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Abstract

The present paper examines the instability of a double-walled carbon nanotube embedded in an elastic medium under pure bend-
ing. Effect of surrounding elastic medium and van der Waals forces between the inner and outer nanotubes is taken into consider-
ation. From the point of view of continuum modeling, an elastic double-shell model is presented for the pure bending buckling of a
double-walled carbon nanotube. Based on this model, a condition is derived in terms of the buckling modes of the shell, from which
the critical bending moment can be predicted. The paper emphasizes bifurcation instability. It is shown that buckling may occur.
Finally, a simplified analysis is carried out to estimate the moment causing bifurcation instability of the double-walled carbon
nanotube.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The discovery of carbon nanotubes has stimulated,
extensively, experimental and theoretical studies [1,2].
Numerous studies showed that carbon nanotubes have
excellent mechanical and electronic properties. Their po-
tential applications led to many investigations into mea-
surements of mechanical properties of nanotubes, using
techniques such as transmission electron microscopy
(TEM) and atomic force microscopy (AFM) [3].

Recently, large strain deformation of single- or multi-
walled carbon nanotubes involving compression, bend-
ing or/and torsion has been the subject of numerous
experiments and molecular dynamic simulations [4–7].
Basically, there are two theoretical approaches to
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understanding the behavior of carbon nanotubes: atom-
istic molecular-dynamics simulations and continuum
mechanics. Yakobson et al. [4] introduced an atomistic
model for axially compressed buckling of single-walled
nanotubes and also compared it with a simple contin-
uum shell model. They found that the continuum shell
model could predict all changes of buckling patterns in
the atomistic molecular-dynamics simulations. How-
ever, the existing continuum shell model can not directly
be applied to investigate mechanical behavior of multi-
walled nanotubes due to the presence of the van der
Waals forces in multi-walled nanotubes [8–11].

More recently, considerable attention has been
turned to mechanical behavior of single- or multi-walled
carbon nanotubes embedded in a polymer or metal ma-
trix [12–14]. Ru [15] presented an elastic double-shell
model for infinitesimal buckling of a double-walled car-
bon nanotube embedded in an elastic medium under ax-
ial compression. His analysis was based on a Winkler
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model for the surrounding elastic medium and a simpli-
fied model for the van der Waals interaction between the
inner and outer nanotubes. He also studied the effect of
van der Waals forces on axial buckling of a double-
walled carbon nanotube and derived a simple formula
for the critical axial strain, which indicated the role of
the van der Waals forces between the inner and outer
nanotubes [16].

Motivated by these ideas, the present paper examines
the instability of a double-walled carbon nanotube
embedded in an elastic medium under pure bending.
The effect of surrounding elastic medium and van der
Waals forces between the inner and outer nanotubes is
taken into consideration. From the point of view of
continuum modeling, an elastic double-shell model is
presented for the pure bending buckling of a double-
walled carbon nanotube. Based on these models, a con-
dition is derived in terms of the buckling modes of the
shell and the critical bending moment can be predicted.
The paper emphasizes on bifurcation instability. It is
shown that buckling may occur. Finally, the simplified
analysis approach is also employed to estimate the
moment causing bifurcation instability of the double-
walled carbon nanotube.
2. The elastic shell model

Consider a circular cylindrical shell with a middle
radius r, thickness t. Mechanical properties are de-
noted by Young�s modulus E and Poisson�s ratio l.
The linear Donnell�s equilibrium equation in the nor-
mal direction can be given in terms of W(x, y), as
follows:

Dr4W � 1

r
Ny ¼ Nx

o
2W
ox2

þ 2Nxy
o
2W

oxoy
þ Ny

o
2W
oy2

þ q;

ð1Þ
where D is the effective bending stiffness of the shell, x
and y denote the axial and circumferential coordinates
of the shell, respectively. W(x, y) is the radial displace-
ment of the middle surface of the shell in the normal
direction. q is the resultant inward normal pressure
and (Nx, Ny, Nxy) denote the membrane forces.

