Structure of a Data Analysis Part 1

Jeffrey Leek, Assistant Professor of Biostatistics Johns Hopkins Bloomberg School of Public Health

Steps in a data analysis

- Define the question
- · Define the ideal data set
- · Determine what data you can access
- Obtain the data
- Clean the data
- Exploratory data analysis
- Statistical prediction/modeling
- Interpret results
- Challenge results
- · Synthesize/write up results
- · Create reproducible code

Steps in a data analysis

- Define the question
- Define the ideal data set
- Determine what data you can access
- Obtain the data
- Clean the data
- Exploratory data analysis
- Statistical prediction/modeling
- Interpret results
- Challenge results
- · Synthesize/write up results
- · Create reproducible code

The key challenge in data analysis

Ask yourselves, what problem have you solved, ever, that was worth solving, where you knew knew all of the given information in advance? Where you didn't have a surplus of information and have to filter it out, or you didn't have insufficient information and have to go find some?

Dan Myer, Mathematics Educator

Defining a question

- 1. Statistical methods development
- 2. Danger zone!!!
- 3. Proper data analysis

An example

Start with a general question

Can I automatically detect emails that are SPAM that are not?

Make it concrete

Can I use quantitative characteristics of the emails to classify them as SPAM/HAM?

Define the ideal data set

- · The data set may depend on your goal
 - Descriptive a whole population
 - Exploratory a random sample with many variables measured
 - Inferential the right population, randomly sampled
 - Predictive a training and test data set from the same population
 - Causal data from a randomized study
 - Mechanistic data about all components of the system

Our example

Data and security

Learn more about how we keep your data safe with extensive security features both in and outside our data centers.

See how we protect your data.

Global locations

Check out our data center locations around the world and learn more about our community involvement.

Explore our locations.

Environmental, health, and safety

http://www.google.com/about/datacenters/inside/

Determine what data you can access

- · Sometimes you can find data free on the web
- Other times you may need to buy the data
- Be sure to respect the terms of use
- · If the data don't exist, you may need to generate it yourself

Back to our example

Google data center security

About Citation Policy Donate a Data S

Repository O Web

View ALL D

A possible solution

😑 😑 🖉 🕒 UCI Machine Learning Repos

← → C 🔺 🗋 archive.ics.uci.edu/ml/datasets/Spambase

Machine Learning Repository Center for Machine Learning and Intelligent Systems

Spambase Data Set

Download: Data Folder, Data Set Description

Abstract: Classifying Email as Spam or Non-Spam

1.01	eted Kerns	
10	é from	Salect
-	Catoarinov.	Get the car of your diverse with Catcory/rowder resp.
13	10. Marphone	Here CRC fore The Ready? - Take The Readings Test
12	@ Dorsthy Lanon	(c)(c) may to make it grow(?)
14	Beryl meners	wate dain!
-	daughtering .	Special To Phetiamer Member Offer
13	Allepi Gedi	Process Credit Cards for Des Lip Provid Codi
14	James	You Planacy ib
-4	Quel Cart A	Get # \$500 Cash Advance
a	Lenard Denny	to univest employments.
14	addys and	Office ID - BID
- 14	Comp Dept.	Get a complementary Starbucks GPt Card on us
- 14	Guadation N	Pay teb Attention to the Mar Behaviorhe Curtain
12	funnet Media	Get ready for monday OFCPE SETS.

Data Set Characteristics:	Multivariate	Number of Instances:	4601	Area:	Computer
Attribute Characteristics:	Integer, Real	Number of Attributes:	57	Date Donated	1999-07-01
Associated Tasks:	Classification	Missing Values?	Yes	Number of Web Hits:	66346

Source:

Creators:

Mark Hopkins, Erik Reeber, George Forman, Jaap Suermondt Hewlett-Packard Labs, 1501 Page Mill Rd., Palo Alto, CA 94304

Donor:

George Forman (gforman at nospam hpl.hp.com) 650-857-7835

http://archive.ics.uci.edu/ml/datasets/Spambase

Obtain the data

- Try to obtain the raw data
- Be sure to reference the source
- · Polite emails go a long way
- If you will load the data from an internet source, record the url and time accessed

Our data set

A data set collected at Hewlett-Packard Labs, that classifies 4601 e-mails as spam or non-spam. In addition to this class label there are 57 variables indicating the frequency of certain words and characters in the e-mail.

