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I
n the control of batch distillation columns, one of the problems is the difficulty in moni-
toring the compositions. This problem can be handled by estimating the compositions
from readily available online temperature measurements using a state estimator. In

this study, a state estimator that infers the product composition in a multicomponent batch
distillation column (MBDC) from the temperature measurements is designed and tested
using a batch column simulation. An extended Kalman filter (EKF) is designed as the state
estimator and is implemented for performance investigation on the case column with eight
trays separating the mixture of cyclo-hexane, n-heptane and toluene. EKF parameters of
the diagonal terms of process noise covariance matrix and those of measurement model
noise covariance matrix are tuned in the range where the estimator is stable and selected
basing on the least IAE score. Although NC-1 temperature measurements is sufficient consid-
ering observability criteria, using NC measurements spread through out the column homo-
geneously improves the performance of EKF estimator. The designed EKF estimator is
successfully used in the composition—feedback inferential control of MBDC operated
under variable reflux-ratio policy with an acceptable deviation of 0.5–3% from the desired
purity level of the products.
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INTRODUCTION

‘Batch distillation is generally used as a separation unit in
the fine speciality chemicals, pharmaceuticals, biochemical
and food industries. The demand and the uncertainty in
specifications for these chemicals has increased recently,
which increased the popularity of the use of batch distilla-
tion’ (Barolo and Cengio, 2001; Kim and Ju, 1999). Instead
of using many continuous columns in series, multiple pro-
ducts can be obtained from a single batch distillation
column during a single batch run. Moreover, batch distilla-
tion processes can easily handle variations both in the
product specifications and in the feed compositions. This
flexibility of batch distillation processes provides the ability
to cope with a market characterized by short product life
times and strict specification requirements.
In batch distillation, the operation of the column with

optimized operation scenario; including reflux ratio
policy, switching times, and method of recycling, is
required to be realized in a convenient control system.
However, in order to employ the operation scenario; the
designed controller will require continuous information

flow from the column, including the compositions through-
out the column or temperatures reflecting the composition
knowledge. The reason for this requirement is that, the
value of reflux ratio and switching between product and
slop cut distillations are optimized which are subject to
the composition profile along the column and obtained as
a function of it. Therefore, the need for knowledge of
current composition in the column becomes obvious.

The composition knowledge can be generated bymeans of
direct composition analysers in the control of a batch distil-
lation column. Although there is a great development in the
technology of online composition analysers, such as gas
chromatography, they bring large measurement delays and
high investment and maintenance costs (Mejdell and
Skogestad, 1991; Oisiovici and Cruz, 2000; Venkateswarlu
and Avantika, 2001). The most popular alternative to the
composition controllers utilizing analysers is standard
temperature feedback controllers. Although temperature
measurements are inexpensive and have negligible measure-
ment delays, they are not accurate indicators of composition
(Mejdell and Skogestad, 1991). Another alternative is infer-
ential control systems incorporating state estimators which
use secondary temperature measurements.

State estimation can be defined as the process of
extracting information from data which contain valuable
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information about a system and state estimator is the tool
responsible for gathering valuable measurements to infer
the desired information. Modern estimators also use
known relationships in computing the desired information;
taking into account the measurement errors, the effects of
disturbances and control actions on the system, and prior
knowledge about the system and measuring devices.
While gathering these elements, they make use of some
error criteria and try to minimize errors in some respect.
The criteria and the method of minimization characterize
the method of estimation and the use of minimization
makes the estimate (extracted information) ‘optimal’. If
this optimality is realized statistically, the estimator type
becomes stochastic; if deterministically it becomes deter-
ministic. The estimator used in this work falls in the
stochastic category and it is named as Kalman filter.
In this study, the aim is to design a state estimator that

infers the component concentrations of the multicomponent
batch distillation column from the measured tray tempera-
tures. The designed estimator is further tested using a
rigorous column simulation to find its performance.
The extended Kalman filter (EKF) is selected as the state
estimator. In the literature, EKF has shown to provide
good results in the chemical industry that includes
model uncertainties, unmeasured process disturbances and
noisy measurements. Because it is based on the linear
dynamic model of the process, the rigorous model
used in the simulation is adapted to the estimator
algorithm mainly by simplifying the equilibrium model
and by means of linearization. The performance of the
developed estimator is tested by using the rigorous
column simulation and discrete measurements of the top
product compositions.