For the post-buckling configuration, we have

Nx ¼ Nx0 þ Nx1;

Ny ¼ Ny0 þ Ny1;

Nxy ¼ Nxy0 þ Nxy1;

ð2Þ

W ðx; yÞ ¼ W 0ðx; yÞ þ W 1ðx; yÞ;
qðx; yÞ ¼ P 0ðx; yÞ þ P ðx; yÞ;

ð3Þ

where subscript ‘‘0’’ pertains to the pre-buckling status,
and subscript ‘‘1’’ means infinitesimal increments of the
corresponding parameters during buckling. In Eq. (3),
P0(x, y) is the normal pressure prior to buckling and
P(x, y) denotes the additional normal pressure after
buckling.

For the pre-buckling status, the following Donnell�s
equation is true:

Dr4W 0 �
1

r
Ny0 ¼ Nx0

o2W 0

ox2
þ 2Nxy0

o2W 0

oxoy
þNy0

o2W 0

oy2
þ P 0:

ð4Þ
After buckling, the Donnell�s equation is changed into
the following form:

Dr4W � 1

r
Ny ¼ Nx

o2W
ox2

þ 2Nxy
o2W
oxoy

þNy
o2W
oy2

þ P 0 þ P :

ð5Þ
Combining Eqs. (4) and (5), the buckling displacement
is found as

Dr4W 1 �
1

r
Ny1 � Nx0

o2W 1

ox2
þ 2Nxy0

o2W 1

oxoy
þNy0

o2W 1

oy2

� �
¼ P :

ð6Þ

According to the shell theory, a stress function
u(x, y) is introduced to define the membrane forces:

Nx1 ¼
o2u
oy2

; Nxy1 ¼ � o2u
oxoy

; Ny1 ¼
o2u
ox2

; ð7Þ

where the stress function u(x, y) has to meet the com-
patibility condition

r4u ¼ �Et
r
o
2W 1

ox2
: ð8Þ

For simplifications, let W1(x, y) be replaced with
w(x, y). The buckling governing equation and the com-
patibility condition are re-written in the following form:

Dr4w� 1

r
o2u
ox2

� Nx0
o2w
ox2

þ 2Nxy0
o2w
oxoy

þ Ny0
o2w
oy2

� �
¼ P ðx; yÞ; ð9Þ

r4u ¼ �Et
r
o
2w
ox2

: ð10Þ

Using Eq. (10) to eliminate the stress function u(x, y)
in Eq. (9), one obtains a single equation for the addi-
tional displacement due to buckling w(x, y), which is
called the buckling modes.

Dr8wþ Et
r2

o4w
ox4

�r4 Nx0
o2w
ox2

þ 2Nxy0
o2w
oxoy

þ Ny0
o2w
oy2

� �
¼ r4P ðx; yÞ: ð11Þ

The above equation can be applied to buckling anal-
ysis under axial compression, bending, torsion or radial
compression for cylindrical shells embedded within an
infinite elastic medium. Although some studies found
that elastic properties of carbon nanotubes may depend
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on their geometry, in what follows, it is assumed that the
inner and outer nanotubes have the same thickness and
effective material constants.
3. The van der Waals force between the inner and outer
nanotubes

The van der Waals force between any two carbon
atoms can be described by the Lennard-Jones model.
Using the method described previously [16–18], the
van der Waals force exerted on any atom on a tube
can be estimated by adding up all forces between the
atom and all atoms on the other tube.

Fig. 1 shows a double-walled nanotube embedded in
an elastic medium. In what follows, the subscripts 1 and
2 denote the quantities associated with the outer tube 1
and the inner tube 2, respectively. The outer tube 1 is
embedded in the elastic medium.

For the outer tube 1, the normal pressure P1 consists
of two parts, it can be described as follows:

P 1 ¼ PV
1 þ PW

1 ; ð12Þ
where PV

1 is the van der Waals force between the inner
and outer tubes, PW

1 denotes the interaction pressure
due to the elastic medium. In particular, for the inner
tube 2, the normal pressure P2 is

P 2 ¼ PV
2 : ð13Þ

Furthermore, because the interaction forces between
the inner and outer tubes are equal and opposite, the
pressure PV