Usage

data(spam)

Format

A data frame with 4601 observations and 58 variables.

The first 48 variables contain the frequency of the variable name (e.g., business) in the e-mail. If the variable name starts with num (e.g., num650) the it indicates the frequency of the corresponding number (e.g., 650). The variables 49-54 indicate the frequency of the characters `;', `(', `[', `!', `\$', and `#'. The variables 55-57 contain the average, longest and total run-length of captial letters. Variable 58 indicates the type of the mail and is either "nonspam" or "spam", i.e. unsolicited commercial e-mail.

Details

The data set contains 2788 e-mails classified as "nonspam" and 1813 classified as "spam".

The ``spam'' concept is diverse: advertisements for products/web sites, make money fast schemes, chain letters, pornography... This collection of spam emails came from the collectors' postmaster and individuals who had filed spam. The collection of non-spam e-mails came from filed work and personal emails, and hence the word 'george' and the area code '650' are indicators of non-spam. These are useful when constructing a personalized spam filter. One would either have to blind such non-spam indicators or get a very wide collection of non-spam to generate a general purpose spam filter.

Source

- Creators: Mark Hopkins, Erik Reeber, George Forman, Jaap Suermondt at Hewlett-Packard Labs, 1501 Page Mill Rd., Palo Alto, CA 94304
- Donor: George Forman (gforman at nospam hpl.hp.com) 650-857-7835

These data have been taken from the UCI Repository Of Machine Learning Databases at http://www.ics.uci.edu/~mlearn/MLRepository.html

References

T. Hastie, R. Tibshirani, J.H. Friedman. The Elements of Statistical Learning. Springer, 2001.

http://rss.acs.unt.edu/Rdoc/library/kernlab/html/spam.html

Clean the data

- Raw data often needs to be processed
- If it is pre-processed, make sure you understand how
- Understand the source of the data (census, sample, convenience sample, etc.)
- May need reformating, subsampling record these steps
- Determine if the data are good enough if not, quit or change data

Our cleaned data set

If it isn't installed, install the kernlab package

library(kernlab)

data(spam)

dim(spam)

[1] 4601 58

http://rss.acs.unt.edu/Rdoc/library/kernlab/html/spam.html

Subsampling our data set

We need to generate a test and training set (prediction)

```
set.seed(3435)
trainIndicator = rbinom(4601,size=1,prob=0.5)
table(trainIndicator)
```

trainIndicator

0 1 2314 2287

```
trainSpam = spam[trainIndicator==1,]
testSpam = spam[trainIndicator==0,]
dim(trainSpam)
```

[1] 2287 58

Structure of a Data Analysis Part 2

Jeffrey Leek, Assistant Professor of Biostatistics Johns Hopkins Bloomberg School of Public Health

Organizing a data analysis

Jeffrey Leek, Assistant Professor of Biostatistics Johns Hopkins Bloomberg School of Public Health

Data analysis files

- · Data
 - Raw data
 - Processed data
- Figures
 - Exploratory figures
 - Final figures
- · R code
 - Raw scripts
 - Final scripts
 - R Markdown files (optional)
- · Text
 - Readme files
 - Text of analysis