MULTICOMPONENT BATCH DISTILLATION
COLUMN (MBDC) OPERATION

In a batch distillation operation two types of products are
handled (Luyben, 1988). The one named as slop-cut which is
the byproduct of off-specification material and the other
named as product-cut which is the product satisfying the
specified purities. The operation of a batch column is divided
into a number of stages as in the order of realization; start-up
period, distillation at total-reflux, withdrawal of the lightest
product, removal of a slop-cut, withdrawal of the next hea-
viest product, removal of a second slop-cut and, so on.
The operation for the MBDC given in Figure 1 is

initiated by charging the feed mixture to the column,
from its top, resulting in establishment of initial holdups
in the order of condenser, reflux-drum, trays and reboiler.
During this initialization period, no distillate is withdrawn
from the column but instead the column is operated at
total-reflux condition or at high reflux ratios to establish
the desired purity level of the lightest compound in the
reflux-drum. Then the first product-cut is started to distil
by setting the reflux-ratio to a pre-specified value and in
the same time the distillate stream is transferred to first
product-cut storage tank. Due to the decreasing amount
of the lightest compound in the column, after some time
its composition level in the first product-cut tank begins
to decrease. At this point, the distillate stream is diverted
to the first slop-cut tank, if the composition of the next
heaviest compound in the reflux-drum is below its specified

purity. If however, it is not so low, or, during the slop-cut
distillation, it starts to pass the specification level, then
again the distillate is diverted to the second product-cut
tank and the reflux-ratio is set to its new value. This
cyclic operation between the product-cut and the slop-cut
distillation continues until all the intermediate compounds
is separated. Finally, the content of the reboiler is taken
as the final product-cut which is rich in the heaviest
compound.

MBDC PROCESS SIMULATION

There are many different rigorous models of batch distil-
lation columns. They use the same basic strategy in the
simulation model development which was used initially
by the first studies on rigorous modelling of distillation col-
umns. In batch column modelling, this common strategy
was initiated by Meadows (1963) and Distefano (1968)
which were followed by Stewart et al. (1973). In addition,
the recent studies of Furlonge et al. (1999), Perry et al.
(1999) and Venkateswarlu and Avantika (2001) can be
given as the examples using this common strategy. The
rigorous model used in this study is based on the study of
Distefano (1968) and its details are given by Yıldız
(2002). The assumptions employed in the development of
the model can be found in Table 1, besides, Tables 2 and
3 summarize the rigorous model equations.

The assumption of negligible vapour holdup have been
discussed by Young and Luyben (1987) and they stated,
‘in columns operating at moderate pressures (less than
10 atm), this assumption is usually a good one’. In the
study of Distefano (1968) on which the current simulation
is based, the assumption of constant volume tray liquid
holdup was discussed and it was realized that because of
the severe variations in the tray compositions, assumption
of constant molar or weight holdup is invalid in batch dis-
tillation calculations. Therefore using the constant-volume-
holdup assumption will be employed in the model

Figure 1. The schematic of a multicomponent batch distillation system.
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derivation and variations in the molal tray holdup will be
provided by variations in the liquid density that is a func-
tion of composition, temperature and pressure. Instead of
using ideal tray assumption, to represent the non-ideality
in the phase equilibrium, Murphree tray efficiency formu-
lation is employed assuming the temperature equilibria
between the vapour and the liquid phases. Consequently,
the basic assumptions made in the simulation model devel-
opment are summarized in Table 1.

EXTENDED KALMAN FILTER

The EKF is defined as ‘optimal recursive data processing
algorithm’ (Maybeck, 1979), handling the estimation issues
in the nonlinear system theory. EKF uses the nonlinear
model of the system given by equation (1)

_x(t) ¼ f (x(t), u(t), t)þ G(t)w(t) (1)

where f is the vector of the nonlinear system functions and
the noise process, w(t) is modelled as white Gaussian noise
with statistics

E{w(t)} ¼ 0 (2)

E
�
w(t)w(t0)T

�
¼

Q(t), t ¼ t0

0, t = t0

�
(3)

and the nonlinear measurement model written as

z(tk) ¼ h½ x(tk), tk� þ v(tk) (4)

where h is the vector of the nonlinear measurement func-
tions and the noise process, v(tk) is modelled as white
Gaussian noise with statistics

E{v(tk)} ¼ 0 (5)

E
�
v(tk)v(tl)

T
�
¼

R(t), tk ¼ tl

0, tk = tl

�
(6)

The EKF has a two-step recursive calculation algorithm.
The first named as the propagation stage is responsible to
calculate the prediction of the state at the current time
using the best state estimate at the previous time step.
The second is named as the update stage and updates the
prediction found in the first stage using the measurements
taken from the actual process and calculates the best state
estimate. The propagation stage integrates the state and
error covariance derivatives (see Table 4: Propagation

Table 1. Assumptions made in the model development.

