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Abstract

The surface body is a generalization of the floating body. Its relation to p-affine surface area
is studied.
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1. Introduction
1.1. Background

The affine surface area was originally introduced by Blaschke [B] for convex
bodies in R with sufficiently smooth boundary. Its definition involves the Gauss
curvature of the boundary points of a convex body. Hence, it provides a tool to
“measure” the boundary structure of a convex body. Therefore, it is not surprising
that the affine surface area occurs naturally in problems related to the boundary of a
convex body, so for instance in the approximation of convex bodies by polytopes.
For more information about this subject and the role the affine surface area plays
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there, we refer to the works by Barany, [Bal,Ba2], Gruber [Grl,Gr2,Gr3], Schiitt
[Sch1,Sch2] and Schiitt and Werner [SchW2].

Extensions of the affine surface area to higher dimensions and arbitrary convex
bodies were only found much later than Blaschke’s times by Leichtweiss [L1,12],
Lutwak [Lul], Schiitt and Werner [SchW1], Schmuckenschldger [Schm], Meyer and
Werner [MW 1] and Werner [W1]. Additional references to the affine surface area as
well as further applications can also be found in those papers as well as in
Leichtweiss [L3], Ludwig and Reitzner [LudR], Lutwak and Oliker [LuO] and [W2].

Here we want to concentrate on the p-affine surface area which, for p>0, was
introduced in 1996 by Lutwak [Lu2]. For p = 1, the p-affine surface area is just the
affine surface area. Hug [H] gave new definitions of the p-affine surface area. He also
proved that these new definitions give the same p-affine surface area as that defined
by Lutwak.

Meyer and Werner [MW2] found a geometric interpretation of the p-affine surface
area in terms of the (generalized) Santald bodies. They also observed that the
definition of Lutwak for the p-affine surface area makes sense for —n<p<0 and
their geometric interpretation in terms of the Santal6 bodies also holds for this range
of p. They also gave a definition of the p-affine surface area for p = —n together with
its geometric interpretation.

In [SchW2,W3] it was suggested to extend the p-range even further, namely to
—oo <p< oo. This extension was motivated in [SchW2] by the fact that there is a
characterization of the p-affine surface area in terms of random polytopes and this
characterization holds for —oo <p< oo. In [W3] a characterization of the p-affine
surface area for all p is given using weighted floating bodies.

In this paper we give a new characterization of the p-affine surface area using
surface bodies. The paper is organized as follows: In Section 2 we define the surface
bodies and discuss some of their properties. The surface bodies were introduced in
[SchW2] in connection with approximating convex bodies by random polytopes.
Many of the properties mentioned here have already been stated and proved in
[SchW2]. We include them here for completeness.

In Section 3 we introduce the p-affine surface area for —oo <p< oo and discuss
some of the properties of the p-affine surface area. For a given probability density f
on the boundary of a convex body K and a positive number s the surface body Ky, is
the intersection of all half-spaces H* such that [, fdusx <s. Our main theorem
is that under certain assumptions on the density f and the boundary 0K

1

. vol,(K) — vol,(Ky 4 Kn—1

dnhn% ( ) ( L. ) :/ B d,u;)K,
MNd Sl’lfl

where d, is a constant depending only on the dimension n and x the generalized
Gaufi—Kronecker curvature. As a consequence, for the p-affine surface area O, there

n—p(n—
P

s g ==—""5 Y and a function f; such that
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d, lim

lim = 0,(K).
‘ (s04(K))

VOln (K) —vol, (Kfq,s)
=

1.2. Notation

Throughout the paper we shall use the following notations. Bj(a,r) is an n-
dimensional Euclidean ball with radius r centered at a. We put B = B4(0,1). By |.||
we denote the standard Euclidean norm on R", by (', > the standard inner product
on R". For two points x and y in R" [x,y] = {ox + (I — a)y: 0<a<1} denotes the
line segment from x to y.

For a convex body K in R”, K is the interior of K and 9K is the boundary of K.

We also write S"~! for OB%. For xe 9K, Nyg(x) is the outer unit normal vector to 9K
in x. It may not be unique.

For ueS"', hg(u) is the support function of K at u. s is the usual surface
measure on the boundary 0K of K and o is the spherical Lebesgue measure.
vol,—1(A4) denotes the surface area measure of a subset 4 of the boundary of a
convex body.

H(x, ¢) is the hyperplane containing the point x and orthogonal to £&. H™(x, ) is
the closed half-space containing the point x + &, H'(x, &) the other half-space. Let %
be a convex, open subset of R” and let f': % > R be a convex function. df (x) e R” is
called subdifferential at the point xoe %, if we have for all xe#

S(x0) + <df(x0),x — x0> <f(x).

A convex function has a subdifferential at every point and it is differentiable at a
point if and only if the subdifferential is unique. Let % be an open, convex subset in
R" and f:%—R a convex function. f is said to be twice differentiable in a
generalized sense in xg€%, if there is a linear map d°f(xy) and a neighborhood
U(x9) =% such that we have for all xe%(x() and for all subdifferentials df'(x)

[ldf (x) = df (x0) — d*f (x0) (x — x0)|| S O(||x — xo] )| = ol

where @ is a monotone function with lim,_,¢ @(z) = 0. d*f(xo) is called generalized
Hesse-matrix. If £(0) = 0 and df(0) = 0 then we call the set

{xeR"X'd*f(0)x =1}

the indicatrix of Dupin at 0. Since f is convex this set is an ellipsoid or a cylinder with
a base that is an ellipsoid of lower dimension. The eigenvalues of d?f(0) are called
principal curvatures and their product is called the GauB—Kronecker curvature x.
Geometrically, the eigenvalues of @*f(0) that are different from 0 are the lengths of
the principal axes of the indicatrix raised to the power —2.
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For ue "', f,.(u) is the GauB curvature function, that is the reciprocal of the
GauB—Kronecker curvature x(x) at this point xe 9K that has u as outer normal.

2. The surface body

Let K be a convex body and f : 9K — R be a nonnegative, integrable function with
Jox S (x) dugg)(x) = 1. The probability measure Py is the measure on 9K with
density f.

Definition 1. Let 0<s and let f : 9K — R be a nonnegative, integrable function with
Jox S (%) duggy (x) = 1.

The surface body Ky is the intersection of all the closed half-spaces H* whose
defining hyperplanes H cut off a set of P;-measure less than or equal to s from OK.
More precisely,

K= () H' (1)

Pr(OKNH™)<s
We write usually K for Ky if it is clear which function f/ we are considering.

Remarks. (i) It follows from the Hahn—Banach theorem that Ky = K. If in addition f
is ugx—almost everywhere nonzero, then Ky = K as it is shown in Lemma 2(iv) (See
Fig. 1).

(i) For many convex bodies K and functions " the bodies Ky ; shrink continuously
from K;o = K to a body that consists of one point only. Usually, this point is an
interior point of K. In most cases the volume of K is strictly positive until it is
reduced to a point and below we give conditions for K and f for this to happen.

Fig. 1.
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In general, however this may not be so. We describe two cases:

1. K, shrinks to a convex set of lower dimension that is contained in the
boundary of K. Eventually, it shrinks to a point in the boundary of K.

2. There is a constant ¢>0 and sy such that for all s with 0<s<s, the volume of
K; , is larger than ¢ and Ky, = 0 (see Example (ii) in Remarks 6).

(iii) Through a similar construction we obtain a “weighted floating body’”:

Let 0<s and let f: K— R be a nonnegative, integrable function.

The weighted floating body F(K,f,s) is the intersection of all the closed half-
spaces H™ whose defining hyperplanes H cut off a set of measure less than or equal
to s from K. More precisely,

FK.f.s)= () H". (2)

fka*f dx<s

These bodies are investigated in [W3].
We say that a sequence of hyperplanes H;, ie N, in R" converges to a hyperplane
H if we have for all xe H that

lim d(x, H;) =0,

11— 00

where d(x, H) = inf{||x — y|| [ye H}. This is equivalent to: The sequence of the
normals of H; converges to the normal of H and there is a point xe H such that

lim d(x, H;) = 0.

11— 0

Recall that for a hyperplane H(x, ¢) through x, with normal &, H™(x, ¢) is the half-
space containing x + &.

Lemma 2. Let K be a convex body in R" and let f:0K—R be an a.e. positive,
integrable function with [, f(x) dpy)(x) = 1. Let I
(i) Let xoeR". Then

PrOKnH™ (xo — 1¢,8))

is a continuous function of t on
min<xp — y, &), max {xo —y,5>).
yek yek

(Pr(OKNH™ (xo — t£,&)) is not necessarily a continuous function on the closed

interval.)
(ii) Let xoeR". Then

PrOKnH™ (xo - 1¢,8))

is strictly increasing function of t on
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min {xo — y,¢ >, max {xo — y, &) |
yek yekK
(iii) Let H;, ie N, be a sequence of hyperplanes that converge to the hyperplane Hy.

Assume that the hyperplane H, intersects the interior of K. Then we have

lim Pr(OKnH;)=P;(0KnHj).

11— 00
(If Hy does not intersect the interior of K the equality does not hold necessarily.)