Raw Data

	ALLERGIES	MEDICATION HISTORY
ast Updated: 01 Dec	2011 @ 0851	Last Updated: 11 Apr 2011 @ 1737
		Medication: AMLODIPINE BESYLATE 10MG TAB
llergy Name: ocation:	TRIMETHOPRIM DAYT29	Instructions: TAKE ONE TABLET BY MOUTH TAKE ONE-HALF TABLET FOR : GRAPEFRUIT JUICE
ate Entered: eaction:	09 Mar 2011	Status: Active Refills Remaining: 3
llergy Type:	DRUG	Last Filled On: 20 Aug 2010
A Drug Class:	ANTI-INFECTIVES, OTHER	Initially Ordered On: 13 Aug 2010
bserved/Historical:	HISTORICAL	Quantity: 45
omments:	The reaction to this allergy was MILD (NO SQUELAE)	Days Supply: 90 Pharmacy: DAYTON
llergy Name:	TRANADOL	Prescription Number: 2718953
ocation:	DAYT29	
ate Entered:	09 Mar 2011	Medication: IBUPROFEN 600MG TAB
eaction:	URINARY RETENTION	Instructions: TAKE ONE TABLET BY MOUTH FOUR TIMES A DAY WITH FOOE
llergy Type:	DRUG	Status: Active
A Drug Class:	NON-OPIOID ANALGESICS	Refills Remaining: 3
bserved/Historical:	HISTORICAL	Last Filled On: 20 Aug 2010
omments:	gradually worsening difficulty emptying bladder	Initially Ordered On: 01 Jul 2010

- Should be stored in your analysis folder
- If accessed from the web, include url, description, and date accessed in README

Processed data

00								ß	solutions	-jun3.csv							
0			B 💼	2		- m - 1	- A.	Z. E	-	100% -	2						
		2	43 43	~	D /	12		AO 😐		100%							
New Ope	n Save Print I	mport	Copy Paste	Format	Undo	Redo Aut	oSum Sort A-Z	Sort Z-A Gall	ery Toolbo	ox Zoom H	elp						
Verdana	* 10	Ψ.	BIU	E	₩ 3	≣ ∘A∘ \$	% \$ \$,00	400 E 2	• 🖽 •	<u> • A</u> •							
							Sheets	Charts	Sma	artArt Graphics	Word	Art					
\diamond	A	В	С		D	E	F	G	H		J	ĸ	L	M	N	0	Р F
1 id	proble	m_id	subject_id	start		stop	time_left a	answer									
2	1	498	17	1307	119989	1307120016	2369	A									
3	2	150	15	1307	119991	1307120009	2376	D									
4	3	313	16	1307	119994	1307120009	2376	E									
5	4	12	13	1307	119995	1307120019	2366	в									
6	5	2/3	14	1307	119996	1307120028	2357 /	A									
0	7	101	19	1307	119996	130/120021	2364	0									
0	9	162	18	1307	130004	1307120048	233/	C									
10	0	102	12	1207	120004	1207120042	2343										
11	10	300	15	1307	120011	1307120038	2347										
12	11	494	17	1307	120012	1307120032	2235										
13	12	357	13	1307	120021	1307120118	2267	A									
14	13	522	19	1307	120025	1307120152	2233	D									
15	14	232	14	1307	120030	1307120158	2227	c .									
16	15	344	15	1307	120041	1307120117	2268	В									
17	16	160	17	1307	120079	1307120249	2136	D									
18	17	516	16	1307	120094	1307120159	2226	В									
19	18	472	12	1307	120119	1307120170	2215	A									
20	19	43	15	1307	120122	1307120140	2245	C									
21	20	353	13	1307	120144	1307120199	2186	C									
22	21	218	15	1307	120152	1307120272	2113	E									(
23	22	69	16	1307	120163	1307120188	2197	D									
24	23	562	16	1307	120190	1307120301	2084	D									
25	24	121	19	1307	120253	1307120294	2091	E									
26	25	297	15	1307	120277	1307120342	2043	В									
27	26	495	13	1307	120281	1307120353	2032	E									
28	2/	94	14	1307	120288	130/120343	2042	E									
29	28	22	18	1307	120310	130/120365	2020										
30	29	54 503	19	1307	120310	1307120385	2000	D									
32	30	502	10	1307	120323	1307120336	2049	A									
33	32	315	10	1307	120339	1307120352	2033 /	R									
34	33	385	14	1307	120340	1307120553	1832	F									
35	34	550	13	1307	120356	1307120444	1941	B									
36	35	92	14	1307	120368	1307120397	1988	В									
37	36	395	16	1307	120377	1307120426	1959	D									
38	37	267	17	1307	120382	1307120515	1870	E									
39	38	257	14	1307	120401	1307120427	1958	с									
40	39	312	19	1307	120407	1307120548	1837	D									
41	40	321	18	1307	120431	1307120449	1936	A									
42	41	220	16	1307	120437	1307120510	1875	A									

