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In this article, we evolve and analyze continuous-time recurrent neural networks capable of associating
the smells of different foods with edibility or inedibility in different environments. First, we present an in-
depth analysis of this task, highlighting the evolutionary challenges it poses and how these challenges
informed our experimental design. Next, we describe the evolution of nonplastic neural circuits that can
solve this food edibility learning problem. We then show that the dynamics of the best evolved nonplas-
tic circuits instantiate finite state machines that capture the combinatorial structure of this task. Finally,
we demonstrate that successful circuits with Hebbian synaptic plasticity can also be evolved, but that
such circuits do not utilize their synaptic plasticity in a traditional way.
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1 Introduction

The ability to improve performance with experience is
an essential and ubiquitous characteristic of biological
organisms, from habituation to mechanical stimuli in
protozoa (Wood, 1969), to drought avoidance learning
in plants (Trewavas, 2003), to aversive olfactory learn-
ing in nematodes (Zhang, Lu, & Bargmann, 2005), and
abstract concept learning in human beings. Yet many
fundamental questions about learning remain unre-
solved. How many different kinds of learning are there
and how can we distinguish between them? How does
learning evolve? How are the mechanisms of learning

integrated into the mechanisms of behavior? In this
article, we explore some of these questions by evolv-
ing and analyzing continuous-time recurrent neural
networks (CTRNNs) that can solve an associative
learning task.

In any discussion of learning, there is a strong ten-
dency to envision a hierarchical architecture in which
the mechanisms responsible for behavior and the
mechanisms responsible for learning are distinct, with
the latter modifying the parameters of the former (Fig-
ure 1a). For example, control of behavior is generally
associated with the electrical activity of nerve cells,
while learning is generally associated with chemical
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plasticity in the synapses which interconnect neurons.
However, this identification of a behavioral distinction
with a neuronal distinction is difficult to maintain in
the face of growing evidence for considerable overlap
between the time-scales of neural activity (Llinas,
1988; Toledo-Rodriguez, El Manira, Wallen, Svirskis,
& Hounsgaard, 2005) and the timescales of synaptic
plasticity (Bi & Rubin, 2005; Kandel & Siegelbaum,
2000; Sutton & Carew, 2002). For example, work on
learning and memory in Drosophila has found that
behavioral changes can occur over timescales ranging
from seconds to days (Margulies, Tully, & Dubnau,
2005). In addition, work on multiple vertebrate sys-
tems has found that synaptic plasticity can be sensitive
to differences in spike timing on the order of tens of
milliseconds (Dan & Poo, 2004). Finally, forms of
memory can be implemented using the dynamics of

intrinsic membrane currents (Marder, Abbott, Turri-
giano, Liu, & Golowasch, 1996) or through persistent
activity in recurrent circuits (Major & Tank, 2004).

 Modeling work on the evolution of learning has
likewise tended to assume distinct mechanisms for
behavior and learning. For example, Chalmers (1991)
evolved the parameters of a general synaptic update
equation on a supervised learning task and found that the
well-known delta or Widrow-Hoff rule often evolved.
As a second example, Miller and Todd explored the
interaction of learning and evolution by evolving net-
works with genetically-selectable Hebbian plasticity
on a food edibility task based on noisy sensory cues
(Miller & Todd, 1991; Todd & Miller, 1991a, 1991b).
Likewise, most work on the evolution of learning in
the evolutionary robotics community has simply pos-
tulated the existence of various learning rules a priori
and then evolved the parameters of such rules (Flore-
ano & Mondada, 1996; Floreano & Urzelai, 2001).
However, a traditional strength of evolutionary robot-
ics has always been to minimize a priori assumptions,
using evolution to explore the space of possible solu-
tions to a problem without imposing our theoretical
preconceptions. 

Although many view synaptic plasticity as defini-
tional of learning, strictly speaking, learning is a behav-
ioral phenomenon, whose underlying mechanisms
remain to be empirically investigated. These observa-
tions obviously do not undermine the central role that
synaptic plasticity plays in biological learning. How-
ever, they do suggest the need for a more sophisticated
perspective on the mechanisms of learning than that
illustrated in Figure 1a. Thus, a much better strategy
for exploring the evolution of learning would seem to
be: (1) Set tasks that require behavioral plasticity for
their solution; (2) Evolve agents that can accomplish
these tasks using a neural model that does not include
an explicit learning mechanism; (3) Examine how suc-
cessful circuits actually implement the learning behavior.
This approach fits in quite naturally with a dynamical
perspective on behavior (Figure 1b), in which learning
is interpreted as merely a particular kind of dynamics
at a particular range of timescales arising from the
interaction of a nervous system, body and environment
(Beer, 1997).

In this article, we extend previous work on the
evolution and analysis of neural circuits for learning
simple sequential decision-making tasks such as those
that arise in landmark-based navigation (Yamauchi &

Figure 1 Perspectives on learning. (a) The traditional
perspective on learning is hierarchical; a separate learn-
ing mechanism observes an agent’s sensation, action
and internal state (single arrows) and modifies the opera-
tion of the mechanisms responsible for its behavior (dou-
ble arrow) so as to improve performance. (b) From a
dynamical perspective, all behavior arises from the inter-
action between an agent’s nervous system, its body and
its environment. If the environment and the agent have
dynamics on longer timescales, then some of that behav-
ior may be interpretable as learning.
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Beer, 1994a, 1994b) to a more traditional associative
learning task. The particular associative learning task,
neural models, and evolutionary algorithm that we
employ are described in Section 2. Section 3 presents
an in-depth analysis of our learning task, highlighting
the evolutionary challenges raised by this task and
explaining how these challenges informed our exper-
imental design. In Section 4, we demonstrate that
CTRNNs lacking synaptic plasticity can be success-
fully evolved to exhibit associative learning. The
dynamical operation of the best such circuit is then
analyzed in detail in Section 5. For comparison, pre-
liminary experiments with CTRNNs incorporating
Hebbian synaptic plasticity are described in Section 6.
Finally, Section 7 concludes with a discussion of the
broader implications of our results and directions for
future work.

2 Methods

2.1 Learning Task

The associative learning paradigm we study is abstracted
from animal experiments on food edibility learning in
Aplysia (Chiel & Susswein, 1993; Susswein, Schwarz,
& Feldman, 1986) and is similar to the task explored
by Todd and Miller (Miller & Todd, 1991; Todd &

Miller, 1991a). We chose the simplest possible sce-
nario that required associative learning for its solu-
tion. Two kinds of food are available to an agent. Two
types of environments are distinguished by which food
is edible and which is inedible. The agent receives two
sensory inputs. A binary “smell” sensor S distinguishes
the two types of food and a continuous reinforcement
sensor R receives positive or negative reward for the
agent’s actions. The reinforcement can be loosely
interpreted as coming from a gut sensor that signals
the consequences of the agent’s previous action after a
delay. The only action that the agent can take is to
open or close its mouth via a continuous effector out-
put M.