Negligible vapour holdup
Constant volume of tray liquid holdup
Constant liquid molar holdup in the reflux-drum
Total condenser
Negligible fluid dynamic lags
Linear pressure drop profile
Murphree tray efficiency
Approximated enthalpy derivatives
Adiabatic operation

Table 2. Summary of MBDC rigorous model equations.

Compositions and holdups
Reboiler dynamics

M1 ¼ M0
f �

PNTþ2

n¼2

Mn �
Ð i
0
D(t)dt

dx1j

dt
¼ ½L2(x2j � x1j)� Vi(y1j � x1j)�=M1; j ¼ 1 . . .NC

Tray dynamics

Mi ¼
r
avg
i

Mw
avg
i

vi

dxij

dt
¼ ½Vi�1(yi�1, j � xij)þ Liþ1(xiþ1, j � xij)� Vi(yij � xij)�=Mi

i ¼ 2 . . . , NT þ 1; j ¼ 1 . . .NC

Reflux-drum dynamics

dxNTþ2, j

dt
¼ ½VNTþ1(yNTþ1, j � xNTþ2, j)�=MNTþ2; j ¼ 1 . . .NC

Composition sums

PNC
n¼1

xn ¼ 1;
PNC
n¼1

yn ¼ 1

Flowrates for given R and Q1

Trays

Vi�1 ¼ ½Vi(Hi � hi)þ Liþ1(hi � hiþ1)þMidi(hi)�=(Hi�1 � hi)

Li ¼ Vi�1 þ Liþ1 � Vi � di(Mi)

i ¼ NT þ 1 . . . 2

Overhead flowrates for total reflux
D ¼ 0

VNTþ1 ¼ LNTþ2

LNTþ2 ¼
�½Q1 � di(M1h1)� �

PNTþ1
n¼2 di(Mnhn)

(HNTþ1 � hNTþ2)

Overhead flowrates for finite reflux ratio

D ¼
Q1 �

PNTþ1
n¼1 di(Mnhn)

(Rþ 1)HNTþ1 � RhNTþ2

VNTþ1 ¼ D(Rþ 1)

LNTþ2 ¼ RD

Table 3. Summary of MBDC rigorous model equations.

Pressure drop profile

Pi ¼ P1 � i � (P1 � PNTþ2)=NT

Thermodynamic models
VLE calculation

½Ti, y
�
ij� ¼ f ½(xik , k ¼ 1 . . .NC), Tguess

i , Pi�

Murphree tray efficiency

yij ¼ yi�1,j þ EffMurphree(y
�
ij � yi�1,j)

Enthalpy calculations

hi ¼ f ½(xik, k ¼ 1 . . .NC), Ti, Pi�

Hi ¼ f ½(yik, k ¼ 1 . . .NC),Ti, Pi�

Physical properties

r
avg
i ¼ f ½(xik, k ¼ 1 . . .NC), Ti, Pi�

Mw
avg
i ¼ f ½(xik, k ¼ 1 . . .NC), Ti, Pi�
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section) from the previous time step tk�1 to the current time
tk and uses the best state estimate x̂þ(tk�1) and its error
covariance Pþ(tk�1) at the previous time step tk�1, in
order to calculate the prediction of the state, x̂�(tk) and
its error covariance P�(tk) at the current time step tk. The
update stage utilizes the equations given in Table 4
(Update section), and updates the prediction of the
state x̂�(tk) and its error covariance P�(tk) at the current
timestep tk.
In order to initiate the Kalman filter algorithm, the initial

conditions incorporating the initial state, x̂(t0) ¼ x̂0 and its
error covariance, P(t0) ¼ P0 are required. At the initializa-
tion time step, when the first measurement is taken, require-
ments of the best state estimate, x̂þ(tk�1) ¼ x̂þ(t�1) and it
error covariance, Pþ(tk�1) ¼ Pþ(t�1) at the time step t�1

are supplied by replacing with the initial state x̂0 and its
error covariance P0.

