIIIIIIISIIIIISIIZIZZIIZIZIAmmm--e-mm----obeao.

T(H(zs, Nok,(s))) H(xo — 2|z — 2z4||Nok (z0), Nox (o))
Fig. 2.8.4

This is impossible if we choose ¢ sufficiently small.

Let s, be such that (35) holds. The distance of T(®~1(z))) to the bound-
ary of BT (zo — (p —n)Nax(xo), p — 1) is less than :‘_—"ﬂon — 2s||. We check
this. T(®71(2))) is contained in BY(x¢ — (p + n)Nox (o), p + 1) but not in
By (xo — (p —n)Nox (x0), p — ). See Figure 2.8.5.

To

B3 (zo— (p+n)N,

8K(‘T0)7p+77)

70— (=N, (70 BY (z— (p=n)N, . (¥0),p—1)
Fig. 2.8.5
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Let t,, denote the n-th coordinate of T(®~1(z))). By Figure 2.8.5 we get
ll(z0 = (p — m)Nox (0)) = yl|*

= (p—n—ta)> + Q2ltal(p+n) —t2)
=(p—n)" + 4nltn].

Thus the distance of T(®71(2))) to the boundary of
By (zo — (p = ) Nox (o), p — 1)
is less than

(o — (p — 1) Nox (z0)) =yl — (p—n)
= (p—n)%+4nlta] — (p—n)

o dnltn| _
= n){\/H(pn)Q 1}

2ntn|  2nlts|
<= = :
( )(p—n)2 p—n

By (35) we have |t,| < 2||zo — 2s||. Thus we get

dnllzo — 2|

I(zo = (p = m)Nox (z0)) —yll = (p =) < s

Thus the distance of T(®#1(z))) to the boundary of
By (zo — (p = n)Nox (20), p — 1)

is less than

dn

HxO - Zs” (36)

By (34)

By (xo — (p —n)Nox (x0),p — 1) N H™ (20 — 0Nax (o), Nok (x0))
- T(K) NH™ (1‘0 — (SNE)K(LC()), Nax(ﬁ())).

Therefore a supporting hyperplane of 9T (K) at T(®~1(z))) cannot intersect
By (xo — (p = n)Nok (x0), p —n) N H™ (20 — Nok (x0), Nox (x0))-

Therefore, if we choose s, small enough a supporting hyperplane of 9T (K)
at T(®~1(2))) cannot intersect

By (zo — (p — n)Nok (x0), p — 1)
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We consider now a supporting hyperplane of By (xo — (p — n)Naox (x0), p—n)
that is parallel to T(H(®~1(z), Nox(®271(2)))). Let w be the contact point
of this supporting hyperplane and B (xo — (p — 1) Nok (x0), p —n). Thus the
hyperplane is H(w, Nogx (71(2)))) and

NoBy (20— (p—n) Nox (z0),p—n) (W) = Norx (T(@7'(2))). (37)
We introduce two points v € 0B (xo — (p — n)Nax (xo), p — 1) and u.

T(97'(2))) — (w0 — (p — 1) Nok (x0))
|T(@71(2))) — (xo — (p — m)Nox (o))l

{u} = [wo = (p = M)Nox (20), T(®~"(2))] N H(w, T~ (Nox (27(2))))

v=2x0— (p—n)Nor(zo) + (p—n)

H(T(®7(2)), Nox (T(®71(2))))

L]

BY (20— (p— n)Na @) p =)

o (=N, )

Fig. 2.8.6
We claim that
[w—ul| < ev/llzo — 2]

We check this inequality. By the Pythagorean theorem (see Figure 2.8.6)

lw —ull = Vlu — (w0 — (p — n)Nox (z0)) > — (p — n)*.

By (36) the distance ||T(®~1(z))) — v|| of T(®71(2))) to the boundary of
By (xo — (p — 1) Nax (zg),p — 1) is less than %Hx — z;|. Since |lv —u| <

|lv —T(P71(2)))| we get with e = pi_%
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lw —ull < /(p—n+elzo— 22 = (o —m)?
< V2epllzo — zll) + (ellzo — 2)>

This implies
lw —ull < ev/]lzo — 2|

and also
[w—2| < ev/llzo — 2l
Since
N(w) = Nopg (z—(p—n)Nox (z0).p—n) (W)
N(v) = NoBg(wo—(p—n)Nox (z0),0—m) (V)
we get

[N(w) — N(v)|| = lw =l _  Vllzo = 2l

p—=n p—
Since N(w) = Nog (T(971(2)))) we get

L V=]

[ Noz ) (T(®71(2)))) = N(v)]| P

‘We observe that

€
o =T < ZVliwo = 2|l

This is done as above. Both points are located between the two Euclidean

balls By (zo — (p = n)Nox (20), p —n) and B (zo — (p + n)Nox (x0), p + 1)
The line passing through both points also intersects both balls and thus the

distance between both points must be smaller than £/ lzo — 2s]|-

From this we conclude in the same way as we have done for N(v) and
Nor (T(®71(2)))) that we have with a new e

[N (v) = Nore(T(2))| <
Therefore we get by triangle inequality
_ €
Norsc(T(@ () = Nore (T < v/ Toa = =]

and thus finally the claimed inequality (33) with a new €

INox (27 (2)) — Noe (2)|l < eV/llwo — zs]|-

Now we show

1— < Nog (P71(2)), Nok, (z5) >2 > c|lxo — 2s]|- (38)
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For all s with 0 < s < s, the distance of T(xs) to the boundary of TE =
B (xo — pNok (z0), p) is larger than ¢||xzg — zs||. Thus the height of the cap

TENH™ (s, Nok, (zs))

is larger than c||zg—z;||. The radius of the cap is greater than \/2cpl|zo — 25|
By Figure 2.8.2 there is a ¢ such that we have for all s with 0 < s <,

IT(2s) = wol| < eflzo — 2.

By triangle inequality we get with a new ¢

lzo = T(2)Il = ev/pllzo — zs]l-

‘We have

Nore(T'(2)) = 5 (T(2)) — (w0 — pNox (20)))-

1
p

We get

evpllzo — 2|l < |lzo — T(2)||
= HpNaK(xo) — (T(Z) - (xO - pNaK(:L'O))))”
= p||Nox (z0) — Nore(T(2))]].

Since T(Nak (x0))) = Nox (zo) we get by Lemma 2.6 with a new ¢
e/llwo = 2] < | Nox (20) — Noe (2))l-
We have by (32) and Lemma 2.6
[Nox (20) = Nox, (25)[| < 6/ [0 — z]l- (39)
Now we get by triangle inequality
evllzo = 2|l < [Nor, (xs) = Nog(2))]-
By (33) and triangle inequality we get
c/llwo — 2|l < [ Nox, (zs) — Noe (97 (2)]|-
Therefore we get with a new constant ¢

cllzo — 25| < 1- < Nog, (xs), Nog (971(2)) >
< 1— < Nog, (zs), Nox (71 (2)) >*.

‘We have
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| < Nok(®7'(2)), Nok, (xs) >* — < Nog(2), Nox, (x5) >* |
= | < Nox(®'(2)) + Nog(2), Nok, (z5) > x
< Nog (P '(2)) — Nog(z), Nok, (zs) > |
< 2| < Nk (971(2)) — Noe(2), Nok, (zs) > |
< 2| < Nog (P 1(2)) — Nog(z), Nok, (vs) — Nog(z) > |
+2| < Nok (97'(2)) — Noe(2), Nog(2) > |
< 2|[Nok (®7'(2)) — Noe(2)|l | Nok, (xs) — Noe(2)||
+2[1— < Npg (P71(2)), Noe(2) > |.

By (33)
[Now (27 (2)) — Nog ()| < ey/[lzo — ]|

which is the same as

1= < Nog (®71(2)), Nog(2) > < g€z — 2.

We get
| < Nox(®7'(2)), Nok, (z:) >* — < Nog(2), Nox, (xs) > | (40)
< 2ey/[lzo — 25| [ Nox, (xs) — Nog(2)[| + € l|lzo — 2.
‘We show

[Nox, (x5) = Noe(2)|| < cv/llwo — 2s]l- (41)
By (35) we have
[INork, (Tzs) — Nore (Tz)| < ev/||zo — 2s]l.
(41) follows now from this and Lemma 2.6. (40) and (41) give now
| < Nox(97'(2)), Nox., (x5) >* — < Noe(2), Nox, (xs) > |
< 2¢y/[lo = 281/ Two = 2l + ElJzo — 7]l < 3ellzo — 2]l

With this we get

1 1
V1= < Npg(2), Nox (z5) >2 \/1— < Nog (271(2)), Nok, (v5) >2
B ‘\/1— < Ng)K(@ ( )) N&)K (333 >2 \/1— < Nyg ) NaKS(SL‘S) >2‘
/1= < Noe(2), Nok. (z5) >2,/1— < Nok (@~ 1(2)), Nok, (z5) >2
’< NaK(¢_1(2)>7N8KS (.’L‘S) >2 - < N@g(Z),NaKs(xs) >2‘

N \/1— < Nag(Z),NaKs(l‘s) >2 (1— < N@K(é_l(z)),NaKs(l‘s) >2)
3e||zo — 25|
S I < o0 Nom () = (1= < Nox (0-1(2)), No () )

);
(=
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By (38) we have that 1— < Ngg (9 1(2)), Nok, (75) >2> ¢|lzg — 2s|. There-
fore we get

1 1

V1= < Noe(2), Nok(@5) 52 /1= < Nog (@ 1(2)), Nox, (z5) >
3e

< .
o C\/l— < N@g(Z),NaKS(Z‘S) >2

Lemma 2.9. Let K be a convex body in R™ and x¢g € OK. Suppose that the
indicatriz of Dupin at xg exists and is an ellipsoid. Let f : 0K — R be a
integrable, a.e. positive function with [ fdu =1 that is continuous at . Let
ZTs and @ be as given in Lemma 2.8 and zs as given in the proof of Lemma
2.8.

(i) For every € there is s¢ so that we have for all s with 0 < s < s,

(1—¢) sup | < Nok(z0),y — mo > |
yEIKNH (zs,Nok, (xs))
<llwo — 2|
<(1+e | < Nok(z0),y — o0 > |.

inf
yEOKNH (zs,Nok, (Ts))

(i1) For every e there is se so that we have for all s with 0 < s < s, and all
z € 08N H(xs, Nok,(x0))

(1—¢) < Nognu (P71 (2)),2 — x5 >
< < Nognmu(2),z — 5 >
< (14€) < Nognua(P7(2))), 2 — 25 >

where H = H(xs, Nok_(xs)) and the normals are taken in the plane H.
(iii) Let ¢ : OK N H — R be the real valued, positive function such that

D(y) = 25 + o(y)(y — Ts).

For every e there is s such that we have for all s with 0 < s < s. and all
y € OK N H(xzs, Nok, (25))

l—e<o(y) <l+e
Proof. We may suppose that o = 0 and Ny (zg) = ep,.
(i) We put

B Inf <N — @0 > |.
e yeBKmH(g:,NaKs(ms))' or (7o), y — 0 > |
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We show now the right hand inequality. Let p be strictly greater than all the
lengths of the principal axes of the standard approximating ellipsoid £. Then
there is n > 0

EN H(SL’O — nNaK(aio), NaK(QTO))
C By (zo — pNok (20), p) N H(zo — nNok (z0), Nox (20))-

Let o denote the angle between Nyg (xo) and Nyg, (zs). Recall that in the
proof of Lemma 2.8 we put

{zs} = {zo + tNok (x0)|t € R} N H(zs, Nox (x0)).

Then we have

tanas > lzo = 2ol = ms
cllzo = zsll +/p? = (p = [lzo — z5]))?
[zo — zs|l — ms
= cllwo = 2] + v/2pllwo — 2]l = [lzo — 2]
|20 — 2]l — ms

> .
C||J;0 - ZSH + v 2p||zo — ZSH

To see this consult Figure 2.9.1.

xo

By (zo—pNox (o), p) "

Vo® = (p—llzo — z1)?
Fig. 2.0.1

In Figure 2.9.1 we see the plane through xg that is spanned by Ngx (xo)
and Nyg, (xs). The point x is not necessarily in this plane.
On the other hand, by (39)

sinfa, =1— < Nok (x0), Nog. (zs) >2< €|lzo — 24|

which implies for sufficiently small e
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tan g < \/2€||zg — 25|

Altogether we get

V2o — 2] > 2o — 2]l — ms
cllzo — 2zl + /2pllz0 — 2|

and thus

(ev/2e + 4/ep) 20 — 2 = Ilwo — 2| — m,.
Finally we get with a new constant ¢
(1 —2¢ve)|lmo — zs|| < ms.

The left hand inequality is proved similarly.
(ii) By (i) we have for all s with 0 < s < s,

OK N H™ (x5 + €|lxo — zs||Nox (z0), Nox (x0))
COK NH (x5, Nok, (x5))
COKNH (zs — €l|lzo — 25| Nox (z0), Nox (z0))-

PNy (w0) 15 the orthogonal projection onto the subspace orthogonal to Nax (o).
From this we get

PN (z0) (K N H (74 + €l|zo — 25| Nax (20), Nox (70)))
g pNaK(:L’o)(K m H(x57 NBKS (‘/Es)))
- pNaK(ﬂ?o)(K N H(xs - €||£L'0 - ZSHN(')K(LU()), N(’?K(xo)))~

Let D be the indicatrix of Dupin at zo. By Lemma 1.1 for every € there is ¢,
so that for all ¢ with 0 <t <,

(1 — E)D - ﬁpNBK(fO)(K N H(xo — tNaK(xo), NaK(xo))) - (1 + G)D.

By choosing a proper s, we get for all s with 0 < s < s,

(1—DC !

V2w — |

We get the same inclusions for £ instead of K.

PNos (wo) (K N H (25, Nok, (25))) € (1 +€)D. (42)

(1-¢e)DC !

— V2[mo — =

Consider now y € 0K N H(zs, Nox,(zs)) and D(y). Since

PNoe (20) (€ N H (25, Nok, (25))) € (L +€)D (43)

pNaK(xo)(a_cS) =z0=0

there is A > 0 so that
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pNaK(Cvo) (y) = )\pNaK(wo) (Q(y))

By (42) and (43) we get with a new s,

”NPNSK(IO)(BKFTH)(pNaK(xo)(y)) - NpNaK(zo)(afﬂH)(pNaK(xo)(@(y)))H <e€

where H = H(zs, Nk, (zs)) and the normals are taken in the subspace
of the first n — 1 coordinates. The projection py,, (,) i an isomorphism
between R"~! and H(x,, Nox. (zs)). The norm of this isomorphism equals 1
and the norm of its inverse is less than 1+ € if we choose s, sufficiently small.
Therefore, if we choose a new s, we get for all s with 0 < s < s,

|Noxnw(y) — Nognu (P(y))| < e.

(iii) follows from (42) and (43) and from the fact that the projection py, . (z)
is an isomorphism between R"~! and H(zs, Npg. (7)) whose norm equals
1 and the norm of its inverse is less than 1 + €. Indeed, the norm of the
inverse depends only on the angle between R™ and H(zs, Nok.(zs)). The
angle between these two planes will be as small as we wish if we choose s,
small enough. O

Lemma 2.10. (i) Let K be a convex body in R™ and xy € OK. Suppose that
the indicatriz of Dupin at xg exists and is an ellipsoid. Let f: 0K — R be a
integrable, a.e. positive function with [ fdu = 1. Suppose that f is continuous
at zg and f(xo) > 0. Let x5 and ® as given by Lemma 2.8 and let zs be given
as in the proof of Lemma 2.8 by

{zs} = {@o + tNok (x0)|t € R} N H(zs, Nox (z0)).

For every g € 0K and every € > 0 there is s so that we have for all s with
0<s< s

/ f(y)
OKNH (zs,Nok,(xs)) \/1— < N@K(y)aNBK

=dpornH (o, N(.)) (Y)

(ws) >
_/ f(@7'(2)
OENH (22, Nox (z0)) \/1— < Nog(2), Nox (z9) >2
'

<] f@1()
N OENH (zs,Nok (x0)) \/1_ < NBS( )7N8K(x0) >2

dpoent (@, ,N(z0)) (%)

Aptosnt (z., Nox (o)) (2)-

(ii) Let BY denote the Fuclidean ball and (BY)s its surface body with respect
to the constant density (vol,—_1(0B%))™1. Let {xs} = d(BY)sN[0,e,] and Hy
the tangent hyperplane to (BY)s at xs. For every e > 0 there is s. so that we
have for all s with 0 < s < S
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(1- o) (SL@BS))) = vol,_»(0By ™)

vol,_1(By~*
1

- /aB;ﬂHS \/1* < Nogsy). (s), Nogy (y) >2

n—3
L, 1(0By) \ "1 -
< (8"(’17(2)) vol,_2(8B21).
(iti) Let ay,...,a, >0 and

vol,_1(By~h)
n 2
£ = {x Z <1 }
i=1

Let &, 0 < s < %, be the surface bodies with respect to the constant density
(vol,—1(0€)) L. Moreover, let Ag : RT — [0,a,] be such that Ag(s)e, € OEs
and Hg the tangent hyperplane to & at Ag(s)en. Then, for all € > 0 there is
Se such that for all s and t with 0 < s,t < %

duopynm, (y)

(i)

3

1
/65an V1= < Nog, (z5), Noe (y) >2

n—3
< (1+a()™

dposn, (y)

1
oent, \/1— < Nog,(71), Nog (y) >2

dposna, (v).

Please note that Ngg, (Ae(s)en) = Nag(ane,) = ey.

Proof. (i) In the first part of the proof H denotes H (x5, Nox_(xs)). We prove
first that for every e there is s. so that we have for all s with 0 < s < s,

/ f(y)
oxnH \/1— < Nok (y), Noxk, (x5) >2

f@'(2) -
- /BEOH \/1— < N@g(Z%NaKS (xs) =2 dlu“dgﬂH( ) (44)

f(@7(2))
: 6/880H \/1_ < NBS(Z);NE)KS (xs) >2 d,“/@EﬂH(Z).

dpoxnm(y)

Zs and @ are as given in Lemma 2.8. There is a real valued, positive function
¢ : 0K N H — R such that

D(y) = zs + oY) (y — Ts).

By Lemma 1.8 we have with y = #71(2)
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f(y)
/MmH V1= < Nok(y), Nox, (z5) >2 dporna(y)
_ / F(@~1(2))p "2 (1 (2))
s V= < N0, o 275

<N850H( ) HZH >
*Z Noknu(®~(2)), o7 > duagmH(z)
:/ f(@7(2)p "2 (27 (2))
oenu /1= < Nog (9~1(2)), Nok, (zs) >2
< Nognn(2), 2 >
< NBKQH(¢_1<Z))7Z >

d,uagﬂH(Z)-

With this we get

fy)
~/8Kr‘|H V1- < Nox ), Nox. (zs) >2 dpornm(y)
- f(@7'(2)) .
/65mH V1= < Noz(2), Nox.(z5) >2duasmH( )

| CO)
= |Joenm /1= < Nog(2), Nok, (w5) >2
) f@(2))
V1= < Nox(971(2)), Nok, (z) >2
| @) (1 672 (@7 () ezl )
9ENH V1= < Nog (71(2)), Nox, (w5) >2

duamH(Z)

dpsenm(2)| -

By Lemma 2.8 we have

1 1
‘\/1 < Nag(Z),NaKS (xg) >2 - \/1* < NaK(QS*l(Z)),NaKS (Ig) >2

- \/1— < Noe(2), Nox, (v5) >2

which gives the right estimate of the first summand.
We apply Lemma 2.9.(ii) and (iii) to the second summand. The second
summand is less than

y f(@()
oent \/1— < Nox (271(2)), Nok. (xs) >2

dposnm(2).

Now we apply Lemma 2.8 and get that this is less than or equal to
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o 1(z
| O2E) g
0ENH \/1— < Nag(z),NaKs(xs) >
This establishes (44). Now we show

@)
dpoent (., Nos, (z.)) (Y)
/asmHm,NaKs(ms)) V1= < Noe(y), Nok, (x) >2 (oMo (22))
f@1(2)
- AUOENH (20, Nox (20)) ()
/ﬁgﬁH(zs,Nax(zo)) V1= < Nag(2), Nok, (x5) >2 Mz Noc (o))
f(@7'(2)
< 6/ d:U/[)S H(zs,N, T (Z)
OENH (zs,Nok (z0)) \/17 < Nag(z)aNaKs(xs) >2 NH(ze,Nox (w0))
(45)
Since f is continuous at zg and f(x¢) > 0 it is equivalent to show
f(zo)
dpsens (e, N, 2. (Y)
/agnH(a:S,NaKS (@) V1= < Nog(y), Nok, (z5) >2 N e Nox, (2.))
f(@o)
- dﬂas H(zs,N, T (Z)
/BEOH(ZS,NSK(JJO)) \/17 < Nag(z)’NaKs(xs) >2 N (za,Nox (w0))
f(zo)
< 6/ AUAENH (20, Nox (20)) ()
OENH (24, Nox (z0)) /1= < Nae(z), Nok, (€5) >2 Mo Noc(o))

which is of course the same as

1
duaEﬁH xg,N, T (y)
/GSHH(:cS,N@KS(mS)) V1= < Nae(y), Nox. (z5) >2 (22 Noue. ()
/ . d ()
— HOENH (24, N, T <
OENH (25, Nox (z0)) \/1— < Nog(2), Nok, (v5) >2 M Nore (o)

1
< e/
OENH (22, Nox (z0)) V/1— < Noe(2), Nok, (xs) >

5 d,UE)EﬁH(zs,NaK(l’o)) (’z>
(46)

We put £ in such a position that Nyk (z¢) = e, o = Tnen, and such that £

is given by the equation
2

=1

n

D

i=1
Let £ € 0BY and y = (r(&,yn)&, yn) € OE. Then

(y_1 y_n> (r(syyn)& 7(€,Yn)én—1 y_n)
2,"'77% 2 LI 2 ) 2

1 Thn—1 n

2 2 —1 &2
S S BT S

i

Yi

T
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with

2 _ 92
r(€ yn) = — oI (47)

—1 &2
Tn E?:ll 522
As N@K(IO) = e We get

< Noe(y), Nok (z0) >=

Therefore )
1 B die E
1— < Noge(y), Nox (o) >2 St y

For y, z € OE we get

[

n L2 n—1
1— < Npg(2), Nox (xg) >2 2ict z;/_% D

1- < N@g(y),NaK(xo) >2 N Z?:l % Z;‘;ll

<

<
o=

RN

For y, z € O€ with the same direction £ we get by (47)

P2 52
(T2 - y2> '
We can choose s, sufficiently small so that we have for all s with 0 < s < s,
and all y € 06 N H(xs, Nok,(zs)), 2 € 0 N H(xs, Nok (x0))

1— < Npe(2), Nog(z0) >2  2oi=1

1— < Noe(y), Nok (z0) >2 S

T,

i

|yn_rn|<6 |Zn_'r'n|<€
and by Lemma 2.9.(i)

Tn — Zn

Tn — Yn

1—€e< <l+e

We pass to a new € and obtain: We can choose s, sufficiently small so that
we have for all s with 0 < s < s, and all y € 0 N H(zs, Nok,(zs)), z €
0 N H(xs, Nok (x9)) such that p. (y) and p., (z) are colinear

1— < Nog(2), Nox () >*
1—€e< <l+e. 48
1- < N@g(y>,N3K<$Q> >2 ( )

By Lemma 2.5 we have

< NaK(xo),NaKs(xs) >>1—ce
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Therefore, the orthogonal projection pe, restricted to the hyperplane
H(ZCS, N@KS (xs))

is a linear isomorphism between this hyperplane and R”~! and moreover,
|pe, | = 1 and [|p_!|| < L. By this, there is s, such that for all s with
0<s<s,

(1- 6)/ dpoent @, ,Nox, (2.))(Y)
PENH (2. Nox, (x.)) /1= < Nog(y), Nox, (xs) >
- / dftp,, (0€nH (x.,Nox, (2.))) (?)
* Jpe,@en @ Nok, @) \[1- < Noe(pe}(2)), Nox, (ws) >2
/ dpoent (we, Nox, (x.))(Y)
9ENH (2., Nox, (2.)) /1= < Noe(y), Nox, () >2

<

where z = p,, (y). Let ¢., denote the orthogonal projection from

H(.’ES,N{;;K(.T()))

to R"~!. g, is an isometry. Therefore

n

/ dptosnH (@, Nos, (w0)) (Y)
OENH (x4, Nox. (z0)) V/1— < Nag(y), Nox, (r5) >2
_ / dftg, (9€NH (2, Nox (20))) (Y)
e (EOH e Nosc o)) \[1— < Noe (g, (4)), Nox, (ws) >2

Thus, in order to show (46) it suffices to show

/ dfip,, (9€NH (2. No. (x.))) (Y)
pen (GENH (s Norc, (1) 4 /1 < Nog (p} (), Nox, () >2

) / disg, , @enH (@, Nok (w0)) (¥)
Gen, (9ENH (25, Nox (20))) \/1— < Noe(ge, (), Nox, (x5) >

) 6/ disq, , (9enH (2, Nok (20))) ()
T Jae, (05N H (w2 Nos (20))) \/ 1= < Nog(ge, (), Nox, (5) >2

Let p: qe, (OENH (25, Nok (20))) = e, (OENH (25, Nok,(5))) be the radial
map defined by

{p(y)} = {tylt = 0} Npe, (9€ N H(zs, Nok (20))).
‘We have
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(1 _ 6)/ dﬂpen(BEHH(xS7N6KS(xS)))(y)
pen (DENH (2 Noi, (22))) \/1_ = Noe (21 (0)). Nore(22) 52

- ditg, (0£NH (2., Nox (20))) ()

B /qenme(ws,NaK(wo))) \/17 < Noe(0a (p(y))), Nok. (5) >2

< (1+6)/ dpp,, (0enH (5., Nox, (2.)) (Y) .
Pen (DENH (24, Noxc, (22))) \/1— < Nog(pe, (1), Nok, (z5) >2

To see this, consider the indicatrix of Dupin D of K at xy. We have by (43)

(1—DC mq (€M H(zs, Nox (0))) € (14 €D
(l—DC —— ' p (€N H(ws, Noxe(2,))) € (1 +€)D.

-~V 2[lzo — 2l

They imply that with a new s. the surface element changes at most by a
factor (1 + €). Thus, in order to verify (46), it is enough to show

/ dfig,, (9€nH (2, Nox (20))) ()
e (EOH e Noxc (o)) \[1— < Noe (e} (p(1)), Nox, (w5) >2
B / dity,, (90 H (2., Nk (20))) (V) (49)
e (OEOH e Nosc o) \[1— < Noe (g, (4)), Nox, (ws) >2
< 6/ ditg,, (9enH (20, Nox (20))) (Y) '
" Jaes @ente Nox o)) \[1- < Noe (g (4), Noxs, (z2) 2

We verify this. By (48) there is s, so that we have for all s with 0 < s < s,
and all y € 06 N H (x5, Nox,(25)), 2 € OENH (x5, Nox (x0)) such that pe, (y)
and pe, (z) are colinear

[[Nog (2) — Nox (xo) |
[Noe (y) — Nox (o) |

By (39) for every e there is s, such that for all s with 0 < s < s,

1—€e<

<l+e

[INox (20) = Nor, (€5)|| < ev/[lzo — 2

and by the formula following (2.8.13) for all y € d€ N H (x5, Nox,(25)) and
z € O N H(xs, Nok (20))

| Noe(y) — Nor,(xs)|| = c/[|xo — 2|

[Nog (2) = Nox, ()l = e/ [[zo — 2|
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Therefore,

[Nox (x0) = Nox, (xs)ll < €v/||lwo — 2| < £l Nog(2) — Nok. (z:)]-

By triangle inequality
[Noe(2) = Nox, (xs)[| < (14 £)[[Noe(2) — Nox (o) || (50)

and the same inequality for y. In the same way we get the estimates from
below. Thus there is s. so that we have for all s with 0 < s < s, and all
y € 06 N H(xs, Nor_(x5)), z € 0 N H(zs, Nox (z0)) such that p., (y) and
Pe, (2) are colinear

 INa(2) ~ Now, ()]
€S | N (9) — Vo ()]

which is the same as

<l+e

1— < Noe(z), Nox, (z5) >

This establishes (49) and consequently (45). Combining the formulas (44)
and (45) gives

/ FW)dpornm @, N ) Y)
OKNH (2., Nox. () V/1— < Nox (y), Nox, (x5) >2
_/ J(@71(2))dposnn (. N (o)) (2)
DENH (2., Nox (x0)) /1= < Nae(2), Nok, (x5) >2
< 6/ f(¢_1(Z))dUBSQH(mS,NaK(xO))(Z>.
T JognH (2. Nox (w0)) /1= < Nog(2), Nox. (z5) >2
It is left to replace Ngk_ (xs) by Nok (zg). This is done by using the formula

(50) relating the two normals.
(ii) For every € > 0 there is s, such that for all s with 0 < s <'s,

vol, 1(Bf N H,) _ vol, 1(0By NH;)
(I—¢€)s< < =5
- wvol,—1(0B%) —  vol,_1(0BY)

B3 N Hy is the boundary of a n — 1-dimensional Euclidean ball with radius

. <voln1(Bg n HS)) =
U vol, (B

Therefore

((1 - 6)87\]01”71(85,21) ) <r< (87\]01”1(8521) ) .
vol,—1 (B3 ™) vol,—1(B5 ™)
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We have N(z;) = e, and \/1— < en, Nopy (y) >? is the sine of the angle
between e, and Nppy (y). This equals the radius r of By N H,. Altogether we
get

/ dpopynm, (y)
OBy NH, \/1— < N(zs), Nopy (y) >2

n—3
l,_1(OBZ) \ "' _
:r”_?’volng(aBgl)<(s voln 1 2)) vol,,_2(0B3 ™).