(iv)

K< UK»“'

0<s
In particular, K = K.
Proof. (i)
vol,_1 (0K " H ™ (xq — 1&,))

is a continuous function of ¢ on
min {xp — y, ¢y ,max < xo —y,§>)-
yek yek

Since f is an integrable function (i) follows.
(ii) Since H™ (xo, &) is the half-space containing xy + ¢ we have for ¢, and f, with
n<t

H™(xo — 11, O)SH ™ (x0 — 2&, E).
Thus
OKNH (xo — &, &) nH (xo — 11 &, &)
has positive n — 1-dimensional Hausdorff-measure. If
Pr(OKNH (xo — 11, &) = Pr(OK N H ™ (xo — 12¢, &)
then f is a.e. 0 on OK N H (xo — ¢, E)nH ' (xg — 11 &, £). This is not true.

(iii) Let xoe Hyn K and x;, ieN, the nearest point to xy in H;. Let &; be the
normal to H;. Thus H; = H(x;,&;), i =0,1, ... and we have that

lim Xi = Xo, llm fi = é()a
1= 0

i— o0

where X is an interior point of K. Therefore for all é>0 there exists i, such that for
all i> iy
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OKNH ™ (xo + &y, &) SOKNH ™ (x;, &) SOKNH ™ (x9 — €&, &p)-
This implies
Pr(OKNH™ (x0 + ¢, o)) < Pr(OKNH™ (x;, ;7))

< PH(OKNH (x0 — €&, &)

Since x( is an interior point of K, for ¢ small enough xy — &£, and xy + €&, are

interior points of K. Therefore,
H(x() - 8607 60) and H(XO + 850) 60)

intersect the interior of K. The claim now follows from (i).

(iv) Suppose the inclusion is not true. Then there is xe K with x¢ (J,, K-

Therefore, for every ieN there is a hyperplane H; with xe H; and

Py (0K H; )<

~ =

By compactness there is a subsequence H;, jeN, that converges to a hyperplane H

with xe H. By choosing another subsequence we make sure that the limit

lim I]Z"f(aKmHl.j_)

J—=®
exists. Clearly,

lim Py(0KnH; )<0.

j— o

Since xe H the hyperplane H intersects the interior of K. Thus, by (iii)
Pr(OKnH™)<0.

On the other hand, vol,_; (0K n H~) >0 which implies
Pr(OKNH™)>0

since f is a.e. positive.
We have K = K, because K is a closed set and

K< |J K<k

s>0

Thus K<Kj. The opposite inclusion follows from the theorem of Hahn—

Banach. 0O
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Lemma 3. Let K be a convex body in R" and let f : 0K — R be a a.e. positive, integrable
Sunction with [, f(x) dpyg(x) = 1.
(i) For all s such that K;#0, and all xe 0K, K there exists a supporting hyperplane

H to OK; through x such that Pf(OKNH™) =s.
(i1) Suppose that for all xe 0K and all supporting hyperplanes H of K at x the n — 1-
dimensional Hausdorff measure of the set HNK is 0. Then we have for all s with 0<s

that K, < K

The assertion of Lemma 3(i) is not true if xedK. As an example consider the
square S with sidelength 1 in R* and f(x) = % for all xedS. For s = % the midpoints

of the sides of the square are elements of S|, but the tangent hyperplanes through
16

these points contain one side and therefore cut off a set of P,-volume % (cf. Fig. 2).
The construction in higher dimensions for the cube is done in the same way.

This example also shows that the surface body is not necessarily strictly convex
and it shows that the assertion of Lemma 3(ii) does not hold without additional
assumptions.

Proof of Lemma 3. (i) By the theorem of Hahn—Banach there is a sequence of
hyperplanes H; with K,= H;" and P;(0K n H; ) <s such that the distance between x
and H; is less than % We check this.

Since x € OK; there is z¢ K with ||x — z|| <%. There is a hyperplane H; separating z
from K satisfying

P/(OKNnH;)<s and K,=H;.
We have
1
d(x, H) <||x — 2| <.

By compactness there is a subsequence of hyperplanes H;, je N, that converges to a
hyperplane H with xe H. Since x is an element of the interior and xe H, the

K. s ““.

oK

Fig. 2.
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hyperplane H intersects the interior of K. Therefore we can apply Lemma 2(iii)

sz lim Pr(OKNnH; ) =Pr(0KnH").
j—

If Pr(OKNnH")<s then we choose a hyperplane H parallel to H such that

Pr(0K nH ~) = s. This is possible because by Lemma 2(i)

PrOKnH™ (xo —1¢,8))

is a continuous function of ¢ on [minyegx {xo — », &), max,ex {xo — »,¢)). Conse-
quently, x is not an element of K. This is a contradiction.
(i1) Suppose there is xe JK with xe K; and 0<s. By assumption

vol,_1 (0K nH(x, Nok(x))) = 0.

By Lemma 2(i) we can choose a hyperplane H parallel to H(x, Ny (x)) that cuts off
a set with P;(OK nH~) = s. This means that x¢ K,. [

Lemma 4. Let K be a convex body in R" and let f:0K—>R be an a.e. positive,
integrable function with [, f(x) duyg)(x) = 1.

(1) Let s;, ieN, be a strictly increasing sequence of positive numbers with
lim;_, o 8; = 8o. Then we have

K, =() K.

i=1

(ii) There exists T with 0< Tg% such that Kr is nonempty, vol,(Kr) =0 and
vol,(K;)>0 for all t<T.
(ii1) For all s with 0<s<T

K= Koo
>0

Clearly, if K is centrally symmetric with respect to the origin and f satisfies
f(x) =f(—x), then T = 1/2 and Kr contains only one element, namely the center of
symmetry. The assumption that f is a.e. positive is necessary.

Proof. (i) Since we have for all ieN that K, < K,,, we get trivially
o0
Ky = () K-
i=1

We may assume that we have K, #0 for all ie N. Otherwise the equation is obviously
true. Since all K, are compact and non-empty the intersection is also nonempty.
Suppose there is xe (2, K, with x¢ K. Then there is a hyperplane H such that
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Pr(OKNHy)<sp and xe Iig . We consider the supporting hyperplanes to K, that

are parallel to Hy and that are contained in H~. Moreover, we may assume that

H,cH7. We have P;(OKnH)>s;. Since the distances of H; to H, are
monotonely decreasing the sequence of hyperplanes H; converge to a hyperplane
H,. Since for all ieN we have H;nK#0 it follows by the compactness of K that

HynK#0. By Lemma 2(ii) we find that
P (0K A Hy ) = s0.

(it is enough to use monotonicity here). We consider two cases now. First, suppose

that Hyn K #0. If Hoyéﬁo we get a contradiction to the strict monotonicity of the
function P;(0KnH™). Thus H; converge to Hy and therefore there is i such that
x¢ H. It follows that x ¢ K, which is not true.

The second case is HynK = 0. Then KN H, = JK and consequently so>1.
Since lim;_, ,, 5;>1 we find an i such that K;, = . To check this it is enough to
consider two parallel hyperplanes both of which intersect the interior of K.

(i) We put

T = sup{s|vol,(K;)>0}.

Since the sets K, are compact, convex, nonempty sets,

n

vol,(Ky)>0

is a compact, convex, nonempty set. On the other hand, by (i) we have

Now we show that vol,(K7) = 0. Suppose that vol,(Kr)>0. Then there is xy € KT .
Let

to = inf{Py(OK"H )|xoeH}.

Since we require that xoe H we have that P,(OKnH™) is only a function of the
normal of H. Since xq is an element of the interior of K7 it is also an element of the
interior of K. Thus H intersects the interior of K and we can apply Lemma 2(iii).
Therefore Pr(OKnH ™) is a continuous function of H: lim;, . H; = H implies

lim Pr(OKNnH;)=P;(0KnH™).

i— o0

Since lim;_, ,, H; = H holds if and only if the normals &, of H; converge to the
normal ¢ of H in the Euclidean norm, we conclude that Pr(OK nH ™) is a continuous
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function of the normal & of H. By compactness this infimum is attained and there is
H, with xoe Hy and

P,(@KmHO’) =1y.

Since X is an interior point of K7y we get by Lemma 2(ii) that 7' <#,. If not, then
to = T. Therefore Ky = H; and xo€ Hy, which means that xoedKr, contradicting

the assumption that xpe Kr .

. We claim that x( is an interior point of this set and

Now we consider K
5(T+10)

therefore

vol, (K]

§(T+f0)) >0,

contradicting the fact that T is the supremum of all ¢ with vol,(K;)>0. We verify

now that xy is an interior point of Kl(T+z )’ Suppose xg is not an interior point of this
2 0

set. Then for every ieN there x; with [|x; — xo|| <1 and xi¢K1(T+[ ) Therefore for
) E 0

every ie N there is a hyperplane H; such that
1 1
Pr(OKnH, )<§(T+to), x;eH; and ||x,~—x0||<;.

We can pass to a convergent subsequence of hyperplanes. By Lemma 2(iii) we
conclude that there is a hyperplane H with xoe H and

Pr(OKnH )<L (T + 10).

Since 79>4(T + o) this contradicts the definition of 7.
(iii) Suppose that this is not true. Then there are xe K, and r>0 with

Bi(x,r)n U Ko s =0.