EKF STATE ESTIMATOR FOR BATCH
DISTILLATION COLUMNS

The technique of EKF estimation will be applied to
MBDC in order to infer the column compositions from
the temperature measurements. Firstly, the observability
of a multicomponent batch distillation column, which is a
must to be able to estimate the system states, is to be ana-
lysed. Secondly, due to computational and algorithmic
requirements, the simplified models of the system and the
measurement devices is to be developed by taking the rig-
orous simulation model as base. Then, the need for

Jacobian matrices both for the system and the measure-
ment models is to be achieved through analytical
linearization.

Observability Criteria for MBDC

Most control laws used in the batch distillation are feed-
back laws and the state-space description of dynamics rea-
lizes that the information required for feedback control is
the state of the system (Jacobs, 1974). As in the case of
batch distillation, in most real controlled processes, the
system state (i.e., compositions in the batch distillation)
is not identical with the observable outputs (i.e., tempera-
tures in the distillation) but there is a time-varying relation-
ship between the states, X and the outputs, z as given in
equation (7).

z(tk) ¼ h½X(tk), tk� (7)

Therefore, the question arises whether or not it is pos-
sible to evaluate the state form observations of the
output (i.e., measurements). The observability criteria is
to be satisfied for solving the problem of inferring immea-
surable state variables from measurements in the minimum
possible length of time. So the system with the measure-
ment model, equation (7) is said to be observable if the
output, z embodies sufficient information to infer the
state, x in a finite time. Here it should be noted that
since the observability criteria is evaluated from the
linear dynamic measurement model, although the system
is observable in reality, corresponding mathematical
model may not possess the property of observability.
Employing a degree-of-freedom concept, Yu and Luyben
(1987) found that a distillation column is observable if
the number of measurements is at least (NC2 1). The
study of Quintero-Marmol et al. (1991), dealing with the
design of an extended Luenberger Observer for MBDC,
concluded that even though the linear observer in theory
needs only (NC2 1) temperature measurements to be
observable, the nonlinear observer needed at least (NC)
thermocouples to be effective. In addition, to improve
the convergence without affecting the robustness, the use
of (NCþ 2) measurements is recommended (Quintero-
Marmol et al., 1991).

The Design of EKF State Estimator for MBDC

As described previously, EKF algorithm requires the sto-
chastic models of the system (see equation (1)) and the
measurement processes (see equation (4)). In equation
(1), G(t) is assumed as unity. Moreover, EKF algorithm
needs the linearized versions of these two models, specified
by the Jacobian matrices and for the system it is given
by equation (8) and for the measurement process by
equation (9).

F(x̂(t), u(t), t) ¼
df (x(t), u(t), t)

dx(t)

����
x¼x̂

(8)

H(x̂�(tk), tk) ¼
dh(x(tk), tk)

dx(tk)

����
x(tk)¼x̂�(tk)

(9)

Table 4. Equations of continuous-discrete extended Kalman filter.

Model
System _x(t) ¼ f (x(t), u(t), t)þ G(t)w(t);

w(t):N(0, Q(t))

Measurement z(tk) ¼ h(x(tk), tk)þ v(tk); k ¼ 0, 1, 2, . . . ;
v(tk):N(0, R(tk))

Initialization
State x(0) ¼ x̂(0) ¼ x̂0

Error covariance P(0) ¼ P0

Propagation
State estimate _̂x(t) ¼ f (x̂(t), u(t), t)

Error covariance _P(t) ¼ F(x̂(t), u(t), t)P(t)þ P(t)FT

�(x̂(t), u(t), t)þ Q(t)

Update
State estimate x̂þ(tk) ¼ x̂�(tk)þ K(tk)½z(tk)� h(x̂�(tk), tk)�

Error covariance Pþ(tk) ¼ ½I � K(tk)H(x̂�(tk), tk)�P
�(tk)

Gain matrix K(tk) ¼ P�(tk)H
T (x̂�(tk), tk) ½H(x̂�(tk), tk)

�P�(tk)H
T (x̂�(tk), tk)þ R(tk)�

�1

Definitions
N(m, s): Gaussian distribution with mean, m and covariance, s

F(x̂(t), u(t), t) ¼
df (x(t), u(t), t)

dx(t)

����
x¼x̂

H(x̂�(tk), tk) ¼
dh(x(tk), tk)

dx(tk)