= \Uvol,_1(By ™)

(iii) £N Hs and €N Hy are homothetic, n — 1-dimensional ellipsoids. The
factor ¢y by which we have to multiply £ N Hy in order to recover £ N Hy is

gy — (YOt (EN ) T
O~ \vol,_1 (£ N Hy) '

On the other hand, for all € > 0 there is s, such that for all s with 0 < s < s,

VOln_l(g N Hg) < voln_l(&i' N H;)
voln,1(8€) - voln,l((%')

(52 7 <oz ()

The volume of a volume element of € N H, that is mapped by the homothety
onto one in € N H; increases by ¢f 2.

Now we estimate how much the angle between Nag(y) and Nog, (z5) = ep
changes. The normal to £ at y is

(1—¢)s<

Therefore

Yi
2
n Yi
a Yi.
i k=1 o4
Yk i=1
Thus y
n
< Nog(y), en >= =
n oy
an k=1 ﬁ
and
anl y_’i
k=1 a
2
1- < N@g(y>7en >"= niyk
k
k=1 g%

Let y(s) € ENH, and y(t) € €N H; be vectors such that (y1(s), ..., yn—1(s))
and (y1(t),...,yn_1(t)) are colinear. Then



68 C. Schiitt and E. Werner

(yl(t)v e 7yn—1(t)) = ¢0(y1 (8)7 s 7yn—1(3))

Thus
9 n 1 yk Z Ya(s) Z yk:(s
1— < Noe(y(t)), en >* af k=1 af 0 k=1 %
— 2 (t) 1 yi(s) n OR
=< R n >y, Mmoo

For every ¢ > 0 there is s. such that for all s with 0 < s < s, we have
an — € < yn(s) < ay,. Therefore there is an appropriate s, such that for all s
with 0 < s < s,

En yi E;t)

k=1 ay

Z Yy (5
k=1 42

k

1—€e< <1l+e.

Thus

V1= < Noe(y(t)), en >2
\/1— < Nae(y(s)), e, >2
Consequently, with a new s,

(1—¢€)go <

S (1 + €)¢0.

/ dpoenm, (y)
oent, \/1— < Nag, (24), Noe (y) >2
C(n— d
S (1 +€)¢O (n 3)/ Naeme,(y) -
oent, \/1— < Nog, (1), Noe (y) >
s\ W= dposnm, (y)
<(1+9(3) / 0 .
oenm, \/1— < Nag, (1), Noc (y) >

Lemma 2.11. Let K be a convex body in R™ such that for all t > 0 the

inclusion K QIO( holds and that K has everywhere a unique normal. Let
f: 0K — R a continuous, positive function with [, f(x)dpox (z) = 1.

(1) Lett < T and e > 0 such that t+€ < T. Let x € 0K, and let H(x, Nok, ())
be a hyperplane such that

P;(OK N H ™ (z,Npk,(x))) = t.
Let h(z,€) be defined by
Py(0K N H™ (z — h(z,€)Nox,(x), Nok,(x))) =t +e.
Then we have for sufficiently small €

FWh(z, )dpornmz,Nox, (1)) ()

e—o(e) = /
OKNH(,Nox, () /1= < Nok, (), Nox (y) >2
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(ii) Let t + € < T, x € 0Ky, and H(x, Nog,, (x)) a hyperplane such that
Py(OKNH™ (z,Nok,, () =t +e
Let k(x,€) be defined
Py(OK N H(x + k(x,€)Nok,, (x), Nok,,.(v))) = t.

Then we have

tol® / fWk(z, e)dpornm @,Nox, . ))()
€ (] == .
OKNH (z,Nok,,  (x)) V1= < Nok,, . (2), Nok (y) >2

n

>

(iii) Let € be an ellipsoid
i=11""

z; |
5:{96 gl}
w0

and €, 0 < s < & surface bodies with respect to the constant density. {z;} =
[0,anen] N OEs. Let A : (0,T) — [0,00) be such that A(s) is the height of
the cap ENH ™ (zs, Nog, (xs)). Then A is a differentiable, increasing function

and
1
dA 5 — (vol,_1(0€))~1
ds ®) </850Hs V1= < Nog, (5), Noe (y) >2dﬂ(y)>

where Hy = H (x4, Naog_(xs)).

Proof. (i) As K CIO( we can apply Lemma 2.2 and assure that for all 0 <
t <T and all x € 0K, there is a normal Ny, (z) with

t= / f(2)dpsok (2).
OKNH— (a:7N5Kt (z))

‘We have

¢ = / F(2)dpox (2)
OKNH~ (z—h(z,e)Nax, (z)),Nox, (r))

- / F(2)duo (2)
OKNH~ (z,Nok, (x))

f(2)dpor (2).

/(9K0H(m—h(z,e)NaKt (2)),Nok, (z))NH*(z,Nok, (z))
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Nox., (x)

0K
H(z, Nok, (x))

Lof

/ H(x — h(z,€)Nok, (x), Nok, (x)) \

Nornu(y)

/I

Fig. 2.11.1
Consider now small €. Since K has everywhere a unique normal a surface
element of
OK N H™ (x — h(z,€)Nok, (x)), Nox, (x)) N HT (z, Nag, (x))
at y has approximately the area
h(z, 5)al/h’ﬂ(m&f(gc,N@Kt (x)) (v)

divided by the cosine of the angle between Nox (y) and Nornm(z,Nox, (x)) (¥)-
The latter normal is taken in the plane H(x, Ngk,(x)). The vector Nk (y) is
contained in the plane spanned by Noxnw (z Nox, (x))(y) and Nog,(z). Thus
we have

Nok(y) = < Nok(y), NoxnH(z,Nox, () (¥) > Noxam(z,Nox, () (Y)
+ < Nox (y), Nok, () > Nok, ()

which implies
1 =< Nox (y), Nok i (@, Nox, () (¥) > + < Nox (y), Nox, () >* .
We get for the approximate area of the surface element

hz, €)dpoknm e, Now, @) (Y) W@, €)dpornm e, Nox, () ()
< Nox (y), Noxnt(z.Noxe, @) (¥) > /1= < Nok (y), Nox, (x) >2

Since f is a continuous function

e+ ofe) = / FW)h(z, e)duornm @ Nok, () ()
O(KOH (2, Norc, (1)) /1= < Nox, (%), Nox (y) >*
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(iii) By the symmetries of the ellipsoids e, is a normal to the surface body
&s. In fact we have
P{OE N H (zs,en)} = s.

This follows from Lemma 2.4. Moreover,

h(zs,e) < A(s+¢€) — A(s) < k(xs,€).

Lemma 2.12. Let K be a convex body in R™ that has everywhere a unique
normal and let f : 0K — R be a continuous, positive function with
Jor fx)dpox(z) = 1. K, 0 < s < T, are the surface bodies of K with
respect to the density f. Suppose that for all t with 0 < t < T we have

K go(. Let G : K — R be a continuous function. Then

/KS G(z)dx

is a continuous, decreasing function of s on the interval [0,T] and a differ-
entiable function on (0,T). Its derivative is

G(zs)dpor, (s)
| fw)
OKNHs \/1-<Nok, (w:),Nox (y)>2

d
— G:Udac:—/
ds K, @) 0K,

where Hy = H(xs, Nok,(25)). The derivative is bounded on all intervals [a,T)
with [a,T) C (0,T) and

T .
/ Gla)dz = / / G(xs)ﬁg)df(s(xs)ds .
K 0o Jok, dpoxna, ()

fBKmHS \/1—<N8Ks (zs),Nok (y)>2

dpoxnm, () .

Proof. We have

%/K& G(a)de :hmﬁo%(/mﬁ G(x)dx—/KS G(x)dx>
1

= —lime_o— / G(z)dz
€ Ks\Ks+e

provided that the right hand side limit exists.

Let A(zs,€) be the distance of x5 to 0Ks4.. By Lemma 2.4.(iv), for all
s and 6 > 0 there is € > 0 such that dy (K, Ksic) < d. By this and the
continuity of G we get

i/ G(z)dz = —limﬁﬁo1 G(zs)A(zs, €)dpok, (xs).
dS K, € 0K s
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We have to show that the right hand side limit exists. By Lemma 2.11.(i) we
have

¢~ ofe) = / Sz, €)dpornn(e,Nox, (2))(y)
O(KNH (z,Nox,(2))) \/1— < Nok,(x), Nox (y) >2

Since h(zs,€) < A(xs, €) we get

1
liminf, _,g— G(zs)A(zs, €)dpok, (xs)
€

oK

G(xs

° / f(ygz() 1 dpoar, (xs)
0K, faKﬁHS I <Nore (@) Non (5> porne, (Y)

where Hy = H(zs, Nok, (2s)). We show the inverse inequality for the Limes
Superior. This is done by using Lemma 2.11.(ii).

We show now that the function satisfies the fundamental theorem of cal-
culus.

/ f(y)dpoxnm, (y)
oxnH, \/1— < Nox_ (2s), Nox (y) >2

> / W) dporcns, (y) > min f(y)vol,_o(0K N HL).
OKNH, ycIK

By the isoperimetric inequality there is a constant ¢ > 0 such that

/ fly)dpornm, (v) > ¢ min f(y)voly, (K 1 H.).
o, \/1— < Nok, (zs), Nox (y) >2 yeoK

By our assumption Ky C Io( the distance between 0K and 0K is strictly
larger than 0. From this we conclude that there is a constant ¢ > 0 such that
for all z, € 0K,

VOln_l(K N Hs) > c.

This implies that for all s with 0 < s < T there is a constant c¢5 > 0

d
g/KS G(z)dx

Thus, on all intervals [a,T) C (0,7) the derivative is bounded and therefore
the function is absolutely continuous. We get for all ¢, ¢ with 0 < to <t < T

/t:%/K G(x)dx/m G(x)dx—/K G(z)dz.

to

< cs.

We take the limit of £y — 0. By Lemma 2.3.(iii) we have {J,., K; DK The
monotone convergence theorem implies
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/ot% /K Glayde= | Gla)do - /K G(x)da.

Now we take the limit ¢ — T. By Lemma 2.3 we have Kp = ﬂKT K;. The
monotone convergence theorem implies

/OT%/KS G(z)dz = - G(m)dx—/}(@(gj)dxl

Since the volume of K1 equals 0 we get

' 4 G(z)dz = — | G(z)dz.
o ds Jg, K

3 The Case of the Euclidean Ball

We present here a proof of the main theorem in case that the convex body is
the Euclidean ball. This result was proven by J. Miiller [Mii]. We include the
results of chapter 3 for the sake of completeness. Most of them are known.

Proposition 3.1. (Miiller) We have

1, (BY) — E(OBY, N
lim vol, (BY) 2(8 5, N)
N—o00 N =n-1

_ ntl
VOln_g(aBg 1) ((n B 1)V01n—1(aBg>) n T (n +1+ L)
2(n+1)! vol,_2(0B3 1) n—l

- )R ol @By R T (414 5)
(vol,_o(dBE~ 1)) 7T 2(n+1)!

We want to show first that almost all random polytopes are simplicial.

Lemma 3.1. The n2-dimensional Hausdorff measure of the real n X n-
matrices with determinant 0 equals 0.

Proof. We use induction. For n = 1 the only matrix with determinant 0 is
the zeromatrix. Let A;; be the submatrix of the matrix A that is obtained
by deleting the first row and column. We have

{A]det(A) = 0} C {A|det(Ay) = 0} U {A|det(A) = 0 and det(Ay;) # 0}
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Since
{A|det(Ar;) = 0} = R ~("=1° x (B € M,_,|det(B) = 0}

we get by the induction assumption that {A4|det(A;1) = 0} is a nullset. We
have

{A|det(A) = 0 and det(Aq1) # 0}

:{A !

ail = m ;ali(_l)IH det(Ay)) } .

Since this is the graph of a function it is a nullset. O

Lemma 3.2. The n(n—1)-dimensional Hausdorff measure of the real n x n-
matrices whose determinant equal 0 and whose columns have Euclidean norm
equal to 1 is 0.

Proof. Let A; ; be the submatrix of the matrix A that is obtained by deleting
the i-th row and j-th column. We have

{A|det(A) =0} C {A|det(Ay1) =0} U{A|det(A) =0 and det(A;;1) # 0}.

By Lemma 3.1 the set of all (n—1) x (n— 1) matrices with determinant equal
to 0 has (n — 1)2-dimensional Hausdorff measure 0. Therefore, the set

{(al, .. .,an,1)| det(al, .. wanfl) = 0}

has (n — 1)?-dimensional Hausdorff measure 0 where @; is the vector a; with
the first coordinate deleted. From this we conclude that {A|det(A11) = 0}
has n(n — 1)-dimensional Hausdorff measure 0.

As in Lemma 3.1 we have

{A|det(A) = 0 and det(A11) # 0}

= {A aj; = m ;ali(_1)1+i det(Aq;)) }

By this and since the columns of the matrix have Euclidean length 1 the
above set is the graph of a differentiable function of n(n — 1) — 1 variables.
Thus the n(n — 1)-dimensional Hausdorff measure is 0. O

The next lemma says that almost all random polytopes of points chosen
from a convex body are simplicial. Intuitively this is obvious. Suppose that we
have chosen z1, ..., z, and we want to choose z,41 so that it is an element of
the hyperplane spanned by x4, ..., z,, then we are choosing it from a nullset.
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Lemma 3.3. Let K be a convex body in R™ and P the normalized Lebesgue
measure on K. Let P the N-fold probability measure of P. Then
(i

P%{(.’El,. . 7£I,'N)|EZ'17 R 7in+13H iy ey Tipyy € H} =0

where H denotes a hyperplane in R™.
(ii)

PRA{(z1, .. xn)| Fit, . yin @iy 2

n

are linearly dependent} =0

Proof. (i) It suffices to show that
PX{(z1,...,zN)]3H : z1,...,2p4 € HY = 0.
Let X = (x1,...,2,). We have that
{(x1,...,zN)|3H : 21,...,xp41 € H} ={(21,...,2y)|det(X) =0}
U{(xl,...7:rN)|det( )#0 and Fty,...,th—1:

xn+1—xn+zt _(En}

The set with det(X) = 0 has measure 0 by Lemma 3.1. Now we consider the
second set. det(X) # 0 and 2,411 = @y, + Z?:_ll t;(xz; — x,) imply that

n—1 n—1
X Nwna) = X" (:c + Y tiwi - xn>> =ent Y tile
=1 =1

We get
t; :<X71(£L'n+1),€i> Z‘:].,...,nf]..

Therefore we get

n—1
{(xl,...,xN) det(X) # 0 and Jtq,...,th—1 xn+1fxn+2t n)}
1=1
- {(ml,...,xn,z,xn+2,...,xN) det(X) # 0 and
n—1
Z:xn""Z<X_1(xn+1)7ei>($i_wn)}'
i=1

We have that

81’n+1 Z <X ( i_xn)'
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Since all the vectors m, j = 1,...,n are linear combinations of the

vectors ; — xn, i =1,...,n — 1, the rank of the matrix

(5em),
Oxny1(7) =1

is at most n — 1. Therefore, the determinant of the Jacobian of the function
mapping (z1,...,2x) onto (x1,...,%Tn, 2, Tnt2,...,2x) is 0. Thus the set

{(xl,...,xN)

has measure 0. O

n—1
det(X) #0 and 3tq,...,th—1: Tpy1 = Ty + th(% — ) }
i=1

Lemma 3.4. Let Pypp be the normalized surface measure on OBy . Let Péng
the N-fold probability measure of Popy. Then we have

(1)

Péng{((Eh...,xN)|E|i1,...,7;n+1E|H iy iy, € H} =0
where H denotes a hyperplane in R™.
(it)

PgB;{(xl, coy N)] Fiay it Ty, -, @, are linearly dependent} = 0

Proof. Lemma 3.4 is shown in the same way as Lemma 3.3. We use in addition
the Cauchy-Binet formula ([EvG], p. 89). O

Lemma 3.5. Almost all random polytopes of points chosen from the bound-
ary of the Euclidean ball with respect to the normalized surface measure are
simplicial.

Lemma 3.5 follows from Lemma 3.4.(i).
Let F be a n — 1-dimensional face of a polytope. Then dist(F) is the
distance of the hyperplane containing F' to the origin 0. We define

1

Djy . (z) = EVOlnfl([lev s ,ZEjk])diSt(le AR ‘rjk)
if [x;,,...,x;,] is a n — 1-dimensional face of the polytope [z1,...,zn] and
if 0 € H* where H denotes the hyperplane containing the face [z;,,...,z;,]
and H™T the halfspace containing [z1,...,zx]|. We define

qulan-ajk (x) = _EVOIH—l([l‘jN s 7xjk])diSt(x]'1 Yo ’xjk)
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if [x,,...,2;,] is a n — 1-dimensional face of the polytope [z1,...,zn] and
if 0 e H~. We put

Djy, .. (z)=0
if [z;,,...,x;,] is not a n — 1-dimensional face of the polytope [z1,...,zn].
Lemma 3.6. Let x1,...,xy € R™ such that [z1,...,zN] is a simplicial poly-

tope. Then we have

vol ([z1, ..., 2N]) = > @, (x).
{jl;-~7jn}g{1a~-:N}

Note that the above formula holds if 0 € [z1,...,zn] and if 0 ¢
[1'17. .. ,.’L‘N].

d L7 is the measure on all k-dimensional affine subspaces of R and dL}(0)
is the measure on all k-dimensional subspaces of R™ [San].

Lemma 3.7. [Blal, San]

k k
/\ dz} = (klvol,([xo, . . . ,mk}))”*k /\ dxde}z

=0 =0

where dz? is the volume element in R™ and dz¥ is the volume element in LY.

The above formula can be found as formula (12.22) on page 201 in [San].
We need this formula here only in the case ¥ = n — 1. It can be found as
formula (12.24) on page 201 in [San]. The general formula can also be found
in [Mil]. See also [Ki] and [Pe].

Lemma 3.8.

dL;_, = dpduasg €3]
where p is the distance of the hyperplane from the origin and £ is the normal
of the hyperplane.

This lemma is formula (12.40) in [San].
Let X be a metric space. Then a sequence of probability measures P,
converges weakly to a probability measure P if we have for all ¢ € C'(X) that

n—oo

lim | ¢dP, = / PdP,.
X X

See ([Bil], p.7). In fact, we have that two probability measures P; and Py coin-
cide on the underlying Borel o-algebra if we have for all continuous functions
¢ that



78 C. Schiitt and E. Werner

/X pdP; = /X PdP,.

A, = B3(0,r+¢€)\ B5(0,r)

Lemma 3.9. We put

and as probability measure Pe on A¢ X A¢ X -+ X A

p. _ XA X o X xa, (z1)dzy ... dzg
‘ ((r 4 €)™ — rm)k(vol,, (BY))k

Then P. converges weakly for € to 0 to the k-fold product of the normalized
surface measure on OB (0,r)

taBy 0. (T1) - - - paBy 0,r) (Tk)
rk(n=1)(vol,,_1 (0B®))k

Proof. All the measures are being viewed as measures on R", otherwise it
would not make sense to talk about convergence. For the proof we consider
a continuous function ¢ on R™ and Riemann sums for the Euclidean sphere.
O

Lemma 3.10. [Mil/

dpopy (z1) - - dpopy (zn)

vol,_1([z1,...,Zn
— (n _ 1)! (11([_1192)2 ]) dMaBgmH(l’l) s dﬂaBgﬂH(xn)ddeBBS (f)
where £ is the normal to the plane H through x1,...,x, and p is the distance

of the plane H to the origin.

Proof. We put
A= B3(0,1+¢€)\ B3(0,1)

and as probability measure P. on A x A¢ x -+ x A,

XA, X X XAE(xl)d-'I;l da?n

T (@ T (ol ()"

Then, by Lemma 3.9, P, converges for € to 0 to the n-fold product of the
normalized surface measure on 0B%

poBg (z1) ... popy (Tn)
(vol,—1(0B%))"
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By Lemma 3.7 we have

/\ dzi? = (n—1)lvol,—1([z1, ..., x,])dLy_4 /\ da? ™t
i=1

i=1
and by Lemma 3.8

dLy,_, = dpduamg (&)
We get

n n

N da = (n = Dvoly_y([z1,. .., 2]) \ da? " dpdpasy (£).

i=1 i=1

Thus we get

P.=xa, X X xa,(n—1vol,_1([x1,...,24,])
da} .. datdpdpssg ()
A+ = 1) (vl (Bg))™
This can also be written as
P. = (n—DWvol,—1([z1,...,zx])
Xa.nm X+ X Xa.ngdaf ™t da Y dpdpasy (€)
(L+e)" = 1) (voln(B3))"

where H is the hyperplane with normal £ that contains the points z1, ..., z,.
p is the distance of H to 0. AcNH is the set-theoretic difference of a Euclidean

ball of dimension n — 1 with radius (1 —p? 4+ 2+ ¢2)z and a ball with radius
(1 —p?)2. By Lemma 3.9 we have that

XA.nm X X Xa,npde Tt dan Tt
(1= p2 + 2+ €2)"2 — (1 —p2)"2" )7 (vol,_; (By~1))n

converges weakly to the n-fold product of the normalized surface measure on
OBy NH

dpoBynm - - - dpoBynm
(1 — p2)n" == (vol,_o (0BL )

Therefore we get that

XA.nH X o X Xangdet T den !
(L4 = 1) (voln(B3))"

converges to

<(n — 1)voln1(331)>" (1 st duosynm - - - dpospnn
n vol, (By) P (1 = p2)""5 (vol,_o(dBy~1))»
dpopynm - - - dpopynm
(1—p?)% (vol,—1(0By))"
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Lemma 3.11. [Mil]

/ . / (vl (1, .- ., Zny1]))?
By (0,r) 9Bz (0,r)

XduaBg(o,r)(ﬂfl) e duaBg(o,r)(mnH)
(n + 1)7,.7L2+2n—1
nlnm

_ M(volnA(aBg(r)))n—H =

g (vol, 1 (9B3))"*"

We just want to refer to [Mil] for the proof. But we want to indicate an
alternative proof here. One can use

A}im E(0B%,N) = vol,,(BY)
and the computation in the proof of Proposition 3.1.

Lemma 3.12. Let C be a cap of a Fuclidean ball with radius 1. Let s be the
surface area of this cap and r its radius. Then we have

<voln_1(Bg—1)> 2(n+ 1) (vol _1(BY 1))
- (voln_l(Bé’_l)) ( vol, 1 ( Bn ! )

X i
o[ —2———
(Voln_l(B;l_l))

_2(711—1- 1) <voln_1(Bg 1))

where ¢ is a numerical constant.

Proof. The surface area s of a cap of the Euclidean ball of radius 1 is
«
s = Voln,g(aBgfl)/ sin” 2 tdt
0

where « is the angle of the cap. Then o = arcsinr where r is the radius of
the cap. For all ¢t with ¢t > 0

— L <sint <t— L4+ L0
Therefore we get for all £ with ¢ > 0
sl > (4 = -

%tQ)n—2 Z tn—Q(l_n?)_—!QtQ) _ tn—2_n3_—!2tn.

Now we use (1 —u)¥ <1 —ku+ 3k(k — 1)u? and get for all t > 0
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sin 2 < nTF - mEgn 4ot

Thus
s 2 vol,a(0my ) [t e
= vol,,_5(dB; ") (ﬁ(arcsin r)t Tt - otar (arcsin 7‘)”+1)
and

s < vol,_o(0By 1) x

(L(arcsin Py — =2 (arcsinr)" T 4+ —< (arcsin r)”+3) .

n—1 6(n+1) n+3
‘We have
. +1r3+1-3r5+1-3~5r7+
arcsinr =7+ - — + — — 4.
23 245 2:4-67

Thus we have for all sufficiently small r that

r+ %75 < arcsinr <r -+ %75 + 70,

We get with a new constant ¢

n—1

s = volu2(9B5 ™) (s (r+ )"t = Gy (r + o+ 1%)"H)

n—1

= vol,,_o(0By ™) (Lrn_l + s )T”H - cr”+3)

(
> VOln,g(aBgil) ( L=l %rn-i-l _ n=2 ,mtl cTn+3)
( n—1 2(n+1
(

= voly -1 (B ™) (171 + gty = e(n - 1)),

We get the inverse inequality

s < vol,_1(Byh) (r”71 + 2&;11)T"+1 +c(n — 1)r"+3)

in the same way. We put now

and get

81
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If we choose a big enough then this can be estimated with a new constant ¢
by
r—ocr® <r

provided r is small enough. The opposite inequality is shown in the same
way. Altogether we have with an appropriate constant ¢

( S )nl 1 ( S > n—1
vol,_1(By ™) 2(n+1) \vol,_1(By ™)

s = s T
_ - - < < | ———
¢ (voln1(331)> Srle) < <V01n1(Bgl))

3 5

st i)+ )
2(n+1) \vol,,_1(By~ 1) vol, _1(By~™1) ’

Proof. (Proof of Proposition 3.1) We have

_ HoBy
~ vol,_1(BY)

and
E(0B3,N / / vol, ([z1,...,2N])dP(z1) - - - dP(xN).
OBY oBY

By Lemma 3.5 almost all random polytopes are simplicial. Therefore we get
with Lemma 3.6

8B27
/ / ¢j1,...,jn(x17---793N)dp(x1)"'dP(xN)
oBY OBY

2 {1, 7J7L}C{1 N}

H is the hyperplane containing the points x1, ..., z,. The set of points where
H is not well defined has measure 0. HT is the halfspace containing the
polytope [z1,...,zN]. We have

pN-n {(@n+1,.- - 2n)|DP1,... .oy IN)

(@1
% oln 1([z1, - -« @n))dist (2, . ... ,xn)}

~(vol,_1(dByn HH)\ V"
o voln,l(aBg)
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and

PV {(@ng1s - 2N)|Pr (@1, )

=— Ivol,_i([z1, ..., 2,))dist(z1,...,2,)}
B (volnl(aBg NH™) ) N
VOln_l(aBg) '

Therefore

E(0By,N) = ( > / / L1 (@1, ..., xp])dist(ay, ..., 2p)

By By

vol,,_1 (0BY N H*) vol,_1(0By N H-)\ V"
. { ( Vol 1 (955) ) - ( Vol 1 (95) ) }

By Lemma 3.10 we get

n _ l N (n—1)!
E(OB;. V) = ”( ) (vol—1 832 /BB" /
9 vol,_1 (0B N HH)\ Y ~ (vol,_1 (0B NH™) N=n
voln,l(c'?Bg) voln,l(aBg)

></ / (vol,_1([z1, ..., 2n]))?
oBpnH  JoBpnH
xdpapynm (1) -+ dpopynm (zn)dpdussy (§)-

wl:

We apply Lemma 3.11 for the dimension n — 1

" 1/N (n—1)!
E(aBQ’N)E<n)(VOIn 1(0BR)) /aBn/

 (volaa (0B 0 HONY™™  (vola 1 (0By nH)\V ™"
VOlnfl (833) VOlnfl (633)
nrn’ =2

= Din—1)1
Since r(p) = ﬂ we get
E(OBY, N) = ( ) (vol, _2(0B;~ ))n 1)n . /0 Tn27n72m

(vol,— 1(8B")) Tin-1

vol, 1 (0B 0 HONY " (volua@By 0 HO)\Y M
vol,_1(0BY) vol,_1(0BY) P

(vol,—2(9By ")) dpdpa sy (£).
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Now we introduce the surface area s of a cap with height 1 — p as a new
variable. By Lemma 1.5 we have

dp (r”_3voln_2(aBg_1))71 :

ds
Thus we get
n oo (N (vol,_o(0By~t))n—t 1
som. ) = () G A orrT G

ivol,_,(8BY) )
X / r(n=D7/1 — 2
0

A-wmmm) (o)

Now we introduce the variable

s
“= vol,,—1(0BY)

and obtain

n

E(8BY,N) = <

1
X /2 r(n=1% /1 p2 {(1 —u)Nm - uan} du.
0

By Lemma 3.12 we get

)0 s
(vol,_1(0BE))"=2 (n—1)n1

E(0By,N)

N (V01n—2(633_1))n71 L /% N—n N-—n
< - —_—
B <n) (vol,—1(0Bg))"=2 (n—1)""1 J, {(1 u) u }
X{(M)nll _ ]- (u VOInl(&BS))'”Sl
VOln—l(Bgil) 2(n+ 1) Voln—l(Bgil)
o (L (OB ﬁ}("‘”

vol,_1 (B3~ 1)

x{l Kuvolnl(é)BQ))"ll 1 <u volnl(aB§)>"31
vol, 1(By™1) 2(n+1) \ vol,_1(By™1)
n\\ 72112 2
. <u Voln_l(ﬁBz)) ] } du.
vol, 1(By™1)

From this we get
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E(0BF,N)
1
N B —n _ _
S ( >voln_1(8B§‘)/2 {(lfu)N *UN ’ﬂ}un 1><
n 0
1 u vol,_1(0BY) = u vol,,_1 8B2
L= -1 t+c 1
2(n+1) \ vol,_1(BS ) vol,_1 (B}~

<u voln_l(ﬁBg)) = 1 (u vol,,—1(0BY) >
xql= o1 (pn—1y - n—1
vol,—1(By ™) 2(n+1) \ vol,_1(By™)

n)\ 7172 3
o (tna0BY Y,
vol,_1 (B 1)

This implies that we get for a new constant c

E(9Bj, N)

< (:) vol,_1(0B}) /0 (1= -}y

(n—1)? <u Vo1n1(aBg)> = <u Vo1n1(aBg)) =
R n—1 tel —— 51y
2(n+1) \ vol,_1 (B3 ) vol,_y(By )

2 VOlnfl(Bg ) VOlnfl(B;L )

This gives, again with a new constant ¢

N 3
E(0By,N) < ( )voln1(aB§)/ {(1 T - uN—”} v du
n 0

3 (N) n? —n+2 vol,_1(0BY) =
n/) 2n+1) vol, (B} )=t

1
2
x/ {(1 —u)N " —uN_"}u"’H%du
0

N % N—n N—n n71+%
+c<n>/0 {(17u) —u }u Tdu.