0>0

Since vol, (Ky) >0 the set Bj(x,r)n K, contains an interior point. Therefore, there is
an interior point y of K, (which is in particular an interior point of K) such that
V¢ Us~o Ksts. Therefore, for every neN there is a hyperplane H,, with ye H, and

1
Pr(OKNH,)<s+ -
Let ny be so big that s + %< T. By compactness there is a convergent subsequence of
hyperplanes H,,, je N with limit Hy such that ye Hy. The hyperplane Hy intersects
the interior of K because y is an interior point of K.
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Therefore, we can apply Lemma 2(iii).

s> lim Pr(0KnH,) = Pr(0K N Hy).

j— o
This implies that y is not an interior point of K; which is not true. [

In the next proposition we need the Hausdorff distance dy which for two convex
bodies K and L in R" is

(K, 1) = max{ max mip lx ], max mip [lv .

Proposition 5. Let K be a convex body in R" and let f:0K—R be a positive,
continuous function with [, f(x) duyg(x) = 1.

(i) Suppose that K has a C'-boundary. Let x € 0K K such that K,#0. Let H be a

supporting hyperplane of K, at x such that Pr(OKNH™) = (By Lemma 3 there is
always such a hyperplane). Then x is the center of gravity of 0K n H with respect to the
measure

SO ok nu(y)
{Nokru(y), Nox ()’

Le.

_ W) dpoknn(y)

= OKNH {Nok~n(y),Nok (y) >
_ SO dpoxany) ’

OKNH {Noknr(¥),Nok(y)>

where Npg(y) is the unit outer normal to OK at y and Nypg~p(y) is the unit outer
normal to OKNH at y in the plane H.

(i) If K has a C'-boundary and K, K , then K is strictly convex.

(iii) Suppose that K has a C'-boundary and K < K. Then Kt consists of one point

{x1} only. This holds in particular, if for every xe OK there are r(x) >0 and R(x)< oo
such that Bj(x — r(x)Nog(x),r(x)) = K = B3 (x — R(x)Ngk (x), R(x)).
(iv) For all s with 0<s<T and ¢>0 there is >0 such that dy(K;, K;15) <e.

Remark 6. (i) We call the point x7 of Proposition 5 the surface point. In general, Ky
does not consist of one point only (see the example in 6(ii)). If K7 does not consist of
one point only, then we define x7 to be the centroid of Kr.

(i1) In Proposition 5 we have shown that under certain assumptions the surface
body reduces to a point. In general this is not the case. We give an example. Let K be
the Euclidean ball B} and
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f= XctX-c
2vol, 1(C)’

where C is a cap of the Euclidean ball with surface area equal to } vol,_;(9B3). Then
we get that for all s with s<% that K; contains a Euclidean ball with positive radius.
On the other hand K, = 0.

(iii) If K is a convex body that is centrally symmetric with respect to the point x
and f is symmetric (i.e. f(xo + x) = f(xo — x)), then the surface point x7 coincides
with the center of symmetry xy.

If K is not symmetric then T <% is possible. An example for this is a regular

triangle C in R?. If the sidelength is 1 and f = %, then T = g and Cy consists of the
; 9

barycenter of C.

Proof of Proposition 5. (i) Let H be another hyperplane passing through x and ¢ the
angle between the two hyperplanes. Then we have

s=P/(OKNH )<P/ (0K~ H").
Thus

0<S P/ (OKNH ) —P/(OKNH")

:/ N dp,-_/ _ by
OKNnH-nH* ' OKNnHYnH- )

Let & be the vector in H with ||¢]| = 1 that is orthogonal to H~H and that points

into the direction of the wedge OK~NH nH" (see Fig. 3). Then the last expression
equals

dptok nu(y) + o(e).

/ (y—x,&)f(y)tane
okni {Noknn(y), Nok(y)>

We verify the latter equality. The distance of ye 0K n H from HnHis {y—x,&>.
Next observe that the “height” of the wedge at y is {y — x, ¢ >tane. This follows
from Figs. 3 and 4.

A surface element of K at y equals, up to an error of order o(¢), the product of a
volume element at y in K n H and the length of the tangential line segment between

H and H at y. The length of this tangential line segment is, up to an error of order

o(e),

(y—x,{)ytane
{Nokru(y), Nox(y)>
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11
OKNH

13

15

Fig. 3.
17

19

b4

21

P <y—x,6> tane
23 j <yt

i / """" <y-z€> Y ¢
27

Fig. 4.

29
See Fig. 5. (For ¢ small the line passing through y and orthogonal to H is almost

31 orthogonal to ﬁ.)

Therefore
33
y=x,&>f(y)tane
» 0= / d ) +o(€).
ok <Nokon(). Nox()y 1O u() +o(e)
37
We divide both sides by ¢ and pass to the limit for & to 0. Thus we get for all £
39
P=x0/0)
ks < Noxon (), Nox(0)y 1K a()
43

Since this inequality holds for ¢ as well as —¢. (Consider another hyperplane H tilted
45 in the opposite direction.) we get for all £
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0K

P <y—mx,£ > tane

Fig. 5.

=),

ki {Noknn(y), Nox(y) > dpok ()

or

_ oo,
0= </01<nH {Nokru(y), Nox(y)> d'u‘)K“H(y)’é>'

This implies

_ v =x)f»
0= /0me {Nognu(¥), Nox(y) > Aok o)

and therefore

_ W) dpoxnny)

= OKNH {Noknn(),Nok (y) >
_ SO dpoxany)

OKNH {Noknu(¥),Nok(y)>

(i) Suppose that K is not strictly convex. Then 9K contains a line-segment [u, v].
Let xe(u,v). As K;< K it follows from Lemma 3(i) that there exists a support-

hyperplane H = H(x, Nk, (x)) of K; such that P/(O0KnH™~) = 5. Moreover, we have
that u,ve H. By (i)

YO dpok ()
_ JOKoH {Noknun () .Nok ()
f SO) dpognn () -
0K H {Noknn(y):Nok (y)>

X=U=7D

(iii) Suppose that K7 consists of more than one point. All these points are elements
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of the boundary of K7 since the volume of K7 is 0 and thus has no interior points.
Therefore OKp contains a line-segment [u,v] and cannot be strictly convex,
contradicting (ii).

The condition: For every xe0dK there is r(x)<oo such that K2Bj(x —
r(x)Nak(x), r(x)), implies that K has everywhere unique normals. This is equivalent
to differentiability of 0K. By Corollary 25.5.1 of [Ro] 0K is continuously
differentiable. The remaining assertion of (iii) now follows from Lemmas 3(ii) and
4(ii).

(iv) Suppose this is not the case. Then there are s and ¢>0 such that for all 6 with
s+o<T

dH (K§7 KH—(S) =é&.

Let ny be so big that s+#< T. For each n with n>ny we choose x, €0K; with
d(xpy, Ks+l )=e¢. The sequence x,, neN has a convergent subsequence whose limit we

denote by xy. Thus for all n>ny

d(xo, KH%) >e.

It follows that

d(xo, U Ks+£> =€

neN

and thus

K#|JK

1
neN n

which contradicts Lemma 4(iii) as xoe K;. [

3. The p-affine surface area

Definition 7. Let K be a convex body in R" with the origin in its interior. Let
—oo<p< o, p# —n. We define the p-affine surface area O,(K) by

. SO
0:n(K) = | (v o)

and
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( )L
x(x)ntp
0,(k) = [ - dpax () @)
0.

K
{x, Nok(x) ) mtr
provided the above integrals exist.

In particular, for p =0
00(K) = / % Nok () Yoy (x) = 11 vol, (K). (5)
oK

If the boundary of K is sufficiently smooth then

044 (K)= /Sn—l hK(lu)" do(u) = nvol,(K*) (6)
and
0k) = [ LR ot
hi (u) m+p

where /A is the support function and f, the curvature function, i.e. the reciprocal of
the Gauss curvature x(x) at this point xe dK that has u as outer normal.

Blaschke [B] introduced the affine surface area for convex bodies which are
sufficiently smooth. This is the case p = 1 in the above definition, i.e. O;. Several
authors showed independently that the affine surface area O; can be extended to
arbitrary convex bodies [L1,Lul,Schm,SchW1,MWI1,W1]. Schiitt and Werner
[SchW1] showed specifically that the above formula for O; extends naturally to
arbitrary convex bodies.

Lutwak [Lu2] introduced the p-affine surface area for 1<p< oo and arbitrary
convex bodies. He used for the definition expressions that are equivalent to (3) and
(4) and showed in the case of smooth convex bodies that both expressions coincide.
Hug [H] proved that the expressions coincide for all convex bodies. Meyer and
Werner [MW2] introduced a definition for O_, and gave geometric characterizations
of the p-affine surface area for —n<p< 0.

Let us note that the definition of O, here is different from the definition in [Lu2].

The definitions differ by the factor voln(K)n%l Voln(K*)fﬁ.

We have for all convex bodies and all p with 0<p< co that the quantities O,(K)
are uniformly bounded. For p = 0 this follows from (5) and for p = + oo this follows
from (6) in the smooth case. For 0<p< o0, it follows from Hélder’s inequality.
Indeed,
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( )L
K (x)ntp
0,K) = | - dua ()

K x Nk (x)y 7

K(x)

< vol,(0K) | [ i D ()
9K mp—l)
<X, N(‘)K(X)> P

Since 0 is an interior point of K there is a constant ¢>0 such that we have for all
x€ 0K the inequality ¢< {x, Npg(x) ). Thus we get

)4

n ] n+p

0,() < vol, 10K ([ w0 duet0)™
oK

c ntp
P
_n_ 1 n+p
< vol,_1 (OK)r+r do(u)
n(pil) sn—1
c ntp
o p_
=vol,_1 (OK)"t» T (n VOln(Bg)) P,
c ntp

Similarly, we get for not necessarily smooth K that

1
0+ 0% | ity

Thus O, is finite for all p with 0<p< co. This need not to be so for negative values of
p- We show that in the following example.