1 and PV
2 , exerted on the corresponding

points on the tubes 1 and 2, respectively, should be re-
lated by

PV
1 ðx; yÞr1 ¼ �PV

2 ðx; yÞr2; ð14Þ
Fig. 1. A double-walled nanotube em
where r1 and r2 are the radii of the outer and inner tubes,
respectively. The pressure caused by the van der Waals
forces at any point (x, y) on the outer tube could be as-
sumed to be a function of the distance between the inner
and outer tubes at that point, denoted by d(x, y), namely

PV
1 ðx; yÞ ¼ G½dðx; yÞ�; ð15Þ

where G(d) is a nonlinear function of the intertube spac-
ing d, the details of which can be found in [16,15]. In the
pre-buckling situation, d(x, y)�d0, Eq. (15) becomes

PV
10ðx; yÞ ¼ Gðd0Þ; ð16Þ

where PV
10ðx; yÞ is the van der Waals force of the outer

tube prior to buckling, defined as the value of G at the
initial interlayer spacing d0 between the inner and outer
tubes. After buckling, the pressure caused by the van der
Waals forces at any point (x, y) on the outer tube in the
present linearized analysis becomes

PV
1 ðx; yÞ ¼ PV

10 þ c½w2ðx; yÞ � w1ðx; yÞ�; ð17Þ
where c is a constant, which is defined as

c ¼ dG
dd

����
d¼d0

: ð18Þ

Using Eq. (14), the pressure caused by the van der
Waals forces at any point (x, y) on the inner tube 2 after
buckling can be found as

PV
2 ðx; yÞ ¼ � r1

r2
PV
10 þ c w2ðx; yÞ � w1ðx; yÞ½ �

� �
: ð19Þ

The interaction pressure due to the elastic medium,
PW
1 , can be given in the following form:

PW
1 ¼ PW

10 � dw1ðx; yÞ after buckling ðd > 0Þ; ð20Þ
where d is the spring constant of Winkler-type, which is
determined by the material properties of the elastic med-
ium and the radius of the outer tube.
bedded in an elastic medium.
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4. The critical buckling condition

Now, for each of the carbon nanotubes 1 and 2, one
can use the Eq. (11), and then obtain the linear
equations:

Dr8w1 þ
Et
r21

o4w1

ox4
�r4 Nx01

o2w1

ox2

� �

¼ cr4w2 � ðcþ dÞr4w1 þr4 Ny01
o
2w1

oy2

� �
; ð21Þ

Dr8w2 þ
Et
r22

o
4w2

ox4
�r4 Nx02

o
2w2

ox2

� �

¼ cr1
r2

r4w1 �r4w2

� �
þr4 Ny02

o2w2

oy2

� �
; ð22Þ

where the bending stiffness D is the same for both tubes
as they have the same effective material constants and
thickness. It is clear that the van der Waals interaction
makes the Eqs. (21) and (22) coupled. Furthermore, it
is found from normal equilibrium conditions (21) and
(22) that

Ny01 ¼ �ðPV
10 þ PW

10Þr1; ð23Þ

Ny02 ¼ PV
10r1: ð24Þ

On the other hand, M, the total bending moment ap-
plied to the double-walled nanotube consists of two
pares, one of which, denoted by M1, is the bending mo-
ment applied to the outer tube 1, and the other, denoted
by M2, is the bending moment applied to the inner tube
2, namely

M ¼ M1 þM2: ð25Þ
Furthermore, the bending moments M1 and M2 are

dependent on the radii of the inner and outer tubes

M1

M2

¼ r1
r2

� 	3

: ð26Þ

Combining the Eqs. (25) and (26), the bending mo-
ments M1 and M2 can be obtained as follows:

M1 ¼
r31

r31 þ r32
M ; ð27Þ

M2 ¼
r32

r31 þ r32
M : ð28Þ

The membrane forces of pre-buckling is assumed as
follows:

Nx01 ¼ �M1

pr21
cos

y
r1

¼ � r1M
p r31 þ r32ð Þ cos

y
r1
; ð29Þ

Nx02 ¼ �M2

pr22
cos

y
r2

¼ � r2M
p r31 þ r32ð Þ cos

y
r2
: ð30Þ
For the bending of an elastic cylindrical shell, prior to
buckling, the Brazier effect causes the circular cross-sec-
tion of the shell to become more ovalized uniformly over
the whole shell length as the bending curvature increases
[19]. The Brazier effect of the pre-buckling shell does not
affect the buckling additional deformation in Eqs. (9)
and (10). Bifurcation, on the other hand, leads to a peri-
odic, low-amplitude rippling of the shell wall on the
compressive side of the bend. Assume the buckling
modes are as follows:

w1 ¼ sin ax
X3

n¼1

f1n sin b1y; ð31Þ

w2 ¼ sin ax
X3

n¼1

f2n sin b2y; ð32Þ

where

a ¼ mp
L

; b1 ¼
n
r1
; b2 ¼

n
r2
: ð33Þ

Substitution of above equations into Eqs. (21) and (22),
one can obtain

A11f11 þ A12f12 þ A14f21 ¼ 0; ð34aÞ

A21f11 þ A22f12 þ A23f13 þ A25f22 ¼ 0; ð34bÞ

A32f12 þ A33f13 þ A36f23 ¼ 0; ð34cÞ

A41f11 þ A44f21 þ A45f22 ¼ 0; ð34dÞ

A52f12 þ A54f21 þ A55f22 þ A56f23 ¼ 0; ð34eÞ

A63f13 þ A65f22 þ A66f23 ¼ 0: ð34fÞ

Using the condition for a non-zero solution of Eqs.
(34a)–(34f), one can obtain the following equation
which determines the critical bending moment and
buckling mode:

A11 A12 0 A14 0 0

A21 A22 A23 0 A25 0

0 A32 A33 0 0 A36

A41 0 0 A44 A45 0

0 A52 0 A54 A55 A56

0 0 A63 0 A65 A66

��������������

��������������
¼ 0: ð35Þ

If only the first two terms are considered in Eqs. (31)
and (32), namely
w1 ¼ sin ax f11 sin
y
r1

þ f12 sin
2y
r1

� �
; ð36aÞ

w2 ¼ sin ax f21 sin
y
r2

þ f22 sin
2y
r2

� �
: ð36bÞ
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Eq. (35) can be changed into the following form:

A11 A12 A14 0

A21 A22 0 A25

A41 0 A44 A45

0 A52 A54 A55

���������

���������
¼ 0; ð37Þ

where Aij in the above equations can be given as follows:

A11 ¼ D a2 þ 1

r1

� 	2
" #4

þ Eta4

r21
þ ðcþ dÞ a2 þ 1

r1

� 	2
" #2

� Ny02 a2 þ 1

r1

� 	2
" #2

1

r1

� 	2

; ð38aÞ

A12 ¼ � r1Ma2

2p r31 þ r32ð Þ a2 þ 1

r1

� 	2
" #2

; ð38bÞ

A14 ¼ �c a2 þ 1

r2

� 	2
" #2

; ð38cÞ

A21 ¼ � r1Ma2

2p r31 þ r32ð Þ a2 þ 2

r1

� 	2
" #2

; ð38dÞ

A22 ¼ D a2 þ 2

r1

� 	2
" #4

þ Eta4

r21
þ ðcþ dÞ a2 þ 2

r1

� 	2
" #2

� Ny02 a2 þ 2

r1

� 	2
" #2

2

r1

� 	2

; ð38eÞ

A23 ¼ � r1Ma2

2p r31 þ r32ð Þ a2 þ 2

r1

� 	2
" #2

; ð38fÞ

A25 ¼ �c a2 þ 2

r2

� 	2
" #2

; ð38gÞ

A32 ¼ � r1Ma2

2p r31 þ r32ð Þ a2 þ 3

r1

� 	2
" #2

; ð38hÞ

A33 ¼ D a2 þ 3

r1

� 	2
" #4

þ Eta4

r21
þ ðcþ dÞ a2 þ 3

r1

� 	2
" #2

� Ny02 a2 þ 3

r1

� 	2
" #2

3

r1

� 	2

; ð38iÞ

A36 ¼ �c a2 þ 3

r2

� 	2
" #2

; ð38jÞ

A41 ¼ � cr1
r2

a2 þ 1

r1

� 	2
" #2

; ð38kÞ
A44 ¼ D a2 þ 1

r2

� 	2
" #4

þ Eta4

r22
þ cr1

r2
a2 þ 1

r2

� 	2
" #2

þ Ny02 a2 þ 1

r2

� 	2
" #2

1

r2

� 	2

; ð38lÞ

A45 ¼ � r2Ma2

2p r31 þ r32ð Þ a2 þ 1

r2

� 	2
" #2

; ð38mÞ

A52 ¼ � cr1
r2

a2 þ 2

r1

� 	2
" #2

; ð38nÞ

A54 ¼ � r2Ma2

2p r31 þ r32ð Þ a2 þ 2

r2

� 	2
" #2

; ð38oÞ

A55 ¼ D a2 þ 2

r2

� 	2
" #4

þ Eta4

r22
þ cr1

r2
a2 þ 2

r2

� 	2
" #2

þ Ny02 a2 þ 2

r2

� 	2
" #2

2

r2

� 	2

; ð38pÞ

A56 ¼ � r2Ma2

2p r31 þ r32ð Þ a2 þ 2

r2

� 	2
" #2

; ð38qÞ

A63 ¼ � cr1
r2

a2 þ 3

r1

� 	2
" #2

; ð38rÞ

A65 ¼ � r2Ma2

2p r31 þ r32ð Þ a2 þ 3

r2

� 	2
" #2

; ð38sÞ

A66 ¼ D a2 þ 3

r2

� 	2
" #4

þ Eta4

r22
þ cr1

r2
a2 þ 3

r2

� 	2
" #2

þ Ny02 a2 þ 3

r2

� 	2
" #2

3

r2

� 	2

: ð38tÞ

To obtain an explicit formula for the critical bending
moment, which indicates the effects of the surrounding
elastic medium and the van der Waals forces, one can
use the determinant (37) and expand it, namely

M ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 � 4AC

p

2A

s
; ð39Þ

where

A ¼ r21r
2
2a

8

2p r31 þ r32ð Þ½ �4
a2 þ 1

r1

� 	2
" #2

a2 þ 1

r2

� 	2
" #2

� a2 þ 2

r1

� 	2
" #2

a2 þ 2

r2

� 	2
" #2

; ð40aÞ
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B¼ a4

2p r31 þ r32ð Þ½ �2
r22A11A22 a2 þ 1

r2

� 	2
" #2

a2 þ 2

r2

� 	2
" #2

8<
:

þ r21A44A55 a2 þ 1

r1

� 	2
" #2

a2 þ 2

r1

� 	2
" #2

þ r1r2A25A41 a2 þ 1

r1

� 	2
" #2

a2 þ 2

r2

� 	2
" #2

þ r1r2A52A14 a2 þ 1

r2

� 	2
" #2

a2 þ 2

r1

� 	2
" #2

9=
;;

ð40bÞ

C ¼ A11A22A44A55 þ A14A41A25A52 � A11A25A44A52

� A14A41A22A55: ð40cÞ

Thus, the critical bending moment for infinitesimal
buckling can be obtained by minimizing the right hand
side of Eq. (39) with respect to the integer m.
5. Simplification and discussion

Now, because the radii of double-walled nanotubes
are usually at least a few nanometers, the difference of
the inner and outer radii should be much smaller
than the radius of the double-walled nanotube. There-
fore, the difference of the inner and outer tubes may
be neglected, namely,