A single trial is structured as follows (Figure 2).
Normally, both the smell and reinforcement signals
are 0. A trial begins with the presentation of a smell.
After 10 time units, the smell is removed and the state
of the mouth is evaluated for 10 additional time units.
Next, a delay occurs whose duration is uniformly dis-
tributed over the range [8, 10] time units. This delay
can be interpreted as the time it takes the agent to
digest the food it consumes. Then the agent receives
positive or negative reinforcement for 10 time units
based on the correctness of its previous action for the
given smell and environment type. A length-K trial
sequence consists of a series of K such trials, sepa-

Figure 2 The structure of an individual trial. A trial is divided into five phases. First, a smell signal is applied. Second,
the state of the mouth is evaluated relative to the correct action for the current environment (bold line). Third, there is a
variable random delay. Fourth, a reinforcement signal proportional to the correctness (cross-hatched region) of the pre-
vious action is applied. Fifth, there is another variable random delay before the next trial begins.
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rated by time intervals uniformly distributed over the
range [16, 24] time units. This second delay can be
interpreted as the time it takes an agent to encounter
another patch of food. The type of environment can
change between trials. In the course of a single experi-
ment, the environment may change type multiple
times. 

The rationale for the experimental details that we
are about to describe are based on a task analysis that
will be given in Section 3. The error of an agent’s
action on the kth trial is given by

(1)

where Tk is the time at which the kth trial begins, Ak is
the correct motor output for the given food type and
environment type on this trial, M(t) is the agent’s
actual motor output during the evaluation period, and
ψ(t0, t) ≡ exp(–(–t – t0 – 5)2/5.12)/4.0034 is a Gaus-
sian weighting function normalized so that Ek runs
between 0 and 1. Gaussian weighting assigns maxi-
mum importance to the error of the agent’s action at
the center of the evaluation period, with the impor-
tance smoothly falling off at earlier and later times.
The normalized reinforcement is obtained from the
error by Rk = 1 – 2Ek and is applied for the entire rein-
forcement period.

2.2 Fitness Evaluation

The agent’s task is to maximize its reinforcement by
consuming as much of the edible food and as little of
the inedible food as possible regardless of which envi-
ronment it is in. A complete experiment consists of a
set of P length-K trial sequences. The total fitness of
an agent on a complete experiment is given by

(2)

where Ep, k is the error on the kth trial of the pth
sequence and the αK, k are trial weighting coefficients.
For K = 2 we have α2 = {0, 1}, while for K = 3, α3 =
{0, 0.33, 0.67}. For K > 3, there are K coefficients of
the form

where the denominator serves to enforce the normali-
zation condition . The weight of the first
trial is always 0 so that learning has time to take place
and so that the agent is not unduly punished for the
unavoidable mistake it makes after each environment
change.

A five-stage incremental shaping protocol was
employed during evolution. In the first stage, agents
were exposed to all possible combinations of two-trial
sequences in both environments, for a total of eight trial
sequences. Similarly, in the second stage, agents were
exposed to all 16 possible three-trial sequences in both
environments. The next three stages similarly involved
all possible six, seven, and eight-trial sequences. How-
ever, in these later stages, each trial sequence began in
a randomly-selected environment and then randomly
switched to the opposite environment after the third,
fourth or fifth trial. Note that the trial weighting scheme
described above must be restarted after an environ-
ment switch. Transitions between stages were trig-
gered whenever the fitness of the best agent in the
population consistently exceeded 95%. Once again,
this complex experimental protocol is based on a task
analysis that will be described in Section 3. 

2.3 Neural Model

The agent’s behavior is controlled by a continuous-
time recurrent neural network (CTRNN). We will call
CTRNNs whose synaptic weights are fixed during the
lifetime of the agent nonplastic CTRNNs, whereas
CTRNNs whose synaptic weights can change during
the agent’s lifetime will be called plastic CTRNNs.
Nonplastic CTRNNs are described by the following
state equation:

i = 1, …, N

where yi is the state of the ith neuron,  denotes the
time rate of change of this state, τi is the neuron’s
membrane time constant, wji is the weight of the con-
nection from the jth to the ith neuron, θi is a bias term,
and σ(x) = 1/(1 + e–x) is the standard logistic output
function. S(t) ∈ [–1, 1] represents the weighted input
from the binary smell sensor with weight si, and R(t)
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∈ [–1, 1] represents the weighted input from the con-
tinuous reinforcement sensor with weight ri. The out-
put of neuron 1 is designated as the motor output
M(t) ≡ σ(y1 + θ1). Neuron states were initialized to 0
at the beginning of each trial sequence and integrated
with the forward Euler method using an integration
step size of 0.1. With N time constants, N biases, N2

connection weights and 2N sensor weights, a nonplas-
tic N-neuron CTRNN is specified by N2 + 4N parame-
ters.

Plastic CTRNNs obey a similar state equation,
except that the weights of plastic synapses vary in
time according to a Hebbian rule. There are many
such rules to choose from (Baxter & Byrne, 1993).
Here we utilize the covariance rule of Floreano and
Mondada (1996):

(3)

where wij is the synaptic weight from neuron i to neuron
j, ηij is the learning rate of wij, oi = σ(yi + θi) is the out-
put of the ith neuron, wmax is the maximum weight of a
synaptic connection, and λ(oi, oj) ≡ tanh(2 – 4|oi – oj|).
This covariance rule strengthens a synapse when the
difference between presynaptic and postsynaptic activ-
ity is less than 0.5, and weakens a synapse when this
difference is greater than 0.5. The genetically-encoded
weights wij are used as initial weights for plastic syn-
apses. Note that the covariance rule cannot change the
sign of a synapse, only its magnitude. Only synapses
that interconnect two distinct neurons are plastic.
Since each plastic synapse adds a parameter for learn-
ing rate ηij to the genetic encoding, an N-neuron plastic
CTRNN has 2N2 + 3N parameters. A plastic synapse
can become nonplastic if its η is set to 0.

