Keep D.O.E.S. Informed if You Work With Select Agents

The CDC defines the term “Select Agent” as a biological agent or toxin deemed to threaten public, animal or plant health, or animal or plant products. As of February 7, new regulations to implement the Public Health and Security Bioterrorism Preparedness and Response Act of 2002, regarding the possession of, access to, and use of select agents became effective. Amongst these new regulations is a revised list of nationally recognized select agents. Furthermore, these regulations require that in order to possess select agents, laboratories must register with the Centers for Disease Control and Prevention and submit to the Department of Justice the names of individuals with access.

(Continued on Page 2)

Minors and Volunteers in the Labs: Know the Rules!

Do you know that the university is not only liable for paid lab employees, but also for volunteers in the labs? Because of this liability, lab volunteers are now required to register with Human Resources and receive training if they will be working within any facility where employees must undergo safety training or health screening. Volunteers are defined as any individual including prospective faculty, staff or students; who works or assists in university facilities prior to formal employment or matriculation, including students, workers, and international workers. Each volunteer must register with Human Resources in Crawford 304 and complete a “Lab Volunteer Information Form” providing his or her full name, phone number, department, and the name of his or her supervisor or volunteer host. Volunteers under the age of 18 should note that they must obtain
Select Agents (Continued from Page 1)

to select agents for background checks. Additionally, those who want to use Select Agents for research must develop biosecurity and biosafety plans, as well as develop a system for taking inventory of the Select Agents being used. In order to use Select Agents for research, laboratories must be vigilant about recording the names of students, employees, faculty, staff and volunteers who either use or have access to biological agents which pose a potential threat to human health and safety, and must require training in the use of such agents.

If your lab uses a Select Agent, you must complete a “Select Agent Registration Form” and file it with D.O.E.S. immediately. The purpose of this new policy is to ensure that all federally regulated Select Agents on the Case campus are handled safely, secured properly, and registered accurately with the CDC and the Department of Justice. In the event that your lab plans to use a Select Agent, you must seek approval from D.O.E.S. There are significant criminal penalties that apply to individuals who attempt to circumvent the legislation and fail to comply.

If you work with any Select Agents, complete the appropriate registration form and FAX a copy of it to 368-2236, and return the original via campus mail to D.O.E.S., Service Building, LC: 7227. D.O.E.S. will send a “Select Agent Registration Form” to every lab twice a year. However, because the university faces expensive fines and fees if the quantity of any Select Agent exceeds a certain number, it is imperative that you notify D.O.E.S. when your lab acquires any substance classified as a Select Agent and provide us with both the name and quantity of the agent. You can find the registration form on our website at http://does.cwru.edu.

If you have any other questions or concerns take a look at the D.O.E.S. website for the most current information, or contact Richard Dell at 368-5864.

Nationally Identified Select Agents:

HHS NON-OVERLAP SELECT AGENTS AND TOXINS:
- Crimean-Congo haemorrhagic fever viruses:
- *Coccidioides posadasii*
- Ebola viruses
- Cercopithecine herpesvirus 1 (Herpes B virus)
- Lassa fever virus
- Marburg virus
- Monkeypox virus
- *Rickettsia prowazekii*
- *Rickettsia rickettsii*

South American haemorrhagic fever viruses:
- Junin
- Machupo
- Sabia
- Flexal
- Guanarito

Tick-borne encephalitis complex (flavi) Viruses:
- Central European tick-borne encephalitis
- Far Eastern tick-borne encephalitis
- Russian spring and summer encephalitis
- Kyansanur forest disease
- Omsk hemorrhagic fever

- Variola major virus (Smallpox virus)
- Variola minor virus (Alastrim)
- *Yersinia pestis*
- Abrin
- Conotoxins
- Diacetoxyscirpenol
- Ricin
- Saxitoxin
- Shiga-like ribosome inactivating proteins
- Tetrodotoxin

(Continued on Page 4)
Volunteers (Continued from Page 1)

parental consent to work in Case labs. Furthermore, while students under age 18 can participate in lab work related to academic programs, lab volunteers who are not enrolled at the university and are under the age of 18 cannot use radioactive materials or hazardous substances even in supervised research projects. All minors must be directly supervised when in the laboratory environment. Finally, no minor should be allowed in the BL-3 facilities under any circumstances. Additionally, volunteers must receive training, including but not limited to: lab safety, bloodborne pathogen, radiation, and respirator training before volunteering in a lab. If necessary, the university will administer a hepatitis B shot at the volunteer’s expense. Questions can be directed to Deidre Davis in Human Resources (x4505) or to Richard Dell, the Associate Director of Safety Services (x2907).