From this we get

N
E(0By,N) < ( >V01n1(aB5L)B(N —n+1,n)
n

N\ n2 —n+2 vol,_,(8B})"=1
_( )n n+ 2 vol,_1(0BY) BN —n+1n+—2)

n/) 2n+1) vol, (B} )=t

—N+-—2_
N 1 =
+c(n>B(N—n+1 n+ =5 )—|—c<2) .

85
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This implies
E(0BY, N) < vol(B})
- (N) n? —n+2 vol,_1(8B3) =1 I'(N —n+1)I(n+ -2;)
2(n+1) vol,_y(By~Yyw1  [(N+1+:2)

N IT(N=n+1)I'(n+-25) 1\ Nta=x
+c 1 +cl| = .

n

We have the asymptotic formula

lim Lk +0)

STy,

Therefore we get that E(0BY, N) is asymptotically less than
2 ntl 2
n? —n+2 vol, 1(0By)=1 I'(n+ =)
2(n+1) vol,_y(ByY)#1 pINwT
I'(n+ -4 1 -N+:25
e ()

? z
nIN =1

vol,, (BY) —

+c 2

We apply now z['(z) = 'z + 1) tox =n+ %

n—1 voln_l(aBg)Z—ﬂ I'n+1+ %)
2(n+ Dlyol,_y (By )=t Nt
T

L z
nIN =1

E(0B%,N) < vol,(BYy) —

+c 5

The other inequality is proved similarly. O

4 Probabilistic Estimates

4.1 Probabilistic Estimates for General Convex Bodies

Lemma 4.1. Let K be a convex body in R™ with 0 as an interior point. The
n(n — 1)-dimensional Hausdorff measure of the real n X n-matrices whose
determinant equal 0 and whose columns are elements of OK is 0.

Proof. We deduce this lemma from Lemma 3.2. We consider the map rp :

aB;7L — 0K
_ X
rp 1(95) = Hx_”
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and Rp : 0B3 x --- x 0BY — 0K x --- x 0K with

Rp(z1,...,xq) = (rp(z1),...,rp(zn)).

Rp is a Lipschitz-map and the image of a nullset is a nullset. O

Lemma 4.2. Let K be a conver body in R™ and let f : K — R be a

continuous, positive function with [ fdu = 1. Then we have for all x € [o(

P}V{(l‘1’7x]\/v)|x S 0[1‘1,...,xN]} =0.

Let € = (e(2))1<i<n be a sequence of signs, that is e(i) = £1,1 < i < n.
We denote, for a given sequence € of signs, by K¢ the following subset of K

Ke={z=(x(1),2(2),...,z(n)) e K| Vi=1,...,n:sgn(z(?)) = () }.

Lemma 4.3. (i) Let K be a convex body in R™, a, b positive constants and
E an ellipsoid with center 0 such that a€ C K C b€. Then we have

el o ol < (1= (3

(#i) Let K be a convex body in R™, 0 an interior point of K, and let f : 0K —
R be a continuous, nonnegative function with fBK f(x)dp = 1. Then we have

N
P?{(ml,...,x]v)w ¢ [z1,...,xN]} <27 <1 —mﬁin -~ f(x)dﬂ) .

(Here we do not assume that the function f is strictly positive.)

Proof. (i) A rotation puts K into such a position that

g:{x

n—1

277.
We show this. Let px .c be the metric projection from 0K onto da&. We
have pr o (OK€) = da&c. Thus we get

n

We have for all €
vol,—1(9€) < vol,_1(0K*).

n—1

a2—nvoln_1(85) = a" " 'vol,,_1(9E°) < vol,,_1(OK°®).
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We have

{(z1,...,zn)| Ve Ti:a; € 0K} C {(x1,...,2n)[0 € [21,...,2N]}
and therefore

{(x1,...,zn)| Je Vi:a; ¢ OK} D {(x1,...,2N)|0 & [21,...,2N]}-
Consequently

U@, an)l Viia @ 0K 2 {(x1,...,2n)[0 ¢ [21, ..., 2n]}

Therefore we get

€ N

. e\ N
<on(1- min, vol,,—1 (0K*)
voln_l(ﬁK)

n—1 N
conf1_@ vol,—1(9E)
2n VOlnfl(aK)

<r (i3
(i) Asin (i)

P}V{(xl,...7x1v)|0 ¢ [z1,...,2n]} < P}V{(xl,...,xN)EIeW cx; ¢ 0K}

<on (1 — min f(:z:)sz))N .

€ Joke

Lemma 4.4. Let K be a convex body in R™ and x¢g € OK. Let f: 0K — R
be a strictly positive, continuous function with faK fdu = 1. Suppose that for

all0 <t <T we have K, QIO{ and that there are v, R > 0 with
BY(x¢g — rNag (x0),r) € K C BY(xo — RNpk (x0), R)

and let Nog,(xs) be a normal such that s = Pp(OK N H™ (x5, Nok, (25)))-
Then there is sqg that depends only on v, R, and f such that we have for all
s with 0 < s < sg and for all sequences of signs €,0

volo 1 (K 1\ H(z,, Nox, (2)))?)
< C(T, Ra fa 97 n)VOIn—l((K N H(xsa N@Ks (xs)))e)
where the signed sets are taken in the plane H(xs, Nok,(xs)) with x5 as the

origin and any orthogonal coordinate system. 0 is the angle between Ny (o)
and To — x7.
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The important point in Lemma 4.4 is that sy and the constant in the
inequality depend only on r, R, and f.

Another approach is to use that xs is the center of gravity of K N
H(xs, Nok, (xs)) with respect to the weight

)
< Noxnmu(y), Nok (y) >

where H = H (x5, Nok_(25)). See Lemma 2.4.

Proof. We choose sg so small that g — rNyx (zg) € K,. We show first that
there is sy that depends only on r and R such that we have for all s with
0<s<sg

\/1 _ 2RA (maxxeaK f(x))m < (Nax (20), Nok, (24)) (51)

r?2  \ mingesx f(z)

where A is the distance of 2 to the hyperplane H (x5, Nox (xo))
A=< N@K(l‘o),xo —Xs > .

Let « denote the angle between Npk(xg) and Nok,_(zs). From Figure 4.4.1
and 4.4.2 we deduce that the height of the cap

B3 (xo — rNok (wo),r) N H™ (x5, Nok, (25))
is greater than
r(1 —cosa) = r(1 — (Nax(20), Nox, ().

Here we use that zp € K, and z¢p — rNog (z0) € K, .
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; B (zo — rNok (x0),T)

¥ 2o — rNax (o)

Fig. 4.4.1

B2 (zo — rNok (z0),7)

¥ xo — rNax (w0)

Fig. 442

In both graphics we see the plane through x that is spanned by Ngx (z¢)
and Ny, (xs). The points x5 and 7 are not necessarily in this plane.
We have



Random Polytopes 91

Pf(0K N H~ (20 Nox, (22)) = / F(@)duox ()
OKNH~ (zs,Nok, (zs))

> xréléril( f(z)vol,—1 (0K N H™ (x5, Nok, (x5))).

Since BY(xg — rNok (z0),7) C K we get

P;(0K N H™ (x5, Nok,(zs)))
> xré%rll( f(z)vol,—1 (0B (xg — rNox (x0),r) N H (x5, Nk, (xs)))

> xIélél)I}l{ f(z)vol,—1(By (zo — 7Nox(w0),) N H(zs, Nox, (s)))-

Since the height of the cap is greater than r(1 — cosa) we get
Pf(aK NH (xg, Nok, (zs)))

> Hl})l]l{ f(z)vol,—1(By~") (2r*(1 — cosa) — r*(1 — cos a)?) 2
HAS
n—1
. n—1 2 2
= wl’élérjl(f(x)voln_l(Bg ) (r*(1 = cos® a)) 2

(52)

On the other hand
s =Pp(0K N H™ (24, Nok, (5)))

f(@)dpor (x)

/[-)KQH— (zs,Nox, (xs))

/ (@) dparc(2)
OKNH~ (zs,Nok (z0))
< nelgﬁf(x)voln_l(al(ﬁ H™ (zs, Nok (x0))).

Since BY (xg — rNok (zo),r) C K C BY(zo — RNaox (x0), R) we get for suffi-
ciently small sq

]P’f(BK NH™ (.’L‘S, ]\/vaKS (;CS)))
< Inax f(z)vol,,—1 (0B (xg — RNok (z0), R) N H™ (s, Nox (x0)))

n—

< max f(z)vol,_1(By ") (2RA)"T . (53)

€

Since
s =Py(0K N H™ (x5, Nor,(xs))) <Pr(OKNH™ (x5, Nox (20)))

we get by (52) and (53)

n—1

Irgg}l{ f(@)vol,—1(By~1) (r*(1 — cos? @) *

< n—1 "—_1.
max f(z)voln—1(By™")(2RA)
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This implies

oS O Z \/1 . QRA (maxzeaK f(x)) n— .

r?2  \ mingegg f(x)
Thus we have established (51).

The distance of x5 to K N H (s, Nox,(2s)) is greater than the distance
of x5 to O0BY(xo — rNok(xo),r) N H(xs, Nok,(xs)). We have |zs — (¢ —
ANyg(x0))|| = Atanf. Let Ts be the image of x5 under the orthogonal
projection onto the 2-dimensional plane seen in Figures 4.4.1 and 4.4.2. Then
|Zs — zs]| < Atanf. There is a n — 1-dimensional ball with center Zs and
radius min{||Zs; — usl|, ||Ts — vs||} that is contained in K N H(xs, Nok, (xs)).

We can choose sy small enough so that for all s with 0 < s < sy we have
cos > %

tana =

V1 — cos? <9 V2RA (maxmeaK f(@) T (54)

COSs « - r mingeor f(x)

We compute the point of intersection of the line through v; and Z; and the
line through xy and w,. Formula (54) and the fact that the height of the cap
B3 (xo—rNax (20), Nor (20))NVH ™ (x5, Nk (z0)) is A and its radius 2r A— A2
give further

VA< min{||Zs — us ||, [|Zs — vs||}

where ¢ is a constant depending only on r, R, f,n. Thus KN H (x5, Nok,(x5))
contains a Euclidean ball with center Z, and radius greater ¢v/A. Therefore,
K N H(zs, Nok.(zs)) contains a Euclidean ball with center x, and radius
greater ¢y/A — Atanf. On the other hand,

KN H(xzs, Nok,(x5)) C By (0 — RNok (z9), R) N H(zs, Nok, (zs)).

Following arguments as above we find that K N H (x5, Ngk, (xs)) is contained
in a Euclidean ball with center z, and radius CVA where C is a constant
that depends only on r, R, f,n. Therefore, with new constants ¢, C' we get for
all sequences of signs ¢

n—1

cA"T < volu_1((K N H(zs, Nok. (25)))?) < CA™ .

Lemma 4.5. Let K be a convez body in R™ and zy € OK. Let f: 0K — R
be a strictly positive, continuous function with faK fdu = 1. For all t with

0<t<T we have K; QIO(. Suppose that there are r, R > 0 with

By (z¢g — rNok (x0),r) € K C BY(z0 — RNpk (x0), R)
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and let Nok,(zs) be a normal such that s = Pp(0K N H™ (x5, Nok,(zs))).
Then there is sqg that depends only on v, R, and f such that we have for all
s with 0 < s < sg

vol,—1 (0K N H™ (x4, Nok,(x5))) < 3 vol,_1(K N H(xs, Nog.(xs)))-

Proof. Since
By (zg — rNok (x0),r) C K C BY(zo — RNpk (x0), R)

we can choose A sufficiently small so that we have for all y € 0K N H ™ (z¢ —
ANyx (o), Nok (o))

< Nok (o), Nox (y) >>1— ¢ (55)

and A depends only on r and R. Since f is strictly positive we find s that
depends only on 7, R, and f such that we have for all s with 0 < s < 59

KNH(zs, Nog, (z5)) C KNH (20 — ANok (20), Nok (z0))- (56)
By (55) and (56)
< NaK(:L‘O),NaKS(:ES) >>1— %

Thus

< Nok, (2s), Nox (y) >
=< Nox (z0), Nox (y) > + < Nok,(xs) — Nox(x0), Nox (y) >
>1— g — [INok., (x5) = Nor (zo)]|
=1-1—1/2-2< Nk, (,), Nog (z0) > > 1 - 3.

Altogether
< Nok, (zs), Nox (y) >>1— 2.

Let py,,. (s, be the metric projection from 0K NH ™ (x5, Nok,(x5)) onto the
plane H (xs, Nok, (xs)). With this we get now

vol,—1 (0K N H™ (x4, Nok, (zs)))
1

N /I(ﬂH(:DS,NQKS (Is)) < NaKs (l‘s)’NaK(p&}st (zs)(z)) >
<3 vol,—1(K N H(zs, Nog,(xs)))-

dz
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Lemma 4.6. Let K be a convex body in R™ and xo € 0K. x4 is defined
by {xs} = [zo,z7) N K. Let f: 0K — R be a strictly positive, continuous

function with [, fdu = 1. For allt with 0 <t < T we have K, QIO{. Suppose
that there are v, R > 0 such that

BY (x¢g — rNak (x0),7) € K C BY(xog — RNpk (x0), R)

and let Nog, (xs) be a normal such that s = Pr(OK N H™ (x5, Nk, (25)))-
Then there is sg that depends only onr, R, and f such that for all s with 0 <
s < sg there are hyperplanes Hy, ..., H,_1 containing xp and x5 such that
the angle between two n — 2-dimensional hyperplanes H; N H (x5, Nok,(2s))

is 5 and such that for

n—1
0Ky = 0K NH™ (4, Nok, (25)) 0 [ Hy'
=1

and all sequences of signs € and § we have
vol,—1(0Kg,e) < ¢ vol,—1(0Ku,s)

where ¢ depends on n, r, R, f and d(xzp,0K) only.

I

Fig. 4.6.1

Proof. Since xr is an interior point of K we have d(zp, 0K) > 0. We choose
sp so small that

By (z7, 3d(zr, 0K)) C Ky,. (57)
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We choose hyperplanes H;, i = 1,...,n — 1, such that they contain x; and
xs and such that the angles between the hyperplanes H; N H (x5, Nok_(x5)),

o -
i=1,...,n—1is 3.

By Lemma 4.4 there is sy so that we have for all s with 0 < s < s¢ and
for all sequences of signs € and §

vol,—1((K N H(zs, Nox.(75)))) < ¢ vol,—1 (K N H(xs, Nox, (5)))°)
where ¢ depends only on r, R, and n. Then we have by Lemma 4.5

vol,—1(0Kpg,) <vol,_1(0KNH (x5, Nok_(xs)))
S C VOln_l(K N H([Es, N{)KS ($6)))

Therefore we get with a new constant ¢ that depends only on n, f, r and R
vol, 1(0Kp ) < ¢ vol,_1((K N H(xs, Nok,(24)))°).

We consider the affine projections ¢ : R™ — H(zs, Npk,(z,)) and p : R" —
H(xs, ﬁ) given by q(t(zs — ) +y) = y where y € H(zs, Nok, (zs))
and p(t(zs — 1) +y) =y where y € H(zs, i =1y
metric projection and g o p = ¢. Since p is a metric projection we have

). Please note that p is a

vol,—1(p(0Km,s)) < vol,—1(0Km,s).
q is an affine, bijective map between the two hyperplanes and
g0 p(0Ku5) = q(0Kus) D (K N H(zs, Nok, (5)))°.
By this (compare the proof of Lemma 2.7)

VOln_l ((9KH75)
< Nox. (@), (222 >

Vs =zl

> vol,—1(q(0Kn,s))

> vol,_1 (K N H(zs, Nox., (25)))%).

By (57) the cosine of the angle between the plane H(x, Nk, (xs)) and the

Ld@r.0K) “myerefore we get

plane orthogonal to s — zr is greater than 3 Tea—arl "

vol,—1(0Kp 5) > 1 M

> 3 s — g Ot (B N H e, Noxe, (2:)))°):

Lemma 4.7. Let K be a convex body in R™ and xg € OK. x5 is defined
by {zs} = [xo, 2] N K. Let f : 0K — R be a strictly positive, continuous
Sfunction with faK fdup = 1. Suppose that there are r, R > 0 such that we have
for all x € OK
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By (x —rNyk(z),r) C K C BY(x — RNyk(z), R)

and let Nok,(zs) be a normal such that s = Py(OK N H™ (x5, Noxk,(zs))).
Then there are constants sy, a, and b with 0 < a,b < 1 that depend only on
r, R, and f such that we have for all s with 0 < s < sg and for all N € N
and allk=1,...,N

P}V{(xl,...,xNﬂ xs & [z1,...,2N], X1,...,2 € OK N H (x5, Nok, (xs))
and Tpy1,...,on € OK N H (25, Nok, ()}
< (1= s)N7Fgkan(gN—F 4 pF).

Proof. Let Hy,...,H,_1 be hyperplanes and 0K . as specified in Lemma
4.6:

n—1
0Ky = 0K N H™ (x5, Nox, (x,)) 0 () H'.
=1

We have by Lemma 4.6 that for all sequences of signs € and §
vol,—1(0Kg.e) < ¢ vol,_1(0Kn,s)
where ¢ depends on n, f, r, R and d(z1,0K). As

{(z1,...,zN)|xs € [21,...,2N]}
D {(x1,...,xN)|xr € [21,...,2N] and [z, z0] N [T1,...,2N] # 0}
we get
{(@1,. s an)lzs & [21,.. 2N}
CH{(x1,...,zN)|or & 21, ..., 2N] O [T4, 20] N [T1,...,2N] = 0}

Therefore we get
{(z1,...,2N)| s & [21,...,2N], Z1,...,2% € OK N H (x5, Nok,(zs))
and Tg41,...,ZN € 3K0H+(mS,N3K5(xS))}
C{(z1,...,zNn)|xr ¢ [21,...,ZN], @1,..., 2 € OK N H™ (x5, Nok.(zs))
and Tg11,...,28 € OK N H (2, Nog. (7))}
U{(z1,...,zn)|[Tss zo] N [21, ..., 2Nn] =0, z1,...,2 € IK N
H™ (x4, Nog, (7)) and Tpy1,...,2n8 € OK N H T (x4, Nog, (z4))}
With Hs = H(zs, Nok.(zs))

P}V{(xh...,xNﬂ zs & [x1,...,2N], T1,...,2x € OK N H™ (xs, Nok.(2s))
and Tp11,..., 28y € OK N HY (25, Nok, (7))}

<(1—s)NFk PY s @, ew)ler € (o, 2n])

+(1 =)V PE @) wo] N [, @] = 0}
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where we obtain P ».y+ from Py by restricting it to the subset 9K N H}
and then normalizing it. The same for IP’f oxnm- - We have

P;’\T;IIEHH?{(QUF'_I’ ve ,JZN)|$T ¢ [$k+1,. .. ,Z‘N]} (58)
=P M {(@hsr, - an)lor & [wrga, - 2w}

where f : (K N H* (s, Nog, (x5))) — R is given by

f(z)

) - BEEnED S OKNHT (@ Now ()
x — S

0 v €K NH(zy, Nok, (24)).

We apply Lemma 4.3.(ii) to K N H*(zy, Naox.(25)), f, and 27 as the origin.
We get

P {(@hir,- o ww)ler & [ong, - on]) (59)
N—k
<o 17min/ f(x)du -
¢ JoaknHI)e

BS(JJO — TN@K(LC())7T) Q K g Bg(.’bo — RN@K(.’L'()), R)

Since

we can choose sq sufficiently small so that for all s with 0 < s < sg

min/ f@)dp>¢>0
A(KNHT)e

€

where ¢ depends only on sy and sy can be chosen in such a way that it
depends only on 7, R, and f. Indeed, we just have to make sure that the
surface area of the cap K N H ™ (zs, Nok, (zs)) is sufficiently small. We verify
the inequality. Since we have for all z € 0K

By (x —rNaok(x),r) C K C BY(x — RNgk (z), R)
the point zp is an interior point. We consider
By (zr, 3d(xr, 0K)).
Then, by considering the metric projection

3:v0l,—1(0BY (z7, 3d(xr, 0K)))
= vol,—1 (8B (zr, 3d(x7,0K))) < vol,_1(0K*).

‘We choose now
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50 = grrrvol,—1(9BY (z7, $d(zr,0K))) min f(z).

€K
Then we get
Bi(ox ) [ F(@)dp(a)
A(KNH)e

-/ f(@)dp(z)
A(KNH)e

[ @)~ [
oK« OKe<NH;

Since [ypcqp- f(x)dp=15<so

Py n i) | F(@)du(a)

S(KNHT)

> /a  F@)du@) =

> vol,—1(0K¢) min f(x) — s

€K
> hervol, 1 (983 (or, bd(ar, OK))) min f().
We put
a=1- min/ f(z)dpu.
€ Jo(KNHT)e
We get by (58) and (59)
P;Y(;I};ﬂHj{(xk+1’ s 7(EN)|$T ¢ [$k+1, cee ,I'N]} < 2naN_k'

Moreover, since
{1, 2)] [zs, o] N [mr, oo zi] # 0 2 {(21, ... 2p)| Ve Fit 2y € OKp e}
we get
{(z1,... 20| [zs, o] N2, .. 2k =0} S {(z1,...,2x)| JeVi:a; ¢ OKp .}
By Lemma 4.6 there is b with 0 < b < 1 so that

7

,aImH;{(xl’ x|, wo) N [z, ... k] = 0} < 27 1F,

Thus we get
IP’éVK{(xl,...,xNﬂ xs & [x1,...,2N], T1,..., 2 € OK NH™ (x5, Nok,_(s))
and Tp11,..., 2y € OK N HY (25, Nok, (7))}
< (1= s)N R gkan(gN=F 4 pF).
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Lemma 4.8. Let K be a convex body in R™ and xo € 0K. x4 is defined
by {xs} = [zo,z7) N K. Let f: 0K — R be a strictly positive, continuous
function with fOK fdu = 1. Suppose that there are r, R > 0 such that we have
for all x € OK

BY(x —rNsk(x),r) C K C BY(x — RNgk (z), R)

and let Nok,(zs) be a normal such that s = Pp(O0K N H™ (x5, Nok,(zs))).
Then there are constants sg, a and b with 0 < a,b < 1 that depend only on
r, R, and f such that we have for all s with 0 < s < sg and for all N € N
and allk=1,...,N

]P’jcv{(xl,...,xNﬂ xs & [x1,...,xN]} <2"(a—as+s)" +2"(1—s+bs)V.

S0, @, and b are as given in Lemma 4.7.

Proof. We have

P}V{(xl,...,xjv” T ¢ [$1,---7IN]}

Y /N
= (k>P§V{(m1,...,xN)| xs & [x1,...,2N], X1,..., 2 €OK N
k=0

H™ (x5, Nog.(7,)) and 2p41,...,o58 € OK N H' (x4, Nog.(z5))}.

By Lemma 4.7 we get

PY{(z1,....2n)| 25 & [z1,...,2N]}
N
< Q”Z <JZ> (1—s)N 7 sF(aNF 4 pF)
k=0

=2"(a—as+s)" +2"(1 — s+ bs)".

Lemma 4.9. Let K be a conver body in R™ and x¢g € OK. x4 is defined
by {zs} = [wo, 27| N K. Let f : 0K — R be a strictly positive, continuous
Sfunction with faK fdp = 1. Suppose that there are v, R > 0 such that we have
for all x € OK

By (x —rNyk(z),r) C K C BY(x — RNyk(z), R)

and let Nok,(xs) be a normal such that s = Pp(0K N H™ (x5, Noxk, (2s))).
Then for all sg with 0 < sg <T

. 5 [T PY{(z1,...,an)| x5 & [x1,.. ., xn]}dpox, (v5)ds
lim N»—1
S0 BKS

f(y)
Joxnm, TN ) Mo ()5 dpornm, (y)

=0

N—oo

where Hy = H(xs, Nok, (zs)).
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Proof. Since < Npk, (xs), Nox(y) >< 1

T PY{(z1,...,zn)| zs & [21,..., 2
N”%l/ Al I;[()J) ¢ b l} dpor, (zs)ds

oK. Jornm, /T Nor, (22 Nor (0)>2 dpornm, (y

PY{( 901,-- yon)| xs & [21,..., 2N}
< mlnzeaKf / /aK vol,_2(0(K N H(zy, Nox. (25))) dpok, (zs)ds.