r1 � r2 ¼ r: ð41Þ
Using this equation, Eqs. (38a), (38e), (38l), (38p) and

A14A25 can be rewritten as
A11 ¼ a2 þ 1

r

� 	2
" #2

B1 þ cþ d � Ny02
1

r

� 	2
" #

; ð42aÞ

A22 ¼ a2 þ 2

r

� 	2
" #2

B3 þ cþ d � Ny02
2

r

� 	2
" #

; ð42bÞ

A44 ¼ a2 þ 1

r

� 	2
" #2

B1 þ cþ Ny02
1

r

� 	2
" #

; ð42cÞ

A55 ¼ a2 þ 2

r

� 	2
" #2

B3 þ cþ Ny02
2

r

� 	2
" #

; ð42dÞ

A14A25 ¼ c2 a2 þ 1

r

� 	2
" #2

a2 þ 2

r

� 	2
" #2

; ð42eÞ
where
B1 ¼ D a2 þ 1

r

� 	2
" #2

þ Eta4

r2 a2 þ 1
r

� �2h i2 ; ð43aÞ

B3 ¼ D a2 þ 2

r

� 	2
" #2

þ Eta4

r2 a2 þ 2
r

� �2h i2 : ð43bÞ

Introduce two parameters k1 and k2

k21 ¼ A11A22 � A44A55ð Þ2 þ 4A14A25 A11A22 þ A44A55ð Þ
þ 4 A11A44A

2
25 þ A22A55A

2
14

� �
; ð44aÞ

k22 ¼ 4 A2
14 � A11A44

� �
A2
25 � A22A55

� �
: ð44bÞ

Eq. (39) for the critical bending moment can be rewrit-
ten as follows:

M ¼ 4pr2ffiffiffi
2

p
a2 a2 þ 1

r

� �2h i
a2 þ 2

r

� �2h i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k21 þ k32

q
� k1

r
: ð45Þ

Thus, the critical bending moment should be deter-
mined by minimizing the right hand side of Eq. (45) with
respect to the integer m. In what follows, the critical
condition is discussed.

5.1. In the absence of the van der Waals forces and the

surrounding elastic medium (c = 0 and d = 0)

In the absence of the van der Waals forces and the
surrounding elastic medium, we have c = d = 0. Eqs.
(44a) and (44b) can be simplified:

k1 ¼ 0; ð46aÞ

k2 ¼ 2 a2 þ 1

r

� 	2
" #2

a2 þ 2

r

� 	2
" #2

B1B3: ð46bÞ

The relation (45) reduces to the following result:
M ¼ 4pr2
D
a2

a2 þ 1

r

� 	2
" #2

þ Eta2

r2 a2 þ 1
r

� �2h i2
8><
>:

9>=
>;

8><
>:

� D
a2

a2 þ 2

r

� 	2
" #2

þ Eta2

r2 a2 þ 2
r

� �2h i2
8><
>:

9>=
>;
9>=
>;

1=2

: ð47Þ
In this case, the double-walled nanotubes behave like a
free single-walled nanotube with a middle radius r and
thickness t under the pure bending moment.

The dependency of the bending moment M on the ax-
ial half wave number m is plotted in Figs. 2 and 3. The
critical bending moment for elastic buckling is defined
by the lowest bending moment with m. Here, we use
E = 5.5 Tpa, t = 0.066 nm.



Fig. 2. Dependency of bending moment M on the axial half wave number m for three different values of r, with L = 150 nm.
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The curves shown in Figs. 2 and 3 indicate the relation-
ship between the bending moment M and the half wave
number m. From the figures, it is seen that the critical
bending moment M decreases and the axial half wave
numberm increases as the radius r decreases. Also the ax-
ial half wave number increases as the length L increases.

5.2. In the absence of the van der Waals forces (c = 0)

In the absence of the van der Waals forces, we have
c = 0 and d 5 0. Then the inner tube behaviors like a
single-walled shell in which the surrounding elastic med-
ium is also absent. This is due to the fact that the sur-
rounding elastic medium does not affect the inner tube
when the van der Waals force is absent. In this case,
by minimizing the right hand side of Eq. (47) with re-
spect to the integer m one can determine the buckling
of the inner tube under the pure bending moment.
But, when the inner tube buckles, buckling of the dou-
ble-walled nanotube occurs.
However, the outer tube looks like a single-walled
tube, but embedded in the elastic medium in the
absence of the van der Waals forces. One can
obtain the critical buckling moment by using the Eq.
(45)

M ¼ 4pr2

a2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B1 þ dð Þ B3 þ dð Þ
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ð48Þ

Obviously, a comparison between Eqs. (47) and (48) re-
veals that the surrounding elastic medium increases the
critical bending moment of the outer tube.



Fig. 3. Dependency of the bending moment M on the axial half wave number m for three different values of L and r.
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5.3. The general case with c 5 0, d 5 0 and Ny02 = 0

In the general case where both the van der Waals
forces and the surrounding elastic medium are present,
the critical bending moment can be obtained by mini-
mizing the right-hand side of Eq. (45) with respect to
the integer m.