In this example we also compute the p-affine surface areas for the unit balls of the
I'-spaces, 1 <r< oo. Note also that for all p with 0<p< co and for all p withp< —n

da(u) = nvol,(K").

0,(B))=0 and 0,(B")=0 (7)
as the Gaussian curvature is 0 a.e. and that for all p with —n<p<0

Oy(Bj) =0 and O,(B. )= . (8)

Example 8. Let | <r< oo and B' = {xeR"|>_", |x;|"<1}. Then we have
() For I<r<2and —;"5y<p< —nand for 2<r<o and —n<p< —;’5

0,(B)) = .

(i1) For all other cases with p# — n, + c0 we have
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po=l)
2 — 1) mp (FGGED)"
n—1 n(n+rp—p)
N SUCEEr=n)

0,(B") = .

r

Moreover, for all p# —n

n

= vol,_(0B3).

Proof. By definition

The curvature is

=) T el
n

2r—2 ntl
(i) 2

K(x)

and the normal is

Nopi (x) =

Thus we get

P

-1 o N

o) = [ = T 2
P\"r) — 1
-~ 225
o8 o lxi] ™ )2

Now we integrate with respect to the variables xi, ..., x,_1. The volume of a surface

element in the plane of the first n — 1 coordinates equals the volume of the
corresponding surface element on JB! times

|xn|r71

|Cens Nogy ()| = —4—.
(0 22

Thus, with (Bj?fl)+ being the set of all vectors in B"~! having nonnegative
coordinates.
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P

pln=1) n n+p
0,(B") =2"(r — 1) 77 / [1>2)  xdrdn
B\l

p(n—1) n—1 inp n—rn—p
=2"(r—1) / IIx7) x"7 du..dx, .. (9)
B

i=1

We show now (i). Let us first assume that 1 <r<2 and —";<p< —n. We observe
that

RTMTP
n+p
Indeed, we have n + p<Oand n—rn—p>n—rn+n=n(2 —r)>0. Thus

n—rn—p
Xn n+p 2 1

and

p(n—1) n—1 ntp
0,(B")=2"(r — 1) " / [T dvidv.
(B1)"

1
Since (n — 1) B < B!

o0

pln=1) (n=1) r p(r—2)
O0,(B!)=2"(r — 1) ntr / t e de
0

As —-<p it follows that p(r;Z)g — 1 and thus O,(B!") = . In the case 2<r< o
7 n+p

and —n<p< —n/(r—1) we proceed in the same way. We have n+p>0 and n —
m—p<n(2—r)<0. From p< —n/(r — 1) we get (p(r —2))/(n+p)< — 1.

Now we show (ii). We have to evaluate (9). We use formula 4.635.4 in [GR]. The
formula can also be found in volume III of [Fi, p. 392]:

pn=1) n+rp—, n

gy 21— 1) (EEER)
OP( r) - rn71 r n(ntrp—p)
i )

Remark. Egs. (5), (7) and (8) also follow from formula (ii) in the above Example if
we let r— 1. If we let r— oo, this holds only for p>0.

The p-affine surface area is invariant under all linear maps T with det(T) = 1, i.e.
we have 0,(K) = O,(T(K)). This had been shown by [Lu2] and later by another

method by Hug [H] for p with 0<p< oo. The affine invariance for —n<p< o
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follows from the results in [MW2]. The proof of [H] seems to carry over to negative p
also. We include a proof here for the sake of completeness.

Proposition 9. Let —oo <p< oo and p# — n. Let K be a convex body in R" such that
0cK.Let T:R'->R" q linear, invertible map. Then

n—p

0,(T(K)) = det(T)"70,(K).

(For p = + o0 we put ;=2 "*71.)

For the proof of Proposition 9 we need some lemmas.

Lemma 10. Let K be a convex body in R" such that Oe K , Upk the surface measure on

0K, [ : 0K - R an integrable function, and T : R" - R" an invertible, linear map. Then

f(X)dﬂax(X)=det(T)71/ T (No (T OIS (T () digor iy (v)-
oK AT(K)

Proof. A surface element of JK is mapped onto one of T (K) whose volume is
bigger by the factor det(7)||T~"(Nyg(x))||- We check this. Let 4=dK be a small,
open neighborhood of a point xedK at which 0K is differentiable. Then

vol,([0, T(A)]) = vol,(T]0, A]) = det(T) vol, ([0, 4)).

Since OK is differentiable at xe A, the expression vol, ([0, 4]) equals up to a small
error

L, Nox(x) > vol 1 (4)

and vol,([0, T(4)]) equals up to a small error
—< T(x), Nor(k)(T (x)) > vol,1(T'(4))

1/ T N()
‘n<T( )’|T—“<Nak<x>>|>v°l"‘(T(A”

! X, _ Nok(x) v
< e “<N8K<x>>|> ol (T(A)).

Therefore vol,_{(T(A)) equals up to a small error det(7)|| T~ (Nyg (x))||vol,_1(A).
Since OK is a.e. differentiable the result follows. [J

Lemma 11 (Leichtweiss [L1], Schiitt and Werner [SchW1]). Let K be a convex body
in R" and suppose that the generalized Gauss—Kronecker curvature k exists in xe0K.
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Let A(x,t) be the height of the cap with volume t, i.e.
vol,(Kn H™ (x — A(x, t)Nox (x), Nok (x))) = ¢.

Then

2
- vol,_1 (Bg’l) n+l
where ¢, = 2(T .

Lemma 12. Let K be a convex body in R" and suppose that the generalized Gauss—

Kronecker curvature x exists in xe K. Let T:R"—>R" be a linear, invertible map.
Then the generalized Gauss—Kronecker curvature i exists in T(x)€dT(K) and

(x) = (|77 (Nog (x))||"*" det(T)* k(T (x)).

Proof. We only show the formula. By Lemma 11

. Ax,t 1 . AMT(x), 1

¢y lim (x2, ) =k(x)nt1 ¢, lim M = k(T (x))n+1.
t—0 — s—0 —<a_
tn+1 s+l

Let H = H(x— A(x,t)Ngk(x), Nok(x)). Then we have vol,(KnH )=t,
vol,(T(KnH™)) =tdet(T) and T(K)nT(H") is a cap of T(K) at T(x). The
normal at T(x) is T “(Npgx(x))||T"(Nox(x))|]|”". The height of the cap
T(K)NnT(H™) equals the height of the cap KnH~ multiplied by the factor
|7 (Nak (x))||”". We check this. The height of the cap T'(K)nT(H ™) equals

(T (x) = T(x = A(x; ))Nox (x)), Nor(se) (T (x)) >

T~ "(Nok(x))) >: A(x, 1)
T (Nox DN/ 1T~ (Nax ()1

= <T(A(x, 1)Nok(x))

Thus we get
A(T(x), 1det(T)) = A(x, 0| T~ (N ()|~
and
A0 _ ety 7 (N () L L LT
T (¢det(T))+T

It is left to pass to the limits. [
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Proof of Proposition 9. Let « = p/(n+p) and f =n(p —1)/(n+ p). In the case p =
+ o0 we have o = 1 and f = n. By Lemma 10

K(x)”
/61< <X,N0K(x)>ﬁduaK(x>
k(T ()"
CT(p), Nog (T () »F
k(T ()" J
s Noro ()7 HOTHY

dpgrx) ()

= det(T)”" /)T(K) 1T (Nox (T~ )17 »)-

By Lemma 12 the last expression equals

o

det(T)2*! T (N (T a(nt1)—1-p K(y) du. >
a(ry! | o I o O Gy Mo ©)

Notice that a(n+1) =1 —f=0and 20 — 1 = (p —n)/(n+p). O

Now we want to present a geometric characterization of the p-affine surface area
for all p similar in spirit to the one given in [SchW2,W3]. A geometric interpretation
for —n<p< oo exists already in [MW2].

We will briefly mention the results of [SchW?2] as some of the concepts introduced
there will also be useful here.

A random polytope is the convex hull of finitely many points that are chosen from
K with respect to a probability measure P on K. The expected volume of a random
polytope of N points is

[E([D,N):/K---/Kvoln([xl,...,xN])dP(xl)...dP(xN),

where [xy, ..., xy] is the convex hull of the points xi, ..., xy.

For a integrable, nonnegative function f : 0K — R with faKf(x) du =1 we denote
by P, the probability measure with dP, = fdu,y.

In [SchW2] random polytopes are considered where the points are chosen from the
boundary of K with respect to Pr and then the expected volume is

E(f, N) = E(Py, N /aK /{)K VOly([X1, -y xx]) dP(x1)..dP;y(on).

For q, —o0 <g< 0, g# — n, let the functions f, : 0K — R be given as follows: For
q =t oo, put
K(x)
O+ o (K) {x, Nog (x) )"

Jro(x) = (10)

and for all other values of ¢
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ff{(x) = n(g—1)" (11)
0,(K){x,Nok(x)) ta

The following theorem is a consequence of the result in [SchW2]. For the proof see
[SchW2].

Theorem 13. Let K be a convex body in R" with the origin in its interior. Assume also
that there are r and R in R with 0<r< R< oo so that we have for all xe 0K

B (x — rNok(x),r) = K = B5(x — RNak(x), R).