We observe that there is a constant ¢; > 0 such that
¢y = d(0K,0K,,) = inf{||z — x5, |||z € OK, x5, € 0K, }. (60)
If not, there is x5, € 0K N OK,,. This cannot be because the condition
Ve € OK : By(x — rNok(x),r) C K C By (x — RNgk (z), R)

implies that K, is contained in the interior of K. It follows that there is a
constant co > 0 that depends on K and f only such that for all s > sy and
all z, € 0K,

vol,—2(0(K N H(xs, Nok,(x5)))) > ca. (61)
Therefore
]P’N Tlyeeoy & Ts & |x1,...,T
Nn 1 / / { ! J;()‘ ¢ [ ! N}} d,LLf)K"S (l's)ds
oK. y)

Joxon, ey mgrsr oK. (¥
N o1

T cpmingear f(x

/ / IP’f{ 1, ZN)| s & [21, ..., 2] Fdpok, (xs)ds.
0K
Now we apply Lemma 4.3.(ii) to K with =, as the origin. Let
0K (xs) ={x € OK|Vi=1,...,n:sgn(z(i) — z:(1)) = &}

With the notation of Lemma 4.3 we get that the latter expression is less than

N
2"Nn
1 / [ (vomin [ @) duo, (o)as
CleandKf 0K, ¢ JoKe(xs)

on N 7T

T comingepr f )

/ /BK (1 min f(z )mEiHV01n—1(6KE($5))>Nd,u,aKS(xs)dS

X

r€OK
2”N"*1V01n_1(3K)(T — 50)

co mingepr f()

IN

N
(1—xrélér11(f(x) 301<I}9f‘<Tman01n 1(0K (a:s))) .



Random Polytopes 101
By (60) the ball with center x5 and radius ¢; is contained in K
127 "vol, 1 (OBY) = ¢} 'vol,_1(0(BY)€) < vol,,_1 (0K (xy)).

Thus we obtain

2 T P}V{(x17...,xN)|xs¢[Jch...,wN]}
N /50 /aKS dpok, (zs)ds  (62)

)
Joxem, \/1,<N(i)’N(y)>2duaKan Y)

_ 2" N 7T vol,_1 (OK) (T — s0) (1

N
_ : n—1lg—n n
< ey it cor f(2) min_ f(x)cf™ 27 "vol,,_1(0B; ))> .

r€OK

Since f is strictly positive the latter expression tends to 0 for N to infinity.
O

Lemma 4.10. Let K be a convez body in R™ and zg € OK. Let x4, € 0K,
be given by the equation {xs} = [xo,x7]) N OKs. Suppose that there are v, R
with 0 < r, R < oo and

By (zg — rNak (x0),7) C K C BY(x0 — RNsk (20), R).

Let f : 0K — R be a strictly positive, continuous function with faK fdp=1.

Suppose that for all t with 0 < t < T we have Ky QIO(. Let the normals
Nok.(zs) be such that

s = Pf(aK N H_(CL'S,NE)KS(xs)))'

Let © be the angle between Ngk (xg) and xg — xr and so the minimum of

1 ( r >%1 (mingeox f(x)) n-1

1( " ln, anl n—1(1 3@ 2
> \8R max,eor f(x) (B (G eos0)

and the constant C(r, R, f,©,n) of Lemma 4.4. Then we have for all s with
0<s<sgandalyedKNH (x5, Nok.(zs))

V1= < Nk, (z5), Nox (y) >2 <

30R ( s maxgegr f(x) )”11
( .

2\ (mingesr f(z))* vol,_1(By™Y)

Proof. O is the angle between Nyg (z9) and zo — z7.
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Nox (y)

H(zxs, Nox (w0))

TrT

Fig. 4.10.1

Let A,(s) be the height of the cap
By (w0 — rNok (x0),7) N H™ (x5, Nok, (2s))
and Ag(s) the one of
By (x0 — RNak (o), R) N H™ (x5, Nok_(xs)).

By assumption

(" nT_l(minxeaKf(x))z n—1y, n—1 (1 .37\ 2"
5 (SR) S vol,—1 (B )r* !t (Leos®©) 7 . (63)

s0 <
First we want to make sure that for s with 0 < s < s¢ the number A,(s)
is well-defined, i.e. the above cap is not the empty set. For this we have to
show that H(zs, Nok,(xs)) intersects BY (xg — rNok (zo),r). It is enough to
show that for all s with 0 < s < sg we have z; € BY(zo — rNax (xo),r). This
follows provided that there is sy such that for all s with 0 < s < s

|zg — z5]| < rcos®O. (64)

See Figure 4.10.2.
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Zo

Fig. 4.10.2

We are going to verify this inequality. We consider the point z € [z, x¢]
with [|zg — z|| = 47 cos> ©. Let H be any hyperplane with z € H. Then

Pr(OKNH™) = /

OKNH~—

f@)dpok (x) > (min f(x)) vol,_1 (0K NH™).

z€OK

The set K N H~ contains a cap of BY (zg — rNax (o), ) with height greater
than %r cos? ©. We verify this.

Zo

i arcos®O

K %7‘ cos? ©sin ©
. H
\

T

Fig. 4.10.3

By Figure 4.10.3 we have
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|z — (x0 — rNox (z0)]| = \/|r — 1rcos? ©2 4 1r2 cost Osin® O

= \/r2 — 12 cos® O + 72 cos® O + {72 cos? Osin® O

= \/7'2 —1r2cos3 @ + irQ cost®

gr\/lf%cosﬁ’@.

Therefore the height of a cap is greater than

r— ||z — (ko — rNog (xo)|| > r <1 —4/1— 3 cos? 8) > 37 cos® .

By Lemma 1.3 a cap of a Euclidean ball of radius » with height A = %r cos® @
has surface area greater than

e h2 %
vol,_1 (B Hr"z <2h - —)
"

n—1

= voln_l(Bg_l)rnT_1 (3rcos® @ — Zrcos® ©) 2
n—1
> vol,—1 (B )r" ! (L cos® ©) 2

By our choice of sg (63) we get

n—1
— : n—1\,,n—1 3 2
P;(OKNH™) > <Irgérll{ f(:r)) vol,—1 (B~ )r" ™t (cos’ ©) T > 5.
Therefore we have for all s with 0 < s < sg that z € K,,. By convexity we
get
OKs N [z, x0] # 0.

Thus (64) is shown.
Next we show that for all s with 0 < s < sg we have

1— ﬁ ( max,eox f()
(

§— - < (Nok (20), Nok, (2s)) -
3r3 mingecox f(x))zvoln_l(Bg 1))

(65)
By the same consideration for showing (64) we get for all s with 0 < s < sg
An(s) < 3rcos® O
and by Lemma 1.3
s =Py(0K NH™ (x5, Nok,(xs)))

€K

> (min f(x)) vol,_1 (B Hr'z <2Ar(s) _Erls)”
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Since A,(s) < 3rcos®©

-1

5 = (f?é% f(x)) vol,_1(BE )z (24, (s) — Ar(s)2 cos® @)%1

1

> (i ) volua (B, (9)F

r€OK

Thus we have

—1

o (g ) ) volooa (B )0, ()

rz€EOK

or equivalently

2

1 s n=1
A, < - .
() < r (minweaK f(x)VOInl(Bgl)>

Next we show
SA(s) < Ap(s)

where A(s) is the distance of g to the hyperplane H (x4, Nox (x0))

A(s) =< Npg (zg),x0 — s > .

H(zs, Nox (o))

LT

Fig. 4.104
By the Pythagorean Theorem, see Figure 4.10.4,
(r— A.(5))* = (r — A(s))?* + (A(s) tan ©)2.

Thus

105
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A(s) =1 —=/(r = A(5))? + (A(s) tan 6)?

— (1 _ \/1 - %(2TA(5) — A2(s) — (A(s) tan @)2)> .

Weuse\/lftglf%t

An(s) > % (2rA(s) — A%(s) — (A(s) tan ©)2)
= A,(s) [ — %ATT(S) (1 + tan? @)} .

By (64) we get A(s) = ||zg—s| cos © < ircos® © and thus A(s) < 2rcos® 0.
With this

Ar(s)

r

An(s) = A(s) [1 -1 (1 + tan? @)}

— A(s) [1 .

=A,(s) [1—%cos? O] > 3A,(s).

(14 tan® ©)1r cos® 9]

By formula (51) of the proof of Lemma 4.4 we have

\/1 Ry (maxweaK f(x)) " < (Now(wo), Nox, (@)

r2 mingecox f(x)

By 3A(s) < A, (s)

8RA,(s) (maxgzear f(z) =
\/1 e (minmeaK f(@) < (Nok (o), Nok. (xs)) -

By (66) we get

J L S8R (s maxzeox f(2) ) . < (Nak (0), Nox. (25)) .

3r3 \ ' (mingepx f(:v))2 vol,,—1(By ™)

Thus we have shown (65).
Next we show that for all y € 0BF (zo— RNax (o), R)NH ™ (x5, Nok_(x5))

A (s) y — (zo — RNak (0)) > (67)
r ly = (w0 — RNk (wo))||
For this we show first that for all s with 0 < s < sg

An(s) < 2 AL(5) (68)

< <Nm (),
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By our choice (63) of sg and by (65)

(Nok, (25), Nox (20)) = /1 — &5 cos? ©

and by (64) we have ||z — zo|| < 27 cos? ©. Therefore we have for all s with
0 < s < so that the hyperplane H(zs, Nox,(zs)) intersects the line segment

[.130, To — TN@K(xo)].
Let r1 be the distance of xg to the point defined by the intersection

[.’170,$0 — ’I“NaK(mo)] n H(SL‘S,NSKS (xs))

i Zo

H(xs, Nok, (5))

B3 (x0 — RNaxk (0), R)

P
-

B3 (o — rNax (20),7)

l‘-l Y 20 — rNok (o),

¥ o — RN (o)

Fig. 4.10.5

We get by Figure 4.10.5

r—A(s)  r—m o

R*AR(S) R*T’l_R.
The right hand side inequality follows from the monotonicity of the function
(r—1t)/(R—t). Thus
r
(R—Ar(s)) =71— EAR(S)

and therefore ,
EAR(S) < A,(s).

For all y € 9B%(xo — RNgk(z0), R) N H™ (zs, Nok,(xs)) the cosine of the

angle between Nyg_ (zs) and y — (zg — RNpk (x0)) is greater than 1 — AR—R(S).
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This holds since y is an element of a cap of a Euclidean ball with radius R
and with height Ag(s). Thus we have

Ar(s) y — (zo — RNak (20))
1— R < <N8Ks($s)a ||Z-,I — (330 — RN&K(IO))” > :
By (68)
1 Ap(s) < <N (22) y — (w0 — RNok (20)) >
rooT R ly = (x0 — RNpk (x0))||

and we have verified (67).
We show now that this inequality implies that for all s with 0 < s < sg
and all y € 9BY (xo — RNpk (z0), R) N H™ (x5, Nok,(xs))
2

R y — (z0 — rNax (20))
L= An(s) 5 < <N‘9K5 ) Ty (o — rNor (@)l > ' o)

Let « be the angle between Nyg . (zs) and y — (2o — RNk (x0)) and let § be
the angle between Npk_ (xs) and y — (xg — rNax (o))
y — (xo — RNpk (o)) >
ly — (z0 — RNk (20))||
— (o — rNak (x0))
—( )l

a =y = (xo — rNox (o))l b=y — .
See Figure 4.10.6.

cosa = <N3K5 (zs),

<

cosf3 = <N8KS (7s),

)
lly — (w0 — rNox (zo)

We put

Zo

BY (20 — RNar (20), R)

B (xog — rNak (o), r)

1 x9 — 7 Nox (o) §
“a H R ’
i o — RNyk (20) a
Fig. 4.10.6

By elementary trigonometric formulas we get
b = 2R*(1 — cos ) b? = a® +r? — 2ar cos 3

and
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a>=R*+ (R—1r)> —2R(R—r)cosa = r*> + 2R(R — r)(1 — cos a).
From these equations we get

a?+r2—v*  a®+r?—2R*(1 —cosa)

cosf = 2ar B 2ar
B 2r2 —2Rr(1 — cos ) B r— R(1 — cosa)
2ry/r2 + 2R(R —r)(1 —cosa) /r2+2R(R—r)(1 —cosa)
Thus
1—£(1-cosa)
cosf = .
\/1 +2R(& - 1)(1 - cosa)
By (67) we have 1 — cosa < A:—_(S) and therefore
B RAE(S) 1— RAE(S)
cosf3 > L > Fra— A0
142R(E - LA 1+ R(G - 3)=
B A, 2
=1— T3R 7(‘19)A(5) Z]-_R_gAT(S)
L+ R( = 7) =% r

Thus we have proved (69). From (69) it follows now easily that for all s with
0<s<spandallye 0K NH (x5, Nox,(xs))

y — (w0 — Nok (20)) >
ly = (x0 — rNox (z0))ll /

R2
1-Ar(s) 5 < <N8Ks (5),

(70)

This follows because the cap K N H™ (x5, Ngk,(xs)) is contained in the cap
B3 (zo — RNok (z0), R) N H™ (25, Nok, (x5)). Using now (66)

2 21
R s ) (71)

7"_4 (minmeaK f(x)VOIn—l(B;_l)

y — (xo — rNax (x0))
< <N8Ks (s), lly = (zo — 7 Nox (z0))]| > .

For all s with 0 < s < sp and all y € K N H (zs, Ngk.(zs)) the angle
between y — (xg — "Nok (20)) and Nyk (y) cannot be greater than the angle
between y — (zg — rNak (o)) and Npg (zg). This follows from Figure 4.10.7.

1—




110 C. Schiitt and E. Werner

0

B3 (x0 — RNax (o), R)
B3 (o — rNox (20),7)

* w0 — rNok (o)

Fig. 4.10.7

A supporting hyperplane of K through y cannot intersect B (xg —
rNar (x0),r). Therefore the angle between y — (zg — rNax (x0)) and Nyx (y)
is smaller than the angle between y — (g — rNax (20)) and the normal of a
supporting hyperplane of B (xzo — rNak (xo),r) that contains y.

Let a7 denote the angle between Nyg (o) and Nyk,_ (), a2 the angle be-
tween Nyg, (z5) and y— (2o —rNaox (20)), and a3 the angle between Nyx ()
and y — (zg — rNax (x0)). Then by (65) and (71) we have

us

2

|8R (s maxzcok f(x) ) w1
3r3 " (mingeax f(x))? vol,_1(By™Y)

ag <apt+a < Zsinag + §sinas

<3
1
+L£ ( s )nl
V272 \mingeox f(z)vol,—1(By ")
et
- 1052 — maXxEGQK f(x) _ .
T (mingeor f(2))” vol,—1(B5 ™)

Let a4 be the angle between Nok (y) and y — (zg — rNax (20)). By the above
consideration a4 < «az. Thus

T
ag < 10— | s—— maXlEBQK /@) n—1 :
7\ (mingesx f())” vol,—1(By ™)

Let a5 be the angle between Nyg, (x5) and Nok (y). Then
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sinas <as <o+ oy
1

<108 (i— maxzeaZK f(x) _
T (mingear f(2))” vol,—1(By ™)
+L§ < s )"1
V2 2 mingeyx f(x)voln,l(Bgfl)

1

1

cuf (oot )
7\ (mingeok f(z))” voly—1(By )

Lemma 4.11. Let K be a convezx body in R" and o € OK. Let f : 0K — R
be a strictly positive, continuous function with faK fdu = 1. Assume that for

allt with 0 <t <T we have K Q[o(. Let s € 0K be given by the equation
{zs} = [x0,27] N OK. Suppose that there are r, R with 0 < r, R < oo and

By (xg — rNok (z9),7) € K C BY(zg — RNsi(x0), R).
Let the normals Nag_(xs) be such that
s =Py(0K NH™ (x5, Nok,(xs))).
Let sg be as in Lemma 4.10. Then we have for all s with 0 < s < sg

1
/E)KﬁHS \/17 < N@KS (xs),NaK(y) >2

_2 _ 2
o r (minzeaK f(x)) n=l (VOlnfl(Bg 1)) e SZ:‘;’
R Imax,cox f(x)

dpoxnm, ()

where c is an absolute constant and Hy = H(xs, Nok,(zs)).

Proof. By Lemma 4.10 we have

1
/BKOHS V1= < Nok, (zs), Nok (y) >2

r? ([ (mingeor f(x))* vol 1 (B3 ")\ "
l,,_2(0K N H,
30R ( s maxgeor f(x) voln (9K N H)

2 ((minzeaK f(2))° voln_1<B;—1>> =

dpornm, (v)

30R s maxgear f(x)
xvol,_o(0BY (xg — rNok (xo),r) N Hy). (72)
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Now we estimate the radius of the n — 1-dimensional Euclidean ball B¥ (xg —
rNaok (x0),r) N Hs from below. As in Lemma 4.10 A,(s) is the height of the

cap
Bj (zo — rNak (xo),7) N H (x4, Nok,(xs))

and Ag(s) the one of
By (zo — RNok (x0), R) N H™ (x5, Nok, (zs))-
By (68) we have Ag(s) < £A,(s). Moreover,
s =Py (OK 0 H (2, Nox, (z)))

= /8 i F@)dparc(x) < max f(z)voly 1 (OK N H.). — (73)

Since K N H; C By (xo — RNok (x0), R) N H; we have

vol,_1 (0K NH;) <wvol, 1(0(KNH))
< vol,—1(0(BY (o — RNgk (z0), R) N H,))
< 2vol,—1(0B5 (xo — RNok (zo), R)yN H_ ).

By Lemma 1.3 we get

n—1

24R(s)R svola_1(BY ) (2RAR(s)) 7.

vol,—1 (0K NH) < 2\/1 + m

As we have seen in the proof of Lemma 4.10 we have A,.(s) < %r. Together
with Ag(s) < £A,(s) we get Ar(s) < 2 R. This gives us

n—1

vol,_1 (0K N HT) < 2v/5vol, 1 (BY 1) (2RAR(s)) 2

and

vol,_1 (0K N HS)> =

R 1
_Ar(S) > AR(S) > °R (2\/5\/01”_1(33_1)

r
2

1 s n—1
> .
~ 2R (2\/5voln1(Bgl) maXzecoK f(x))

By this and by A,.(s) < 37 the radius of Bf (zo —r Nk (o), r) N H, is greater
than

V2rA(s) — An(s)2 > \/1A(s)

1

= V2R <2\/5voln_1(B§L_1)maxxeaK f(x)) '
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Therefore, by (72)

1
dpoxnm, (v)
/aKan V1= < Noxk, (x5), Nok (y) >2

r? ( (mingeox f(z))* vol,_1 (B3 1)

n—1
> 1n7 anl
— 30R s maxgear f(x) ) voln—2(9B3 )

() : )
V2R 2v/5vol, 1 (By ™ 1) max,cox f(z) '
By (73) the latter expression is greater than or equal to

_2 _ _2
e’ r (minzGSK f(x)) nt (VOlnfl(Bg 1)) m 52:?
R~ lmaxepr f(2)

where c is an absolute constant. 0O

Lemma 4.12. Let K be a convezx body in R" and o € OK. Let f : 0K — R
be a strictly positive, continuous function with faK fdu = 1. Assume that for

allt with 0 <t <T we have K Q[o(. Let s € 0K be given by the equation
{zs} = [x0,27] N OK. Suppose that there are r, R with 0 < r, R < oo and

By (xg — rNok (x9),7) € K C BY(zg — RNsi(x0), R).
Let the normals Nak_ (xs) be such that
s=P;(0K NH (x5, Nox,(xs))).

Let sg be as in Lemma 4.10. Let B be such that By (xr,03) C Kgy € K C
By (zr, %) and let Hy = H(zs, Nok.(xs)). Then there are constants a and b
with 0 < a,b < 1 that depend only on r, R, and f such that we have for all
N

N /30 ]P’ﬁcv{(xl,...,a:N)\ s & [x1,...,2N]}
0

fy)dpoxna,) ()

Nok, (xs)vNé)K(y)>2)%

y <||:zcS — xT||)" < x9 — a7, Nok (x0) >
|lzo — 27| < x5 — a1, Nog,(x5) >

R" ' maxgeox f() [(1 —a) T 4 (1— b)*ﬁ]
<cp —

B2 (mingeor f(z)) "

where ¢, is a constant that depends only on the dimension n. The constants
a and b are the same as in Lemma 4.8. They depend only onn, r, R and f.

fa(KmHs) (1<

ds
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Lemma 4.12 provides an uniform estimate. The constants do not depend
on the boundary point zq.

Proof. As in Lemma 4.10 © denotes the angle between the vectors Nyg (o)
and xg — zp. Oy is the angle between the vectors Npk_ (zs) and x5 — zp
which is the same as the angle between Nyk, (xs) and zo — xr. Thus
< %,N@K(mo) >= cos@ and < %,N@Ks(l‘s) >= cosO,. By
Lemma 2.3.(ii) K, has volume strictly greater than 0 if we choose s small
enough. Since K; CK the point x7 is an interior point of K. For small enough
50 the set K, has nonempty interior and therefore there is a 8 > 0 such that

Bg($T7ﬁ) g KSO g K g Bg($T7 %)

Then for all s with 0 < s < 59

8 < <M NaK(a:o>> <1 and §?< <ﬂ NaKs(a:s>> <1.

|0 — x|’ s — @z’

Thus

HZ'S — xT|| < Tg — LCT,NaK(IEo) > < 1
|zo — 27|l < 25 — 27, Nok, (xs) > = (2

As leamarll < g

lwo—zr] = =

f(y)dﬂa(KmHs)(y)
1
1-<Nok,(ws),Nox (y)>2)2

(les — a7 |>" < 9 — o7, Nok (x0) >

lzo — x| < zs —axr, Nok,(zs) >

< N 1 /50 P;V{(xl,...,xjvﬂ xs & [x1,...,xN]}
0

N% /so ]P)jcv{(xh...,.’l?]v)l$S¢[£IJ1,...7$N]}
0

fa(KﬂHs) (

ds.

= B @ FW)draknm,) (y)
1
s) (1-<Nok,(zs),Nar (y)>2)2

fa(K NH
By Lemma 4.8 and Lemma 4.11 the last expression is less than

R 'max,cor f(x)

B2 (mingepr f(x)) 7T (vol, 1 (By ™)) wT

S0 B
></ [2"(a—as+s)N+2”(1—s+bs)N} =
0

2
Nn-1

(74)

We estimate now the integral
s N n—3
/ [2" (a—as+s)" +2"(1—s+ bs)N} s nids
0

_on [ (1—a)(1 — Ve w=t — (1 —b)sVs~r=1ds
fz/o 1= (1—a)(1—s)] +[1—(1—1b)s] ds.
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For sy < % (we may assume this) we have 1 — (1 —a)(1—s) <1—(1—a)s.

Therefore the above expression is smaller than

S0 _ e
2"/ 1-(1- a)s]Ns_ﬁ_—i’ +1-(1- b)s]Ns_n_—i’ds
0
R (1—a)so N
:2”(1—a)7ﬁ/ [1—s]Ns n-1ds
0

2 (1=b)so n—3
+2”(1—b)_nT1/ [1—s]Ns™n=1ds.
0

Since sg < % and 0 < a,b < 1 the last expression is smaller than

2" [(1—a)" 7T +(1—b)—%} B<N+1 L)

T n—1

where B denotes the Beta function. We have
I'z+ «)

li T =1.
Thus
lim B(N + 1, 25)(N +1)71
N—oo
I(N+1)I(:25) 2
= i LN )T = T(E
N r(N+1+%)( ) =)
and 2
F -
B(N +1,-2;) < 2“%—(”21)-
Nt
We get
S0 " N n N _n=3
{2 (a—as+s)" +2"(1 — s+ bs) ] s n=1ds
0
(-2
o[-yt (-t et L),
N#-T
Therefore, by (74)
N%l S0 P}V{(zl,...,{t]vﬂxs¢[$1a"'axN]}
0 f fW)dpsxnm,) ()
O(KNH:) (1_(<N(zs),N(y)>)2)2
(Lo —le)" <o —orJorlin) >
s
||1'0 — I’T” <Ts— ‘TT,NBKS(I'S) >

R 'max,eor f(z)
2 1y o2
B2enrn (mingepr f ()77 (vol,_y (By 1))
} 24527 L%l)
Nt

_2
S Nn-1

on [(1 —a) T 4 (1= b)
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With a new constant ¢, that depends only on the dimension n the last ex-
pression is less than

R max,con f(@) [(1— )77 + (1-6) "7
Cp, 2
Frm (mingeor f(2)70

Lemma 4.13. Let K be a convex body in R™ and x¢ € OK. Let f : 0K — R
be a strictly positive, continuous function with fé)K fdu = 1. Assume that for

all t with 0 <t <T we have K, QIO(. Let x4 € 0K be given by the equation
{zs} = [x0,x7] N OK,. Suppose that there are r, R with 0 < r, R < oo and

By (xg — rNag (x9),7) C K C BY(xg — RNsk (x0), R).
Let the normals Npk_(zs) be such that
s =Py(0K N H™ (x5, Nox,(xs))).

Let sg be as in Lemma 4.10. Then there are c1,co,c3 > 0, Ny, and ug such
that we have for all u > ug and N > Ny

N~= ds < cre™™ + e~ 3N

f(y)
NH. | /1-<Nox, (x:),Nox (y)>2

2 /T P}V{(xl,...,xNﬂms¢[x1,...,xN]}
N faK

dpornm, (v)

where Hy = H(xs, Nok,(zs)). The constants ug, Ny, c1, c2 and c3 depend
only onn, r, R and f.

Proof. First we estimate the integral from sq to . As in the proof of Lemma
4.12 we show

o PY (o) 2 @ [, o]}
N f(y) d ds
N faKﬂHs \/17<N8K5(ws),N6K(y)>2 MaKﬁHs(y)
< N& R 'max,eor f(2)

. 2 12
ﬁchrn (mlna:GBK f(:l?)) nt (VOlnfl(Bz 1)) n=1i
S0

2" {(1 - a)fﬁ +(1- b)fﬁ} / [1-— s]stz%?ds.
%
We estimate the integral

50 n—3 50 n—3 2 soN n—3
/ [1—s]Ns n-1ds < / e *Ng n=1ds = N~ -1 / e %s n-1ds.
u

. .
N N
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If we require that ug > 1 then the last expression is not greater than
2 SON 2 o 2
_ﬁ/ e*SdsgN_ﬁ/ e ds=N"rmnTe ™
u u
Thus

ds

N%/SO ]P’?’{(:cl,...,xNﬂxS%[:cl,...,:rN]}
% Jox

f(y)
NHg \/17<N8KS (zs),Nox (y)>2 d'uaKan (y)

- R ' max,cox f()
T B2 (mingepx f(x)) 7T (vol, g (By )T

x 2" {(1 - a)fﬁ +(1- b)fﬁ e "

Now we estimate the integral from sg to T

T P¥{(x1,...,an)| 75 & [21,...,2n]}

, S ()
50 faKan VI—<Nor, (#2), Nox (5)>2 dpornm, ()

N1 ds.

The same arguments that we have used in the proof of Lemma 4.9 in order
to show formula (62) give that the latter expression is less than

2" N1 vol,_1 (K ) (T — so)
r€OK

N
1— : n—127n L aBn
comingeox f(x) o f (el voln1(0B; ))>

where ¢; is the distance between 0K and 0K,. Choosing now new constants
c1 and ¢y finishes the proof. O

Lemma 4.14. Let H be a hyperplane in R™ that contains 0. Then in both
halfspaces there is a 2™-tant i.e. there is a sequence of signs 0 such that

{z|Vi,1 <i<n:sgn(z;) =0;}.
Moreover, if HT is the halfspace that contains the above set then

HY C U{x|sgn(xl) =6;}.

=1

The following lemma is an extension of a localization principle introduced
by Bérény [Bal] for random polytopes whose vertices are chosen from the in-
side of the convex body. The measure in that case is the normalized Lebesgue
measure on the convex body.
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For large numbers N of chosen points the probability that a point is
an element of a random polytope is almost 1 provided that this point is
not too close to the boundary. So it leaves us to compute the probability
for those points that are in the vicinity of the boundary. The localization
principle now says that in order to compute the probability that a point
close to the boundary is contained in a random polytope it is enough to
consider only those points that are in a small neighborhood of the point
under consideration. As a neighborhood we choose a cap of the convex body.

The arguments are similar to the ones used in [Schl].