- Processed data should be named so it is easy to see which script generated the data.
- The processing script processed data mapping should occur in the README
- Processed data should be tidy

Exploratory figures

- Figures made during the course of your analysis, not necessarily part of your final report.
- They do not need to be "pretty"

Final Figures

- Usually a small subset of the original figures
- · Axes/colors set to make the figure clear
- Possibly multiple panels

Raw scripts

- May be less commented (but comments help you!)
- May be multiple versions
- May include analyses that are later discarded

Final scripts

🐑 inde	x.Rmd × 🕘 cheung.R ×	-0
$\langle \phi \phi \rangle$	📄 🗌 Source on Save 🔍 🖉 🗸	ource 🔹 📃
1.	<pre>f.pvalue <- function(dat,mod,mod0){</pre>	
2	# This is a function for performing	
3	<pre># parametric f-tests on the data matrix</pre>	
4	<pre># dat comparing the null model mod0</pre>	
5	# to the alternative model mod.	
6	n <- dim(dat)[2]	
7	<pre>m <- dim(dat)[1]</pre>	
8	df1 <- dim(mod)[2]	
9	df0 <- dim(mod0)[2]	
10	p <- rep(0,m)	
11	Id <- diag(n)	
12		
13	resid <- dat %*% (Id - mod %*% solve(t(mod) %*% mod) %*% t(mod))	
14	resid0 <- dat %*% (Id - mod0 %*% solve(t(mod0) %*% mod0) %*% t(mod0))	
15		
16	rss1 <- resid^2 %*% rep(1,n)	
17	rss0 <- resid0^2 %*% rep(1,n)	
18		
19	fstats <- ((rss0 - rss1)/(df1-df0))/(rss1/(n-df1))	
20	<pre>p <- 1-pf(fstats,df1=(df1-df0),df2=(n-df1))</pre>	
21	return(p)	
22	}	
23		
24	setwd("cheung/")	
25	# Load data and create group variable	
26	dat <- read.table("full.data")	
27		
28	jpt.names <- scan("JPT.cname.txt",wnat="cnaracter")	
29	cnp.names <- scan(CHB.cname.txt ,wnat="Character")	
30	ceu.numes <- scun("CEU_parents.txt",wnat="cnaracter")	
31	nceu <- Length(ceu.names)	
32	njpt <- length(jpt.names)	
33	ncnb <- tengen(chb.numes)	
1:1	I fovalue ≏	R Script
		the section of the

- · Clearly commented
 - Small comments liberally what, when, why, how
 - Bigger commented blocks for whole sections
- Include processing details
- Only analyses that appear in the final write-up

R markdown files

R Markdown Documents

To work with R Markdown (.Rmd) files in RStudio you first need to ensure that the knitr package (version 0.5 or later) in installed.

To create a new R Markdown file, go to File | New | and select R Markdown. A new file is create with a default template to get you oriented:

	🌱 💁 🔤 🔏 Knit HTML 🛛 📑 Run 📴 🖸 Chunks
1	Title
2	
3	
4	This is an R Markdown document. Markdown is a simple formatting syntax
	for authoring web pages (click the **MD** toolbar button for help on
1	Markdown).
5	
6	When you click the **Knit HTML** button a web page will be generated
1	that includes both content as well as the output of any embedded ${\ensuremath{R}}$ code
1	chunks within the document. You can embed an R code chunk like this:
7	
8 -	```{r}
9	summary(cars)
10	***
11	
12	You can also embed plots, for example:
13	
14 -	<pre>```{r fig.width=7, fig.height=6}</pre>
15	plot(cars)
16	***
17	
18	

Note that the toolbar provides some useful tools for working with R Markdown:

- Quick Reference Click the MD toolbar button to open a quick reference guide for Markdown.
- Knit HTML Click to knit the current document to HTML, see the Knitting to HTML section below for more details.
- Run Run the current line or selection of lines in the console. This allows running R code inside a code chunk similar to a normal R source file.
- Chunks The chunks menu provides assistance with inserting, running, and chunk navigation. See the Chunk Menu and Options section below for more details.
- R markdown files can be used to generate reproducible reports
- Text and R code are integrated
- Very easy to create in Rstudio