Let —o<p< 0, p# —n. Forp# — 1 Zetqzn_z(%. Then

vol,(K) — E(fy, N)

li =¢,0,(K 12
N (K @Op(K) 12
N
and
vol,(K) — E(f+ o, N
i, S = a0.18), 1)
i;} n—1
nt+l
where ¢, = ("_1)n71r("+1+”%‘2 )

2(n+1)!(vol,—» (9B ™" ))n—1

Now we come to the geometric interpretation of the p-affine surface area using
surface bodies.

Let K be a convex body and xedK. We define r(x) as the maximum of all real
numbers p so that Bj(x — pNaok(x),p) =K. This has been used in [SchW1] to
investigate the floating body. It was pointed out there that for all o with 0<a<1 the
integral [, r(x) “dpyg)(x) is finite. The cube is an example showing that
Jox r(x)_ld,ua(,{) (x) may be infinite.

From now on we assume without loss of generality that 0 is an interior point of K
and for xe 9K and s>0 we put

Xy = [0,x] N OKy .

We call the function My:0K—R

My (xo) = inf 1 Sdugg  (14)

0<s vol,—1 (0K n H~(xs, Nok, (xs))) /i)KmH* (x;Nok, (x5))

the minimal function.
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Theorem 14. Let K be a convex body in R". Suppose that  : 0K — R is an integrable,
almost everywhere strictly positive function such that [f duyg = 1. Assume that

/ <.
((

Then

2
where d, = 2(vol,_; (B3~ 1))n—T.

One cannot expect that the asymptotic formula of Theorem 14 holds for all
integrable function. We give an example.
It makes most sense to define

K(x)ﬁ

2
(x)nfl
if k(x) = 0 and f(x) = 0. Consider the convex body K (see Fig. 6) which consists of a
half-circle and a triangle attached to it. We define the function f to be equal to 0 on
the lines of the triangle and constant on the half-circle such that the integral of f
equals 1. Then, since Ky does not contain the triangular part of K

~

1,(K) — vol, (K7
o YO(K) = vol,(Ky.)

5s—0 —=_
sn—1

while

Fig. 6.
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Kn—1
/ 2 d:u(’)K
oK fﬁ

is clearly finite.

Corollary 15. Let K be a convex body in R" with the origin in its interior. Let

—oo<p<oo,p#—n.F0rp;é—lletq:"_ﬁi—"l_z)andforp:—l let g = co. Let f,

be as in (10) and (11) and assume that it is almost everywhere strictly positive. Assume
that

1
2

/“ (M, (x))m=Tr(x)

dpgg (x) < 0.

Then

vol,(K) — vol,(Ky, ) = 0,(K). (15)
T

d, lim 5
s—0 —
(sO4(K))n=

Thus for every p-affine surface area O, there is a density f, with ¢ = % so that

(15) holds. Conversely, for each density f, there is an affine surface area O, with
p= qf’r;ﬁz such that (15) holds.
For the proof of Theorem 14 we need several lemmas.

Lemma 16. Let K and L be two convex bodies in R" such that 0 e L and L= K. Then

vol,(K) = voly(L) =+ [ Cx, Na(x)) (1 - (”’“”)") it (%),

n Jok |||

where x; = [0,x]NOL and uy is the usual surface measure on OK.

The proof of Lemma 16 is standard.
Since we want to apply the Lebesgue convergence theorem, we need a dominating
function. This function turns out to have 1/r(x) as a factor. In [SchW1,Schl],

n—1
dealing with related problems, the dominating function is a multiple of r(x) n+1
which is integrable. In fact, as mentioned above, r(x) ™ is integrable provided that
o<1 and there is an example in [SchW1] for which 1/r(x) is not integrable.

Lemma 17. Let K be a convex body in R" such that 0 is an interior point of K and let
f 0K - R be an integrable function with [, f(x) duyg(x) = 1 and such that f >0 a.e.
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Then there is so>0 such that for all s with 0<s<so and for almost all xe 0K
o) (1= ()') ¢
0 ~ 2 \
sn—1

(M (x))Tr(x)

where x; = [0, x] " 0Ky s and C is an absolute constant. If the normal is not unique we
take any normal to a supporting hyperplane at this point.

9

Proof. By Proposition 5(iv) there is sy such that for all s with 0 <s< s, the point 0 is
an interior point of K. Thus x, is well defined.

Let xeOK. If the normal Nyk(x) is not unique then r(x) = 0 and the estimate is
satisfied. We first consider the case that x;e K. Then, by construction of xy, x; = x
and therefore

N | — (sl
{x dK(x)>2< (HXII) ) —0.
sn—1

Thus we may assume that Ngk(x) is unique and x; is an interior point of K.
As x and x; are collinear and ||x;|| <[] x||

el o [l = ]

Il 111

st (1= (1))
— (0 (1= (1 —w»

< (5 Nl b = il (16)

Hence

The last expression is also denoted by 4;:

ol <|| I Mo )>||x x| | = (x — x5, Nog (x)).

It is the distance of x to the hyperplane through x, and orthogonal to Nk (x). As x;
is an interior point of K, by Lemma 3(i) there is a hyperplane H with x,€ H and
Pr(OKNH™) =5

s=POKOH) = [ 1) duak(n)> My (vol, (0K H). (17

We show now that there is a constant ¢ such that we have for all xedK
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n—1
Ar(x)) 2 if A,<min{"™ r(x) (X x) >3,
evch (oK -y { COOVE I AR Gy N2,
A if A;>min{"%, r (x)<‘— x(x)>2).

This inequality is an analogue of an inequality in [Schl] (see [Schl, Lemma 5]). We
consider first the case 4 >min{@, r(x) <ﬁ’ Nk (x)>2}. Since 0 is an interior point,
there is p >0 such that B5(0, p) = K. We consider the convex hull of x and Bj(0, p).
Then

vol,_1 (0K nH™) =vol,_i(H n[x, B5(0, p)]). (19)

The set [x, B5(0, p)] contains a Euclidean ball with center x; and radius p”xH;ﬁSH.

Therefore H N [x, B5(0, p)] contains a n — 1-dimensional Euclidean ball whose radius

is greater than p”’*"‘;’ﬁ“'”. Thus we get

n—1
- p o n—1
vol,_1(OKNnH ) > <diam(K)||x xs|> vol,_1(B5 ). (20)

Since 4,<||x — x,|| we have established (18) for the case

A >mm{r(X) gy N )>2}

2
(actually we did not use Ax>min{r<7x), r(x )<H‘CH’N0K( )> .

Now we consider the other case:

2
Asgmm{r(x) r(x )<|| Ik , Nok (x )> } (21)

For all s with 0 <s<s
1/ x
3 V) Yl = . < DB N (). 1)

where d(x;, 0B5(x — r(x)Nak (x), r(x))) denotes the distance of x; to the boundary of
the Euclidean ball. We show this. In Fig. 7 this distance equals ||x; — y]|.

As can be seen from Fig. 7 we have ||x; — ys||<4,<||xs — z||. We claim that
[|xs — zs|| <3||xy — ys]|. The ratio between ||x; — zs|| and ||x; — ys|| is monotone.
Indeed, let y be the angle at x — r(x) Nk (x). Then

||xs—zs\|: r(x) ( 1 _1>+17
Hxx_ys” ||x‘v_ys|| cosy

which is decreasing as s—0, for y with 0<y<7. Therefore it suffices to consider the
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z — r(z)Nox (z)

By (z — r(z)Nok (), Nak ()

Fig. 7.

case when the line through x; and y; is orthogonal to the line through x and x;. Then
we have

= 2l =r) (5 = 1)+||xs—ys||

+ || — |
( —||x\ y8|| ) ’ ’

r()llxs =yl

+ xs = psl | <3]|x5 =yl |-
() — [l — wll

The last inequality follows because r(x) — ||x; — ys||>r(x) — 4,=1r(x). Therefore,
OB (x — r(x)Nak (x),r(x)) nH ™ is a cap of a Euclidean ball with radius r(x) whose

height is greater than 14, 3<HYH’N5K( )>||x — X[

The surface area of such a cap is greater than (see [SchW2, Lemma 1.3])

n=1 /2 Az 2
n—1 > (24 __Ts
vol,_1(By )r(x) (3 Ay 9r(x)> .

As vol,_1 (0K nH™)=vol,_1 (0B (x — r(x)Nox (x),r(x)) nH ™), this gives the other
case of (18). Therefore (17) and (18) give (with a new constant ¢)
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My(x)(4r(x)'T it Asgmin{@,r( ) (s Nok (x )>2},

s> ) (22)
eMy(x)A"! if Ax>min{"<2x),r(x)<§,NaK(x)>
It follows
=) i ind ?
| M)A i Ac<mind G r(x )<M, Nox(x )> ,
1> (23)
2 0 ") ?
(eMp(x))n=14; if Ag>ming =5, r(x )<HXH’N‘?K( )> .
Therefore, we get for all s with 0 <s<T with a new constant ¢
L 2
sn=12 (eMy(x))n-TA,r(x) (24)

and thus with (16) and (24)

{x, Nog (x) ) (1 - (‘\‘\?\‘\‘)H)
2

nsn—1

<|| Vot s ) !
- < 5 . U
(MFTHA,  (eMy(x)Tr()

Lemma 18. Let K be a convex body in R" and let xo€ 0K such that the indicatrix of
Dupin exists at xy and is an ellipsoid (and not a cylinder). Let f:0K—>R be a
nonnegative, integrable function with [ f du = 1. Assume that f(x¢)>0 and that

1
i
A vol,_1 (0KnH})

| 1) =) o) =0, (25)

where Hy = H™(xo — ANok (x0), Nox (x0)). Then there is so so that for all s with
0<s<sg

1

X) dugg (x). 26
“vol, 1(OK " H~ (x5, Nok,(X5))) /QKHH(xX,N[r)KA(x\,))) S ) dior(x) (26)

*f( 0) <
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Proof. Let

Ay = {xeaKmHA

1605 ) . 7)

By (25)

#aK(AA) _
M h@K nHy) ~ " 28)

Let p be the metric projection from 9K to H(xo — ANpk(x0), Nok(xo)). For every
0>0 there is 4 such that for all measurable A <9K nH (xo — ANax(x0), Nox (x0))

vol,_1(p(A4)) <vol,_1(A4)< (1 4 d)vol,_1(p(A4)). (29)

This is easily seen since for 4 sufficiently small the normals Nyg(xp) and Nyx(x)
differ only by a small angle. Compare the proof of Lemma 2.7 in [SchW2].