Lemma 4.15. Let K be a convex body in R"™ and xq € OK. Suppose that the
indicatriz of Dupin exists at xo and is an ellipsoid (and not a cylinder with
a base that is an ellipsoid). Let f : 0K — R be a continuous, strictly positive
Sfunction with faK fdporx = 1. Assume that for all t with 0 <t < T we have

K gf(. We define the point xs by {xs} = [z, x0] N 0K, and
A(s) =< Nag(xo), 20 — x5 >

is the distance between the planes H(xo, Nox (z0)) and H(xs, Nox (z0)). Sup-
pose that there are r, R with 0 < r, R < co and

Bg(l‘o — ’I“NaK(a?Q),T) Q K Q B;L(Z‘o — RNaK(l‘o),R).

Then, there is cg such that for all ¢ with ¢ > ¢y and b with b > 2 there is
Sc,p > 0 such that we have for all s with 0 < s < sqp and for all N € N with

N > évoln,l(aK)
that
‘P}V{(xl,...,xNﬂ s & [x1,...,2N]} —

IP’}V{(:cl,...,xNM zs ¢ {o1,...,an} N H ]}
< 2" Lexp(— Vo)

where H = H(xg — cA(s)Nox (20), Nok (x0)) and ¢; = ¢1(n) is a constant
that only depends on the dimension n.

In particular, for all € > 0 and all k € N there is Ny € N such that we
have for all N > Ny and all zs € [zg, z7]

|IP’}V{(3:1, o) s [x1,.. . 2N]} —

P;V+k{(x1,...,mN+k)\ zs ¢ w1, angk]} e

The numbers s.; may depend on the boundary points .
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Fig. 4.15.1

Subsequently we apply Lemma 4.15 to a situation where b is already given
and we choose c¢ sufficiently big so that

2" exp(=$V0)

is as small as we desire.

Proof. Let ¢ and b be given. Since f is continuous for any given ¢ > 0 we
can choose s.; so small that we have for all s with 0 < s < s.; and all
x € 0K NH™ (zg — cA(s)Nak (o), Nox (x0))

|f(x) = f(zo)| < e

We may assume that xg = 0, Nog (o) = —e,. Let
n—1 z 2 x 2
(‘,’:{xER" SIF -1 g1}
im1 1% n

be the standard approximating ellipsoid at zy (see Lemma 1.2). Thus the
principal axes are multiples of e;, 1 = 1,...,n.
We define the operator 7}, : R — R"
Ty(x1,. . xn) = (MT1, ..., NTp_1,Tn).
By Lemma 1.2 for any € > 0 we may choose s.; so small that we have
Ti_(ENH (zo — cA(se)Nok (z0), Nox (20)))
CKNH (zg— cA(sep)Nok (20), Nok (o)) (75)
CTiye(ENH (0 — cA(sep)Nor (20), Nok (20))).

For s with 0 < s < s.; we denote the lengths of the principal axes of the
n — 1-dimensional ellipsoid
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T14e(€) N H(zo — cA(s)Nox (o), Nox (20)))

by A, i =1,. — 1, so that the principal axes are \je;, i =1,...,n — 1.
We may assume (for techmcal reasons) that for all s with 0 < s < s

l‘o—CA(S)NaK(.’Eo)i)\iei ¢K 1= 1,...,71—1. (76)

This is done by choosing (if necessary) a slightly bigger e.
For any sequence © = (0;)"_; of signs ©; = £1 we put

corng (©) = 0K N H (x4, Nog (10)) (77)
{h H™ (z5,(0; < x5,€; > —\;)en + Oi(c — 1) A(s) z)}
We have
corng (©) C H™ (xo — cA(s)Nok (x0), Nox (z0))- (78)

H(zo — AN(z), N(z0))

H(zo — ¢AN(20), N(z0))

Fig. 4.15.2: The shaded area is corng (O).

We refer to these sets as corner sets (see Figure 4.15.2). The hyperplanes
H(zs,(0; < xs,e; > —\j)en + Oi(c— 1)A(s)e;)
©;=xlandi=1,...,n—1 are chosen in such a way that zs and
o + O ie; + cA(s)e, = O \e; + cA(s)e,

(xo = 0) are elements of the hyperplanes. We check this. By definition x4 is
an element of this hyperplane. We have
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< Xs, (O < Tg,65 > —Nj)en +O;(c— 1) A(s)e; >
=(0; < xs,e; > —N\;) < xg, e, > +60;(c — 1)A(s) < zs,6; > .

Since Nyx (xo) = —e, we have A(s) =< xg, e, > and
< X5, (O; < s, 5 > —Nj)en + Oi(c — 1) A(s)e; >
=(0; < xs,e; > —N)A(s) + Oi(c — D A(s) < xs,€; >

= A(8){(O; < xs,e; > —N\) +Oi(c—1) < x5,e; >}
= A(S){*)\z + B¢ < x4, €4 >}

and
< O hie; + cA(s)en, (O; < x5, e, > —Nj)en + O;(c— 1) A(s)e; >
= Xi(c — DA(s) + cA(s)(O; < Ts,€; > —N\;)
= —NA(S) + O,cA(s) < zg,€ > .
These two equalities show that for all ¢ withi=1,...,n—1

O \ie; + cA(s)en, € H(xs, (0; < xs,e; > —N;)en + Oi(c — 1)A(s)e;).
We conclude that for all ¢ with i =1,...,n—1andall s, 0 < s <s.4,

KﬂH+($0 —CA(S)N@K(.ro),NaK(xQ)) (79)
NH ™ (25, (0; < z5,6; > —Aj)en + Oi(c — 1) A(s)e;) = 0.

We verify this. Since
o+ O;\ie; + cA(s)e, € H(xs, (0; < Tg,e; > —N;)en + O;(c — 1)A(s)e;)
we have

H(zo — cA(s)Nok (z0), Nox (20))
NH (xs, (0; < Ts,6; > —Aj)en + Oi(c — 1) A(s)e;)

= {xo + O;\ie; + cA(s)e, + Z aje;l a; € ]R} )

j#in
On the other hand, by (75)

KN H (xg— cA(sep)Nok (z0), Nox (x0))
CTi+e(ENH (g — cA(Sep)Nok (o), Nok (x0)))

and by (76)

o — cA(s)Nok (xo) + Nie; ¢ K i=1,...,n—1.
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From this we conclude that

H(xzog — cA(s)Nok (0))
NH (25, (0; < xs,e; > —N)en +6Oi(c—1)A(s)e;)) N K = 0.
Using this fact and the convexity of K we deduce (78).

We want to show now that we have for all s with 0 < s < s.; and
H = H(xzg — cA(s)Nak (x0), Nox (z0))

{(z1,...,zNn)| s ¢ [{z1,..., 2N} NH]} (80)
\{(z1,...,2n)| s ¢ [21,...,2N]}
={(z1,...,2n)| xs ¢ {z1,...,2an} N H "] and x4 € [21,...,2N]}

(@1, an) 21, ey € OK \ corng (O)}.
e

In order to do this we show first that for H = H(xg—cA(s)Nox (z0), Nok (x0))

we have

{(z1,...,2n)| s & [{z1,...,2n} N H ] and x5 € [21,...,2N]} (81)
C {(#1,...,2n)|3H,,  hyperplane : x; € Hy ,H, NKNH" #0

and {x1,...,any}NH~ CH", }.

We show this now. We have z, ¢ [{z1,...,2x}NH "] and zs € [x1,...,2N].

We observe that there is 2 € KN HT (g — ¢A(s)Nak (x0), Nor (x)) such
that

[z,zs) N [{x1,...,an} NV H (9 — cA(s)Nok (x0), Nox (z9))] = 0. (82)

We verify this. Assume that xq...,25 € H™ (2o — ¢A(s)Nok (20), Nox (x0))

o
and Tg41...,on €EH' (zo—cA(s)Nok (7o), Nok (79)). Since s € [r1,...,TN]
there are nonnegative numbers a;, t = 1,..., N, with ZZV:I a; =1 and
N
Ts = Z a;T;.
i=1
Since x5 ¢ [{x1,...,zn} N H~] we have Zilikﬂ a; > 0 and since z, €

H™(z¢g — A(s)Nax (x0), Nok (z0)) we have Zle a; > 0. Now we choose

k N
P P Z': a;T;
y= 421;1 = and p= SR VR

= N
Die1 @i Zi:k-H a;

Thus we have y € [z1,..., 2], 2 € [Tg+1,...,2N], and
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s =ay+ (1—a)z

7

Fig. 4.15.3
We claim that [z, zs]N[z1,. .., 2] = 0. Suppose this is not the case. Then
there is v € [z,x,] with v € [x1,...,2x]. We have v # z and v # x,. Thus

there is § with 0 < 8 < 1 and v = 8z + (1 — §)zs. Therefore we get
v=0z+ 1= Bz, =P — 725y) + (1 — Bag = %xs - %y

and thus

__1- af
Ts = lfafozﬁv + lfaJraﬁy'
Thus z; is a convex combination of y and v. Since v € [z1,...,z] and y €
[1,...,2x] we conclude that x5 € [x1,...,2x] which is not true. Therefore

we have reached a contradiction and
[z,zs] N [T1, ..., xk] = 0.

We have verified (82).
Now we conclude that

{xs +t(Z*$S)| t> O}m [x17"'axk] = @
We have
{zs +t(z —x5)| t >0} = [z,25) U{xs +t(z — x5)| t > 1}.

We know already that [z, 2] and [z1,. .., x| are disjoint. On the other hand
we have

{20+ t(z — 2)| £ > 1} CH* (20 — eA(s)Nox (z0), Nox (o).



124 C. Schiitt and E. Werner

This is true since x GIO—Ii (xo — cA(s)Nok (zo), Nok (zo)) and

z EHO+ (o — cA(s)Nok (20), Nok (x0)). (83)

Since {x1,..., 25} € H (xg—cA(s)Nox (o), Nox (o)) we conclude that the
sets
{zs +t(z—z5)| t > 1} and [X1,. .., 2]

are disjoint. Now we apply the theorem of Hahn-Banach to the convex, closed
set {z5+t(z — z5)| t > 0} and the compact, convex set [z1,...,2]. There is
a hyperplane H, that separates these two sets strictly. We pass to a parallel
hyperplane that separates these two sets and is a support hyperplane of
{zs+t(z—x5)| t > 0}. Let us call this new hyperplane now H,_. We conclude
that zs € H,_. We claim that H,_ satisfies (81).

We denote the halfspace that contains z by H, . Then

o
[Z1,..., 2] gHjs .

Thus we have x4 € Hxs, Hx_s NKN H+(3}0 — CA(S)N@K(JZQ),N(’)K(.I())) D
{2} #0, and

o
[x1,...,2x) CHY .

Therefore we have shown (81)

{(x1,...,zn)| s ¢ [{z1,...,an} N H ] and =, € [21,...,2Nn]}
C{(x1,...,2n)|3Hs, 125 € Hy,, H NKNHY#0)

and {z1,...,ay}NH"~ QHO;FS}
where H = H(xg — cA(8)Nox (20), Nok (zg)). Now we show that
{(z1,...,an)|3H,, cws € Hy ,Hy, NKNHT #0 (84)
and {z1,...,ay}NH"™ QHO;F}
C U{(ml, o xy)|xr, . ey € OK \ corng (O)}
S}
which together with (81) gives us (80).

We show that for every H,, with r, € H,, and H, N KN H™ # ) there
is a sequence of signs © so that we have

corng (0) C H, and corng (—0) C Hf . (85)

This implies that for all sequences (x1,...,xy) that are elements of the left
hand side set of (4.15.5) there is a © such that for all k =1,...,N
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X ¢ corng (O).
Indeed,
{xl, N ,ZCN} NH™ (l‘o — CA(S)N@K(J?()), N@K(xo)) QH;Z
corng (@) N H (g — cA(s)Nox (7o), Nox (70)) = 0.

This proves (84). We choose © so that (85) is fulfilled. We have for all ¢ =
1,....n—1

H(xs, Nog(x0)) N H™ (25, (05 < 5,65 > —Ai)en + Oi(c — 1) A(s)e;)
={z eR"| < z,e, >=< 5,6, > and < x — x5, 6O;e; >> 0}

Indeed, Nyk (z¢) = —e,, and
H(xzs, Nog(z0)) = {z € R"| < x,e,, >=< x5,€, >}
and

H™ (z4,(0; < zg5,6; > —N;j)en + Oi(c — 1)A(s)e;)
={zeR" <z —12,(0; <xzs,€; > —X\;)en, +O;(c —1)A(s)e; >> 0}.

On the intersection of the two sets we have < = — x4, e, >= 0 and thus

0 < <z—24(0; <xzs,6; > =N )en +6O;(c—1)A(s)e; >
=<2 —x5,0;(c—1)A(s)e; > .

Since ¢ — 1 and A(s) are positive we can divide and get
0< <x—1x,,0;¢; > .
Therefore, the hyperplanes
H(zs,(0; < xs,e; > —Ni)en +O;(c —1)A(s)e;) i=1,...,n—1
divide the hyperplane H (x,, Nox (o)) into 2"~ -tants, i.e. 2771 sets of equal
signs. xs is considered as the origin in the hyperplane H (x4, Nox(zg)). By
Lemma 4.14 there is @ such that
H(CI’,‘S, N@K(.To)) n H;:
2 H(zs, Nok(20))

n—1
ﬂ{ ﬂ H™ (25,(0; < x5,6; > =\;)en + Oi(c — 1)A(s)ei)}

i=1

and
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H(.Z‘s, N(JJQ)) N H;s
D H(xs,N(x9))

ﬂ{ ﬁ H (x4, (—0; < z5,6; > —Aj)en — Oi(c — 1)A(s)ei)}.

For a given H,_  we choose this © and claim that
corng (©) C H, . (86)
Suppose this is not the case. We consider the hyperplane I:st with
H,, N H(zy, Nog (z0)) = Hy, N H(zs, Nog (20))
and
n—1

ﬂ H(l‘s, (@l < Ts, €4 > _)\l)e’ﬂ + @1(0 - 1)A(8)€1) g E[ws'

i=1

The set on the left hand side is a 1-dimensional affine space. We obtain H,_
from H,_,& by rotating H, around the “axis” H, N H(xzs, Nox(x0)). Then
we have

H*(z, Nok (20)) N H, € HY (25, Nox (o)) N I?N[;,-

Indeed, from the procedure by which we obtain H, from H,, it follows
that one set has to contain the other. Moreover, since corng (@) C }NI;S , but
corng (©) € H, we verify the above inclusion. On the other hand, by our
choice of ©® and by Lemma 4.14

n—1
H, C U H™ (25,(0; < z5,6; > —\;)en + Oi(c — 1)A(s)e;).
i=1

By (76) none of the halfspaces
H(25,(0; < 25,65 > —N)en + Oi(c — 1) A(s)e;) i=1,....,n—1
contains an element of
KN HT(zo — cA(s)Nax (70), Nox (20))

and therefore H also does not contain such an element. But we know that
H,_ contains such an element by (83) giving a contradiction. Altogether we
have shown (80) with H = H(xg — ¢A(s)Nax (x0), Nox (o))

{(z1,...,zn)| s € [{71,...,on} N H ] and x5 € [x1,...,2N]}

CH(@1,. . an) 21, on € OK \ corng ()},
e
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This gives us

]P’}V{(xl,...,a:Nﬂ xs & [{z1,...,ay} N H "] and x5 € [z1,...,2zN]}
< ZIP’}V{(;vl,...,xNH x1,...,xn € 0K \ corng (0)}
e

-3 (1- L. f(w)du(w)>N

<N (1= (f(z0) — €)vol,_1 (corng (O))V . (87)
(©]

Now we establish an estimate for vol,_;(corng(©)). Let p be the orthog-
onal projection onto the hyperplane H(zo, Nox (z0)) = H(0,—e,). By the
definition (77) of the set corng (O)

(K0 e Now(a0)

m{j@l H™ (25, (0; < z5,6; > —\;)en + Oi(c — I)A(S)ei)}>
p<a<K NH (x5, Nox (20)))
m{d H (00, (80 < 260 > ~N)ew + Oi(e= DA(S)e) | ) )

C p(corng (©)) Up(K N H(xs, Nox (x0)))- (88)

This holds since v € H(xo, Nox (x0)) can only be the image of a point

w e 8(K NH" (s, Nox (20)))
m{n(j H (24, (05 < s, 65 > —Ai)en + Oslc — 1)A(s)ei)}>

if < N(w),Npg(zg) >=< N(w),—e, > > 0. This holds only for w €
corng (O) or w € H(xs, Nox(20)) N K. Indeed, the other normals are

—(0; < xg,e; > —N)ep, — Oi(c—1)A(s)e; i=1,...,n—1
and fori=1,...,n—1

< —(0; < x5, > =N)en — Oi(c — 1) A(s)es, —en >= O; < x5, € > — ;.
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H(xo — AN(wo), N(z0))

H(zo — ¢AN(z9), N(z0))

The shaded area is a part of the surface of the set

n—1
KN HY (x4, Nog(w0))) N { ﬂ H™ (24, (0; < x5,6; > —\;)epn + O;(c — I)Aei)} .
i=1

Fig. 4.154

By (76) we have for all i = 1,...,n — 1 that | < z5,e; > | < A;. This
implies that @; < xs,e; > —\; < 0.
Since
vol,—1(p(corng (0))) < vol,_1(corng (©))

and
vol,—1(p(K N H(xs, Nok (20)))) = vol,—1(K N H(zs, Nok (x0)))
we get from (88)
vol,_1(corng (0))) (89)

> vol,—1 p( xstBK(:EO)))

m{ﬂ (25, (01 < T4, 61 > —Ni)en + Oi(c — 1) A(s)e )}))
—voln_1 (K:m H(zs, Nox (20)))-

Now we use that the indicatrix of Dupin at xg exists. Let £ be the standard
approximating ellipsoid (Lemma 1.2) whose principal axes have lengths a;,
i=1,...,n. By Lemma 1.2 and Lemma 1.3 for all € > 0 there is sy such that
for all s with 0 < s < sq the set

KN H(zs, Nok (x0))
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is contained in an n — 1l-dimensional ellipsoid whose principal axes have
lengths less than

2A(s)

an

(]. + 6)(11'

We choose 5., to be smaller than this sg. Therefore for all s with 0 < s < 5.

vol,—1(K N H(zs, Nok (70)))
<(1+ent (QA(S)> o (H ai) vol,—1 (B3 ~1).

a
n i=1

Thus we deduce from (89)
vol,,_1(corng (O))) (90)
> volp_1 (p(K N HT (xs, Nog (z0)))

ﬂ{nﬂl H™ (25,(0; < zy,6; > —i)en + Oi(c — 1)A(S)€i)})>

=1
—(1+e)! <%ﬁs)> - (ﬁ a¢> vol,_1(By™1).

Now we get an estimate for the first summand of the right hand side. Since &£
is an approximating ellipsoid we have by Lemma 1.2 that for all € > 0 there
is sg such that we have for all s with 0 < s < 59

2A
xo—A(S)NaK(Io)—‘r(l—é)@iai ﬂeiEK i=1,...,n—1.

n

Again, we choose s.; to be smaller than this s.
Let 6 be the angle between Ngg (z9) = —e,, and g — 7 = —zp. Then

|zs|| = A(s)(cos§) 7 . (91)
Consequently,
l(zo — A(s)Nok (x0)) — xs|| = A(s) tan 6.

Therefore, for all € > 0 there is sg such that we have for all s with 0 < s < 59

zs + (1 —€)O,a; 286) 0 e K i=1,...,n—1.

An

Moreover, for i =1,....,n—1
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25+ (1 — €)0sai\/ 22%¢; € KN H (24, Nog (20)) (92)

n—1
ﬂ{ ﬂ H™ (z5,(0; < x5,€; > —\;)en + Oi(c — 1)A(s)ei)}.
i=1

Indeed, by the above these points are elements of K. Since Nyx (x0) = —e,

2o+ (1= €)0a;1/ 2% e; € K N H(xy, Nog (z0)).

QAn

For i # j

<xs +(1—€)O a4/ 23@ €, (0; < g, > —Nj)en, + O;(c— 1)A(s)ei>
= (25, (05 < Ts,€; > —A;)en + O;(c — 1) A(s)e;)

and for i = j

<x5 + (1 —€)O;a;4/ 2?58) i, (0; < s, e; > —Nj)en + O;(c— 1)A(s)ei>
= <xsa (91 < Zs, € > _)\i)en + Qz(c - 1)A(8)€l>
+(1 = €)(c — Dagy/ 22 As).

Since the second summand is nonnegative we get for all j with j =1,...,n—1
2A
s+ (1 —€)Oja; a(s)ej €
n—1
n H™ (:1757 (92 < Ts,€; > *)\i)en + Qz(c - I)A(S)el)
i=1

There is a unique point z in H* (x4, Nk (z0)) with

{z} =0K N { ﬁ H(zs,(0; < x5,6; > —Nj)en + 60;(c— I)A(s)ei)}. (93)

i=1
This holds since the intersection of the hyperplanes is 1-dimensional. We have
that

vol, 1 qp(z),p(xs) - ((1 — )61y %%1)
p(zs) + ((1 — ) 1a,_1/ 2 en_l)]>
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“)))

=vol,,_1 <p {z,xs + <(1 —€)O1a1\/ =5 2A(S )

x3+((1—6 n—10n—1 S)

< voly 1 (p (K A H* (2, Nox (0))

{ﬁ (25, (05 <@g €5 > —Ni)en + Oi(c — 1) A(s )ei)}>>.
- (94)

The (n — 1)-dimensional volume of the simplex

(e + (- 0o/ ) .
p(zs) + ((1 — )11y 25 e“)]

equals

d
1V01n72 ([(l —€)ay/ %(5)617 o (T—€)ap— 2ﬁ(s) 6n1]>
n— n n

where d is the distance of p(z) from the plane spanned by

2A(s)

Qn

p(zs) + (1 —€)B;a;

e i=1,....,n—1
in the space R"~!. We have
vol,_» ([(1 —€)aiy/ %(s)eh (1 —€)an—14/ ZA(S) nl])

= (1- 2 (w) = vol,_s ([arer, - ., an_16n-1))

an

et (29) T ()

i=1 i=1

From this and (94)
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1

d _ ¢ n—2 QA(S) ngz nila' — a —2 :
(n—l)!(1 ) ( an ) 11 Z<; | )

i=1

<vol,—4 (P(K NH™ (zs, Nok (20))

m{nﬁlH‘(a:s, (0; < xzs,6; > —Ni)en + Oi(c— 1)A(s)ei)}>>.

i=1
From this inequality and (90)

vol,_1(corng (0)) (95)

n—2

d wo (24 7 T [ :
Z(n_l)!(lff) 2( @ ) H%(;W >

i=1

—(1+ent (%) = ﬁ a; vol,_1(B5~1).

a
n i=1

We claim that there is a constant c¢o that depends only on K (and not on s
and c¢) such that we have for all ¢ and s with 0 < s < 5.

d > cov/cA(s). (96)

d equals the distance of p(z) from the hyperplane that passes through 0 and
that is parallel to the one spanned by

p(x8)+(1_6)@iai\/ 23(3)61' i=1,....,n—1

in R”~! minus the distance of 0 to the hyperplane spanned by

p(zs) + (1 —€)Osa; 2A(5)€i i=1,...,n—1

An

Clearly, the last quantity is smaller than

2A(s) )
[p(zs)ll +1/ =5~  Jnax i

which can be estimated by (91)

2A(s) < 24(s) ;
(o)l + /552 max ai < flagll+ /55 max a;
= A(s)(cos )7 + 226 max a.

n 1<i<n—1

It is left to show that the distance of p(z) to the hyperplane that passes
through 0 and that is parallel to the one spanned by
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p(xs)'i'(l—ﬁ)@iai\/ zﬁﬁei i=1,...,n—1

is greater than a constant times 4/cA(s). Indeed, there is ¢y such that for all
¢ with ¢ > ¢g the distance d is of the order /cA(s).
Since z is an element of all hyperplanes

H(zs, (0x5(3) — Ni)en + O;(c — 1) A(s)e;) i=1,...,n—1
we have foralli=1,...,n—1
< z—Zs, (0525(1) — N)en + O;(c —1)A(s)e; >=0
which implies that we have for alli=1,...,n—1

2(i) — (i) = (=(n) x(n»%ﬁ()) (o7)

Instead of z we consider Z given by
(3} =0Tie) 0 { () s ©10.0) ~ e + O1(c = DASIen b 99
i=1
We also have
(1) — ws(i) = (2(n) — xs(n))m- (99)
By (75)

T1,6(€ NH™ (LL'() — CA(S)N@K(xo), NaK(Qio)))
C KNH (xg— cA(s)Nok (zo), Nox (x0))-

Therefore we have for all ¢ = 1,...,n that |Z(:)| < |z(i)|. We will show that
we have for alli = 1,...,n—1 that c31/cA(s) < |2(7)|. (We need this estimate

for one coordinate only, but get it for alli = 1,...,n— 1. Z(n) is of the order
Als).)
We have .
n— ~/- 2 ~ 2
z(4) Z(n)
1= —1
Z a;i(1—¢) * an,
i=1
and equivalently
in) =] 2@ | |2
2 - +
an, —~a;(1—¢) an,
G E) s () + ()] E(n) — ag(n) Fay(n) P
= +
a;(1—¢) an,
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By triangle-inequality

) N |im) [
2 a \l; a;(1—¢)

S 20D =2 @) | 20) = 2a(n) |
= J | ai(l—¢) + an,
By (99)
in) || ws(d) zs(n) |
2 an, \ll_zl a;(1—¢) an
. i n—1 )\l - @st(z) 2 i 2
< [2(n) — a( )|¢; = DAG)a(l = o

Since z € HT (x5, Nox(x0)) we have zZ(n) > A(s). By (91) we have for all

i=1,...,nthat |zs(i)| < ||as|]| < A(s)(cos#)~L. Therefore, for small enough
s

2 2

st()
c—l (s)a;(1—¢€)

1

an

1)
+— .
Qn

For sufficiently small s we have |Z(n) — z4(n)| < 3 and therefore

3

Since z(n) > zs(n) >0

< Jo() — (o) (i

i=1

2
81’ < Tg,€; > _/\i

(c—1)A(s)a;(1 —¢€)

1 2
1 )~ a(n |nz ©; <xs,el> —\;
2an (c—1)A(s)a;(1 —€)
and
n—1 2 %
1 O; < xg,6i > —N;
— < ) —xs(n
2a, — | (c—1)A(s)ai(1 —¢)

O; <xs7el >
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2 % n—1 2 %
) (=)
=1
= Tlil xsi 2 % n—1 2 %
F—mml | (S 1 0) +<Z A )

- (C — 1)(1 — E)A(S) mil’llgign_l a; a_l
By (91) we have ||zs]| = A(s)(cosf)~!. From the definition of \;, i =
1,...,n — 1, (following formula (75)) and Lemma 1.3 we get A; < (1 +

€)ai\/ <22 Therefore we get

An

/1 Z2(n) — zs(n)] ) A(s)(cosf)~* cA(s)
2a,, : (c—1)(1—e)A(s) | minj<i<n—1a; +(+ey/(n— 1)T

Thus there is a constant c3 such that for all ¢ with ¢ > 2 and s with 0 < s <
Se,b

Therefore

\/ L _ VEW =@l ) (-
2a, ~ (c—1)(1—¢e)A(s)

i=1

xs(1)

a;

Ai

Q;

i=1

1o o
an — cA(s)

By this inequality and (99)

2(n) — s(n)].

||9z < Tg,€; > _)‘Zl

[20) = 2a ()] = 12(n) = 2 ()| == A

> C4|9i < Zg,€; > —)\1|

By (91) we have |lzs| = A(s)(cosf)~1 and from the definition of \;, i =

1,...,n—1, weget \; > (1— e)am/w. Therefore Z(i) is of the order of \;

which is in turn of the order of y/cA(s).