����
x(tk)¼x̂�(tk)
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Lastly, in order to initiate the EKF algorithm, the
information of initial conditions is required and stated by
x̂0 for the states and by P0 for the error covariances.
As a result, the nonlinear models for the system and for

the temperature measurements are to be developed in the
form required for EKF algorithm. However, the model
developed for rigorous simulation of the batch column
is not suitable for realistic situation in order to be
implemented in EKF algorithm. For the reason that it is
difficult to obtain the required values of vapor and liquid
flowrates and tray holdups with time. In addition, the
complexity of the simulation model requires high compu-
tational time and memory. Therefore, the rigorous
column model for simulation is to be simplified and then
the obtained nonlinear model is to be linearized to achieve
the Jacobian matrix both for the system and the measure-
ment processes.

Model Simplification and Linearization

Some additional assumptions are needed for the simplifi-
cation of the rigorous simulation model of MBDC. These
assumptions are constant molar holdup on trays, disregard
of the energy dynamics in the column, ideal trays, and
use of Rault’s Law with Antoine’s vapour pressure corre-
lation for vapour–liquid equilibrium (VLE) description.
As a result, the vapour flowrates throughout the column
become equal as well as the liquid flowrates. The simplified
model equations for MBDC are given in Table 5.
Next, the nonlinear models in EKF given by equations

(1) and (4) are defined in terms of states, inputs and outputs
of the column-simplified-model by equations (10) to (16) as

_x(t) ¼ f (x(t), u(t), t)þ w(t) (10)

where

x ¼ ½x11 . . . x1NC, . . . , xNTþ2,1 . . . xNTþ2,NC�
T (11)

f ¼ ½_x11 . . . _x1NC, . . . , _xNTþ2,1 . . . _xNTþ2,NC�
T (12)

u ¼ ½R, Q1�
T (13)

xi, j is the molar fraction of jth component on ith stage, R is
the reflux ratio, Q1 is the reboiler load and

z(tk) ¼ h(x(tk), tk)þ v(tk) (14)

where

z ¼ ½TM(1) . . . TM(NM)�
T (15)

h ¼ ½TM(1)(xM(1),1 . . . xM(1),NC) . . . TM(NM)

� (xM(NM),1 . . . xM(NM),NC)�
T (16)

Ti is the temperature measurements at ith stage, NM is the
number of measurements, M(n) is indexing function
returning the tray number of given measurement n.
More generally, the elements of f and x vectors are

given by equations (17) and (18) as

fi ¼ f(k�1)�NCþn ¼ _xk,n for k ¼ 1 . . .NT þ 2

n ¼ 1 . . .NC
(17)

xj ¼ x(p�1)�NCþr ¼ xp,r for p ¼ 1 . . .NT þ 2

r ¼ 1 . . .NC
(18)

Lastly, the general forms of the linear system matrix F
(Table 4)

F0(x(t), u(t), t) ¼
df (x(t), u(t), t)

dx(t)
(19)

and the linear measurement matrix H (Table 4)

H0(x(tk), tk) ¼
dh(x(tk), tk)

dx(tk)
(20)

Table 5. Summary of MBDC simplified model equations.

Compositions and holdups
Reboiler dynamics

dM1

dt
¼ L� V

dx1j

dt
¼ ½L(x2j � x1j)� V(y1j � x1j)�=M1

Tray dynamics

dxij

dt
¼ ½V(yi�1,j � yij)þ L(xiþ1,j � xij)�=Mi

Reflux-drum dynamics

dxNTþ2,j

dt
¼ ½V(yNTþ1,j � xNTþ2,j)�=MNTþ2

İ ¼ 2. . .NTþ 1; j ¼ 1. . .NC

Flowrates for given R and V0

Vapour
V ¼ V0

Liquid
L ¼ RD

Composition sumsPNC
n¼1

xn ¼ 1;
PNC
n¼1

yn ¼ 1

Pressure drop profile
Pi ¼ P1 � i � (P1 � PNTþ2)=NT

Thermodynamic models
Rault’s law

yij ¼ xij
Pv
j

Pi

� �

Antoine’s vapour pressure correlation

log (Pv
j ) ¼ aj �

bj

cj � Ti

Equilibrium temperature

Ti:
PNC
l¼1

xil � 10
½al�(bl=(cl�Ti ))� ¼ P

i ¼ 1. . .NTþ 2; j ¼ 1. . .NC
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are evaluated analytically. Their expanded forms and the
details of the derivation are given by Yıldız (2002).
Consequently, all the information required for EKF esti-

mator has been obtained. This information incorporates
nonlinear and linearized models for the system of MBDC
and the measurement process given respectively by
f , h, F0, H 0.