Readme files

- Not necessary if you use R markdown
- Should contain step-by-step instructions for analysis
- Here is an example https://github.com/jtleek/swfdr/blob/master/README

Text of the document

- It should include a title, introduction (motivation), methods (statistics you used), results (including measures of uncertainty), and conclusions (including potential problems)
- It should tell a story
- It should not include every analysis you performed
- References should be included for statistical methods

Further resources

- Information about a non-reproducible study that led to cancer patients being mistreated: The Duke Saga Starter Set
- Reproducible research and Biostatistics
- Managing a statistical analysis project guidelines and best practices
- · Project template a pre-organized set of files for data analysis

Steps in a data analysis

- Define the question
- · Define the ideal data set
- · Determine what data you can access
- Obtain the data
- Clean the data
- Exploratory data analysis
- Statistical prediction/modeling
- Interpret results
- Challenge results
- · Synthesize/write up results
- · Create reproducible code

Steps in a data analysis

- Define the question
- · Define the ideal data set
- · Determine what data you can access
- Obtain the data
- Clean the data
- Exploratory data analysis
- Statistical prediction/modeling
- Interpret results
- Challenge results
- Synthesize/write up results
- Create reproducible code

An example

Start with a general question

Can I automatically detect emails that are SPAM that are not?

Make it concrete

Can I use quantitative characteristics of the emails to classify them as SPAM/HAM?

Our data set

A data set collected at Hewlett-Packard Labs, that classifies 4601 e-mails as spam or non-spam. In addition to this class label there are 57 variables indicating the frequency of certain words and characters in the e-mail.

Usage

data(spam)

Format

A data frame with 4601 observations and 58 variables.

The first 48 variables contain the frequency of the variable name (e.g., business) in the e-mail. If the variable name starts with num (e.g., num650) the it indicates the frequency of the corresponding number (e.g., 650). The variables 49-54 indicate the frequency of the characters `;', `(', `[', `!', `\$', and `#'. The variables 55-57 contain the average, longest and total run-length of captial letters. Variable 58 indicates the type of the mail and is either "nonspam" or "spam", i.e. unsolicited commercial e-mail.

Details

The data set contains 2788 e-mails classified as "nonspam" and 1813 classified as "spam".

The ``spam'' concept is diverse: advertisements for products/web sites, make money fast schemes, chain letters, pornography... This collection of spam emails came from the collectors' postmaster and individuals who had filed spam. The collection of non-spam e-mails came from filed work and personal emails, and hence the word 'george' and the area code '650' are indicators of non-spam. These are useful when constructing a personalized spam filter. One would either have to blind such non-spam indicators or get a very wide collection of non-spam to generate a general purpose spam filter.

Source

- Creators: Mark Hopkins, Erik Reeber, George Forman, Jaap Suermondt at Hewlett-Packard Labs, 1501 Page Mill Rd., Palo Alto, CA 94304
- Donor: George Forman (gforman at nospam hpl.hp.com) 650-857-7835

These data have been taken from the UCI Repository Of Machine Learning Databases at http://www.ics.uci.edu/~mlearn/MLRepository.html

References

T. Hastie, R. Tibshirani, J.H. Friedman. The Elements of Statistical Learning. Springer, 2001.

http://rss.acs.unt.edu/Rdoc/library/kernlab/html/spam.html

Subsampling our data set

We need to generate a test and training set (prediction)

```
# If it isn't installed, install the kernlab package
library(kernlab)
data(spam)
# Perform the subsampling
set.seed(3435)
trainIndicator = rbinom(4601, size = 1, prob = 0.5)
table(trainIndicator)
```

```
## trainIndicator
## 0 1
## 2314 2287
```

```
trainSpam = spam[trainIndicator == 1, ]
testSpam = spam[trainIndicator == 0, ]
```

Exploratory data analysis

- · Look at summaries of the data
- · Check for missing data
- Create exploratory plots
- Perform exploratory analyses (e.g. clustering)

Names

names(trainSpam)