The orthogonal projection p maps (21, ..., 2,) onto (21,...,2,-1,0). The
distance d of p(z) to the n — 2-dimensional hyperplane that passes through
0 and that is parallel to the one spanned by

plas) + (1= €)agy/228e; i=1,....n—1

equals | < p(z),€ > | where ¢ is the normal to this plane. We have

n—1
1

= —"—=
- 1
n—1 -2 2

(Zi:l @i ) i=1

and get | < p(2),€ > | > car/cA(s). Thus we have proved (96). By (95) and
(96) there is a constant ¢y such that for all ¢ with ¢ > ¢
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vol,_1(corng (0))

n—2

cqr/CA(s) oo [ 2A(s)\ = i e :
Zizzn—l)! (I—¢) ( @ ) il;[lai <;|ai| )
1 n-1

[ a
i=1

n—

—(14 )" 'vol,_1 (B} 1) (24(8)) 2

QA

> c5v/eA(s)" T
where ¢5 depends only on K. Finally, by the latter inequality and by (87)

]P’}V{(xl,...,zNﬂ s ¢ [{x1,...,eny N H ] and x5 € [z1,...,2N]}

< 3 (1 ()~ s comi(0))
]

N
<ont (1 — (f(wo) — €)esv/cA(s) n21)
<2 Loxp (=N (f(r0) — )esv/ed(s) T ).

By hypothesis we have 7k-vol,_1(0K) < s. We have

s <Py(OKNH™ (x5, Nox(20)))
< (f(zo) + €)vol,—1 (0K N H™ (x5, Nok (z0)))-
By Lemma 1.3 we get

n—1

s < cef(o)A(s) =

and therefore
N

VOln_l (8K)

> i > ! s
bs ™ cgbf (o) A(s) T
Therefore

]P’}V{(ml,...,xNﬂ zs & {x1,...,eny N H ] and x5 € [z1,...,2N]}

< on—1 exp (—q%) .

Now we derive
}P}V{(xl,...,xjvﬂ xs & [z1,...,xN]} —
P?+k{(l'17...,$]v+k)‘ Ts ¢ [-T17~'-7$N+k]}’ <e
It is enough to show

Py {(@1, ... on)| @5 € {1, an} NH ]} -
P;V+k{(x1,...,z1v+k)\ 2y € o1, vk} NHJ} <e
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We have

{(x1,...,ony1)| s € {21,.. ., 2Ny} NHT]}
={(x1,...,on+1)| xs € {x1,...,an} N H ]}
U{(x1, .., enk)| 2s € {21,...,en N H ] and
xs € {z1,...,ansx NH ]}

Clearly, the above set is contained in

{nre s ansn)] s € [l an} 0 HJ)
U{(J?l,...,l‘N_A,_k)El?;,l <i<k: TNt € H™ ﬂaK}

Therefore we have

]P}V+k{(:v1,...,:c1v+k)| Tg € [{xl,...,xN+k} ﬂHi]}
< P}V{(xl,...,xlvﬂ xs € {x1,...,an N H™]}
+PH{(@ng1s - ann)| i1 < i < ko € H NOK}
:IP’]fV{(azl,...,xNﬂ s € {z1,...,an}NH™]}

k du.
+ /amef(x) p

We choose H so that k [, f(x)dp is sufficiently small. O

Lemma 4.16. Let K be a convezr body in R" and xqg € 0K. Let £ be the
standard approzimating ellipsoid at xqg. Let f : OK — R be a continuous,
strictly positive function with faK fdp =1 and K be the surface body with
respect to the measure fdusx and Es the surface body with respect to the
measure with the constant density (vol,_1(0E))~1 on OE. Suppose that the
indicatriz of Dupin at xo exists and is an ellipsoid (and not a cylinder with
an ellipsoid as base). We define xs, ys and zs by

{zs} = [x0,27] N OK; {zs} = [x0, 27] N O&S

{ys} = [vo, x7] N H(2s, Nox (0))-

(i) For every e > 0 and all ¢ € N there are co > 1 and so > 0 so that
we have for all k € N with 1 < k < £, all s and all ¢ with 0 < ¢s < sg
and ¢o < ¢, and all hyperplanes H that are orthogonal to Nok (o) and that
satisfy vol,_1(OK N H™) =cs

]P”JE’aKmH,{(xh...,xkﬂ Zs € [x1,..., 28]} —

Ph rm- (1, . k)| o5 € [T1,..., 2]} < e
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where Py gnm— is the normalized restriction of the measure Py to the set
OKNH™.

(ii) For every e > 0 and all £ € N there are co > 1 and so > 0 so that
we have for all k € N with 1 < k < £, all s and all ¢ with 0 < ¢s < sg
and ¢y < ¢, and all hyperplanes H that are orthogonal to Npk (xg) and that
satisfy vol,_1(OK N H™) = cs

|]P§KOH_{(301,...,$;€)| ZTs € [T1,..., 2|} —
PgmH,{(zl,...,sz Ty € [zl,...,zk]}| <e.

(i1i) For every ¢ > 0 and all £ € N there are ¢co > 1 and so > 0 so that
we have for all k € N with 1 < k < £, all s and all ¢ with 0 < ¢s < sy
and ¢y < ¢, and all hyperplanes H that are orthogonal to Npk (xg) and that
satisfy vol,_1(OK N H™) = cs

|]P’550H_{(Zl7"‘,zk)| Zs € [Zl,~..,2k]}—
Pgsme{(len,Zkﬂ Ys € [21,...,zk]}\ < €.

(iv) For every e > 0 and all £ € N there are cg > 1, s9 > 0, and § > 0 so that
we have for all k € N with 1 < k < ¥, all 5,s" and all ¢ with 0 < c¢s,cs’ < sg,
(1=06)s < &' < (149)s, and ¢y < ¢, and all hyperplanes Hy that are orthogonal
to Nog(xo) and that satisfy vol,_1(0E N H; ) = cs

ngmH;{(Zl’“"Zk” Zs € [21, 2k} —

PSSQH;{(Zl“”’Zk)' 2z € |21,y 21} <.
(v) For every e > 0 and all £ € N there are co > 1 and Ay > 0 so that we have
forallk e Nwith 1 <k </{, all A, all v > 1 and all ¢ with 0 < cyA < Ay

and co < ¢, and

]ngmHC—A{(Ila cee axk)| Zo — AN@K(IO) € [‘Tla s ,l’k]} -
Pléan;A{(wl""’xk” 29 — YANsk (xg) € [T1,...,2%]} <€

where Hop = Hea(xg — ¢cANok (20), Nok (z0)).

(vi) For every € > 0 and all £ € N there are ¢ > 1 and so > 0 so that we
have for all k € N with 1 < k < ¥, all s with 0 < ¢s < sq, all ¢ with ¢y < c,
and all hyperplanes H and H that are orthogonal to Npg (z0) and that satisfy

vol,_1(OENH™)

P;(OKNH™)=cs vol_1(98) =cs
that
P?,aKOH*{(xlv--kaﬂ Ts € [1,..., mE]} —
ngngf{(zl,...,zkﬂ zg € [zl,...,zk]}| <e.
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(The hyperplanes H and H may not be very close, depending on the value

f(z0).)

Proof. (i) This is much simpler than the other cases. We define @,_: 0K X
-+ x 0K — R by

[0 xs & [x1,..., 28]
émS(l‘h'”’zk){ 1 .’L‘SE[.’El,...,a)‘k].

Then we have

PI},SKOH*{(QSD""J:/C” Ts € [Z‘h...,ﬂfk]}
= (P;(OKNH)) ™" x
k

/,9KmH, .. ./aKﬂH7 b, (x1,...,2k) Hf(xi)d'u,aK(xl) e dpox ().

i=1

By continuity of f for every § > 0 we find sy so small that we have for all s
with 0 < s < sg and all z € 0K N H™ (x5, Nok (x0))

|f (o) = f(2)] <6

(ii) We may suppose that g = 0 and that e, is orthogonal to K at xg.
Let T, : R® — R"™ be given by

To(x(1),...,z(n)) = (sz(1),...,sx(n —1),x(n)). (100)

Then, by Lemma 1.2, for every § > 0 there is a hyperplane H orthogonal to
e, such that for
E1=T.1 (&) E =T145(E)

149

we have

SENH =T, (E\NH CKNH CTys(E)NH =&NH".

T+5

Since the indicatrix of Dupin at z is an ellipsoid and not a cylinder and
since f is continuous with f(z¢) > 0 we conclude that there is sg such that

Tﬁ(g) ﬂH_(CL'SO,NaK(Q?o)) CKNH™ C T1+5(5) ﬂH_(ISO,NaK(:L‘o)).
(101)

We have that

]P)gKﬂH_{(x17"'7xk)| Tg € [$1,...,xk]}
= PgKﬁH*{(‘/Elﬁ" ,l'k)| Ts € ['Tla" '7xk]o}-
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This follows from Lemma 4.2. Therefore it is enough to verify the claim for
this set. The set

{(x1,.. . zK)| s € [21,..., 28] 21, ..., 2, EOKNH™}

is an open subset of the k-fold product (OKNH ™) x---x (0K NH™). Indeed,
since x4 is in the interior of the polytope [z1, ..., x;] we may move the vertices
slightly and x4 is still in the interior of the polytope.

Therefore this set is an intersection of (OK N H™) x -+ x (OK N H™)
with an open subset O of R¥". Such a set O can be written as the countable
union of cubes whose pairwise intersections have measure 0. Cubes are sets
B™ (x0,7) = {z|max; |z(i) — 20(i)| < r}. Thus there are cubes B™ (27,17),
1<i<k,j€eN, in R” such that

0= T Btel.rd) (102
and for j #m
volgp, (HB" xl,r)) ﬂHB” x, Z”)
k
H @, r]) N BY(x]", i) = 0.

Therefore, for every pair j, m with j # m there is ¢, 1 < ¢ < k, such that

Bl («],r]) N By (a]", 1) (103)
is contained in a hyperplane that is orthogonal to one of the vectors eq, ..., e,.
We put
k
W, = H(B” ol vl maKmH—) jEN (104)
i=1
and get

{(x1,...,21)| x5 € [x1,...,2%]%, 21, ..., 2, EOKNH } = U W;. (105)
j=1

Then we have for j # m that
VOlk(n_l)(Wj N Wm) =0.

Indeed,
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REE) AR

W; N Wy, = {(xl,...,w;c)Ni cx; € K N B (7)) N BY (z7, r1") ﬂH‘} .
There is at least one 79 such that

B (wj,, ,) N BL (g, 7iy)
is contained in a hyperplane L that is orthogonal to one of the vectors
€1,...,en. Therefore

vol,—1(0K N B (] ,rl ) N B (2, 7)) < vol,_1(0K N L).
The last expression is 0 if the hyperplane is chosen sufficiently close to x.
Indeed, K N L is either a face of K or 0K NL = (K NL). In the latter case
vol,—1 (0K NL) =vol,_1(0(KNH))=0.If H is sufficiently close to z¢, then
L does not contain a n — 1-dimensional face of K. This follows from the fact
that the indicatrix exists and is an ellipsoid and consequently all normals are
close to Nyk (z9) = e, but not equal.
Let rp : 0K — OE where rp(x) is the unique point with

{rp(z)} = {xs + t(x — z)|t > 0} NOE. (106)

For sg small enough we have for all s with 0 < s < sg that zs € £. In this
case rp is well defined. Rp : 0K X -+ x 0K — 0 x --- x OE is defined by

Rp(z1,...,zk) = (rp(z1),...,mp(zk)). (107)

Fig. 4.16.1

There is a map « : 0K — (—o0, 1) such that
rp(z) =z — a(z)(x — x5). (108)

Since z, is an interior point of K the map « does not attain the value 1. For
every € > 0 there is sg such that we have for all s and ¢ with 0 < ¢s < sg
and ¢ > cg and for all hyperplanes H that are orthogonal to Ny (z9) = ey,
and that satisfy vol,,_1 (0K N H~) = cs and all cubes BZ (x7,7]) that satisfy
(104) and (105)
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vol, 1 (K N B (x), 7)) < (1 + €)vol,_1 (rp(OK N B (x,77))).  (109)

To show this we have to establish that there is sg such that for all x €
OK N H (zs,, Nox (x0)) and all s with 0 < s < s

o —rp(a)|| < eflzs —rp(2)| (110)

<N6K(x)’ ﬁ>
<Nag(7“p(m))’ ﬁ>

Indeed, the volume of a surface element changes under the map rp by the
factor

(1—¢) < <(1+e). (111)

<mmmxm>”* @%K@%ﬁﬁﬁ>,
I = (Nos (rp(a)), =27 )
We establish (111). We have
(Nok (), — xy) - (Nok () — Naog(rp(z)),x — )
(Noe(rp(x)), x — ) (Noe(rp(x)), x — )

| Nox (@) — Nog (rp(@)] [l — o]
S T Nee @)z )

We have
[Nok (z) — Nog(rp())|| < €llz — xo|-

This can be shown in the same way as (33) (Consider the plane H(z, Nox (o))
The distance of this plane to zg is of the order ||z — z||?.) Thus we have

(Nok (), x — x5) ellz — zolll|z — sl ecollx — a4]?
(Nog(rp(x)),x —x5) = (Nog(rp(x)),x —xs) = (Noe(rp(z)),z — x5)
It is left to show

| < Nag(rp(x)),x —xs > | > col|z — xs||2.

If z is close to zg then this estimate reduces to ||z — x4|| > ||z — 25> which
is obvious. If z is not close to xo then ||z — x,]|? is of the order of the height
of the cap 9 N H~ (rp(x), Nok (zo)). Therefore, it is enough to show

| < Nog(rp(z)),x — x5 > | > co| < Nox (z0),rp(x) — 20 > |-

We consider the map T : R® — R"™ that transforms the standard approxi-
mating ellipsoid into a Euclidean ball (5)

T n—1 ;%T x n—1 Z%T
T(l‘): a_i (Hb’b> PR ol (Hb'L) y Ly,
i=1 =1

Up—1
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Thus it is enough to show
| < T Nae(rp(x)), Tx — Txs > | > co| < Nox(x0),mp(x) — 10 > |.

Since Txg = o = 0 and T~ (Npk (x0)) = Nax (zo) = e, the above inequal-
ity is equivalent to

| < TV Npe(rp(x)), Tx — Tz > | > co| < Nog(20), T(rp(x)) — 20 > |.
Allowing another constant cg, the following is equivalent to the above

‘< T~ Nog (rp(z))
[T~ Nog (rp(z)) ||

Thus we have reduced the estimate to the case of a Euclidean ball.
The hyperplane H (T (rp(z)), Nok (z¢)) intersects the line

Tr — T:cs> > ¢l < Nok (o), T(rp(z)) —xo > |-

{SCO + tNaK(SCo)H S R}

at the point z with ||zg — z|| = | < Nok (zo), T(rp(x)) — ¢ > |. Let the radius
of T(€) be r. See Figure 4.16.2.

(rp(x))

w0 — 7Nk (o)

Fig. 4.16.2

We may assume that < T~ Nye(rp(x)), Nog (z9) >> % Therefore we
have by Figure 4.16.2 (h = ||zg — z||)
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K e T - )|

e =P N/ T N lrpl@)
- (” oA T z|) <||T1tNag<rp<x>>||’Nf’K< 0>>

T~ Nag(rp(z))
o= <1 Freremes e Yo o)
> 1| < Nog(20), T(rp(z)) — o > |

v

where 7 is the radius of T(€). Since there is a constant ¢y such that

T~ Nage(rp(z)) (s
K||T—1tNag<rp<x>>||7T<x) T( ’>‘
< T~ Y Nae(rp(x))

| T—1*Nog (rp(x))||

> Co

T(rple) - o0)

we get

T Nog (rp(x)) —T(z le x rp(z)) —x
'< ||T_1tNag(’l"p(1‘))||7T(x) T( S)>’ > 3 0| < N@K( 0)7T( p( )) 0> |

The left hand inequality of (111) is shown in the same way.

Now we verify (110).

Again we apply the affine transform 7" to K that transforms the indicatrix
of Dupin at z( into a Euclidean sphere (5). T leaves x¢ and Ngk (z¢) invariant.

An affine transform maps a line onto a line and the factor by which a
segment of a line is stretched is constant. We have

[z —rp(@)l| _ T() = T(rpx))]|
lzs =rp(@)l T(xs) = T(rp(x))|

Thus we have

By (xo — rNok (xo),r) N H™ (T (s, ), Nok (x0))
CT(K)NH™ (T(zs,), Nox (20))
C By (xo — (1 +€)rNox (w0), (1 +€)r) N H™ (T'(xs,), Nok (z0))-

The center of the n — 1-dimensional sphere
BY(xg — rNok (z0),r) N H(T(rp(x)), Nox (o))

is
xo— < xo — T(rp(x)), Nox (x0) > Nox (zo)
and the height of the cap

By (xo — rNok (wo),m) N H™ (T(rp(z)), Nox (70))
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is
| <o —T(rp(x)), Nok (zo) > |-

Therefore, for sufficiently small sy and all s with 0 < s < s we get that the
radius of the cap ||T(rp(z)) — (xo— < o — T(rp(x)), Nox (x0) > Nax (z0))]|
satisfies

Vrl < o —T(rp(x)), No (zo) > | (112)

< | T(rp(x)) — (zo— < zo — T(rp(x)), Nox (z0) > Nox (0))|-

We show that there is a constant ¢y > 0 so that we have for all s with
0<s<spandallz € 0K NH (x5, Nox (x0))

1T (rp(x)) = T(x)|| > con/r| < wo — T(rp(x)), Nor (x0) > |. (113)

Let « be the angle between Nyg (xg) and xo — T'(xr). We first consider the
case

1T (rp(x)) = (xo— < o — T(rp(x)), Nox (z0) > Nox (x0))]|
> 2(1+ (cosa)™Y)| < 29 — T(xs), Nox (w0) > |. (114)
(This case means: xg is not too close to T'(rp(zx)).) Then we have
1T (rp(x)) = T(s)||
2 [ T(rp(z)) — (zo— < xo — T(rp(x)), Nok (x0) > Nox (zo))|
—llwo = T(xs)ll = | < @0 — T(rp(x)), Nox (x0) > |
=T (rp(z)) = (xo— < o — T(rp(x)), Nox (z0) > Noxk (x0))||
—(cos )Y < 2o — T(xs), Nor (20) > |
—| <zo = T(rp(x)), Nox (z0) > |.
By the assumption (114)
1T (rp(z)) — T (x|l
> 3T (rp(x)) = (xo— < o — T(rp(2)), Nox (z0) > Nox (z0))l|
+(1 4 (cosa)™M)| < zg — T(zs), Nox (z0) > |
—(cosa)™t| < 29 — T(xs), Nox (r0) > |
—| <z —T(rp(x)), Nok (z0) > |
= 3T (rp(z)) — (wo— < w0 — T(rp(x)), Nox (x0) > Nox (zo))|
+| <xo—T(xs), Nox (z0) > | — | < xo — T(rp(z)), Nox (x0) > |
By (112)
1T (rp(x)) = T(s)||
> 3\/r| < g — T(rp(x)), Nox (o) > |
+| <z —T(xs), Nox (z0) > | — | < o — T(rp(x)), Nox (x0) > |
1/r| < zg — T(rp(x)), Nox (o) > |
—| <@o = T(rp(x)), Nox (z0) > |.

Y
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We get for sufficiently small sy that for all s with 0 < s < s
IT(rp(x)) — T(x)l| > 13/7 < 20 — T(rp(e)), Nox (z0) > |-

The second case is

1T (rp(z)) — (xo— < o — T(rp(x)), Nox (o) > Nox (xo))]| (115)
< 2(14 (cosa)™)| < g — T(xs), Nox (z0) > |.

(In this case, xg is close to T(rp(x)).) [|T(rp(x)) — T(xs)|| can be es-
timated from below by the least distance of T'(zs) to the boundary of
BY(xo — rNok (x0),r). This, in turn, can be estimated from below by

| <zp—T(zs), Nox (z0) > |.
Thus we have
IT(rp(x)) = T(zs)l| = €' < wo — T(ws), Nox (z0) > |
On the other hand, by our assumption (115)

1T (rp(x)) = T(s)||
= 2(1 + (cosa)™1) %

|T(rp(x)) — (xo— < w0 — T(rp(x)), Nox (20) > Nox (0))l|-
By (112)

1T (rp(z)) — T(x \/7“| < xo — T(rp(x)), Nox (x0) > |.
This establishes (113).

Now we show that for sg sufficiently small we have for all s with 0 < s < s9
and all x

) = 2(1+ (Cosa

|T(x) — T(rp(x))|| < 2v/2e(1 + €)r| < 20 — T(rp(z)), Nox (z0) > |.  (116)
Instead of T'(x) we consider the points z and z’ with
{z} = By (x0 — (1 + €)rNok (zg), (1 + €)r) N {T(xs) + t(T'(x) — T(xs))|t > 0}
{z'} = By (xo — (1 — €)rNok (z0), (1 — €)r) N{T () + t(T(x) — T(x,))|t > 0}.
We have
1T () = T(rp(2))|| < max{||z = T(rp(x))|, 2" = T(rp(z))||}.

We may assume that ||z — zs]| > ||rp(x) — xs]|. This implies | T(z) —
T(rp(x)|| < Iz — T(rp(x))|. ||z — T(rp(z))|| is smaller than the diameter
of the cap
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By (zo — (14 €)rNok (20), (1 +€)r)
NH™ (T(Tp(l')), NGBS (xo—rNok (x0),r) (T(rp(at))))
because z and T'(rp(z)) are elements of this cap. See Figure 4.16.3.

B (xo— (1+€)rNog(zo), (1 +€)r)

By (z0 — rNox (20),7)

Fig. 4.16.3

We compute the radius of this cap. The two triangles in Figure 4.16.3 are
homothetic with respect to the point xy. The factor of homothety is 1 + €.
The distance between the two tangents to By (xo — (14 €)rNok (x0), (1 +€)r)
and BY(zg — rNak (xo),r) is

€| < xo—T(rp(x)), Nor (x0) > |.
Consequently the radius is less than
V2e(1 + €)r| < zo — T(rp(z)), Nox (20) > |.
Thus we have established (116). The inequalities (113) and (116) give (110).

From the inequalities (110) and (111) we get for x € 0K N B2 (z,r]) and

! sufficiently small
vol,_1(OKN B~ (z!,17))

|zs —|]
les—rp(2)]|

~ (Nok(z), Nog(rp(x)))
(14 e)n1
1

n—1

vol,—1 (rp(0K N B;”g(:vjf 7"]")))

1771

<(1+e) vol, 1 (rp(dK N BY (z7,71))).



148 C. Schiitt and E. Werner

It follows that for a new sg

k
VOlk(n 1)( HVOln 1 8KﬁBn( z’ Z))
i=1
k
+€kHV01n 1 rp(aKﬂB"( x], Z)))
=1

= (14 €)*voly(n—1)(Rp(W;)).
And again with a new sg
voly(n—1)(Wj) < (1 + €)voly(n—1) (Rp(Wj)). (117)
We also have for all x; € 0K, i=1,...,k

Rp({(z1,...,2x)| xs € [21,...,2%)° and z; € OK}) (118)
CH{(z1,...,2K)| s € [21,..., 2] and z; € OE}.

We verify this. Let a;,7 = 1,..., k, be nonnegative numbers with Zle a; =1

and
k
= E a;T;.
i=1

.
(1— ae)(1+ X5, plae)

where «o(z;), i = 1,...,k, are defined by (108). We claim that Zle b;

and
k
Ts = Z szp(CCZ)
i=1

We choose

bi =

I
—

We have

k k
2 =2
« :EJ a;
=1 1=1

(1 —04(1‘1))(1 +Z] 1 1-a(zy) )
a(z,,)
Z fieGn)
a(z;)a;

1+Z] 1 1—a(x;)

Moreover, by (108) we have rp(z;) = z; — a(x;)(x; — x5)
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k

k
> birp(z:) = Z bi(wi — () (@i — )
i=1 i

Z az XTi— xl)(xl ZL’S))
(1= a(w:)(1+ ), 252)

~ a; T u a;o(x;)x
- a( + Z @ 3UJ)“J
111+ZJ 11,1;,; i:1(1_a($z))(1+zg 1 T-a(z; )
k a;o(xy
T 2io1 1—a((m¢))x5

S

a(z;)a; K awa;
]' + Z] 1 1—a(xy) 1+ Zj:l 1—a(zy)
Thus we have established (118)

Rp({(z1,...,2x)| xs € [71,...,2%)° and z; € OK})
C{(z1y---,21)| x5 € [71,...,2K) and z; € OE}.

Next we verify that there is a hyperplane H that is parallel to H and such
that

vol, 1 (0K NH™) < (1+€)vol,_1 (0K N H™) (119)
and

Rp({(mla"'axkﬂ Ts € [mla"'axk]oaxi € aKan}) (120)
C{(z1,-.-,2k)| xs € [21,..., 2] and z; eaemﬁr}.

This is done by arguments similar to the ones above. Thus we get with a new
50

& VOlk(n—l) (U;il WJ)
Poxnm-{(@1, .. an)| @5 € [21,... ap]} = (vol,_1 (0K N H™))F

Vol (n—1) (UJ 1 Rp(W. )
(

<(1+¢) (oL, (9K N H))E

< (1+€)V01k("—1){ Zl""’zk)| Ts € [Zl,--- Zk] and z; € OENH— }

- (vol,_1(0K M H))F

<+ volp(n—1){(21,.. ., 2k)| s € [21,..., 2] and 2, € OE N H ™} L
B (vol,—1 (K N H™))*

vol,—1 (0K N H~) and vol,,_1 (0 N H~) differ only by a factor between 1 — ¢
and 1+ € if we choose sy small enough. Therefore, for sufficiently small sg we
have for all s with 0 < s < s
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PgKﬂH*{(mla" -,J?k)| Ts € [371,.. .7ij]}
< (1 +€)P550H*{(21>~--72k>| Ts € [21,...,Zk]} + €.

(iii) We show now that for sufficiently small s, we have

‘Pg:‘:ﬂH*{(zla'”vZk” Ys € [Z17'-~7Zk]}
_ng‘:ﬂH*{(’zla"-asz Zs € [Zl,...,Zk,]}l < €.

The arguments are very similar to those for the first inequality. We consider
the standard approximating ellipsoid £ and the map tp : 9€ — OE mapping
x € OE onto the unique point tp(z) with

{tp(x)} = 0E N {ys + t(x — 2,)| t > 0}.

See Figure 4.16.4.

We define Tp : 9 x -0 — 9 X -+ x 9E by Tp(z1,...,2,) =
(tp(z1),...,tp(zx)). Then we have

Tp({(z1,...,2)| zs € [21,-..,2k] and z; € OE})
SH{r, - )l ys € [y1,- .- yw] and y; € O}

The calculation is the same as for the inequality (ii). The map ¢p changes the
volume of a surface-element at the point x by the factor

Iy — o)l \" (TS Nos(a)
(ys_mys_%)”) (=g Nos (tp(=) ) e

- (=)™ <<i§:i§8§’N%<$>>

o= 2] T Nos(tp(2)))

We have to show that this expression is arbitrarily close to 1 provided that
s is sufficiently small. Since we consider an ellipsoid



Random Polytopes 151

<%,N65( )>

< Hys—tp(z)H ; Noe (tp(x))>

(122)

is sufficiently close to 1 provided that s is sufficiently small. We check this.
We have

s—t s—t
(i Nos(@)) (mo=tethy Noe (tp()) — Nos(2))
Ys ( ) Ys ( )
(=i Nos(ip(z)) (Tt Noe(tp(2)))

We show that (122) is close to 1 first for the case that £ is a Euclidean
ball. We have ||Ngg(x) — Nag(tp(z))|| < collwo — 25| for some constant cq
because || Nog () — Nog (tp(x))l| < llys — 2|l and [lys — 24| < collzo — 2s]l-
The inequality ||ys — zs|| < collxg — 25| holds because {zs} = [0, z7] N OEs
and {ys} = [zo, 7] N H(zs, Nox (0))-

On the other hand, there is a constant ¢y such that for all s

< ys — tp(z)

lys — tp(x)||

These two inequalities give that (122) is close to 1 in the case that £ is a
Euclidean ball. In order to obtain these inequalities for the case of an ellipsoid
we apply the diagonal map A that transforms the Euclidean ball into the
ellipsoid. A leaves e, invariant. Lemma 2.6 gives the first inequality and the
second inequality gives

<A (%) ’A“(Nas(tp(fﬂ)))> > co/|lwo — 2.