DESCRIPTION OF CASE COLUMN

The case column for simulation is the one which was
simulated by Mujtaba and Macchietto (1993) in their
study on the subject of optimal operation of MBDC. The
column is used to separate the mixture of cyclo-hexane,
n-heptane and toluene. The sketch of the column can be
seen in Figure 1 and the design specifications of the
column are listed in Table 6.
The batch distillation column is under the perfect control

of reflux-drum level and has two degrees-of-freedom for
manipulation which are reboiler heat load, Q1 and reflux-
ratio, R. In this study, the reboiler heat load, Q1 is kept at
its maximum value given by design while the reflux-ratio,
R is used as manipulated variable in order to realize the
optimal operation policy recommended by Mujtaba and
Macchietto (1993) and given in Table 7. This optimal oper-
ation policy is used to yield two product-cuts with the
desired purity levels of 0.9 and 0.8 from the mixture of
cyclo-hexane, n-heptane and toluene with the composition
of (0.407, 0.394, 0.199). In the simulations, this optimal
reflux ratio profile is employed.

RESULTS AND DISCUSSION

The study is performed in three phases. First, a Kalman
filter for the estimation of product compositions for a
MBDC from temperature measurements is designed. Then
the designed EKF is implemented on the case MBDC to
check the performance of the EKF. In the third phase the
designed EKF is utilized for control purposes in the MBDC.

The Test of the Model Used in EKF

As given in an earlier section, a simplified MBDC model
must be utilized in the design of EKF. A simulation run is
done to observe the mismatch between the rigorous and
simplified models. This run is performed under the reflux
ratio policy of Mujtaba and Macchietto (1993) and initia-
lized by the composition of the feed charged to the
column. The responses in terms of reflux-drum compo-
sitions are given in Figure 2. The trend of the compositions
are similar, however, the deviations in compositions
increase between the period of 3.5 h and 6 h. This period
is the period of slop-cut distillation. In the optimum
reflux ratio policy, the reflux-drum concentration values
in terms of products are important to determine the

change of reflux ratios during the operation. Thus, any
deviation will result in wrong timing for the change of
reflux ratio and also in the switching between product-cut
and slop-cut tanks. The sources of this mismatch are due
to the simplification assumptions used in the development
of the model for EKF algorithm.

To realize this argument, one of the major assumptions,
specifying the type of VLE relationship is equalized both in
the rigorous model representing the process and the simple
model for EKF. Therefore, instead of Peng-Robinson
equation of state (EOS) for VLE calculations, the same
formulation of Rault’s Law used in the simple model is
utilized to the rigorous model only to see the effect of
this simplification. The modified rigorous model is simu-
lated under the same conditions in the previous run. The
comparison between the responses of the modified rigorous
model and the EKF model are shown in Figure 3.

It is seen that although there are still discrepancies
between the modified process model and the EKF model,
the mismatch is highly reduced by equalizing the VLE
calculations. It is concluded that the major source of the
mismatch between the process and the model is due to
the selection of VLE formulation utilized in the model
for EKF algorithm.

Table 7. Parameters for the optimal reflux ratio
policy.

Amount of fresh feed 2.93 kmol
Feed composition:
Cyclo-hexane 0.407
n-heptane 0.394
Toluene 0.199

Desired purity of comp. 1 0.9
Desired purity of comp. 2 0.8
Optimum reflux profile:
Time interval (h) Reflux ratio
0–2.04 0.875
2.04–3.4 0.911
3.4–6.17 0.933
6.17–6.51 0.831
6.51–8.35 0.876

Figure 2. Mismatch between the process and the simplified model used
in EKF.

Table 6. Design parameters for the case column.

Number of trays 8
Condenser-reflux-drum
Holdup

0.02 kmol

Trays holdup 0.01 kmol
Maximum boil-up rate 2.75 kmol h
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As a result it is decided that in the model develop-
ment, the most important part is the selection of VLE
formulation.