2.4 Evolutionary Algorithm

A real-valued genetic algorithm was used to evolve
CTRNN parameters. A population of 500 individuals
was maintained, with each individual encoded as a
vector of real numbers. Initially, a random population
of vectors was generated by initializing each compo-
nent of every individual to random values uniformly
distributed over the range ±1 (they could move outside
this range during evolution). Individuals were selected
for reproduction using a linear rank-based method. A

5% elitist fraction of top individuals in the old popula-
tion were simply copied to the new one. The remaining
children were generated by either mutation or 2-point
crossover with a crossover probability of 50%. A
selected parent was mutated by adding to it a random
displacement vector whose direction was uniformly
distributed on the hypersphere and whose magnitude
was a Gaussian random variable with 0 mean and var-
iance of 0.5. A neuron’s time constant, bias, sensor
weights and input weights (and learning rates for plas-
tic CTRNNs) were treated as a module during crossover.
Unless otherwise specified, sensor weights, connec-
tion weights and biases were initialized to the range
±10, time constants were initialized to the range [1,
75], and the learning rates of plastic synapses were ini-
tialized to the range [0, 0.5].

3 Task Analysis

Despite the simplicity of our abstract food edibility
learning task, our preliminary experiments demon-
strated that associative learning is a surprisingly diffi-
cult behavior to evolve. In order to explain why the
complex experimental design described above was
necessary to reliably obtain highly fit agents, we ana-
lyzed the properties of this “simple” task in some
detail.

Consider the combinatorial structure of the food
edibility task. We denote the food type as either “↑”
(for food producing an upward smell signal in S) or
“↓” (for food producing a downward smell signal in
S). The agent’s action can be idealized as either mouth
open (denoted “!”) or mouth closed (denoted “"”).
Reinforcement can be idealized as either positive
(denoted “+”) or negative (denoted “–”). Thus, an
agent’s idealized interaction history consists of a
sequence of smell/action/reinforcement triples such as
(↑"–)(↓"+)(↑!+)(↓"–)(↓!+). An interesting aspect
of this example sequence is that the type of environ-
ment changes between the third and fourth trial from
A (↑ edible, ↓ inedible) to B (↓ edible, ↑ inedible).
Another interesting aspect of this sequence is that, for
maximum fitness, the initial negative experience with
the ↑ smell should be immediately transferred to the
opposite ↓ smell in case a ↓ smell is encountered on
the next trial. Note that such a sequence is cospecified
by the agent and its environment. The environment
determines the type of the next food item, the agent

w· ij
ηij wmax wij–( )λ oi oj,( ) if  λ oi oj,( ) 0>
ηijwijλ oi oj,( ) otherwise
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determines an action, and then the food type, action
and environment type collectively determine the rein-
forcement that the agent receives.

It is important to emphasize that the agent has no
a priori knowledge of the structure or meaning of a
sequence such as ↑"–↓"+↑!+↓"–↓!+. It merely
receives a stream of sensory perturbations via S and R
and is then selected for reproduction with a probabil-
ity based on its overall performance on the food edi-
bility learning task. In order to produce a successful
agent the evolutionary algorithm must discover for
itself that the sequence is divided into trials, that S car-
ries information about food type and that R is a rein-
forcement signal, that the agent’s action should be
conditional on the smell, and that the relationship
between smell and subsequent action should be condi-
tional on reinforcement.

We can identify several strategy classes that
might be utilized by an agent on this task, only one of
which is true associative learning. Four classes in par-
ticular are worth considering. Each strategy can be
described by an action map {↑→A1,↓→A2} that assigns
to each smell the agent’s corresponding action.

The first class consists of the two fixed action
strategies

{→"}
{→!}

that always take the same action regardless of the food
type. Because these strategies ignore both the smell
and reinforcement signals, they only make sense for
an agent in a fixed environment containing a single
type of food. On fully random sequences, the best per-
formance a fixed response strategy can obtain is 50%.
However, for sequences containing more trials in
which one of the actions is more appropriate than the
other, the performance of these strategies can be
higher.

The second class consists of the two fixed response
strategies

{↑→",↓→!}
{↑→!,↓→"}

that produce the same response to a given food type
regardless of the environment type. Because these
strategies ignore the reinforcement signal, they only
make sense in a fixed environment containing both

types of food. On fully random sequences, the best
performance a fixed response strategy can obtain is
also 50%. However, for sequences containing more
trials in one environment than another, the perform-
ance of one of these strategies can be higher.

Because their action maps are fixed, neither of the
above strategy classes exhibits any learning. A learn-
ing agent changes its action map as necessary based
on its experience: (experience) ⇒ {action map}. The
simplest learning strategy is the Law of Effect strategy
(Thorndike, 1898)

                        
(!+) ⇒ {→!}
("–) ⇒ {→!}
(!–) ⇒ {→"}
("+) ⇒ {→"}

in which the agent adopts one of the two fixed action
strategies depending on how its last action was rein-
forced. This strategy ignores the smell signal. On fully
random sequences, the best performance the Law of
Effect strategy can obtain is also 50%. However, for
sequences containing runs of trials in which the same
action is correct, higher performances can be obtained.

Finally, we have the associative learning strategy
                                       
(↑!+) ⇒ {↑→!,↓→"}
(↑"–) ⇒ {↑→!,↓→"}
(↓!–) ⇒ {↑→!,↓→"}
(↓"+) ⇒ {↑→!,↓→"}
(↑!–) ⇒ {↑→",↓→!}
(↑"+) ⇒ {↑→",↓→!}
(↓!+) ⇒ {↑→",↓→!}
(↓"–) ⇒ {↑→",↓→!}

in which the agent adopts one of two smell-sensitive
action maps depending upon the pattern of reinforce-
ment it receives. If that pattern of reinforcement
changes (due to a change in environment type), then
the action map will change accordingly. Only this strat-
egy pays attention to the entire smell/action/reinforce-
ment structure of a trial, and only this strategy can
achieve 100% performance on the food edibility task
in the presence of random food types and environment
types.

This combinatorial analysis makes clear one
obstacle to evolving associative learning: evolution-
ary searches can become trapped in either nonlearning
or nonassociative learning strategies. Indeed, random
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initial populations invariably contain one or more
fixed-action and fixed-response strategies. Unless
experiences are well-mixed, the fitness of these sub-
optimal strategies can exceed 50% and they can take
over the population before associative learning has a
chance to evolve. It was for this reason that we chose
to expose the agent to all possible smell sequences of
a given length and to randomize environment type
during evolution.