ASK DR. GOGGLES

Dear Dr. Goggles: Lately I have been such a klutz in the lab. I have broken three mercury thermometers in the past month. I know that cleaning up after me must be time consuming and expensive. Is there any alternative? --Slippery Fingers

Dear Slippery Fingers: You’re right. When mercury thermometers break, lab and cleanup personnel are exposed to dangerous mercury fumes and drops of the liquid metal can become lodged in floor cracks and behind equipment. That’s why I recommend swapping your mercury thermometers for alcohol or digital thermometers which do not pose the same risks. In fact, if you stay tuned, you’ll notice that the next D.O.E.S. newsletter will include an entire article devoted to encouraging labs to consider these safe and smart alternatives.

--Dr. Goggles

RADIATION NEWS:

Is Your Lab Moving? What to Do About Radiological Inventory When You Pack Up

Research laboratory relocation and termination can be both stressful and confusing. To ensure safety and uniformity in the relocation and termination of a research laboratory at Case, D.O.E.S. has developed specific procedures which take your safety and the safety of the general university community seriously.

If you work in a research laboratory that uses radioactive materials, you must be extremely careful with your radiological inventory before and during your move.

If your lab is relocating, the transfer of radiological inventory to a new location must be supervised by Radiation Safety. The new location must be posted as a RAM use area. Contact Radiation Safety (x2906) to make arrangements. In order to transfer radiological inventory when a lab is terminating, you must complete the “External Transfer Form” available on the D.O.E.S. website. If you need advice in filling out these forms, please contact Radiation Safety.

Whether your lab is relocating or terminating, you must complete an “Internal Transfer Form” (also available at the D.O.E.S. website) in order to transfer radiological inventory to a CASE PI. In order to dispose of radiological inventory, you must list each isotope on a “Waste Disposal Form” available through Radiation Safety. All discarded radiological inventory must be disposed of by the week before the scheduled move.

If you have additional questions about relocation or termination, visit the D.O.E.S. website for the full procedural information.
Nationally Identified Select Agents
(Continued from Page 2)

HIGH CONSEQUENCE LIVESTOCK PATHOGENS AND TOXINS/SELECT AGENTS (OVERLAP AGENTS)
- Bacillus anthracis
- Brucella abortus
- Brucella melitensis
- Brucella suis
- Burkholderia mallei (formerly Pseudomonas mallei)
- Burkholderia pseudomallei (formerly Pseudomonas pseudomallei)
- Botulinum neurotoxin producing species of Clostridium
- Coccidioides immitis
- Coxiella burnetii
- Eastern equine encephalitis virus
- Hendra virus
- Francisella tularensis
- Nipah Virus
- Rift Valley fever virus
- Venezuelan equine encephalitis virus
- Botulinum neurotoxin
- Clostridium perfringens epsilon toxin
- Shigatoxin
- Staphylococcal enterotoxin
- T-2 toxin

USDA HIGH CONSEQUENCE LIVESTOCK PATHOGENS AND TOXINS (NON-OVERLAP AGENTS AND TOXINS)
- Akabane virus
- African swine fever virus
- African horse sickness virus
- Avian influenza virus (highly pathogenic)
- Blue tongue virus (Exotic)
- Bovine Spongiform encephalopathy agent
- Camel pox virus
- Classical swine fever virus
- Cowdria ruminantium (Heartwater)
- Foot and mouth disease virus

<table>
<thead>
<tr>
<th>Pathogen/Agent</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Goat pox virus</td>
<td></td>
</tr>
<tr>
<td>Lumpy skin disease virus</td>
<td></td>
</tr>
<tr>
<td>Japanese encephalitis virus</td>
<td></td>
</tr>
<tr>
<td>Malignant catarrhal fever virus (Exotic)</td>
<td></td>
</tr>
<tr>
<td>Manangle virus</td>
<td></td>
</tr>
<tr>
<td>Mycoplasma capriocolumi M.F38/M. mycoides capri</td>
<td></td>
</tr>
<tr>
<td>Mycoplasma mycoides mycoides</td>
<td></td>
</tr>
<tr>
<td>Newcastle disease virus (VND)</td>
<td></td>
</tr>
<tr>
<td>Peste Des Petits Ruminants virus</td>
<td></td>
</tr>
<tr>
<td>Rinderpest virus</td>
<td></td>
</tr>
<tr>
<td>Sheep pox virus</td>
<td></td>
</tr>
<tr>
<td>Swine vesicular disease virus</td>
<td></td>
</tr>
<tr>
<td>Vesicular stomatitis virus (Exotic)</td>
<td></td>
</tr>
</tbody>
</table>