We apply an affine transform 7' : R" - R" to K so that the indicatrix of Dupin is
transformed into an n — 1-dimensional Euclidean ball (see formula (5) in [SchW2]).
T has the following properties:

T(X()) = X T(NaK(X())) = NaK(X()) det(T) =1

and 7 maps a measurable subset of a hyperplane orthogonal to Nyk(xp) onto a
subset of the same n — 1-dimensional measure. By (29) it follows that for all ¢>0
there is 4>0 such that for all measurable subsets 4 of OKNH (xo—
ANk (xo), Nok (x0))

(1 —&)vol,_(4)<vol,_ 1 (T(A)) < (1 +¢)vol,—1(A4). (30)

Indeed, by (29) the sets 4 and p(4) have up to a small error the same volume.
T(p(A)) has the same volume as p(4). Now we compare this to p~!(T(4)).

T(K) can be approximated at xo = T'(xo) by a n-dimensional Euclidean ball, i.c.
for all >0 there are 4 and r, R with r< R<(1 + &)r such that

BJ(xo — rNok (x0),r) "H ™ (xo — ANk (x0), Nox (x0))
cT(K)nH (xo — ANsg(x0), Nok (x0))
S Bj(xo — RNak (x0), R) "H ™ (x9 — ANak (x0), Nok (x0))- (31)
For any 4> 0 there is sy so that for all s with 0 <s<s
K H™ (x5, Nog,(x5)) S KNH ™ (x9 — ANgk (x0), Nox (x0))-

This holds since Nyk, (x;) converges to Nox(xo) for s—0. See Lemma 2.5 in [SchW2].
Thus we can apply (30) to 4 = K H (xy, Nyk,(x;5)) and obtain for sufficiently
small s
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(1 + &)voly_1 (0K~ H ™ (x5, Nok, (%s)))

>vol, (T (K) nT(H™ (x,, Nog.(x;))))

=vol,_1(0B5(xo — rNok (x0),#) " T(H™ (x5, Nok, (X5))))-

For the last inequality we consider the metric projection. Now
vol,_1(0B5(xo — rNox (x0), r) " T(H™ (x5, Nok,(X5))))
=vol,_1(B5(xo — rNok(x0), ) " T (H (x5, Nok,(x5))))
and the set
Bj(xo — rNok (x0),r) " T(H (x5, Nok, (x5)))
is a ball whose radius is larger than % times the radius of the ball
Bj(xo — rNok (xo0),r) nH (xo — AdoNak (x0), Nox (x0)),

where

Ag = max{||xo — x|| |xeBj(xo — rNox(x0),r) " H(xy, Nox (xs))}

This follows from Fig. 8.
Hence, by (32)

(1 4+ &)vol,_1 (0K n H™ (xy, Nok,(x5)))

227'1+1V01,1,1 (BS(XO — I’NaK(Xo), l’) ﬂH()CO — AoNaK(xO), NaK(xO)))

By (31), for sufficiently small 4,

g .t". » - ..‘w \
4". ."‘ e -
o
L H(zo — AoNak (z0), Nox (o))
‘l o "
’ ¢ 9B%(zo ~ rNok (o), 7)

Fig. 8.
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(1+&)voly_1 (0K~ H™ (x5, Nok, (Xs)))

R
>2in+1V01n_1 (Bg <X(] — NaK(Xo),—> f\H(X() — AON{)K(XO)yNBK(XO))>

l+¢ 1+¢

>t WVOIH_I(T(K) N H (xg — AoNox (x0), Nox (x0)))
|
= 27r1+l Wvoln_l(KmH(xo — AoN@K(Xo),NaK(Xo)))
1

=>(1+ 5)_12in+1 ﬁvoln_l(BKmH’(xo — AoNak (x0), Nox (x0)))- (35)

(1+e)

The last inequality follows from (29). By (28) we get that for 4 sufficiently small on a
subset of 9K nH™(xy, Nok,(x,)) whose measure is at least 3 of this cap we have
(t5)f (x0) <f(x). This proves (26). O

We say that a family of sets 4, 0K, 0 <s<sg, shrinks nicely to a point xy€ 9K if
(1) lim,_,¢ diam(4;) =0

and if

(i1) there is ¢>0 such that for every s there is ¢ with

OK N Bj(x0,1) S As = OK N Bj(xy, ct).

See e.g. [Fo, pp.96-98] in the case of R". The results carry over to the case of a
boundary of a convex body. In particular, the result that we are using here, that the
limit

1

i e R B ] /d e VO =0l dor () =0 (36)

exists almost everywhere.
If a family A4y, 0<s, shrinks nicely to a point x, then we have

/ (%) — £ (x0)| dgre(x) = 0 (37)

%1—>0 VOI,, ]
provided that (36) holds.

Lemma 19. Let K be a convex body in R" and xoe€0K. Suppose that the indicatrix at
Xo exists and is an ellipsoid (and not a cylinder).
(1) Then the family of sets

OK N H™ (xg — ANak(x0), Nox(x0)) 0<4

shrinks nicely to x.
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(i1) Suppose that f: 0K — R is an integrable, a.e. strictly positive function and that

f(x0)>0. Moreover, suppose that

1

P—»O vol,_1 (0K N Bj(xo,1)) /E)KmB”(»cO,;) Fee) = (xo)l dptage(x) = 0. (38)

Then the family
OK N H™ (xy, Nok,(x5)) 0<s

shrinks nicely to x.

Proof. (i) Since the indicatrix at x is an ellipsoid we can approximate dK at xy by an
ellipsoid. Therefore, there are Ay, r and R such that 4y <r,

Bj(xo — rNok(x0),1) S Ku {x0} (39)
and
KnH (xg — AgNox (x0), Nox (x0))
S Bj(xo — RNak(x0), R) "H ™ (x9 — AoNak (x0), Nox (x0))- (40)
Since we have for all 4 with 0<A4< 4,
B (xo — RNak(x0), R)nH™ (xo — ANak (x0), Nox (x0))
< B!(x0, V2RA)

it follows from (40) that

KﬁHi(X() = ANaK(XQ),N@K(XQ)) B ()C(), vV2RA ) (41)
which implies
OKNH™ (X() — AN@K(X()), NaK(xO)) gaKr\B’;(xo, Vv ZRA) (42)

On the other hand, with H = H(xg — ANyg(x0), Nog(x0))
OK ~ Bl(x0,V2rA)
= (8K "Bl (x0, V2rd) n H™ ) U (0K A Bl (x0, V2rd) n H™)
< (0K nH™)U (9K A Bl(x0, V2rA)n H™).
We have

B (x0,V2r4)nH" = By(xo — rNok (xo),r)nH™.
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By (39)
OK Bl (xo, V2rA)nH*
COK N By(xo — rNyk(xo),r) nH" = 0.
Therefore we get
OK ~ Bl(x0, V2rA)
SOK N H ™ (xo — ANgk (x0), No (xo))
< OK N B(xo, V2RA).

(i) Let r, R and 4, as above. We denote the height of the cap K n H ™ (xy, Nog (X))
by 4, = {xo — x5, Nok(x0) ). We require that A4,<4,. We have

H(x;, Nok (x0)) = H (xo — 4sNok (x0), Nok (x0))-
As in the proof of Lemma 3(ii) we show that x; is an interior point. We have by
Lemma 3(i)

. / £ (%) ditgg (). (43)
OK N H~(x,Nok, (Xs))

If the normal is not unique we choose an appropriate one. By (i) the family
OK nH™(xg — AsNag (x0), Nog (x0)), 0<4, shrinks nicely to xo. Therefore, by
assumption (38)

lim :

4-0 vol,_ | (OKnH})

Ly VO sl i =0, 44
Thus hypothesis (25) of Lemma 18 is fulfilled and we have (26). Therefore
1f (x0) vol,_1 (0K n H™ (x;, Nok, (x5)))
<s<2f (x0)vol,—1 (OK N H™ (x5, Nok(x0)))- (45)

The left-hand inequality follows from (26) and (43). The right-hand inequality
follows by (44) and

s< / 1(x) dptgg ().
OK N H~(x5,Nak (x0))

Since f(xp) >0 inequality (45) implies
vol,—1 (0K nH™ (x5, Nok, (xy))) <4 vol,— 1 (OK n H™ (xy, Nk (x0)))- (46)

From this we get for sufficiently small 4,
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VOln,] (8B§(xo — VN@K(X()), V)) NH™ (XS, NaKS(Xs)))
<4vol, 1(9B5(xo — RNax (xo), R) " H™ (x5, Nox (x0))) (47)

because the metric projection maps a set onto a set of smaller volume. Let /4 be the
height of the cap

BJ(xo — rNox(x0),r) " H ™ (xg, Nok, (xs)).