A second obstacle to evolving associative learn-
ing stems from overspecialization on trial sequence
length. In our preliminary experiments, we found that
even when associative learning evolved, it would
often fail to generalize to trial sequences longer than
those on which it was evolved. In these cases, the
evolved networks lose the ability to respond to
changes in environment type after an initial critical
period due to transients in the circuit dynamics. In
order to achieve good generalization to sequences of
arbitrary length, we found it necessary to expose the
agent to long sequences of experiences during evolu-
tion. Note that, coupled with the need for exhaustive
trial ordering described above, this can lead to long
fitness evaluation times.

A final obstacle to the evolution of associative
learning is the small fitness differences that often dis-
tinguish an associative learning strategy from a subop-
timal one. For example, an agent that is correctly using
its smell and reinforcement signals to guide its action,
but is “sloppy” in the timing of its mouth actions may
have lower fitness than a suboptimal strategy whose
mouth actions are very accurate when they are correct.
This is the reason that we use Gaussian weighting in
evaluating trial error (Equation 1). In addition, the una-
voidable mistakes that occur when an environment
switch occurs can detract from the fitness of subse-
quent correct responses. This is the reason that we use
trial weighting in our fitness calculation (Equation 2),
so that accuracy on later trials in a sequence is weighted
more heavily than on earlier ones in order to allow
time for learning to actually take place without pen-
alty. The problem of distinguishing small fitness dif-
ferences is also greatly exacerbated by the long trial
sequences required to obtain good generalization. It
was for this reason that we employed a shaping proto-
col that first ensures correct responses for short trial
sequences and then achieves generalization by incre-
mentally lengthening the sequences of trials that must
be correctly handled. Over 100 evolutionary experi-

ments with different combinations of Gaussian weight-
ing, trial weighting, and shaping demonstrated that all
three were essential to the successful evolution of
associative learning on this task (Phattanasri, 2002).

4 Learning Without Synaptic Plasticity

Our first set of experiments examined the ability of
nonplastic CTRNNs to solve the food edibility learn-
ing task. Initially, 8 out of 12 evolutionary searches
with six-neuron CTRNNs succeeded in achieving high
fitness. An examination of the best evolved circuits
revealed that one or two neurons were often saturated
off or on, suggesting that fewer neurons were actually
necessary. Thus, we next ran evolutionary searches
with three or four neurons. We found that 8/10 evolu-
tionary searches with three-neuron circuits and 7/10
searches with four-neuron circuits also achieved high
fitness. In the remainder of this section, we describe
the characteristics of the best evolved three-neuron
circuit in some detail.

The progression of best fitness during the evolu-
tion of this circuit is shown in Figure 3. Recall that
whenever the best fitness is consistently above 95%

Figure 3 A plot of the best fitness versus generation for
the best evolved three-neuron nonplastic circuit. Transi-
tions between stages of our incremental shaping protocol
are marked with dashed lines and labeled by the length of
the trial sequences used in that stage. Transitions occur
when the best fitness reliably exceeds 0.95 (horizontal
gray line). Note that the fitness drops sharply after the
2→3 and 3→6 transitions before the circuit can general-
ize to sequences of arbitrary length. Indeed, the 6→7 and
the 7→8 transitions occur so close together that they ap-
pear as a single line.
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(gray horizontal line), our shaping protocol increases
the length of trial sequences (dashed vertical lines).
Note that following both of the first two transitions
(from two-trial to three-trial sequences and from
three-trial to six-trial sequences), there are sharp drops
in fitness. This is because the best circuit has overspe-
cialized on sequence length for two-trial and three-
trial sequences. In contrast, there is no drop in fitness
following the introduction of seven-trial sequences.
This causes the immediate introduction of eight-trial
sequences, after which the fitness also remains above
95%. Thus, at this point, the best circuit appears to
have generalized to sequences of arbitrary length (this
generalization typically occurred during the six-trial
stage in all of our successful searches). There is some
additional performance improvement before the end
of the search.

One notable feature of the fitness graph (Figure 3)
is the plateaus that are evident at several points during
the search. These plateaus correspond to circuits that
behave correctly on different trial subsets. For exam-
ple, the first plateau during the three-trial stage occurs
around a fitness of 0.75, which corresponds to correct
behavior on 12 out of the 16 three-trial subsets. The
second plateau around 0.84 falls between 13/16 and
14/16, and corresponds to a circuit that behaves cor-
rectly but somewhat inaccurately on 14 out of the 16
three-trial subsets. Finally, the plateau just before the
three-trial to six-trial transition occurs at 0.94 ≈ 15/16.
Similar plateaus were observed in all of our evolution-
ary searches, although the exact number and subsets
of trials corresponding to each plateau varied from
one search to the next. Note that the fitness plot is
noisier after the transition to the six-trial stage due to
the fact that the randomization of the trial at which
environmental switches was introduced at this stage. 

The best three-neuron circuit attained a fitness of
99.99% during evolution. In order to verify that this
circuit had truly generalized, we tested it on 500 sets
of all possible 10-trial sequences with a single envi-
ronment switch randomly distributed between trials
three and eight within each sequence. The circuit
attained a fitness of 99.97% on this set of experiments.
In addition, although exhaustive testing became increas-
ingly difficult, successful tests on a subset of much
longer trial sequences (up to 50 trials) indicated that
this circuit did indeed represent a general solution to
the food edibility learning task. We also probed the
robustness of this circuit by varying the time delays

between action and reinforcement and between one
trial and the next outside the ranges that the circuit
was exposed to during evolution. In all cases, we
found this circuit to be quite robust to large variations
in these delays. 

The behavior of this circuit on a typical sequence
of trials is shown in Figure 4. During this sequence,
the environment type switches from A to B and then
back to A again at the points indicated by dashed ver-
tical lines. After each switch, the circuit initially pro-
duces an action that is incorrect for the new environment,
receives negative reinforcement, and then modifies its
action map to produce correct actions on subsequent
trials. An interesting feature of the neural activity in
this circuit is that the output of neuron 3 is nearly
identical to the mouth action (neuron 1) output in
environment B, but nearly a mirror image of it in envi-
ronment A. This suggests that the “memory” of which
environment the circuit is currently operating in is
stored at least in part in the effective sign of the inter-
action between these two neurons. Of course, this
memory cannot literally be stored in the connections
between these neurons because the weights of these
connections are fixed in nonplastic circuits. We will
examine the dynamics of this circuit’s operation in the
next section.