This gives that (122) is close to 1 for ellipsoids. Therefore, in order to show
that the expression (121) converges to 1 for s to 0 it is enough to show that

for all
lys — tp(x)[| """
1Ys = P\T)ll 12
( o=zl (123)

7mem»z%|m—%w

is arbitrarily close to 1 provided that s is small. In order to prove this we
show for all z

llys — tp(x)||
”ys - (Z‘ +Ys — Zs)”

1—cyl|zs — ao® < <1+ c|zs — @[ (124)

or, equivalently, that there is a constant c3 such that

[tp(x) — (x + ys — 25) ||

1
< csllzs — xol|®. (125)
lys — tp(x)]] ’
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We verify the equivalence. By triangle inequality

lys — tp(2)|| + lltp(z) — (= 4+ ys — 24|
ys — tp(2)]]
lys — (z +ys — 24)|l
llys — tp(2)|]

Y

1+ cs|zs — o3

which gives the left hand inequality of (124). Again, by triangle inequality

lys — tp(@)|| — lltp(z) — (z + ys — 24)||
llys — tp(@)||
Hys - (:L' +Ys — Zs)”
lys — tp(z)||

IN

1
1 —es||lzs — 20|

which gives the right hand inequality of (124).
We show (125). We begin by showing that

ltp(zo) — (xo + ys — 25)||
lys — tp(zo)|l

< e3lzs — ol . (126)

See Figure 4.16.5.

Zs Ys

. i . .
. H LI
, , N\
-
S Zs Ys u
.
.
Sy — 2y + OF o€
\

Fig. 4.16.5

Clearly, by Figure 4.16.5
[tp(x0) — (0 +ys — 2)[| < llv = (w0 +ys — 25|

There is p such that for all s with 0 < s < so we have ||zs—u|| > pry/||zo — 25]|-
Let 6 be the angle between x¢g — 7 and Npg (z¢). By this and ||zs — ys|| =
(tan 0)[|zo — 2|l

ltp(z0) — (w0 +ys — 2s) || < llv — (w0 +ys — 2|

T z tan @
(] i L LIRRTE
o —ul = 5
It follows
tan @
lys—tp(o) | = ll2s—zoll—lltp(0) — @o+ge—2e)l| 2 ea—aoll— 228 Jeg— s
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This proves (126) which is the special case x = zq for (125).

Now we treat the general case of (125). We consider three cases: One
case being * € H™(zs, Nox(0)) and |lys — wi|| < |lzo — 2s||3, another
z € H (25, Nox(20)) and |ys — wi] > |lzo — 2]/ and the last z €
H™ (25, Nog (x0))-

Ys u

s = Zs T L0 pom e e Wy

tp(zo) wy

Ys wy u

Fig. 4.16.1

First we consider the case that © € H ™ (zs, Nox (z0)) and
lys — will < llzo = 23
We observe that (see Figure 4.16.5 and 4.16.7)

lys —tp(x)ll = llys — w2l
ltp(x) = (z +ys — 25) | < [lwa — (2 +ys — 2wz — ws].
Thus we get

[tp(z) = (@ +ys — 25)|| _ w2 —ws|| _ |[ws — wsl

< — . (127)
lys — tp(z)|| lys —wal|  [lwr — wall
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Comparing the triangles (tp(xo), w4, w2) and (tp(zg), u,ys) we get

Jws —wall_ |tpo) ~ vl
ipCoo) —wall s —ul
Since |tp(zo) — wall = lys —
t —
s — wall = g — oy 1L ]
o — ol

By the assumption ||lys — w1 < ||lzo — 2|5, by [[tp(xo) —ys]| < |lzo — 2| and
by |lys — u|l > cov/||To — zs|| we get with a new constant ¢

7
[wa — wal] < col|wo — 2|8
and with a new c¢g

w2 — ws|| = |lwa — wa|| + [Jws — wyl|
= [lwg — wal| + |[tp(wo) — (ys — 2s + 20) ||

7 3
< colllwo = 2% + ll2s — ol %)
From this and ||w; — ws]| = ||zs — zo|| we conclude
7
lwi —wal| = [[2s — @ol| — collwo — 2s|°.
The inequality (127) gives now

[tp(x) — (z +ys — 25)|| _ [lws —ws| cl|wo — 2|5
lys — tp(z)|| T lwr — w2l T |z — @0l — ¢llwo — 2|5

The second case is that tp(x) € H™ (25, Nox (x0)) and
2
lys —will =2 [lzo — 2|5

Compare Figure 4.16.9.

<
. .
.
.
P N
. .
. N
, N
, .
, tp(x .
’ N
’ Y
/ Zs Ys \ .
, N
’ 88 Ay
S ys — zs + OE N
/

Fig. 4.16.9

Since ||ys — w1l = ||lzo — 2s||F we get
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2
lys = tp(@)[l = [lwo — 25

We have ||tp(z) — (x+ys —25)|| < ||ys —2s|| because © € H ™ (z5, Nox (z0)) (see

Figure 4.16.9). Since ||zs—ys|| < collzo—2zs|| we deduce ||tp(z)—(x+ys—25)|| <
collzo — zs||. Thus we get

[tp(z) = (@ +ys — 25| _ collzo — 2|l

lys =tp(@)Il 7 Jlzo — 23

The last case is tp(z) € H" (25, Nox (20)) (See Figure 4.16.10). We have

1
= collzo — 2|7

lys — tp(@)[| = [lys — ull = ll2s — ull = [lys — 2.
There are constants ¢y and p such that

lys = tp(@) = pv/llwo — 2|l = collzo — 2]l

[tp(2) = (2 +ys = 25)|| < collwo = 2. (128)

Fig. 4.16.10

The first inequality is apparent, the second is not. We show the second
inequality.

o0&

tp(zo)

V4 |~\
Fig. 4.16.11 Fig. 4.16.12

We know that the distance between vz and x+ys — 24 is less than [|ys — 2]
which is less than co||lzg — 25|| (See Figure 4.16.11). The angles o and 3 are
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given in Figure 4.16.12. We show that there is a constant ¢y such that 5 > ¢pa.
We have

tana = llys = vall tan(a + 3) = 4HU4_D5H.
[[o1 — v [[o1 — va
We have
t
L fme e+ B) el D=l
1—tanatanf 1 —tanatanf tan a lys — val| llys — val|
which gives
t _
anf _ —tanatan 8+ (1 — tanatanﬁ)M.
tan a 1ys — vall

It is not difficult to show that there is a constant ¢ such that for all s with
0<s<sp
||ys - 'U5|| > C”ys - U4||'
This gives
tan (8
tan o

> —tanatan 8 + ¢(1 — tan atan (3).

For sq sufficiently small o and ( will be as small as we require. Therefore,
the right hand side is positive. Since the angles are small we have tana ~ «
and tan 3 ~ (. From 8 > cpa we deduce now that

[tp(z) = (2 +ys = 25)|| < collvs — (& +ys — 25)[| < ellys — z]l-
We obtain by (128)

[tp(z) — (@ +ys — 2|l _ cllys — |
lys — tp(@)|| — vV llwo — 2|l — collzo — 2|

There is a constant ¢ such that |lys — zs|| < collzo — 2|
(iv) First we show

PSEOH;{(zlv""ZkN zs € [21, .. 2k} —

ngmH;{(zlv“'azk” zy € |21, 2k} < e

Here the role of the maps rp and ¢p used in (ii) and (iii) is played by the map
that maps « € O€ onto the element [z5, x + 25 — z5/] N OE. See Figure 4.16.13.
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N
Fig. 4.16.13
Then we show

Pg‘gmH;{(Zlv"'azk” Zs! e[Zl,...,Zk]}—

P (G )| 2 € ool < e
This is easy to do. It is enough to choose § small enough so that the prob-
ability that a random point z; is chosen from 0 N H; N H;C is very small,
e.g. § = {72 suffices.

(v) We assume that xg = 0, Nyx(xo) = ey, and v > 1. We consider the

transform dil : 06 — 8(%5) defined by dil(z) = %m Then
dil(OENH_, 4) = (3 €)NH_4 dil(zg —YANgx (20)) = £o — ANgx ()
where Ha = H(xzg — ANgk (o), Nox(x0)). A surface element on OE is
mapped onto one of 8(%8) whose volume is smaller by the factor y~"+1.
Therefore we get
Pg(%g)mHgA{(ml, . ,LL’k)| xro — AN@K(Z'()) € [1'17 . ,.’)Sk}} — (129)
ngnH;A{(xl’ coox)| o — YANgk (x0) € [71,. .., 2k]}| < €.

Now we apply the map pd : R® — R" with
pd(x) = (tz(1),...,tx(n —1),z(n)).

We choose t such that the lengths of the principal radii of curvature of
pd(@(%é‘)) at xo coincide with those of 0€ at xg. Thus pd(@(%é‘)) approxi-
mates € well at zy and we can apply Lemma 1.2. See Figure 4.16.14.
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Fig. 4.16.14

The relation
xTo — AN@K(J}()) S [.1'1, L. 7-7519]

holds if and only if

xo — ANak (zo) € [pd(x1), ..., pd(zk)].
Indeed, this follows from

2o — ANpk (o) = pd(xo — ANgk (20))

and
pd([z1, ..., zk]) = [pd(x1), ..., pd(zL)].

Let z € 8(%5) and let Na(lS)mH(x) with H = H(x, Nok (o)) = H(zo —
R

ANyg (o), Nok (x0)) be the normal in H to 8(%5) N H. Let a be the angle

between NB(%E)(Z‘) and NB(%

Then a n — 2-dimensional surface element in J( %5) N H at x is mapped

E)mH(x)'

onto one in 8pd(%€) N H and the volume changes by a factor "2, A n — 1-
dimensional surface element of 8(%5 ) at 2 has the volume of a surface element
of 8(%8) N H times (cosa)~'dA. When applying the map pd the tangent
tan « changes by the factor ¢ (see Figure 4.16.15). Thus a n — 1-dimensional
surface element of 8(%5) at x is mapped by pd onto one in 8pd(%5) and its

n — 1-dimensional volume changes by the factor

"2 cos /1 + t2 tan® a = "2/ cos? o + 2 sin? a.

See Figure 4.16.15.
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Hea

2o — ANyk (x0)

Fig. 4.16.15

If we choose A sufficiently small then for all A with 0 < A < A( the

angle o will be very close to . Thus, for every ¢ there is Ay such that for
all x € 8(%5) N H_(SL‘O — AoNaK(wo),NaK(wo))

(1-0)t" < "2v/cos2 o + t2sin® a < (1+6)t" 1.

Therefore, the image measure of the surface measure on 8(%5) under the
map pd has a density that deviates only by a small number from a constant
function. More precisely, for every ¢ there is Ay so that the density function
differs only by § from a constant function. By (i) of this lemma

g(%g)mH;A{(xl,...,xkﬂ xo — ANpk (x0) € [z1,. .., x|} —

k J—

de(%é’)ﬂHc_A{(l‘h ey a:k)| X0 AN@K(Z‘()) S [331, R ,Jik]} < €.
(In fact, we need only the continuity of this density function at xg.) 8pd(%8 )
and J€ have the same principal curvature radii at zy. Therefore, we can apply
(ii) of this lemma and get

k _ _
PBEHH;A{(xl""’xk” X0 AN@K(xo) S [xl,...,a:k]}
g(%f)ﬂHgA{(zl’ ooy xk)| o — ANgk (z0) € [21,...,2K]}| <€

By (129)
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‘PESOH:A{(ml’ - ,xk)| o — AN@K(.T()) S [xh . ,ack]} -
Pgsr]H;A{(xl’ oo, xk)| o — YANyk (0) € [21, - .. ,xk]}‘ < €.

(vi) By (i) and (ii) of this lemma

‘P]},amH—{(xh---amk)| s € w1, ., m]} -
ngﬂH*{(zlw"?Zk)' Ts € [217~-~7Zk]}’ <e€

where H satisfies vol,,_1 (0K N H~) = ¢s and H is orthogonal to Nax (xo).
We choose § so that

{zs} = w0, 27] N H(zs, Nox (z0)) {25} = [z0, 27] N OE5.

< s - . . .
We have (1—¢)5 < Faovol. @8 < (1+¢€)3. We verify this. For sufficiently

small sg we have for all s with 0 < s < sg and Hs = H(zs, Nox (o))
(1-e)s < / @) dpox < (1+6)s.
OKNH,

(H and H are generally different.) By the continuity of f at zo we get for a
new sg and all s with 0 < s < s

(I1—€)s < f(zo)vol,—1(OENH) < (1+¢€)s.

Since
= VOlnfl(ag N H;)
~ vol,_1(0€)
we get the estimates on s.
By (iii) of this lemma
PI;',aKme{(xlv B 7 | I = A 7 | S
PgsmH,{(zl, ooy 2k)| 25 € [, ,zk]}’ <e.
A perturbation argument allows us to assume that § = Taavol. . 08)" By
(iv) we get for H with vol,,_1(0K NH™) =cs
Pl;,aKan{(xlv oo TE)| xs €@y, .. TE] ) —
ngﬁH,{(zl, ooy 2k)| 25 € 21, 7zk]}’ <e.

Let L and L be hyperplanes orthogonal to Npg (z9) with vol,, _1(0E NL™) =
¢s and vol,_1(0E N L™) = csf(xg)vol,—1(9E). By (v) of this lemma

|]P’ggmi,{(zl,...,zk)\ zs € |21,y 2k)}

fIP’ggﬂL_{(zl,...,zkﬂ 25 € [zl,...,zk]}| < €.
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In order to verify this it is enough to check that the quotient of the height
of the cap 0 N L~ and the distance of zz to ¢ equals up to a small error

(cf(xg)voln,l(ag))%. Indeed, by Lemma 1.3 the height of the cap € N L~
resp. the distance of z; to xg equal up to a small error

1 <csf(x0)vo1n1(ag)ﬁ)fl 1 < sv/R )

resp. —
2 vol,_1(B2 D) P vol,_1(B2 D)

3
|
f

2

For the height of the cap € N L™ and the distance of z5 to xg

1 ( NG ) G < NG )
2 \vol,_(B} ) P2\ Fzoyvol, 1 (@€)volo1 (B3 Y )
Therefore the quotients are the same.

Since vol,_1 (0K N H~) = ¢s and vol,_1(0E N L™) = c¢s and & is the
standard approximating ellipsoid of K at xy we have

(I1—¢€)es <vol,_1(OENHT) < (1+e€)es

and
|]P”§50H,{(zh...,zk)| 25 € |21,y 2K)}
—Phens-{(z1,. - 2)| 25 € [zl,...,zk]}| <e.
Therefore
’IP?aKnH,{(xh...?mkﬂ xs € [x1,..., 2]} —
Pgsmi,{(zl,...,zkﬂ zs € [21,...,zk]}| <e¢

with vol, (8K N H™) = ¢s and vol,_1 (€ N L) = csf(xg)vol,_1(dE).
Introducing the constant ¢’ = ¢f(x)

s vol, 1(0ENL™)

VOln_l(aK N Hi) = f(xo) Vo]nfl(ag) =c's.

Since
(1—-ePr(OKNH) < f(zo)vol,_1(0KNH ) < (14+€e)Pr(0KNH™)

we get the result. O

Lemma 4.17. Let K be a convex body in R"™ and xg € 0K . Suppose that the
indicatriz of Dupin exists at xo and is an ellipsoid (and not a cylinder with
a base that is an ellipsoid). Let € be the standard approximating ellipsoid at
xg. Let f: 0K — R be a continuous, positive function with faK fdu=1. Let



162 C. Schiitt and E. Werner

K be the surface body with respect to the density f and Es the surface body
with respect to the measure with the constant density (vol,_1(0€))™1 on €.
Let x4 and zs be defined by

{zs} = [z, 20] N OK; and {zs} = [z, 0] N OEs.
Then for all € > 0 there is s. such for all s € [0,s.] and for all N € N

|]P}V{(x1,...,xN)\ s & [z1,...,2N]} —

PYe{(21,. .., 2n)] 2 & [21,. .. 2n]}| < e

Moreover, for all € > 0 there is a 6 > 0 such that we have for all s and &'
with 0 < 8,8 < sc and (1 —0)s <s' < (1+0)s

}P}V{(xl,...,w]vﬂ xs & [x1,...,TN]} —

ng{(zl,...,zjv)\ zs & [zl,...,zN]}’ <e.

Proof. For all a > 1, for all s with 0 < s <T and all N € N with

we have

1 >P{{(z1,...,an)|2s ¢ [21,. .., 2n]}
> PY{(z1,...,2n)|21,.. ., 25 € (H (25, Nox, (z5)) NOK)°}

2(1—8)N2(1—L>N21—l

aN «
and
1> Pévg{(217...,ZN)|ZS ¢ [z1,...,2n]}
> ng{(zl,...,zNﬂzl, cooy 2N € (H ™ (25, Nog, (25)) N OE)°}
z(l—s)NZI—sNZI—l.
o

Therefore, if we choose o > % we get for all N with N < é
|P§V{(x1,...,x1\;)|xs ¢ [x1,...,xN]}
P (21, 2n)|2s € (21, 2N} < e

By Lemma 4.8 for a given x( there are constants a, b with 0 < a,b < 1, and
s¢ such that we have for all s with 0 < s < s,
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]P’}V{(xl,...,xNﬂ xs & [z1,...,xN]}
<2"(a —as+s)N +2"(1 — s+ bs)V
< 2"exp(N(Ina + s(+ —1))) + 2" exp(—Ns(1 - b)).

We choose s, so small that [Ina| > 2s.(1 — 1). Thus

P}V{(xl,...7xN)| xs & [x1,...,2N]}
<2m eXp(—%sN| Inal) + 2" exp(—Ns(1 —b)).

Now we choose  so big that
1
one— A=) 1e and 2ne~2Alnal o Le.

Thus, for sufficiently small s. and all N with N > g we get

]P’}V{(xl,...,xNﬂ s & [x1,...,zN]} <€
and

PYA{(21,. .., 2n)] 25 & [21,- .., 2]} < e
Please note that 8 depends only on a, b, n and e. This leaves us with the case
1 <N< 8

We put v = a vol,,—1(0K). By Lemma 4.15 for all ¢ with ¢ > ¢y and v
there is s, such that for all s with 0 < s < s, and for all V € N with

that
|]P’}V{(ac1,...,xN)| xs & [x1,...,2N]} —
]P’;V{(xl,...,a:N)\ zs & {z1,...,an} N H ]}

< gn-l —a =on-1 __ave
< exp(—</e) exp ( avol, 1 (OF)

where H = H(xo — cANgx (20), Nok (x0)) and A = A(s) as in Lemma 4.15.
We choose ¢ so big that

A exp(—ve) <e.
Thus for all € there are ¢ and s, such that for all s with 0 < s < s,

|]P’§CV{(531,...,:EN)| s & [z1,...,2N]} —
P;V{(xh...,xN)\ xs ¢ [{xl,...,mN}ﬂH_]}‘ <e

and in the same way that
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|]P>(]9Vg{(a:1,...,x1v)| zs & [21,...,xN]} —

PYe{(z1,...,2N)| 2s ¢ {z1,....an}NH ]} <e

By Lemma 1.3 there are constants ¢; and ¢ such that
et AT < vol,_1(H™ (20 — cANpx (20), Nox (20)) N OE) < cx A™T"

where A is the height of the cap. Now we adjust the cap that will allow us
to apply Lemma 4.16. There is d > 0 such that for all s with 0 < s < s,
there are hyperplanes Hy, and Hygs that are orthogonal to Ny x (zo) and that
satisfy

vol,,—1(9E N INJCZS)

vol, 1(08) %

[P’f(aKﬂHC;) = dS
and

OK N H™ (xg — cANaox (x0), Nok (x0)) € OK N H,,
oEN H_(.’Eo — CAN@K(QT()),NC’;K(Q?())) CoEN Ij]d;

Thus we have for all s with 0 < s < s,

}P}V{(xl,...,xjvﬂ xs & [z1,...,xN]} — (130)
]P’}V{(xh...,x]\zﬂ xs ¢ [{xl,...,xN}ﬂHd;]H <e
and
‘ng{($17-~-,$N)| zs & [z1,...,xN]} — (131)

IP’fc,Vg{(xh...,xNﬂ zs & [{xl,...7xN}OI:IJS]}| <e.

We choose £ so big that

S,

!
— K

By Lemma 4.16.(vi) we can choose s. so small that we have for all k with
1<k<?¢

Pf@,aKmH;S{(xl""’m” ZTs € [T1,..., 2]} — (132)

ngmilgs{(zl""’zk” zs € [21,.. ., 2K} < e

‘We have
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\]P’}V{(a:l,...,xNﬂajs¢[x1,...,xN]} (133)
—Ple{(21,- -5 2n)| 25 & [215- - -5 2n ]}
< \P;V{(xl,...,:zwﬂ s & [z1,...,2N]}

~PY{(z1,...,xn)| 25 ¢ {z1,. . an} N HZ]Y
+|}P’}V{(z1, conxn)| ws € {xn, . an N H]Y

_ng{(zlv"'va)‘ Zs ¢ [{Zlv"'aZN}mﬁc;s]}|
+|ng{(zl,...,zN)| zs & [21,...,2N]} )
—ng{(zl,...,z]\;)\ ze & [{#1,-..,2an} N H]YH.

By (130) and (131) the first and third summand are smaller than e. It remains
to estimate the second summand. We do this now. We have

N{(xl,..., N zs & [z, ..., an} N H,]}
_Z( ) {xl,...,xN)|xs¢[xl,...,xk], 1,2 € Hy,
Thaly--+s TN EH;;}

N
:Z( ) 1—ds)N 7% (ds)" IP”;aKmH;S{(ml,...,xk)\xs¢[m1,...,xk}}.

k=0

Moreover, since N < g we have

N
3 (lef) (1— ds)¥* (ds)* P’;yaKmH(; (z1,...,2%)| 5 & [x1,...,24]}

Thus we have

Pjﬁv{(ajl,...,xNﬂ s & {z1,...,an}NH} —

-1
N _
2 (k) (1 —ds)N k:(ds) ]P];aKmH* {(x1,...,2)| x5 ¢ [;vl,...,xk]}‘ <e.

In the same way we get

PYA{ (21, 2n)| 25 & {215+ e} D HG]Y

-1
_Z (JZ) (1— ds)ka (ds)kpggmgd—s{(zl, vzl zs € 2, ’Z’C]}‘ <é
k=0
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From these two inequalities we get
‘P;V{(xh o) s & {1, .. o} N H]Y

“Ple{(e1, o)) 2 € [z, v} N HGTY

< 2¢+
0—1
(ij) (1- ds)N—k (ds)k Pl;,aKde‘s{(xl’ o x)| xs & [T, Tk}
k=0
-1
_ Z (27) (1 — ds)ka (ds)k Pgiﬂf{;s{(zl’ RN Zk)| Zs ¢ [21, ceey Zk]}‘
k=0
= 2e+
-1
(]D (1 —ds)N " (ds)* [PI;,aKmH;S{(xl’ x| v & (@, Tk}
k=0

P )] 2 ¢ [zl,...,zk]}]|.

By (132) the last expression is less than

£—1

2 ey @[) (1 —ds)N " (ds)" < 3e.

k=0
Together with (133) this gives the first inequality of the lemma.
We show now that for all € > 0 there is a 6 > 0 such that we have for all
sand ¢’ with 0 <s,s’ <scand (1 —9)s <s <(1+9)s
|IP’§V{($1, cooan)| s [x1,.. . 2N]} —
Pévg{(zl, cos2nN)| zer € 21, ZN]}| <e.

Using the first inequality we see that it is enough to show that for all € > 0
there is a § > 0 such that we have for all s and s’ with 0 < 5,5’ < s. and
(1-08)s<s<(1+9)s
Phe{(21,-s2n)l 25 € [21,- s 2n]} =
PYe{(21,. .., 2n)| 2o & [21, ... 2N} < e

As in the proof of the first inequality we show that we just have to consider
the case ﬁ <N % We choose ¢ = 5. Thus ¢ depends on £, but £ depends
only on § and c. In particular, £ does not depend on N. As above, we write

PYe{(21,..-,2n)| 2s & [{z1,...,2n} N H ]}

N
= Z <JIX) (1 —ds)N—k (dS)kngmH;g{(le-~,2’k)| zs & |21,y 2K}
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We get as above

|Pévg{(z1,...,zN)| zs & [{zl,...,zN}ﬂfId_S]}
_Pévg{(zlw"vzlvﬂ Zs’ ¢ [{Zla-”aZN}mﬁd_S/]}’

4
< Z (Z) (1- ds)ka (dS)kngnH{;{(Zl""’Zk)‘ 2s & [21,. .., 2]}

k=0

4
_ Z (Z) (1— ds/)N—k (d8/>kpggmﬁd’s, {(z1y. -y 21)| 25 & [21,-- s 2K]}] -

k=0

This expression is not greater than

l
k=0
PgSQH;S{(Zh oy 2k)| 2s & (21,005 28]}

0
+Z (i) (1 —dsl)N—k (dsl)k ngmfl;s,{(zl""’zkﬂ zs & (21, 2]}

k=0

Pl {1zl 2 f o)

s

By Lemma 4.16.(iv) the second summand is smaller than

i ()= @) <

The first summand can be estimated by (we may assume that s > s)

(1/:) (01— ds)™ " (ds)" — (1~ as")~* (as')"]
k=0

¢ N—k k
- N N—k k 1—ds’ s’
_Z(k>(1ds) e —) |-
k=0
Since s > s’ we have 1 — ds’ > 1 — ds and the above expression is smaller
than

14

£
3 (ZZ) (1= ds)™ ™ (ds)* [1 = (1 - 8)"]

4
<y <ka) (1 —ds)N 7% (ds)" k6 < 06.
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4.2 Probabilistic Estimates for Ellipsoids

Lemma 4.18. Let zo € 0B% and let (BY)s be the surface body with respect
to the measure Py with constant density f = (vol,—1(0B%))~!. We have

3 PN {(21,...,2N)| s & [21,..., 2N
Jim N%/2 o i I(VO1 (a)lln))ié[ 1 I} s
o 0 . s ~dpa(se
fa(Bz NH.) (1-<Na(Bg), (xs),Nopyp (y)>?)2 Ho(Bg ﬁHs)(y)

2

(n— )35 ( vol,_1(0BY) )ﬁ F(n+1+n_1>

= (n n—1 [ N A

vol,,_2(0By ™) 2(n+1)!

where Hy = H(xs, No(py),(2s)) and {zs} = [0,20] N O(B3)s. (Let us note

s

that No(py), (v5) = o and Napy(y) = y.)

Proof. Clearly, for all s with 0 < s < 3 the surface body (BY), is homothetic
to BY. We have

vol,(B3) —E(0Bf,N) = / PéVBg{(xl,...,a:N)\m ¢ [z1,...,xn]}da.
Br

2

We pass to polar coordinates
vol, (B3) — E(9B3, N)

1
:// Py (01, an)Ir & [on, .., an] o tdedr
o JoBp

where d¢ is the surface measure on 9B%. Since By is rotationally invariant

IP’éVBg{(xl,...,:rN)Vf ¢ [x1,...,xN]}

is independent of £. We get that the last expression equals

1
Voln_l(aB;’)/ PévBS,{(.Tl,...,SCN”Tf ¢ [z1,...,zn]}r" tdr
0

for all £ € 0B%. Now we perform a change of variable. We define the function
s1:(0,1] — [0, 3] by

_ vol,—1 (9B N H™(r§,§))
s(r) = voln:(aBg)

The function is continuous, strictly decreasing, and invertible. We have by
Lemma 2.11.(iii)
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ds / (vol,—1(9B3)) "
9. dpaBrnm,)(Y)-
dr oyni.) (1— < Nocgy), (xs), Nogg (y) >2)? (BENH.)

We have r(s)¢ = z5. Thus we get

vol, (By) — E(0B%, N)
VOln_l (8B§’)

_ /% IP’éVB;{(:Ul,...,xNH rs & [x1,...,on]}(r(s))" " ds
0

(vol,,_1(8Bz))-1 d ’
(1= <No(og). (@) Nasg (1)>2) 3 O i) (9)

fa(BgLﬁHa.)

Now we apply Proposition 3.1 and obtain

_ . 3 Phoo{(z1,...,an)| @5 & [21,...,2Nn]}(r(s))" " ds
lim N»-1 / 2
N->oo 0 (vol,_.(9Bg)) !