Implementation of EKF

The simulation test runs for tuning the EKF is done with-
out considering any changes in VLE relationship of the
EKF model because VLE relationship does not change
the effects of tuning parameters on the performance of
EKF. Further, it is aimed to obtain the optimum values
for these parameters in the worst case (i.e., process/
model mismatch). The tuning parameters for EKF are the
diagonal terms of process noise covariance matrix, q, and
the diagonal terms of measurement model noise covariance
matrix, r. Also, the effect of number of measurement
points, and measurement period, Dtm will be illustrated. It
is known that, in initialization of the EKF, initial estimates
vector, x0 and its error covariance vector, P0 are also
important. These will be discussed also.
In all of the simulation test runs, the integral absolute

error (IAE) is chosen as the performance criteria reflecting
the fitness of the EKF design parameters. The formulation
of IAE between the actual and the estimated fractions of a
component is given in equation (21)

IAEi ¼

ðT
0

jXi(t)� xi(t)j dt (21)

where Xi(t) is the estimated composition of ith component,
xi(t), the actual one and T, the total time of batch. In the per-
formance evaluation, instead of analysing the IAE scores of
each component separately, the sum of the IAE scores of the
components is selected. Moreover, this total score is calcu-
lated both for the reflux-drum and the reboiler composition
estimations as given by equations (22) and (23)

IAERD ¼
XNC
i¼1

IAEi (22)

IAERB ¼
XNC
i¼1

IAEi (23)

where IAERD and IAERB are the performance scores in the
estimation of the reflux-drum and the reboiler compositions,
respectively. As a result, the optimum value of the con-
sidered design parameter is obtained from the simulation
run giving the lowest sum of IAERD and IAERB values. The
optimum value of the diagonal terms of process noise covari-
ancematrix, q is searched in the rangewhere the EKF estima-
tor is stable. Performing some trial runs, the stability region
of the estimator is found where the value of q is in the range
of 50 and 1 � 1027. This region is searched by changing the
value of q in 10 folds. For r ¼ 5000, the change of IAE scores
with q is given in Figure 4.

The diagonal terms of measurement model noise covari-
ance matrix, r are changed between 0.5 and 5 � 108

increasing in 10 folds and in each run, the diagonal terms
of process noise covariance matrix, q is selected as
0.00001 which was previously determined as optimal. As
in the case of q, the searching region for r is also deter-
mined by means of the stability concept. Figure 5 presents
the relation of IAE sum with respect to r, graphically. The

Figure 3. Mismatch between the modified process model and the EKF
model.

Figure 4. Change of IAE sum with respect to q.

Figure 5. Change of IAE sum with respect to r.
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best result (i.e., one having the lowest IAE sum) is obtained
for the diagonal terms of process noise covariance matrix,
q ¼ 5000 as shown in Figure 6.
The previous runs were done, utilizing three measure-

ment points for temperatures as stated by Quintero-
Marmol et al. (1991). Several extra runs with one to five
measurement points were also conducted in which optimal
values for the diagonal terms of process noise covariance
matrix, q and the diagonal terms of measurement model
noise covariance matrix, r are used, to see the effects of
measurement points in EKF performance. Firstly, to
decide on the number of measurement points, homo-
genously spreading the locations of the measurements
throughout the column resulted in the IAE sums given in
Table 8. The run having the lowest IAE sum is obtained
as the one with three measurement points. In addition, the
run with two measurements, which is the minimum
number of measurements satisfying the observability
criteria, has an IAE score, larger than that of the runs
with more measurements and it has an IAE less than that
of one-measurement run which is the only run violating
the observability requirement. Moreover, using NC
measurement points was also recommended by Quintero-
Marmol et al. (1991). Three measurement runs are further
simulated using different location alternatives to see the
effect of measurement locations. While the locations of
two measurements are changed, the reboiler temperature

measurement is kept in all of the runs. The IAE scores
obtained for different measurement structures are shown
in Table 9 additional to the set given in Table 8. All the
measurement alternatives given in Table 9 have larger
IAE scores than that of the measurement set with reboiler,
fourth and top trays (Table 8). Thus this is selected as the
temperature measurement points.

The effect of measurement period, Dtm, on IAE scores is
investigated, utilizing the simulation software. The results
in terms of IAE scores are given in Figure 7. The responses
in terms of reflux-drum and reboiler compositions for the
representative values of measurement period of 1 min and
20 min are shown in Figures 8 and 9. As expected, the
IAE sum of the estimations increases as the measurement
period, Dtm, increases. Although, the measurement period
selected in this simulation study is the minimum possible
value (1� Dt), in real-time estimation problems, the
value of Dtm is to be chosen considering the limits of the
computational power. Decreasing the measurement period
increases the accuracy of estimation at the expense of the
computational burden. The measurement periods of
3 min, even 5 min can satisfactorily be used without
much change in IAE scores.