5 Dynamical Analysis of Nonplastic 
Circuits

How do these nonplastic circuits work? In this sec-
tion, we study how the best evolved three-neuron cir-
cuit actually accomplishes this feat. Strictly speaking,
this circuit is a nonautonomous dynamical system
(one that receives time-varying inputs) with two
inputs S and R. Given the switch-like nature of these
inputs, the best way to study the operation of such a
system is to characterize its autonomous dynamics (its
dynamics when inputs are fixed to particular values)
for each possible combination of inputs and then to
examine the transient dynamics induced by switching
between these different phase portraits for typical trial
sequences. If we idealize R as ±1, then there are five
possible phase portraits to consider: !0 (no input), !↑
(↑ smell), !↓ (↓ smell), !+ (positive reinforcement),
and !– (negative reinforcement). These five phase por-
traits are shown in Figure 5. These phase portraits plot
the locations of all equilibrium points in the (y1, y2, y3)
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state space of the evolved three-neuron circuit. These
equilibrium points can be stable attractors, unstable
repellors, or saddle points (which have both stable and
unstable directions). The three phase portraits !0, !↑
and !+ are bistable; which attractor the state approaches
will depend on the basin of attraction the circuit is in
when the input changes. While the other two phase
portraits !↓ and !– are unistable, the fact that they
have a complicated saddle manifold structure implies
that the path taken to the single attractor may vary
greatly depending on where in the state space the cir-
cuit is when an input is presented.

How does the interaction of these phase portraits
with the smell and reinforcement signals produce the
observed behavior? Consider a three-trial sequence of
↑ smells in which the environment changes from type
A to type B after the first trial. During the first trial in
environment A (Top row of Figure 6), the circuit state
is always attracted to the rightmost equilibrium points
in !↑ , !0 , !+, and !0 as first the ↑ smell is presented
(1) and removed (2) and then the positive reinforce-
ment is presented (3) and removed (4). When the

mouth is evaluated during (2), the mouth motor neu-
ron (neuron 1) is saturated on. This corresponds to an
action of mouth open, which is the correct action for
an ↑ smell in environment A. Note that the state is
positioned in the basin of attraction of the right equi-
librium point at the end of the trial (4).

The second trial begins in the same way as the
first (Middle row of Figure 6), with a presentation (5)
and removal (6) of an ↑ smell. However, the environ-
ment type has now changed to B and the mouth open
action during (6) is no longer the correct response to
an ↑ smell. The resulting negative reinforcement pulls
the circuit state toward the upper left (7), leaving it in
the basin of attraction of the left equilibrium point at
the end of the trial rather than the right one (8). During
the third trial (Bottom row of Figure 6), this difference
in initial state leads to a different transient that pro-
duces a mouth closed action in response to an ↑ smell
(10), which is then positively reinforced (11). Thus,
the memory of environment type is held by which
basin of attraction of !0 the circuit is operating in.
Analogous dynamics underlie the circuit’s response to

Figure 4 Activity of the best three-neuron nonplastic circuit on a typical trial sequence. From top to bottom the traces
correspond to the reinforcement signal (R), the smell sensor (S), the mouth state (M, given by the output of neuron 1)
and the outputs of the remaining neurons (oi). Small rectangles mark the time during which the mouth state is evaluated
and the state that the mouth should be in during this time, with correct actions denoted by black rectangles and incorrect
actions denoted by gray rectangles. Transitions between environments are marked by dashed lines. Note that the circuit
takes an incorrect action and receives negative reinforcement after each environment transition before modifying its ac-
tion map to be appropriate to the new environment.
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Figure 5 Phase portraits of the autonomous dynamics of the best three-neuron nonplastic circuit for no inputs (!0), an
↑ smell (!↑), a ↓ smell (!↓), positive reinforcement (!+) and negative reinforcement (!–). Stable and saddle equilibrium
points are denoted by black and gray dots, respectively. The 1-dimensional stable and unstable manifolds of the saddle
points are denoted by black and gray lines, respectively (two-dimensional saddle manifolds are not shown).
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↓ smells, to mixed sequences of ↑ and ↓ smells, and
to transitions from type B environments back to type
A (Phattanasri, 2002).

How can we visualize the overall structure of this
circuit’s operation? Since the state often does not even
reach an attractor before the input changes, transient
responses clearly play a key role in this circuit. How-
ever, the details are complex and will of course vary
with both the exact sequence of ↑ and ↓ smells and
the random delays before reinforcement and between
trials. One approach to visualization is to “strobe” the
state of the system at selected times during a trial. In
particular, observing the system state at the end of
each smell and reinforcement signal over many trials
reveals that these strobe states fall into relatively dis-
tinct clusters, which can be labeled by the signal they
follow and the environment type (Figure 7a). An
extended behavioral sequence such as the one shown

in Figure 4 can then be understood as a set of trajecto-
ries between these strobe states (Figure 7b).

In fact, this strobed circuit dynamics can be inter-
preted as implementing a finite state machine (FSM)
with input, with the strobe states corresponding to the
FSM states and the trajectories between strobe states
corresponding to input-driven transitions of the FSM
(Casey, 1996). The FSM extracted from this circuit is
shown in Figure 7c. It correctly classifies trial
sequences into environment type and generates the
correct motor actions for each food type in each envi-
ronment type. Note that each FSM state actually
encompasses several smaller subgroups of strobe
states. These individual groups correspond to different
paths to that state. For example, the left subgroup of
A4 in Figure 7a corresponds to receiving negative
reinforcement following a ↓ smell (i.e., a transition
from B2), while the right subgroup corresponds to

Figure 6 The nonautonomous dynamics of the best three-neuron nonplastic circuit during the trial sequence ↑!+↑!–
↑"+, which switches from environment A to environment B after the first trial. As the input signals change throughout
this sequence, the circuit’s autonomous dynamics is switched between the different phase portraits shown in Figure 5
and its state is attracted to the stable equilibrium point in whose basin it finds itself at each point. The change in action
map from environment A to environment B is accomplished by shifting the circuit’s operating region from the neighbor-
hood of the right stable equilibrium point of !0 to the neighborhood of the left stable equilibrium point of this phase por-
trait.
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receiving negative reinforcement following an ↑ smell
(i.e., a transition from B3). Thus, an FSM of finer
granularity could also be extracted if desired. Note
also that the extracted FSM is not minimal, since the
two states A4 and B4 could in principle be collapsed
onto A1 and B1, respectively. These extra states appar-
ently arise from transients in the dynamics when the
environment changes from one type to the other,
which take one additional trial to settle out. We found
that all successful nonplastic controllers we evolved
implemented finite state machines in an analogous
manner. Furthermore, although different evolutionary

searches produced circuits that implemented different
FSMs, they were all reducible to the minimal FSM for
this task.