LISTED PLANT PATHOGENS
- Liberobacter africanus
- Liberobacter asiaticus
- Peronsclerospora philippinensis
- Phakopsora
- Plum Pox Potyvirus
- Ralstonia solanacearum race 3, biovar 2
- Schlerophthora rayssiae var zeae
- Synchytrium endobioticum
- Xanthomonas oryzae
- Xylella fastidiosa (citrus variegated chlorosis strain)

TRAINING SCHEDULE

Radiation (x2906)
- New Training: (check website)
- X-ray Training: (call for times)

Chemical and Biological Safety (x2907)
- OSHA Lab Standard and Regulated Chemicals: Mondays 1-3:00
- Bloodborne Pathogens: Mondays 3-5:00

Please Note: Seats are limited in new training sessions. Be sure to call ahead of time to check on the availability of a training session. All online training is available at http://does.cwru.edu and all training (except X-ray) is required annually. All re-training (except regulated chemicals) is available online. Stay posted: Laser Training begins in September. Call x4600 for times.
MOVING OUT: Research Laboratory Relocation and Termination Procedures for Chemical Inventory

As noted in the “Radiation News” article, the Department of Occupational and Environmental Safety recognizes that research laboratory relocation and termination can be quite stressful. If your lab is either relocating or terminating, D.O.E.S. requires the following practices for handling chemical inventory to ensure that your lab moves safely:

- Only professional movers are sanctioned to transfer chemical inventory to a new location.

- In the event that you plan to transfer your chemical inventory to a CASE PI, you must be sure that the receiving PI submits new chemical inventory forms to Safety Services.

- In order to dispose of chemical inventory and chemical waste, you must complete a “Disposal Listing for Hazardous Waste and Unwanted Chemicals Form,” available from Safety Services. You must include an account number on the form.

- The “Disposal Listing for Hazardous Waste and Unwanted Chemicals Form” (the official pink sheets) must be submitted to Safety Services no later than noon on Wednesday, the week before your scheduled move.

- All waste must be tagged with Hazardous Waste Tags so that pick-up can occur that same week.

For full laboratory relocation or termination procedures, visit the D.O.E.S. website at http://does.cwru.edu.

Closed Door Policy: Three Reasons to Keep Your Lab Door Closed

Case Western Reserve University requires that laboratory doors be kept closed in many areas. There are several good reasons for this. Fire codes may require that your lab keep the door closed, and the ventilation balance in laboratory buildings is sensitive to disruption by breaches of the separation between zones. If you need more reasons to keep your lab door closed, here are three more important reasons.

- Laboratories are built to contain a chemical spill. Each lab is designed to have negative pressure and to thrust 100% of the exhaust into the outside air. If you keep your lab door closed, chemicals would not escape into the adjacent hallway, offices, or labs even in the event of a spill. While, if you keep your door open, chemicals may not be easily contained and could spread throughout the building.

- When a lab door is kept open, strong air currents (cross drafts) may cause turbulence around the chemical hoods which may result in chemicals escaping from the chemical hood, compromising your safety.

- If you need another reason...closed doors will help provide you with more security against theft.

Keeping an air of collegiality is very important in an academic setting, but collaboration should never take place at the expense of safety and security. Even if your area does not have a closed door policy, consider your own safety! We recommend that you keep your office doors open as much as you would like, but keep the doors to your lab closed.
D.O.E.S. STAFF

Dr. W. David Sedwick (wds), Director and RSO
Richard Dell (rxd7), Associate Director
Karen Janiga (kej2), Assistant RSO
Richard Harley (rxh2), Loss Prevention Specialist
Felice Thornton-Porter (fst2), Q.A. Specialist
Shirley Mele (smm5), Dept. Administrator
Gwendolyn Cox-Johnson (gxc13), Dept. Asst. II
Virginia LaGuardia (vfl), Dept. Asst. I
Elizabeth Sirkin (exs83), Technical Writer

Chemical Safety
Robert Latsch (rnl2), Specialist I
Marc Rubin (mdr6), Engineer II
Mahdi Fahim (mhf6), Specialist I
Jennifer Bambeck (jab41), Specialist I
Bill Cummins, (whc7), Plant Safety Specialist I
Greg Clark (gac7), Specialist I

Radiation Safety
Yelena Neyman (yxt13), Specialist I
Joanna Bielawski (jxb153), Specialist I
Henry Wayne Justice (hwj), Specialist I
Cheng Zhou (cxz16), Specialist I
Ed Traverso (ejt), Specialist II
Arif Peshimam (azp1), Specialist I
Jennifer Ress (jtr10), Specialist I