However, due to complex of the Eq. (45), it is too dif-
ficult to discuss the effects of the surrounding elastic med-
ium and the van der Waals forces on the critical bending
moment. To analyze the effect of both the van der Waals
forces and the surrounding elasticmedium, let us consider
a special case with Ny02 = 0. Using Eq. (45), one obtains

M ¼ 4pr2ffiffiffi
2

p
a2

f2B1B3 þ ð2cþ dÞðB1 þ B3Þ þ ð2cþ dÞ2

� 2cd � ðB1 þ B3 þ 2cþ dÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4c2 þ d2

p
g1=2: ð49Þ

Let

F ðcÞ ¼ 2B1B3 þ ð2cþ dÞðB1 þ B3Þ þ ð2cþ dÞ2

� 2cd � ðB1 þ B3 þ 2cþ dÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4c2 þ d2

p
: ð50Þ
In the absence of the elastic medium (d = 0), Eq. (50)
can be rewritten in the following form:

F ðcÞ ¼
2B1B3 ðd ¼ 0; c P 0Þ;
2B1B3 þ 4cðB1 þ B3 þ 2cÞ ðd ¼ 0; c < 0Þ:



ð51Þ

Using Eq. (51), it is not difficult to find that the
critical bending moment given by Eq. (49) is identical
to Eq. (47) when Ny02 = d = 0 and c is non-negative.
In other words, the double-walled nanotube buckles
like a single-walled one and the van der Waals forces
do not affect the critical bending moment of the dou-
ble-walled nanotube if Ny02 = d = 0 and c is non-neg-
ative. In this case, if w1(x, y) = w2(x, y) along the
tubes, the interlayer spacing keeps unchanged and
the difference of two radii of the inner and outer tubes
is negligible, Eqs. (21) and (22) become identical. That
is why the van der Waals forces do not affect the crit-
ical bending moment of the double-walled nanotube if
Ny02 = d = 0 and c is non-negative.
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On the other hand, if d 5 0 and c>0, because
dF ðcÞ
dc > 0 and F(c)jc=0 = 2B1B3, we have F(c) > 2B1B3,
this means that the van der Waals forces increase the
critical bending moment of the double-walled nanotube
if Ny02 = 0 and c > 0.
6. Conclusions

The instability of a double-walled carbon nanotube
embedded in an elastic medium under pure bending is
examined. The effects of surrounding elastic medium
and van der Waals forces between the inner and outer
nanotubes are taken into account. From the view point
of continuum modeling, an elastic double-shell model is
presented for the pure bending buckling of a double-
walled carbon nanotube. Based on this model, a condi-
tion is derived in terms of the buckling modes of the
shell from which the critical bending moment can be
predicted. A simplified analysis is also performed to
study, qualitatively, the effect of the van der Waals
forces and the elastic medium on the critical bending
moment of the double-walled carbon nanotube.

The present model is true only for infinitesimal buck-
ling of multi-walled nanotubes whose radii are much lar-
ger than the intertube spacing (the latter is about
0.34 nm), as in the case of a study by Ru [15]. To inves-
tigate the post-buckling behavior of multi-walled nano-
tubes involving compression, bending and torsion,
nonlinear post-buckling analysis of multi-walled carbon
nanotubes has to be established. Further analysis is
being carried out to explain some experimental observa-
tion. It is also noted that post-buckling analysis, model
analysis, dynamic buckling and finite element technique
of multi-walled carbon nanotubes are, possibly, some
interesting research topics for future work.
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Appendix A. Buckling of a cylindrical shell under a pure

bending moment

The governing equation of buckling of cylindrical
shell under the pure bending moment is given by
Dr8wþ Et
r2

o4w
ox4

þ M
pr2

r4 o2w
ox2

cos
y
r

� �
¼ 0: ðA:1Þ
The classical shell theory assumes the buckling modes as
follows:
wðx; yÞ ¼ sin
mpx
L

X
n¼1

fn sin
ny
r
: ðA:2Þ
Substitution of Eq. (A.2) into Eq. (A.1), one can
obtain

D
t

a2 þ b2
� �4 þ E

r2
a4

� �
fn �

M
pr2t

� a
2

2
� a2 þ b2
� �2

fn�1 þ fnþ1ð Þ

¼ 0; ðA:3Þ
where a ¼ mp
L ; b ¼ n

r. For the given number of fn, using
the condition for a non-zero solution, one can obtain
the critical bending moment.