For Ay sufficiently small we have h;<r. Indeed, suppose /;,>r, then by (47)

-1
| el A2 T
ir" vol,_1(0B5)<8vol,_1(B5 )R 2 | 24, _fs .

For sufficiently small 4, this is impossible. Again, by (47)

N2 n—1 A2\ 2

n—1 2
vol, 1(By Yr 2 (2hs - %) <8vol, |(By YR 2 <2AS Y ?j‘) .

Since hy<r

This implies
R
hy < 1287415. (48)

In Fig. 9 we see the two-dimensional plane that contains the points xy and xy —
rNok(xo) and that is orthogonal to the »n— 2-dimensional plane
H (xy, Nok, (x5)) nH (x5, Nog (x0)). The point x; is not necessarily in the plane seen
in Fig. 9. Therefore, the angle y may appear smaller than it is. We denote the
orthogonal projection of the point x; onto the two-dimensional plane seen in Fig. 9
by xy. Thus both points x; and xy appear in the same position in Figs. 9 and 10.

Also, please note that in Figs. 9 and 10 there is only shown the case where
xo — AsNox (x0) € H (x5, Nog, (xy)). The other case, X0 — AgNog(x0) €
H~ (x;, Nok,(xy)) is treated in the same way.

Now we want to estimate the radius of the largest cap Bj(xo—
rNox (x0),r) "H ™ (xo — 4,,Nag (x0), Nox (x0)) that is contained in H (xy, Nyg, (x5)).
We do this by examining Fig. 10.

We compute the point in Fig. 10 where the line segments [xo,z] and [xy, )]
intersect.

In Fig. 10 we introduce the (u, w)-coordinate system. The origin in the (u, w)-plane
is at xo — 4;Ngk(xo). In this coordinate system the line through x( and z has the
equation
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H(zq, Nak,(zy))

8BY(zo — rNok(x0),7)

', zo — A, Nak (20)

...........................................................................

u

z0 — 7 Nak (zo)

Fig. 9.

H(zs, Nok,(zs))

| @ ~ AsNax{zo)

Fig. 10.
A
u=— : w+ A,
2rdy — A?

and the line through xy and v

u = (tana)w + tan of|xy — (xo — 4sNok (x0))||-
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Solving for w

_ As — tan af|xy — (xo — 4;Nog (x0))|]
4 = + tan « ’

\ 2rds—A;

where « is as in Fig. 10. w is smaller than the radius of the largest cap. We have

w (49)

As tany =[xy — (xo — 4:Nax (x0))][- (50)
Since xo€ H™ (x5, Nak,(x5)) (see Fig. 9)
hy=r(l —cosa).
By (48)
R
1 —cos oc<128—24|s.
r
Therefore, for 4y sufficiently small
R
a2<528r—2AS. (51)

Together with (49) and (50) we get w> C+/4; for some constant C. Thus there is a
constant C such that for all 4,< 4

OK A B2 (xo, C\/4s) SOK ~H™ (x,, Nk, (xy)). (52)

Now we show the inverse inclusion to (52).
The angle between Nyg(xo) and Ny, (x;) is o. Therefore, the radius of the n — 1-
dimensional Euclidean ball (see Fig. 11)

Bg(XO 2 R]V@K()C())7 R) (\H(Xo, N@Ky(xx))

equals Rsin o and the height of the associated cap is R(1 — cos«). By (51) for small
Ay this is of the order

1, R

The height of the cap
B (xo — RNok(x0), R) " H™ (x4, Nok,(x5)) (53)
is less than the height of the cap

B)(xo — RNak(x0), R) " H™ (x0, Nox, (xs))
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T, H{(zo, N&K.(Jzn))

9B3(xo — RNax (o), R)

----
.

""""""""" H(zs, Nok, (2))

{ o — Ay Npk (o)

Fig. 11.

plus the distance of x; to x¢. This in turn is less than C’'A;. Therefore the radius of
cap (53) is less than C"v/4,. O

Lemma 20 (Schiitt and Werner [SchW2, Lemma 2.7]). Let K be a convex body in R"
such that 0 is an interior point of K. Let xo€0K. Let f : 0K — R be an integrable, a.e.
strictly positive function with [, f(x) dpag(x) = 1 and such that f(x¢)>0 and

. 1
4111—% vol,_1(OKnH}) ~/(’)K0H4 I (%) =1 (x0)| dpox (x) = 0, (54)

where Hy = H(x — ANyg(x), Nog(x)).

Suppose that the indicatrix of Dupin exists at xo and is an ellipsoid (and not a
cylinder). For all s such that K;#0 and 0€ Ky, let x; be defined by {x,} = [0, xo] N OK.
Then for every e>0 there is s, so that for all s with 0<s<s, the points x, are interior
points of K and

s<Pr(OKNH ™ (x5, Nok (x0))) < (1 +¢)s.

In [SchW2] this lemma has a stronger assumption. We assume there that the
function f is continuous at xy. It is not difficult to check that the arguments in the
proof hold also with assumption (54).

Lemma 21. Let K be a convex body in R". Let f: 0K — R be an integrable function
with respect to the surface measure. Then for almost all xye 0K where the generalized
Gauss curvature exists and is different from 0 the following limit exists and satisfies the
equation:
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. 1
4111—% vol,_1 (0K N HY) ~/(’)KmHA 6) =f ol dho(x) = 0,

where Hy = H(xo — ANk (x0), Nok (x0))-

Proof. As in the case of the Euclidean space R” it is shown (see e.g. [Fo, pp. 96-98])
that for almost all xoedK

1
lim - /
p=0 vol,_1 (0K N B5(xo, p)) OK A BL(x0,p)

f (x) = f (x0)| dupg (x) = 0.

By Lemma 19 the family 0KnHy, 0<4, shrinks nicely to xo provided that the
curvature is not equal to 0. The rest follows from the consideration just above
Lemma 19. O

Lemma 22. (i) Let xe 0B}, and let H be a hyperplane with xe H. Let A be the minimal
height of a cap BynH~ ((1 — 4)x,x) such that

BinH <BinH ((1 —4)x,x)
and assume that A <%. Then
vol,_1 (0B nH™((1 — 4)x,x)) <2"vol,_; (O0B5nH™).

(i1) Let & be an ellipsoid in R" centered at 0 with principal axes a,ey, ..., aye, and let
H = H(ayey,, £). Let A be the minimal height of a cap & " H~ ((a, — A)ey, en) such that

EnH cBnH ((a, — A)en, ey)
and assume that A<min{%, 1}. Then

8ay,
2

minlsign—la,‘

vol,—1 (08 " H ™ ((an, — A)en, e,)) <2t (1 + )Volnl((’)@@mH‘).

Proof. (i) \/% is the radius of the cap B} N H~. Therefore

n—1
A\ 2
vol,_1 (0B5nH™ )= <§) vol,_1(B5).

Moreover,
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vol,1(9B3~H (1 — A)x,x)) <2(24)"T vol, 1 (By™).

From this (i) follows.
(ii) We apply the transform S: R" —R"

-,

Then S(&) = B;. The new 4 is smaller than % as required in (i). By Lemma 1.3 of
[SchW2] and 4<1

vol,_1 (06" H ((a, — A)en, ey))

8a :
< (1 +ﬁ) Vol 1 (& A H (@, — A)ens ) (55)
Now
Vol 1 (BY A S(H((ay — A)en, en))) = voly_1 (S(E 0 H ((ay — A)en, en)))
= ﬁvolnﬂéEmH((an — Aey,e,)) (56)
and
vol,_1 (B! S(H)) = vol,_(S(§ n H)) = H?ll p S(lé)H vol,_((&nH), (57)

where £ is the normal to H. As in the proof of (i)
vol,_1(BinS(H ((a, — A)en, e,))) <2" ' vol,_(BinS(H)).

Therefore, using (55)—(57)

vol, 1(06"H )= vol, 1(6nH) = Ha,HS ||vol,_1 (BN S(H)).

> o TLalIS@livol, (B A SCH (@, ~ Aerve)
=1

|
=2 57— |S(E)[[voly—1 (& N H((an — A)en, ex))

L g[S

on—1 1
8ay 2
(1 + minl<l<n—]a,2)

vol,—1 (08 "H™ ((a, — A)en, €,)).



11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

[YAIMA : 2269]

42 C. Schiitt, E. Werner | Advances in Mathematics 1 (1ill) 111—11

Now note that

1
(R EN ) LE ]
"5(5)"‘<;(m) ) > = LG
1
>

= min < Nf)(‘;'7 €n >
ay xed&ENH((ay—A)ey,en)

1 8a, 2
> (14— )7
ap ming ¢;<n—14;

For the last inequality see the proof of Lemma 1.3 of [SchW2]. We use also that
4<1. O

Lemma 23. Let K be a convex body in R" such that 0 is an interior point of K and let
f 0K — R be an integrable function with [, f(x) duyg(x) = 1 and such that f >0 a.e.
(i) For almost all xe OK at which the indicatrix of Dupin is an ellipsoid
n
Xy 1
o (- (68)) o
: =

nsn—1 2(vol,—1 (B& 1 (x))

lim

50 Z
n—1

(i1) For almost all xe 0K at which the indicatrix of Dupin is an elliptic cylinder

- Cx, Nok(x) S -()) N
nsn—1

Proof. Let xpedK. Since f is a.e. strictly greater than 0 we may assume that
f(x0)>0. (16) holds for all s with 0<s< T, that is

I BN/
o, Nok (x0) (1 - (||x0||> )<<M,N0K<xo)>||xo il

In the same way we obtain the inverse inequality.