##	[1]	"make"	"address"	"all"	
##	[4]	"num3d"	"our"	"over"	
##	[7]	"remove"	"internet"	"order"	
##	[10]	"mail"	"receive"	"will"	
##	[13]	"people"	"report"	"addresses"	
##	[16]	"free"	"business"	"email"	
##	[19]	"you"	"credit"	"your"	
##	[22]	"font"	"num000"	"money"	
##	[25]	"hp"	"hpl"	"george"	
##	[28]	"num650"	"lab"	"labs"	
##	[31]	"telnet"	"num857"	"data"	
##	[34]	"num415"	"num85"	"technology"	
##	[37]	"num1999"	"parts"	"pm"	
##	[40]	"direct"	"CS"	"meeting"	
##	[43]	"original"	"project"	"re"	
##	[46]	"edu"	"table"	"conference"	
##	[49]	"charSemicolon"	"charRoundbracket"	"charSquarebracket"	0/24
##	[52]	"charExclamation"	"charDollar"	"charHash"	ŏ/24

Head

head(trainSpam)

##		make	add	lress	all	l nı	1m3d	our	over	remov	ve i	nternet	: order	mail	rece	ive	
##	1	0.00		0.64	0.64	ł	0	0.32	0.00	0.0	00	(0.00	0.00	0	.00	
##	7	0.00		0.00	0.00)	0	1.92	0.00	0.0	00	(0.00	0.64	0	.96	
##	9	0.15		0.00	0.46	5	0	0.61	0.00	0.3	30	(0.92	0.76	0	.76	
##	12	0.00		0.00	0.25	5	0	0.38	0.25	0.2	25	(0.00	0.00	0	.12	
##	14	0.00		0.00	0.00)	0	0.90	0.00	0.0	90	(0.00	0.90	0	.90	
##	16	0.00		0.42	0.42	2	0	1.27	0.00	0.4	42	(0.00	1.27	0	.00	
##		will	pec	ple 1	repor	ct a	addre	esses	free	busi	ness	email	you c	redit	your	font	-
##	1	0.64	С	00.00		0		0	0.32		0	1.29	1.93	0.00	0.96	()
##	7	1.28	С	00.00		0		0	0.96		0	0.32	3.85	0.00	0.64	()
##	9	0.92	С	00.00		0		0	0.00		0	0.15	1.23	3.53	2.00	()
##	12	0.12	С	.12		0		0	0.00		0	0.00	1.16	0.00	0.77	()
##	14	0.00	С	.90		0		0	0.00		0	0.00	2.72	0.00	0.90	()
##	16	0.00	С	0.00		0		0	1.27		0	0.00	1.70	0.42	1.27	()
##		num0(00 m	noney	hp ł	npl	geor	rge n	um650	lab 1	labs	telnet	num85	7 data	a num4	415	
##	1		0	0.00	0	0		0	0	0	0	()	0.00	C	0	
##	7		0	0.00	0	0		0	0	0	0	()	0.00	C	0	
##	9		0	0.15	0	0		0	0	0	0	()	0 0.1	5	0	

Summaries

table(trainSpam\$type)

11 11	
TTT	
11 11	

##	nonspam	spam
##	1381	906

Plots

plot(trainSpam\$capitalAve ~ trainSpam\$type)

Plots

plot(log10(trainSpam\$capitalAve + 1) ~ trainSpam\$type)

Relationships between predictors

plot(log10(trainSpam[, 1:4] + 1))

Clustering

hCluster = hclust(dist(t(trainSpam[, 1:57])))
plot(hCluster)

dist(t(trainSpam[, 1:57])) hclust (*, "complete")

New clustering

hClusterUpdated = hclust(dist(t(log10(trainSpam[, 1:55] + 1))))
plot(hClusterUpdated)

dist(t(log10(trainSpam[, 1:55] + 1))) hclust (*, "complete")

1/27/13 5:19 PM

Statistical prediction/modeling

- Should be informed by the results of your exploratory analysis
- Exact methods depend on the question of interest
- Transformations/processing should be accounted for when necessary
- · Measures of uncertainty should be reported