It is easy to find that Eq. (47) can be obtained
if only the first two terms are considered in Eq.
(A.2).
References

[1] Iijima S. Helical microtubes of graphitic carbon. Nature
1991;354:56–8.

[2] Iijima S, Brabec C, Maiti A, Bernholc J. Structural
flexibility of carbon nanotubes. J Chem Phys 1996;104:
2089–92.

[3] Treacy MMJ, Ebbesen TW, Gibson JM. Exceptionally high
Young�s modulus observed for individual carbon nanotubes.
Nature 1996;381:678–80.

[4] Yakobson BI, Brabec CJ, Bernholc J. Nanomechanics of carbon
tubes: instability beyond linear response. Phys Rev Lett
1996;76:2511–4.

[5] Falvo MR, Clary GJ, Taylor RM, Chi V, Brooks FP, Washburn
S, et al. Bending and buckling of carbon nanotubes under large
strain. Nature 1997;389:582–4.

[6] Zhang P, Lamment PE, Crespi VH. Plastic deforma-
tions of carbon nanotubes. Phys Rev Lett 1998;81:
5346–9.

[7] Nardelli MB, Yakobson BI, Bernholc J. Brittle and ductile
behavior in carbon nanotubes. Phys Rev Lett 1998;81:
4656–9.

[8] Ruoff RS, Tersoff J, Lorents DC, Subramoney S, Chan B. Radial
deformation of carbon nanotubes by van der Waals forces.
Nature 1993;364:514–6.

[9] Tersoff J, Ruoff RS. Structural properties of a carbon-nanotube
crystal. Phys Rev Lett 1994;73:676–9.

[10] Lu J. Elastic properties of carbon nanotubes and nanoropes. Phys
Rev Lett 1997;79:1297–300.

[11] Falvo MR, Clary GJ, Taylor RM, Helser A, Chi V, Brooks FP,
et al. Nanometer-scale rolling and sliding of carbon nanotubes.
Nature 1999;397:236–8.

[12] Salvetat JP, Bonard JM, Thomson NH, Kulik AJ, Forro L,
Benoit W, et al. Mechanical properties of carbon nanotubes.
Appl Phys A 1999;69:255–60.



1346 Q. Han et al. / Composites Science and Technology 65 (2005) 1337–1346
[13] Bower C, Rosen R, Jin L, Han J, Zhou Q. Deformation of carbon
nanotubes in nanotube-polymer composites. Appl Phys Lett
1999;74:3317–9.

[14] Qian D, Dickey EC, Andrews R, Rantell T. Load transfer and
deformation mechanisms in carbon nanotube-polystyrene com-
posites. Appl Phys Lett 2000;76:2868–70.

[15] Ru CQ. Axially compressed buckling of a double-walled carbon
nanotube embedded in an elastic medium. J Mech Phys Solids
2001;49:1265–79.
[16] Ru CQ. Effect of van der Waals forces on axial buckling of a
double-walled carbon nanotube. J Appl Phys 2000;10:7227–31.

[17] Girifalco LA, Lad RA. Energy of cohesion, compressibility, and
the potential energy functions of the graphite system. J Chem
Phys 1956;25:693–7.

[18] Girifalco LA. Interaction potential for C60 molecules. J Chem
Phys 1991;95:5370–1.

[19] Calladine CR. Theory of shell structures. Cambridge University
Press; 1983.


	Bending instability of an embedded double-walled carbon  nanotube based on Winkler and van der Waals models
	Introduction
	The elastic shell model
	The van der Waals force between the inner and outer nanotubes
	The critical buckling condition
	Simplification and discussion
	In the absence of the van der Waals forces and the surrounding elastic medium (c=0 and d=0)
	In the absence of the van der Waals forces (c=0)
	The general case with c ne 0, d ne 0 and Ny02=0

	Conclusions
	Acknowledgements
	Buckling of a cylindrical shell under a pure bending moment
	References