It is important to emphasize that the extracted
FSMs merely summarize the normal operation of
the circuit dynamics, and are not equivalent to this
dynamics. For example, the strobe states do not neces-
sarily represent attractors of the circuit dynamics; they
describe only the typical range of states that the circuit
is found in at key points in the interaction. Thus, a
given circuit may only be able to “hold” some states
for a limited amount of time. In addition, although the

Figure 7 A finite state machine embedded in the best three-neuron nonplastic circuit. (a) The strobe states obtained
by sampling the circuit state at the end of each smell and reinforcement signal. Note that these strobe states fall into dis-
tinct clusters. (b) Trajectories between the strobe states during the trial sequence shown in Figure 4. (c) The extracted fi-
nite state machine, where each state corresponds to a cluster of strobe states from part (a) and the state labels “A” and
“B” refer to environment A and environment B, respectively. The state subscripts are defined as follows: 1 denotes the
state of the FSM after receiving positive reinforcement, 2 denotes the state of the FSM after receiving an ↓ smell, 3 de-
notes the state of the FSM after receiving an ↑ smell, and 4 denotes the state of the FSM after receiving negative rein-
forcement.
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overall operation of the circuit is robust to small per-
turbations to the strobe states, the extracted FSMs say
nothing about how the circuit will respond to more gen-
eral perturbations. Nevertheless, this analysis demon-
strates that evolution has shaped the overall dynamics
of the successful circuits to match the combinatorial
structure of the food edibility learning task.

6 Learning with Synaptic Plasticity

In a second set of experiments, we examined the ability
of plastic CTRNNs using the covariance learning rule
(Equation 3) to solve the food edibility learning task.
Surprisingly, all four-neuron and five-neuron experi-
ments failed and only 2/15 evolutionary searches with
six-neuron plastic circuits succeeded. The best of the
other 13 searches never advanced beyond the six-trial
stage, and many never even solved the three-trial stage.
One might think that one solution would be to simply
set all learning rates to 0 and use the same strategy as in
the nonplastic CTRNN experiments. However, this
never occurred. 

The progression of best fitness during evolution of
the best six-neuron circuit is shown in Figure 8. The
pattern is very similar to that observed in the nonplastic
searches (compare to Figure 3). The two-trial sequences
are solved relatively quickly, but fitness drops sharply
following the introduction of the three-trial sequences,
indicating overspecialization. Plateaus are observed
during evolution on three-trial sequences, and fitness
once again drops after six-trial sequences are intro-

duced. Once the circuit has successfully evolved to
handle six-trial sequences, the transitions to seven-trial
and eight-trial sequences occur rapidly, indicating suc-
cessful generalization. Interestingly, this circuit took
only about half the number of generations to evolve as
did the best nonplastic circuit. However, the number of
successful plastic searches is too small to determine
whether or not this difference is statistically signifi-
cant.

The best plastic six-neuron circuit achieved a fit-
ness of 96% during evolution, which is somewhat
lower than that obtained by the best nonplastic circuit.
In a test of 500 sets of all possible 10-trial sequences
this circuit attained a fitness of 95.4%, demonstrating
that its performance generalizes to longer trial sequences
than it was exposed to during evolution. We also
found that this circuit was robust to variations in the
delay between action and reinforcement and between
one trial and the next outside the ranges that the cir-
cuit was exposed to during evolution.

The behavior of this circuit on a typical sequence
of trials is shown in Figure 9. This is the same
sequence that was earlier used to illustrate the behav-
ior of the best nonplastic circuit (Figure 4), in which
the environment type switches from A to B and then
back to A again. As for the best nonplastic circuit, this
circuit initially produces an incorrect action and receives
negative reinforcement after each environment switch
before modifying its action map to produce the correct
responses. The outputs of the six neurons during the
course of this trial are also shown in Figure 9. An
interesting feature of this circuit is that the output of
neuron 3 is nearly identical to the mouth action (neu-
ron 1) in environment A, but is largely unrelated to the
mouth action in environment B. Conversely, the out-
put of neuron 4 is similar to the mouth action in envi-
ronment B, but is unrelated in environment A.

The changes in magnitude of selected weights
during the course of these trials are shown at the bot-
tom of Figure 9. One striking feature of these plots is
that the weights change very quickly. Indeed, the
average value of the evolved learning rates in this cir-
cuit was 0.23 ± 0.12 (mean ± s.d.), with a minimum
value of 0.06. These learning rates are too fast to prop-
erly integrate information across an entire trial, let
alone multiple trials. Thus, despite the fact that Heb-
bian learning is available, this circuit solves the food
edibility learning task using synaptic plasticity in a
way that differs from the traditional view illustrated in

Figure 8 A plot of the best fitness versus generation for
the best evolved six-neuron plastic circuit. Labeling con-
ventions are the same as in Figure 3.



390 Adaptive Behavior 15(4)

Figure 1a; the weight variables act more like addi-
tional neuronal degrees of freedom than they do tradi-
tional learning processes in the sense that the synaptic
changes are occurring on the same timescale as the
changes in neural activity. Similar results were reported
by Floreano and Mondada (1996).

In an attempt to force a more traditional use of
synaptic plasticity, we reduced the allowable range of
learning rates from [0, 0.5] to [0, 0.03]. A number of
experiments were run under these conditions, varying
the number of neurons, the subset of connections that
were plastic, and even the synaptic plasticity rule. In

no case were we able to evolve completely successful
circuits with these slower learning rates. Although the
best agent achieved a fitness of 0.9 after 1000 genera-
tions, it was only able to handle environmental transi-
tions in one direction. For example, it could perform
correctly in environment A (resp. B) and then cor-
rectly make a transition to environment B (resp. A),
but it was unable to subsequently transition back to
environment A (resp. B). Thus, this circuit exhibited
an extended critical period rather than general and
flexible food edibility learning (cf. Miller & Todd,
1991; Yamauchi & Beer, 1994a).