Statistical prediction/modeling

```
trainSpam$numType = as.numeric(trainSpam$type) - 1
costFunction = function(x, y) {
    sum(x != (y > 0.5))
}
cvError = rep(NA, 55)
library(boot)
for (i in 1:55) {
    ImFormula = as.formula(paste("numType~", names(trainSpam)[i], sep = ""))
    glmFit = glm(lmFormula, family = "binomial", data = trainSpam)
    cvError[i] = cv.glm(trainSpam, glmFit, costFunction, 2)$delta[2]
}
```

Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

Get a measure of uncertainty

predictionModel = glm(numType ~ charDollar, family = "binomial", data = trainSpam)

Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

```
predictionTest = predict(predictionModel, testSpam)
predictedSpam = rep("nonspam", dim(testSpam)[1])
predictedSpam[predictionModel$fitted > 0.5] = "spam"
table(predictedSpam, testSpam$type)
```

##
predictedSpam nonspam spam
nonspam 1346 458
spam 61 449

(61 + 458)/(1346 + 458 + 61 + 449)

Interpret results

- Use the appropriate language
 - describes
 - correlates with/associated with
 - leads to/causes
 - predicts
- · Give an explanation
- Interpret coefficients
- Interpret measures of uncertainty

Our example

- The fraction of charcters that are dollar signs can be used to predict if an email is Spam
- Anything with more than 6.6% dollar signs is classified as Spam
- More dollar signs always means more Spam under our prediction
- Our test set error rate was 22.4%

Challenge results

- · Challenge all steps:
 - Question
 - Data source
 - Processing
 - Analysis
 - Conclusions
- Challenge measures of uncertainty
- Challenge choices of terms to include in models
- Think of potential alternative analyses

Synthesize/write-up results

- · Lead with the question
- Summarize the analyses into the story
- Don't include every analysis, include it
 - If it is needed for the story
 - If it is needed to address a challenge
- Order analyses according to the story, rather than chronologically
- Include "pretty" figures that contribute to the story

In our example

- · Lead with the question
 - Can I use quantitative characteristics of the emails to classify them as SPAM/HAM?
- Describe the approach
 - Collected data from UCI -> created training/test sets
 - Explored relationships
 - Choose logistic model on training set by cross validation
 - Applied to test, 78% test set accuracy
- Interpret results
 - Number of dollar signs seems reasonable, e.g. "Make money with Viagra \$ \$ \$!"
- Challenge results
 - 78% isn't that great
 - I could use more variables
 - Why logistic regression?

Create reproducible code

🐑 index	.Rmd ×		_	Ð
	🕞 🤷 🕵 🚾 🥳 Knit HTML	📑 Run 🛛	🕀 🖸 Chunks	; •
Q, Find	Next Prev Replace Replace All			×
🗌 In sele	ction 🗌 Match case 📄 Whole word 📄 Regex 🗹 Wrap			
252				
253	## New clustering			
254 -	<pre>```{r, fig.height =6,fig.width=6}</pre>			
255	hClusterUpdated = hclust(dist(t(log10(trainSpam[,1:55]+1))))			
256	plot(hClusterUpdated)			
257				
258				
259				
200	## Statistical prediction/modeling			
262	* Should be informed by the results of your exploratory analysis			
263	should be throwned by the results of your exploratory analysis			
264	Transformations/processing should be accounted for when necessary			
265	* Measures of uncertainty should be reported			
266				
267				
268	<pre>## Statistical prediction/modeling</pre>			
269 -	```{r,cache=TRUE}			
270	<pre>trainSpam\$numType = as.numeric(trainSpam\$type)-1</pre>			
271	$costFunction = function(x,y){sum(x!=(y > 0.5))}$			
272	cvError = rep(NA,55)			
273	library(boot)			
274 -	for(i in 1:55){			
275	lmFormula = as.formula(paste("numType~",names(trainSpam)[i],sep=""))			
276	glmFit = glm(lmFormula,family="binomial",data=train5pam]			
270	cvtrror[1] = cv.gim(trainspam,gimFit,costFunction,2)\$aelta[2]			
270	Jubich min(n/Europh)			
280	Whiteh.mth(Cverror)			
281	numes(cruchspum)[miter.mth(cverror)]			
282	***			
283				
284				
196-1	P (Tee Loop) A		D Maaludau	