! 01"
oot (1= (157) )
:1<x0,Na1<(xo)> (l - <1 _|x°_xf||> >
" N

Since (1 — 1)"<1 — nr + "¢ for all 7 with 0<r<1
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1 x\"
—<{ x0, Nok (x0) > (1 - (' JH) )
n [|xol|
Xo n—1xo— x|
> —,N(’)K(X())>||X0 —x,||(1 - — ). (58)
<||x0|| ’ 2 xol|

(1) We now assume that the indicatrix of Dupin at xj is an ellipsoid. By Lemma

3(ii) x, is then an

interior point of K. By (16) and (58) we can choose s, so small that

we have for all s<s,

+<x0, Nox (x0) > (1 B (H)") <

ity Nok (xo) > [|x0 — x|

I —e<

By this and Lemma 20 we can choose s, so small that we have for all s<s,

{ X,
1 —¢e<

Noxta)> (1 = ({h) ) 0K (o, NoCeoPT]

The assumptions

2 y
nsn—1 <ﬁ, NaK(xo)>||X0 — Xl

of Lemma 20 are satisfied because of Lemma 21. From this and

Lemma 21 we conclude that we can choose s, so small that we have for all s<s,

1—2¢

<

|||
IIxoll

)n> (f (xo)vol,—1 (0K " H™(x;, N(,K(xo))))%

<1+ 2e.

{x0, Nok (x0) (1 - (
=

" (i Nox (20) Yo — il

Let 4, denote the height of the cap 0K N H (x4, Ny (x0))), i.e.

Xo
4y = { =2 N; —xI.
= (2 o) o = .|

For the surface area of the cap we have (see [SchW?2]) for s<s,

Therefore we get

vol,_ | (By1)

1—c¢
(1—¢) o)

<vol,_; (8[((’\1‘[— (XS, NaK(XQ)))

n—1
(245) 2
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|||
Il

'Z||>n> 2(f(xo)voln1(lggl))ﬁ

Xi

Cxo, Nowe () > (1= (
2
n—1

1 —3e< <1+ 3e.
ns K(x)n=T
From this it follows that
B 1
lim <x07N0K(x0)> <1 - (HIOH) ) - K(xo)n—l
s 2 o 2
50 nsn—1 2(f (xo)vol,_i (By~1))n-1

This finishes the proof of Lemma 23(i).

(i) Recall that, since f is a.e. strictly greater than 0 we may assume that f(xg) > 0.
We first consider the case that there is so >0 such that x,, € K. Then for all s with
0<s<sy we have x;e K. Hence, by construction of x;, x; = x¢ and therefore

{x0, Nok (x0) > (1 - (H;H)”) o

2

nsn—1

Now we treat the case that for all s>0 the point x; is an interior point of K. The
indicatrix of Dupin at xg is an elliptic cylinder and we may assume that the first &
axes have infinite lengths and the others not. Then, for every ¢>0, there is an
ellipsoid & and s,>0 such that for all s<s, we have that

ENH ™ (xg, Nog(x0)) =K H ™ (xg, Nog (x0)) (59)

and such that the lengths of the first k principal axes ay, ..., a; are larger than % (see
[SchW1]). As x, is an interior point of K, by Lemma 3(i) there exists a hyperplane
H(xy, Nok,(xs)) such that

s = P/ (0K \H™ (x,, No, (x,)))-

If the normal Ny, (x;) is not unique, one of the normals satisfies the equation.
We consider the metric projection

p: 08— H(xo, Nok(x0)),
which in this case is equal to the orthogonal projection. We also consider
q:08 " H ™ (xy, Nok(x0)) = 0K

with ¢(x) = [x,p(x)]nOK. The family ¢(08 nH (xy, Nok(x0))), 0<s<s,, shrinks
nicely to xy as s— 0. This is proved in the same way as Lemma 19(i). Therefore we get

1
lim /
s=0 vol,_1(¢(06 N H~ (x5, Nok(x0)))) q(06 A H=(x5,Nak (x0)))

If (x) = f(x0)| dpgx (x) = 0.
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This implies that for all >0 there is s, such that for all 0 <s<s,,
Kok ({x€4(08 0 H™ (xy, Nox (x0))): f(x) =3/ (x0) })

= (1 = 0)ugx ({xeq(08 " H™ (x5, Nox (x0)))})- (60)

We choose

1 8 -
o 2n+1 1 s
10( < +min1<i<nlbz2>> ’

where b;, 1 <i<n — 1, are the lengths of the principal axes of the indicatrix of Dupin.
The lengths a;, 1 <i<n, of the axes of the ellipsoid & and the lengths b; are related in
the following way (see [SchW2, p. 258])

2
n—1 n—1
ap = (H bl)

1

n—1 n—1
a,:b,<H b,~> L j=1..n—1 (61)
i=1

By Lemma 22(ii) for all hyperplanes H with xoe H, 06 " H~ =9& n H~ (xy, Nok (x0))

and

vol,_1(0& nH™ (x,, Nogx (x0))) <2"! (1 +_8a"2>volnl(8r§mH).

minj <;j<n—14;
Since we can choose H such that xoe H and
08 H™ <08 H™ (x5, Nog (x0)) 0 H™ (x4, Nok, (x5)),
we get for sufficiently small s,
vol,_1 (06 nH™)
<vol,1 (06 " H™ (xy, Nok (x0)) 0 H ™ (x5, Nok, (X5)))

<2vol,—1(q(06 "H ™ (xy, Nok (x0)) " H ™ (xy, Nok,(x5))))-

Therefore, using (61),
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vol,—1(q(08 " H™ (xy, Nok(x0))))

<2vol,_1 (08 " H™ (x5, Nog(x0)))

<2t (1 +m
% (xg, Nok, (xy))))-
Now
{xeq(06 N H™ (x5, Nox (x0)) " H ™ (X, Nox, (x:)))If (x) =31 (x0) }
= {x€q(d8 " H™ (x5, Nox (x0))f (x) =3/ (x0) }
N q(08 " H ™ (xy, Nok (x0)) O H™ (X, Nok, (Xs)))-

Therefore we get

vol,—1 ({xeq(86 N H™ (x5, Nok (x0)) " H ™ (x5, Nok, (x5))): f(x) =51 (x0) })

>vol,—1 ({xeq(86 "H ™ (x,, Nok(x0)): f(x) =1/ (x0)})

+ vol,-1(g(96 N H™ (x5, Nok (x0)) 0 H ™~ (x5, Nok, (x5))))

— vol,_ (q(8£ NH™ (xy, NaK(XO))))

9 1
2_
10 27+1(1 + #)

min| <j<p1 b?

vol,_; (q(é)é’m H (x;, NaK(XO)))> .

For the last inequality we have used (60). Hence

= / F(x) dpgg (x)
OK N H~(x5,Nok, (Xy))

S / F(x) dptgg (x)
q(0¢6 N H~=(x5,Nog (x0)) N H~ (x5,Nok, (x5)))

N S ditog(x)

/{xeqwmff (Vo (x0)) VH~ (o Nok, (%,))): S(x) >3 £(x0)})
9 1 B
5/ (xo)y5 ST p— vol,—1(¢(06 N H™ (x5, Nox (x0))))
9 1
2 -
40f(x0) (] 4 —— 8

min| <i<p1b?

—

[\

minlgis;t—]b,g)

vol,—1(86 N H™ (xy, Nok (x0))).

By Lemma 1.3 of [SchW2] this last expression is bigger or equal than

)Volnl (q(08 "H™ (x5, Nk (x0)) " H ™
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9 f(x0) VR 24NT (0 anNT
40 2n+l(1+ VOlnil(Bg )H i ay ! Zan ’

Pere—— i=1
mm1<,<n 1b)

where A, = ||xo — xS||<H:§—;'H, Nak(x0)>. Hence we get, using (16)

S}

vol,, 1 “n—1

G Tl (—— Ib>
f(xo)n 1(2a,, — AT ag)n

2

n—1

L
a% (%)n—l( mml<,<'7 lb2> VOln 1 Bn 1)) . 2k

en—1
f(xO)” 1(2a, — AA)(H: —k+1 4i )" 1

2
-1

)

where for the last inequality we have used that the lengths of the first k principal axes
ap, ...,a; are larger thdn . This finishes the proof of Lemma 23(ii)). O

Proof of Theorem 14. We may assume that 0e K. By Lemma 16

vol,(K) — vol,(Kzs) 1 / e No(6)> (1= (1))
2 n
sn—1 oK

By Lemma 23 the functions under the integral are converging pointwise a.e. to

1
K(x)n—1

5
1

2(voly1 (B5)f (x))n=

By Lemma 17 the functions under the integral sign are bounded uniformly in s by the
function

C
2

(M ()i Tr(x)

One of the assumptions of the theorem is that this function has a finite integral. We
apply Lebesgue’s convergence theorem. [
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