Figure 9 Activity of the best six-neuron plastic circuit on the same trial sequence shown in Figure 4. From top to bot-
tom the traces correspond to the reinforcement signal (R), the smell sensor (S), the mouth state (M, given by the output
of neuron 1), the outputs of the remaining neurons (oi), and weight changes of three example connections (wij). Labeling
conventions are the same as in Figure 4.
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7 Discussion

7.1 Summary

In this article, we have demonstrated that CTRNNs
can be evolved to learn to associate the smell of food
with its edibility based upon the circuit’s experiences
in an environment. Despite the fact that the basic
CTRNN model lacks synaptic plasticity, an evolution-
ary algorithm was able to shape the network dynamics
so that the agent could both generate bites in response
to edible food while ignoring inedible food and learn
which food was edible through the reinforcement it
received from its interactions with its environment. In
the best evolved circuits, this learning ability general-
ized to much longer trial sequences than they were
evolved on. These circuits also maintained their abil-
ity to relearn throughout their operation, appropriately
adjusting their responses to the two food types as they
were switched between the two environment types.
We also showed that these nonplastic circuits work by
implementing finite state machines that capture the
sensation-action-reinforcement structure of this task.
Finally, we demonstrated that successful CTRNNs
with Hebbian synaptic plasticity can also be evolved,
but that such circuits do not use their synaptic plastic-
ity in a traditional way.

7.2 The Neuronal Mechanisms of Learning

It may seem surprising at first that associative learning
is even possible without explicit synaptic plasticity.
However, learning is first and foremost a behavioral
phenomenon. An animal is typically said to be learn-
ing when its behavior on some task improves over
time as a result of its interactions with its environment.
The actual mechanisms underlying this improvement
in any particular instance must be elucidated by
empirical investigation. The theoretical possibility of
learning without synaptic plasticity follows immedi-
ately from the universal dynamics approximation capa-
bilities of CTRNNs (Funahashi & Nakamura, 1993;
Kimura & Nakano, 1998). Indeed, we have previously
demonstrated such behavior (Yamauchi & Beer, 1994a,
1994b), and it has also been explored by several oth-
ers (Blynel & Floreano, 2003; Cotter & Conwell,
1990; Feldkamp, Puskorius, & Moore, 1996; Izquierdo-
Torres & Harvey, 2006; Tuci, Quinn, & Harvey,
2002; Younger, Conwell, & Cotter, 1999). Thus,

although the traditional architecture sketched in Fig-
ure 1a is a possible organization of these mechanisms,
it is by no means the only one.

Biologically, there is also reason to believe that at
least some aspects of learning and memory are due
not only to synaptic plasticity, but also neuronal dynam-
ics. The intrinsic conductances of neurons endow them
with the ability to show persistent changes even in the
absence of changes in their synaptic connections (Marder
et al. 1996). Similarly, long-term changes in firing levels
have been observed in many regions of the brain and
are often associated with memory processes (e.g.,
responses to delayed alternation tasks). Although the
exact mechanisms of persistent activity are not yet
clear, they almost certainly are due to a combination
of intrinsic properties and recurrent connections among
neurons (Major & Tank, 2004). These results suggest
that, despite the fact that synaptic plasticity clearly plays
an important role in biological learning, the strong
tendency to equate every instance of learning behavior
with synaptic plasticity must be resisted.

We have also demonstrated that, even when syn-
aptic plasticity is made available, it is not necessarily
utilized in a way consistent with the traditional view
illustrated in Figure 1a. Rather than integrate informa-
tion across a trial or multiple trials, our successful
plastic circuits appear to utilize plastic synapses sim-
ply as additional neuronal degrees of freedom. This
aligns well with the growing realization that the short-
term dynamics of synapses plays as important a role in
nervous system function as the dynamics of neurons
(Abbott & Regehr, 2004). Indeed, recent studies of
spike timing dependent plasticity have demonstrated
that timing differences as short as 20 milliseconds can
profoundly alter the sign of plasticity from potentia-
tion to depression (Dan & Poo, 2006). Interestingly,
we found that, although successful plastic circuits
evolved food edibility learning faster than successful
nonplastic circuits, the success rate for plastic circuits
was considerably lower than for nonplastic circuits.
Furthermore, we were unable to evolve successful
circuits if we forced synaptic plasticity to occur on
timescales significantly longer than the neuronal
timescale. Given the small number of experiments, it
is difficult to know how to interpret these results.
About the most that can probably be said is that fur-
ther work is required to properly assess the relative
tradeoffs between nonplastic and plastic circuits for
this task. 
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Even if we accept the traditional view of synaptic
plasticity, our results raise an even more fundamental
question: How are the local synaptic changes underly-
ing learning integrated into the mechanisms that coor-
dinate behavior (Destexhe & Marder, 2004)? The
coordination of the behavior of an entire animal is the
responsibility of its nervous system as a whole. When
an animal’s behavior in nearly identical circumstances
changes with experience, there is no question that
something inside the animal changes as well. How-
ever, these changes can be highly distributed across
the nervous system, making it difficult to assess the
significance of any one change. For example, even in
the habituation or sensitization of the gill withdrawal
reflex in Aplysia, a paradigmatic illustration of learn-
ing due to changes in a single synapse, it was subse-
quently found that the activity of hundreds of neurons
in the abdominal ganglion actually changed (Zec!evic,
Wu, Cohen, London, Höpp, & Falk, 1989), suggesting
that experience-dependent changes in the gill with-
drawal reflex may involve much more than the plastic-
ity of a single synapse. As a second example, Lockery
and Sejnowski (1993) found that retraining a neural
network model of the leech bending reflex to habitu-
ated or sensitized states produced very small changes
in every synaptic weight in the network, a situation
that would be extremely difficult to detect physiologi-
cally. Thus, understanding how local changes impact
global dynamics is a very important open question in
the neurobiology of learning (Münte, Altenmüller, &
Jäncke, 2002).

Of course, despite their highly distributed organi-
zation, nervous systems are not architecturally uni-
form. Brain specializations related to learning are
well-known. For example, lesion, brain imaging, and
clinical correlation studies have conclusively shown
that the hippocampus and cerebellum play crucial
roles in mammalian learning (Kandel, Kupfermann, &
Iversen, 2000). However, animals that lack such struc-
tures (e.g., octopi; Bullock & Horridge, 1965) are also
capable of sophisticated forms of learning (Boal, Dun-
ham, Williams, & Hanlon, 2000). Moreover, even in
animals with these specializations, the relationship
between activity within these regions and the rest of
the brain during learning has turned out to be far more
complex than first assumed. For example, recent brain
imaging studies of activity in anterior cingulate, dor-
solateral prefrontal cortex and hippocampus have
shown that increases or decreases in activity in these

regions are not as important as the neural context within
which the activity occurs (McIntosh, 1999; Kelly, &
Garavan, 2005). Thus, it is important to remember
that behavioral plasticity is a systemic property of an
entire animal, whose explanation is likely to involve
not only functional specializations particular to learn-
ing, but also how those specializations are integrated
into the rest of the nervous system.