T
1-<No(Bp), (), Nopy (y)>2)2

Jocszam.) ( dpaspnm,)(Y)

= V01n72(aBg’71) 30n +1)]

By Lemma 4.13 it follows that we have for all s with 0 < s¢ < %
. o 0 Plpd{(mrs o) @s & [z, an] ()" s
th N / - (vol, _1(8Bz))—1

— 00 0 n—1 2)) " d n
1*<Na<Bs>s(rs),NaBg(y)>2)% Hawgon,) )

fa(BgmHS) (

o1t ( vol,_1(0B2) ) r(n+1+:2)
B vol,_2(0By 1) 2(n +1)!

By this and since 7(s) is a continuous function with lims_,gr(s) = 1 we get

_ . [3 Pl {(z1,...,2N)| s & [z1,...,2N]}ds
lim N»-1 2
N-—o0 (vol,,_1(8Bz))-1

O n d n
f6(32 M) (1-<No(py), (w:).Nony (y)>2)2 Hozzai.) (¥)

— (n— 1t ( vol_1(9BY) >% F(”+1+%)
B vol, (8B~ 1) 2(n + 1)!

Lemma 4.19. Let K be a convex body in R™ and xg € 0K . Suppose that the
indicatriz of Dupin exists at xo and is an ellipsoid (and not a cylinder with

a base that is an ellipsoid). Let f,g: 0K — R be continuous, strictly positive
functions with

169
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fdp = / gdp =1.
oK oK

Py = fduox and Py =gduox.

Let

Then for all € > 0 there is s such that we have for all 0 < s < s., all x5 with
{zs} = [0,20) NOKy5, all {ys} = [0,20] NOK, s, and all N € N

|P}V{(:ﬂ1,...,x1\r)\xs ¢ [acl,...,mN]}fPév{(xl,...,xNﬂys ¢ [z1,...,zN]} < e

Proof. By Lemma 4.17

PY{(z1,...,an)| @5 ¢ [21,...,2N]} —

Phe{(z1,- -, 2n) 25 & [21,- ., o]} <€,

and

|]P’év{(l‘1,--~,$N>‘ Ys ¢ [1‘1,...,1']\]]} -

PYe{(21,. .., 2n)] 25 ¢ [21,...,2n]} <

The result follows by triangle-inequality. O

Lemma 4.20. Let aj,...,a, > 0 and let A: R™ — R" be defined by Ax =
(a;x(i)),. Let £ = A(BY), i.e.
2
<1 } .

&= {sc
x(1)2

Let f: 08 — R be given by
———vol,_1(0B%)

f(l‘) = (H ai) P

Then we have fas fduas =1 and for all x € By

a

(i)

n
i=1

—1

H'M:
I,

Png,{(xl,...,xNﬂx ¢ [x1,...,xN]} = P;V{(zl,...,zNﬂA(x) ¢ [21,...,2N]}

Proof. We have that
x ¢ |ry,...,2N] if and only if Az ¢ [Azq,. .., Azy].

For all subsets M of € such that A~'(M) is measurable we put



Random Polytopes 171
V(M) = Popy (A~ (M))
and get

Péng{(xl,...,xNﬂx ¢ [z1,. ., xn]} = vV {(21,. .., 2n)| Az & [21,. .., 2n ]}

We want to apply the Theorem of Radon-Nikodym. v is absolutely continuous
with respect to the surface measure pge. We check this.

hn—1 (A1 (M))

V(M) =Popy (A7 (M) = =5 5pm

where h,_1 is the n — 1-dimensional Hausdorff-measure. By elementary prop-
erties of the Hausdorff-measure ([EvG], p. 75) we get

Rp—1 (M)
vol,,—1(0BY)

1

v(M) < (Lip(A)"~ vol,_1(9By)

= (Lip(4))"~* pog (M)
where Lip(A) is the Lipschitz-constant of A. Thus v(M) = 0 whenever
pog (M) = 0.

Therefore, by the Theorem of Radon-Nikodym there is a density f such
that dv = fduge. The density is given by

-1

) VOln_l (6Bg)

We show this. We may assume that xz(n) > i (there is at least one coordi-
nate x(7) with |z (i) > \%) Let U be a small neighborhood of z in €. We
may assume that for all y € U we have y(n) > 2%. Thus the orthogonal
projection p., onto the subspace orthogonal to e, is injective on U. Since
€ OF we have (42)1 | € 9B% and Nypy (A~ (2)) = (Z2)2,. Then we
have up to a small error

v(U) =Papy(A~1(U))

N volu_1(pe, (A~L(U))) _ anvoly_1(pe, (A”1(U)))
< en, Nopp (A~1(x)) > vol,_1(0B%) x(n) vol,_1(0BY)

Moreover, since

we have

voly, —1(pe, (U))

U ~Y p—
Hoe(U) < en, Nog(z) >

vol,_1(pe, (U)) ) '
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We also have that

n—1

vol, 1 (pe, (U)) = (H ) vol 1 (e, (A7 (1))).

i=1

Therefore we get

Lemma 4.21. Let aq,...,a, >0 and

g:{x 2<1}

Let £, 0 < s < %, be the surface body with respect to the measure Py with
constant density g = (vol,,_1(0€))~'. Moreover, let A¢ : [0,1] — [0,a,] be
such that Ag(s)e,, € 0s. Then we have for all t with 0 <t < %
b PRz, an)| Ae(s)en & [z, 2n])
(vol,_ (€)1

g5 (Ae(s)en),Noe (y)>2?)

. (ﬁ%)_m( vol,—1(9E) >n21 F(n—l—l-l—%) (n—l):ﬂ
i=1

vol,_o(dBy™1) 2(n +1)!

n

D

i=1

(i)

Qi

. 2
lim N#»-1
N —oo

ds

0 . d
Joenm (1—<Na rduaenm.)(y)

where Hy = H(Ag(s)en, Nog,(Ae(s)en)). (Please note that Nog, (Ag(s)en) =
en-)

Proof. (By), 0 <t < %, are the surface bodies with respect to the constant
density (vol,,—1(0B%))~". Ap : [0, 3] — [0,1] is the map defined by Ap(t)e, €
O(BY):.

By Lemma 4.18

3 PYon{(21,...,2n)| AB(s)en & [71,...,2N]}
. 2 [Z OBy 1s++-H &N B n 15--+3 TN
NIEHOON 1/0 J; vol—1 (05g) rdpaBrne (y)ds
O(BEOH.) (1-<Ny(ng). (An(s)en):Nopg (1)>2)F 002 M)
2 2
:< vol,—1(9B) ) Fnt1+5%) (n—1)75
Voln,g(aBgfl) 2(n+ 1)!
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where Ap(s)e, € O(BY)s and Hy = H(Ap(s)en,e,). By Lemma 4.13 for ¢
with ¢y < cand N with Ng < N

N% % ]P)éng{({L‘h.. $N)| )\B( ) n¢ [xh...,xN]} d
I Py ol (97)) rduasynm,) (V) ’
E0H) (1-<No(sy), (Ap(s)en) Nopy (4)>2) 2

_ ( VOlnfl(aBg) )"1 F (TL + 1 + ) n+
vol,_o(0By 1) 2(n+1)!

Let A be the diagonal operator with A(x) = (a;z;)"_, such that A(BY) = €.
By Lemma 4.20 we have

PgB;{(xl,...,:erﬂ AN (z) ¢ [x1,...,2N]}
:]P’}V{(zl,...,zNﬂ x & [z1,...,2n]}

where f: 9€ — (0,00)

x(1)2

Z; a4 ———vol,_1(0B%)

For all ¢ with ¢y < ¢ and N with Ny < N

L, [WN PY{(z1,...,28)| AAB(s)en) & [21,---,2n]}
N - (vol,_.(8Bz))-1 ds
0 ot 222)) dpo(pr
Jotwsom.) (1= <Noagy, O (®)en) Nong >2)3 0 i) (0)
—CgN.

< cre” €+ e
1 2

_2 2
_ ( vol,—1(9B3) ) = (n+ 1+ ”*1> (n— 1)t
vol, _2(dBy ™) 2(n+1)!

The functions A and A\g are strictly decreasing, bijective, continuous func-
tions. Therefore, the function s : [0, a,] — [0,1]

exists, is continuous and has ¢ : [0, 1] — [0, ay,]

t(s) = Ag ' (anAp(s))
as its inverse function. Clearly, a,Ap(s(t)) = Ag(t) and A(Ap(s(t))en) =
Ae(t)ey,. Thus

N ~ P}V{(zl,...7zN)| Ae(t(s))en € [21,...,2n]}
) (vol,,_1(8Bg))~*
O(BENHS) (1-<Ny(pg), (A5 (s)en).Nong (1)>2)2

_ ( VOln*I(aBS) )"1 r (’n—i— 1+ ﬁ> (n _ 1)%
vol,_o(dBy 1) 2(n +1)!

ds

rdpaBynm.) (Y)

< c1e7¢ + cpe 8V,
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Now we perform a change of variable. By Lemma 2.11.(iii) and a,Ap(s(t)) =
Ae(t)

ds 1 S0

dt - an SGE(s(t))

f dpoBENH(A R (s())en en) (U)
1 vol,_1(9€) JoBENHAp(s(t))en en) V/1-<en,N(y)>2
~ ap vol,_1(0BY)

f dpognH (Mg (t)en en) (YY)
OENH (Mg (t)en,en) \/17<en,N(y)>2

Therefore we get for all ¢ with ¢y < ¢ and N with Ng < N

dt

Y ) P}V{(zl,...,z]\;ﬂ Ae(t)en & [#1,--.,2N]}
0 (vol,,_,(8&))-1

d
Joteot) ey vetren Mozt d HoEnn @)
= I (n +1+ L)
_an( vol,—1(9B3) ) ' ol (n—l)z—ﬁ

vol,_2(0By™1)

S aLn [clefc + Czeic3N]

2(n+1)!

where H; now denotes H(Ag(t)en, N(Ag(t)en)). Since a,Ap(s(t)) = Ae(t) we
get that for sufficiently small ¢ the quantities ¢t and s are up to a small error
directly proportional. We have

n—1

Cnln?

t(s) ~s

n—1"

k(anen) T

Therefore, with a constant o and new constants ¢y, co we can substitute ()
by %

' 2_ /Kl P}V{(zl,...,zNﬂ /\g(t)en ¢ [21,...,2’1\[]} a

(vol, _(9€))-1 d
) (1—<Noe, (e (t)en), Noe (5)>2) 5 Hoeno (V)

< vol,_1(9B2) ) F(HH%)(nl)z*i
vol,_2(0By ™) 2(n + 1)!

< cle—ac +02e—c3N

fB(EHHt

We have Ag(tf(anen)vol,—1(9E))e, € Oy with t' = tf(anen)vol,—1(0E). By
Lemma 2.7.(i) for every 6 > 0 there is ¢ with Ag(t)e, € 0y and

(1 = 0)tf(anen)vol,—1(0E) <t < (14 8)tf(anen)vol,_1(0E)

i.e.
(1=t <t" <1+t
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Applying Lemma 4.17 gives

’P}V{(xl, e ,JJN)| /\g(t)en ¢ [1‘1, e ,JZN]} —
PYe{(21, ..., 2n)| Ae(tf(anen)vol,_1(0E))e, ¢ [zh...,zN]}’ <e.

Therefore
R Jf  CERENECU/CENLSLOITY JORINCY
0 (vol,,_, (€)1 d
Jotenm,) (1—<Noe, e (D)on) Noe(3)57) 3 paen,) (y)
2 2
( vol,—1(0B3) ) et I (nJr It m> (n— 1)Z—ﬁ
vol, _2(dBy™1) 2(n+1)!
= N7 N (vol (aeg))fl dt
Joenm) — TdpaEnm,) (y)

(1_<N8£t ()\E(t)en)vNGS(y)>2) 2

+ere7 4 e,

By Lemma 4.11
n—=3
/ (1= < Nag, (Ae(t)en), Noe(y) >2)7%dﬂa(mm)(y) > ytn=t.
OENH,

Therefore we have

v €
/0 Joenm, (1= < Nog,(Ae(t)en), Noe (y) >2) "2 dpoenm,) (v)

€ ﬁ7@ en—17/7¢\nT
<& [Tt S 2y
v Jo v 2 \N

dt

Therefore

N /% ng{(zl, cooy 2N Ae(tf(anen)vol,—1(9E))en ¢ [#1, . . "ZN]}dt
0 | (vol,_,(9€))~1 ]
O(ENHy) (1—=<Nag, (Ae(t)en),Nog(y)>2)2

2 2
a ( vol,—1(9B) ) F(”“‘L"‘l)(n—l)sﬂ
" \vol,,_o(0By 1) 2(n +1)!

dﬂa(mHt) (y)

en—1/c\n1 —ac —esN
5 2 <N) +cie + coe .

We perform another transform, u = tf(ane,)vol,—1(9E). With a new con-
stant «

<
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N ¥ Ple{(z1, .-, 2n)| Ae(wen & [21,- -, 2n]}
o (vol,_1(8€)—1
DENH W) (1-<Noe, ) (e (t(u)en). Noe (y)>2) 2

. du ( vol,_1(9B2) )n r(n+1+52) ’
_q [ Pnm1@P2) .
f(anen)vol,_1(0E) vol, 2(0By™1) 2(n+1)(n—1)" =

dl‘La(EﬁHt(u)) (y)

en—1/c¢c\»n=1
< - — e eV,
=373 (N) +c + c2

By Lemma 2.10.(iii)

1
/asmHu V1= < Nag, (24), Nog (y) >2

<a+a@it [ .
€ = )n—1
- K oenH, \/1— < Nog, (1), Nos (y) >2

dpsenm, (v)

dposnH, (y)

and the inverse inequality. Thus

‘Nﬁ/ﬁr ng (21,...,ZN)|/\g(u)€n¢[zl,...,ZN]}
0

(vol,_, (8€)~1 d

(1—<N65u(/\g(u)en),Nag(y)>2)% Ma(anu)(y)

du ( vol,_1(0BY) )“21 r (n +1+ %)
—a,

(/(anea)vol,—1(96)) 7 vl 2085 1)) o(n+ i(n—1)

X

fa(mHu)

en—1/c\n1 _ac —esN
_ _ ac c3
52 (N) + c1e + coe .
Since f(anen) = ((H:‘;ll a;)vol,_1(0B%))~!
‘ngl /1% Phe{(z1, - 2n)| Ae(w)en ¢ [21,- -+, 2n]} du
0

(vol,,_,(9€))-1 d
1-<Nog, (Ae(u)en),Nog (y)>2)% HoEnH.) )

() ()
=1

vol,_2(0By 1) 2(n + 1)!

<e+

fa(é‘ﬂHu) (

2
n—1 n—1 P
vol,_1(0BY) en—1 (c>m —ac —eaN
< R . _ . ac cs3 .
= ( vol,_1(9€) 1;[1 @i ‘i ) fae tec
By choosing first ¢ sufficiently big and then e sufficiently small we get the

above expression as small as possible provided that N is sufficiently large.
By this and Lemma 4.13
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o PR{(en- o an) Ae(t)en) ¢ [o1,- - 2n ]}

(vol,_.(8€)-1 d
Joerm,) <oz, e en) Noe (@) o7 § paEnm) (Y)

. _2
lim Nn»-1
N —oo 0

dt

2

— an <ﬁa>__< vol,_1(9€) )"“F(”“*%)(n_l):*i.
=1

vol,_2(8By 1) 2(n + 1)!

O

5 Proof of the Theorem

Lemma 5.1. Let K be a convez body in R™ such that the generalized Gaufi-
curvature exists at xg € OK and is not 0. Let f : 0K — R be a con-
tinuous, strictly positive function with faK fdu = 1. Let K, be the sur-
face body with respect to the measure fdu. Let {xs} = [z7,20] N Ks and
H; = H(xs, Nok_(x5)). Assume that there are r and R with 0 < r, R < o0
and

By (xg — rNag(x9),7) C K C BY(xg — RNsk (20), R).
Then for all so with 0 < s <T

s N -
hm N% OPf{(.Tl,,l‘N)|]}S¢[.’L‘1,,l‘N]}dszch
Neooo 0 f fy)dpsxnm,)(y) f($0) T
(KNH,) (1—<N8K5(xs)7N6K(y)>2)%
where

n41
(n—1)"1I(n+1+-27)
2(n + 1)!(vol,_o (OB} 1)) o1’

Cp —

We can recover Lemma 4.21 from Lemma 5.1 by choosing K = £ and

f = (vol,_1(9€))~L.
Proof. Let £ be the standard approximating ellipsoid at zy with principal
axes having the lengths a;, i = 1,...,n — 1. Then we have (4)

n—1

K8

K(wo) =

i=1

Therefore, by Lemma 4.21 we get for all so with 0 < 5o < %
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5o Ple{(z1,. .., 2n)| Ae(s)en € [21,. .., 2n]}
f (vol, _1(8&))-1
O(ENH:) (1-<Noe, (e (s)en). Noe (¥)>2)

i=1

. 2
lim N#»-T
N—oo 0

ds

dpaenn.) (y)

(SIS

vol, (0B ™) 2(n+1)!
= kT (20) (Vol,_1 (OE)) 7T
where -
(n—1)—1I(n+1+-2)
2(n + 1)!(vol,_o(OBy 1)) 71

and Hy; = H(Meg(8)en, €,). Hs is a tangent hyperplane to the surface body &
with respect to the constant density (vol,—1(9€))7".
By this for all € > 0 and sufficiently big N

Cp =

Nz [ PY{(21,....2n)| 25 & [21,...,2N]} K(20) 7T
o f FW)dpoknH (s N(z)) (Y) B Cnf(xo 25
O(KNH (zs,N(zs))) (1*<N8K5(Is),N8K(y)>2)%

<e+

ot [0 B an)l s ¢ e o)
' 0 Fy)dpa(knm (s, N(zs))) (Y)

T
1-<Noxk, (zs),Nor (y)>?)2
2

B (f(fﬂo)vojlvn—l(%))m *

50 Pévg{(zl,...,zNﬂ Ae(s)en & [z1,---,2N]}

(vol,,_;(9€))—1 d
o Noe. Oclen Nos o7y T Haens) ()

fa(KmH(xs,N(rs))) (

ds].

0

fB(EQHS) (

By Lemma 4.13 there are constants b1, ba, bs such that for all sufficiently big
¢ the latter expression is smaller than

€+ 2(bre™¢ + bye )

SO A (CONRS E O s S

Fy)dpoxnm (s, Nok, (@:))(¥) 5

(1—<Nox, (z.):Nox (4)>2) 2

e /W ng{(zl,...;zNﬂ Ae(s)en %_[,321,...,21\7]} sl
0 f(wo)"=T (VOL, 1 (9€) " n=1

—<Nosg,(Ne(s)en),Nog(y)>2)2

+‘Nm
0

Joknm(e. N

Joenm,) a dpaenn.) (y)

By triangle-inequality this is smaller than
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€+ 2(bje™ + bye )

S B {(n o)l o ¢ on,esan])
f F@)dpoxnn(as Nok, (2:))(Y)
OENH (e Nore, () (1-<Nox, (v.),Nor (4)>2)2

P;V{(xh...,m]vﬂm8¢[x1,...7m1\;]} ds‘

f f(wo)%(vol,,,_l(ag))*% 1
a(fﬂHs) (1—<Nags ()‘f(s)en)7Nag(y)>2)§

2 /W PYA(21, - on)| Ae(s)em & [, 2]}
0

2 e
f(zo)n—1 (vVol, _4(8€)) n—1 d
IG(EOHS) (1-<Nag, (AS(S)en),N@g(y)>2)% Ho(ENHS) (y)

PY{(z1,...,2n)| zs & [21,...,2N]}

+‘Nn21
0

dpaenm,) (v)

3 1 — ds|.
(o) 7 (vol,_y (9€) "R g
Joensi) G oNper re e Noe a8 M0t )
By Lemma 4.17
}P}V{(xl, conxn)| ms € [x1,...,aN]} —
ng{(217 oo zn)| Ae(s)en € [z, .. zN]}’ <e.
Therefore, the above quantity is less than
€+ 2(bre~¢ + bye )
’ _2 % P}V{(xh...,]}]\])lx5¢[$17...,$N]}
+|N=»-1
0 f FW)dpo(xnn (s . Nok, (@5)) (Y)
OURNH (e, Nores (22)) (1-<Nox, (@s).Nor (v)>%) %
PY{(z1,...,2Nn)| xs & [21,. .., 2N]} ds

2 n—3
f(zo)n—1 (VOl,,_1(8€)) n—1 d
f@(fﬁHs) (1—<Nae, (/\S(S)en),Nag(y)>2)% /ia(gan)(y)

c

2 N ¢

+’an / 2 1 n—3 dS .
0 fao) =T (vOl, 1 (9E) =T

IB(SOHS) (1_<N855(As(s)en)7Nas(y)>2)% MB(&OHS)(y)

By Lemma 4.11 we have

~ 1
/ 3 ds
o Hoent) ()

Joeam.) (1—<Noe, (Ae(s)en) Nog (y)>2) 2

c

R _n— N o
<c (voln,l(Bgfl))—nil (vol,,_1 (9E)) n:i’/ s =t ds
0

,rn

_n=3n—1/¢c

an,1 - L, 2
=c} (vol,_1(BP™1)) 72T (vol,_1(9€)) ™ n=1 —— (ﬁ) '

rn

Therefore, the above expression is not greater than
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€+ be ‘4 b267b3N + bye C%

, [F PY{(z1,...,an)| 25 & [21,...,2N]}

4+ |N#=T

Fy)dpo(xnm(zs . Nok, (2:))(Y)
() (1-<Nosk, (xs)vNBK(y)>2)%

PY{(z1,. ., an)| zs & [21,. ., 2N}

2 =3
flzo)n =T (vOl, 1 (9€) " n71 4
—<Noe,(Me(s)en),Noe (y)>2) 2 toeEnm.) ()

fa(KOH(ﬂcaNaKs

ds

fa(smH‘s) (1

for some constant b,. Let z; be defined by
{ZS} = {(EO + tNaK(x0)|t S R} N H(x57 NaK(x())).

By Lemma 2.7 there is a sufficiently small s, such that we have for all s with
0<s<se
s <Pr(OK NH (zs, Nor(20))) < (1 +¢€)s.

Because f is continuous at zg and because £ is the standard approximating
ellipsoid at x¢ we have for all s with 0 < s < s,
(1 —€)s < f(xo)voln—1(0€ N H™ (25, Nox (20))) < (1 +€)s.

vol,,_1(8ENH])
vol,,_,(0€)
swith 0 < s < s,

(1—¢) / dpsenn, (y)
(f(xo)vol,_1 (D€))"= Joenm. /1= < Nog, (o), Nog (y) >2
< / dﬂaEﬂH—(z57NaK(w0))(y)
~ JOENH (24, Nok (x0)) \/1_ < Nog, (o), Nog (y) >
g (1+¢€) / dpoenn, (y)
T (f(xo)vola_1 (€)=t Josnm, \/1— < Nog, (20), Noe(y) >2

Since s = we get by Lemma 2.10.(iii) for a new s, that for all

where ¢t ~ s(f(xo)voln_l(ag))ﬁ_j. Please note that Npx(xo) = Nag,(2s).
Therefore, if we pass to another s. the above expression is not greater than

€+ bre ¢ + bye P3N 4 b4ec%

+’N21 /% P}V{(xl,...,xNﬂ:rsgé[xl,...,xN]}
I @)
0 fa(KﬂH(a:S,N(zs))) (1_<N(wst(y)>2)%dMa(KnH(xS,N(xs)))(y)

P}V{(JTL.H,JJN” Ts ¢ [$1,...,$N]}

f(TO) 1 dlu’a(fﬁH(Zs,NaK(Io))(y)

- ds|.
fa(fﬂH(Zs,NaK(fﬂo))) (1—<N(Ae(s)en),N(y)>2)2

Now we apply Lemma 2.10.(i). Choosing another s, the above expression is

less than e + bye—¢ + boe—3N + byec>T. We choose ¢ and N sufficiently big
and e sufficiently small. O



Random Polytopes 181

Proof. (Proof of Theorem 1.1) We assume here that z7 = 0. For xg € 0K
the point z, is given by {zs} = [z1, x0] N OKs.

voln(K)—E(ﬁN):/I(Pifv{(x17...,x]v)|m§é[ml,...,xN]}dx.

By Lemma 2.1.(iv) we have that Ky = K and by Lemma 2.4.(iii) that Kr
consists of one point only. Since ]P’;V{(xl,...,xN)ms ¢ [r1,...,zN]} is a
continuous functions of the variable x5 we get by Lemma 2.12

vol, (K) —

T Ao e ) dpor, (zs)ds

(1—<Na;<s (2),Nox (y)>2) 2

/ /aK IP’N{ (z1,...,zN)|Ts & [21,...,2N]}

fBKH

where Hy = H(zs, Ngk.(zs)). By Lemma 4.9 for all sg with 0 < sg <T

IP’N{ (x1,...,2N)| s & [T1,. .., 2N dpok, (xs)ds
th Nt ) =0.
e oK f@KﬁH \/1 <Nox. (z2), NaK(y)>2d’uaKmHS (y)

We get for all sg with 0 < s < T
1, (K —E N
i () BN _

N—o0

]P)f xla sy TN )| $5¢[$1,...7I’ ]}dlu‘aK (Qj )dS
J\}lm N f ) '
—e oK faKﬂH \/1 <N8Kg( <), Nox (y)>2 d,LL{)KnH (y)

We apply now the bijection between 0K and 0K mapping an element x €
0K to zs given by {zs} = [rr,z0] N OKs. The ratio of the volumes of a
surface element in 0K and its image in 0K is

HISHR < xOvNaK(l"o) >
lzol|™ < @s, Nok, (zs) >

Thus we get

IP’;V{(:cl, cooszn)| zs & [z1, ... 2zN]}
f) 1 dpor, (s)
0K faKﬂHd \/17<N8K5(17s)7N0K(y)>2 /‘BKﬂHg(y

_ ]P’;V{(:rl,...,xNﬂxsgé[xh...,xN]} y
o f(y)
oK f{)Kan VI—<Nor, ($8)7N8K(y)>2dH8KmHS (y)

lzs|™ <, Nok (x) >
lz]|™ < x5, Nok, (zs) >

pok ().

We get for all sg with 0 < s <T
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lim vol,, (K) — E(f,N) _

N—oo Nfﬁ
IPN{(xl,...,mN)| s & [x1,...,2N]}
Jim N7 e X
0K [ornm, VI_<Nox. (zs)’]\[w((y)>2dMaKmHs (y)
s < @, Nok(z) >
ds.
2l < 2, Nox, () > 0K )48
By the theorem of Tonelli
lim VO] (K) _E(faN) —
N—oo
{(z1,...,z Ts & x1,...,x
Y
oK faKﬂH V1=<Nox, (z:),Nox (y)>2 dpornn. (y)
S 7N
" < @ Nowe(ao) > 4 o

lzol|™ < x5, Nok, (xs) >

Now we want to apply the dominated convergence theorem in order to change
the limit and the integral over 0K . By Lemma 5.1 for all sg with 0 < so < T

S0 Pj‘y{(xl,...,mNﬂxs¢[x1,...,acN}} /Q(xo)ﬁ
o f fy)duaknug (y) ’
OKOHY) (1-<Nog, (x:),Nox (4)>2) 2

lim Nt

N—o0

Clearly, we have lim,_.¢ ||zs|| = ||z|| and by Lemma 2.5

1irr(1) < xs, Nog_(x5) >=< x, Nog (x) > .
By this and since the above formula holds for all so with 0 < s < T

so P}V{(xl,---,a?N)\ s & [T1,.. ., oN]} ||lze]|” < 2, N(z) >
o FW)dponn,s) @) 1 l2]|* < 25, N(zs) >
Nor, (zs),Nok (y)>2)2

lim N7t

f&(KﬂHs) (1<

By Lemma 4.12 the functions with variable xq € 9K

N so PN{ (@1, zN)| Ts & [T1,- - ZN]} ||| < 20, N(20) >
fW)dpoxnms) (y) ; |zol|™ < @5, N(xs) >
Nor,(zs),Nok (y)>2)2

ds

fa KNH.) (1_

are uniformly bounded. Thus we can apply the dominated convergence the-

orem. N

i RO EGN) _ [ )
5]

N—se  NTw K fla)

duaK( )
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