7.3 The Difficulty of Evolving Learning

Behavioral plasticity is ubiquitous in the biological
world. One can even argue that the evolution of learn-
ing is in some sense inevitable in a dynamical agent
(Beer, 1997). Suppose that an agent has internal dynam-
ics on a range of timescales and let us focus on the
dynamics at timescales that are long relative to the
timescale of the agent’s actions. This long timescale
dynamics can be deleterious, neutral, or advantageous.
If, however, the agent is subjected to a selection proc-
ess in which the long timescale dynamics is under evo-
lutionary control, then any deleterious long timescale
dynamics will be selected away. Furthermore, if there
is any advantage to be gained from the longer times-
cale dynamics (e.g., if the environment itself is chang-
ing over longer timescales), then we would expect
agents that exploit this advantage to proliferate over
those that do not. In this sense, the improvement of
behavior over time is an inevitable property of agents
with dynamics on a range of timescales subjected to
selection in a changing environment.

Yet we were able to evolve circuits capable of
food edibility learning only by employing carefully
crafted fitness weighting and shaping protocols. Why
was learning so difficult to evolve? We believe that
the difficulties we encountered stemmed not from the
fact that we were trying to evolve learning per se, nor
from the fact that only nonplastic synapses were avail-
able in some experiments. Rather, we believe that it
was the discrete combinatorial nature of the food edi-
bility learning task that made circuits so difficult to
evolve. Nowhere is the combinatorial nature of this
task more apparent than in the fact that the successful
circuits implemented finite state machines. But induc-
ing finite state machines from examples of a regular
language is a very difficult problem in general, and an
evolutionary approach is almost certainly not the most
efficient procedure. More importantly, most animal
learning does not have such a rigid combinatorial
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character, except perhaps in rather artificial laboratory
settings. This suggests that the evolution of learning
should be explored in more natural ecological con-
texts. For example, one could imagine a version of the
food edibility learning task with agents under energy
constraints actually moving through an environment
containing food of different types whose edibility var-
ies from location to location. 

7.4 Future Directions

There are a number of directions in which the work
described in this article could be developed. First, we
need both to better understand the operation of the
plastic circuits we have evolved and to run a larger set
of evolutionary experiments with systematic varia-
tions in learning rules, learning rates, and the distribu-
tion of plastic synapses within a circuit. Second, the
food edibility task could be extended in various ways.
For example, by allowing both food types to be edible
or inedible, we increase the set of possible environ-
ments to four and require at least two experiences
before appropriate behavior can be determined. In
addition, we could provide a reinforcement signal
only when a bite is actually taken (making it more like
a gut sensor) and use the total energy intake as a fit-
ness measure (with the consumption of inedible food
counting negatively). This would be a first step
toward a more ecological version of the food edibility
learning task. Another interesting possibility would be
to first evolve an agent on some fixed task and then
subsequently introduce variability in the task that
requires learning while continuing to evolve the agent.
Finally, it would be interesting to systematically study
the conditions under which various kinds of learning
do or do not evolve in nonplastic CTRNNs as the spa-
tiotemporal structure of the environment is changed.
On a foraging task, for example, one would expect
fixed behavior to evolve when the environment is
completely predictable, reactive behavior to evolve
when the environment has no long-term predictability,
and various kinds of learning behavior to evolve when
the structure of the environment varies over time in
some systematic way.

7.5 What Is Learning?

There is one further issue that evolution and analysis
of the sort of models we have described here might

clarify. It might be objected that choosing between
two possible action maps based upon a single experi-
ence in an environment is hardly deserving of the
label “associative learning.” There is no question that,
by design, our version of the food edibility learning
problem is highly simplified. But how many choices
are enough to constitute learning? Many textbook
examples of associative learning involve only a small
number of choices. If there were three types of food,
each of which could be either edible or inedible, the
agent would require reinforcement from a sequence of
three experiences in order to choose between the eight
possible action maps. Are eight choices enough? One
hundred? 

More generally, which changes in behavior are
deserving of the label “learning” and which are not?
This is a very difficult question to answer. The Oxford
Companion to Animal Behavior (McFarland, 1981)
states 

Learning is a familiar enough phenomenon, but as is often
the way, one not easily captured by the scientist’s defini-
tion. … The variety is such that it may be difficult or
impossible to formulate a definition of the conditions pro-
ducing learning that is not either vacuous or so restrictive
that it excludes certain cases which we should certainly
want to regard as instances of learning. … It may be fool-
ish, therefore, to waste too much time attempting to pro-
vide a precise, all-embracing definition of learning at this
point. (pp. 336–337)

For example, recent work by Izquierdo-Torres
and Harvey (2006) is aimed specifically at extending
the approach we have described here to an imprinting
task with a continuum of possibilities. However,
imprinting is an irreversible change that occurs during
a critical developmental period. Is this learning? Or
consider CTRNNs that we previously evolved for gen-
erating walking in a legged agent (Beer & Gallagher,
1992). Depending on the initial orientation of the legs,
it could take several steps before the dynamical tran-
sients of the coupled neuromechanical system settled
out. During this transient, the locomotion performance
steadily improved with each step as a direct result of
the sensory feedback. Is this learning? These circuits
were also able to adjust their motor patterns to the
changing geometry of a growing body through entrain-
ment between neural oscillations and the rhythmic
sensory feedback from a stepping leg. Is this learning?
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While it is relatively straightforward to recognize learn-
ing in textbook tasks with discrete sensation, action
and reinforcement signals, it is surprisingly difficult to
articulate a sharp behavioral definition of learning for
freely-behaving animals.

Combined with our demonstration that multi-
timescale dynamics can exhibit learning-like behavior
regardless of whether or not explicit synaptic plastic-
ity is available, the difficulty of defining learning
behavior or isolating its neuronal properties suggests a
rather radical possibility: Perhaps learning is not actu-
ally a natural kind at either the neuronal or the behav-
ioral level. Rather, an agent whose internal dynamics
has been shaped by evolution to survive in a dynami-
cal environment may necessarily exhibit changes in its
behavior on a continuum of timescales from millisec-
onds to its entire lifetime. If this is correct, then stud-
ies of learning may be better served by subsuming
learning and its neuronal mechanisms into a more
general study of the dynamics of behavior rather than
trying to impose artificial boundaries between learn-
ing and nonlearning at either the behavioral or neuronal
levels. The relatively unbiased nature of evolutionary
approaches seems ideal for exploring the many possi-
ble ways in which the mechanisms of learning can be
integrated into the mechanisms of behavior.
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