Another simulation run is done to see the effect of initial
state estimate, x0 and its error covariance vector, P0 on the
system response. The previous simulations were done using
feed composition as the initial estimate throughout the

Figure 6. Effect of the diagonal terms of process noise covariance matrix for q ¼ 0.00001 and r ¼ 5000. (a) Reflux-drum compositions; (b) reboiler
compositions.

Table 8. Change of IAE scores with respect to number of measurements.

Measurement locations IAERD IAERB IAEsum

Rb, 4, NT 0.6298 0.1706 0.8004
Rb, 3, 5, NT 0.6692 0.1447 0.8139
Rb, 3, 5, 7, NT 0.6756 0.1425 0.8181
Rb, NT 0.6064 0.2219 0.8283
NT 0.6853 0.2744 0.9597

Rb is for reboiler.

Table 9. Change of IAE scores with respect to location of three
measurements.

Measurement locations IAERD IAERB IAEsum

Rb, 4, 5 0.6598 0.1575 0.8173
Rb, 3, 4 0.6826 0.1413 0.8239
Rb, 2, 3 0.7091 0.1267 0.8358
Rb, 1, 2 0.7803 0.1186 0.8989

Rb is for reboiler.
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column. The response for initial state estimate, x0 ¼ [1/3; 1/
3; 1/3] and the diagonal terms of its error covariance vector,
P0 ¼ 0.1 is shown in Figure 10. This is a fictitious compo-
sition for feed when the feed composition is not known. Of
course, in this run the deviations in estimation are higher
than the previous cases, giving IAE sum of 1.8797. However,
they can still be considered agreeable in a case where feed
composition is not known. Moreover, the estimations can
also be improved with trial-and-error using different tuning
parameters for the case of unknown feed composition.

Closed-Loop Performance of EKF

In this phase of the study, it is aimed to analyse the per-
formance of the EKF estimator for a MBDC system in a
composition-feedback inferential control structure which

realizes an actual scheduling policy explained previously
in the section entitled MBDC Operation, where reflux-
ratio is adjusted to a pre-optimized value with the use of
top product composition information. In this control law,
the compositions in the reflux-drum, the product-cut tanks
and the reboiler are the inputs to the controller and the
manipulated variable is the reflux-ratio of the column.
The pre-specified reflux-ratio values required for the con-
trol algorithm is chosen as the optimized ones used in the
previous sections. The tank, to which the distillate stream
is diverted, and its timing are decided by monitoring the
input compositions to the controller and utilizing the
actual reflux-ratio policy. In the simulation of this control
structure, the compositions can be obtained directly from
the process simulation or from the EKF estimator. Firstly,
to create a reference point, a simulation is done, taking
the composition knowledge directly from the column as
the feedback information to the controller. The desired pro-
duct purities are the set points of the controller which are
taken as 0.9, 0.81, 0.69. The response of this reference
run in terms of the liquid compositions, both in the
reflux-drum and the reboiler are given in Figure 11.

The capacity factor (CAP) (Luyben, 1988) and batch
time (BT) are selected as the performance criteria to com-
pare the closed-loop responses with the reference run. CAP
for a batch operation is defined by Luyben (1988) as the
ratio between the total amount of specified products and
the total batch time plus feeding duration. If the P1, P2
and P3 are the amounts of products obtained and the feed-
ing duration is taken as 0.5 h, the CAP is given by

CAP ¼
P1 þ P2 þ P3

BTþ 0:5
(24)

For the previous run, CAP and BT are obtained as
243 mol/h and 8.22 h, respectively. The purities of the

Figure 8. Effect of the period of temperature measurements for Dtm ¼ 1 min. (a) Reflux-drum compositions; (b) reboiler compositions.

Figure 7. Change of IAE scores with respect to Dtm.
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obtained products are 0.90, 0.81 and 0.69, respectively for
cyclo-hexane, n-heptane and toluene.
To see the performance of EKF, secondly the same simu-

lation is realized using the estimated compositions as the
feedback to the controller. For the design parameters of
the EKF estimator, the optimum values obtained in the
implementation section (see section ‘Implementation of
EKF’) are used. The responses of the reflux-drum and the
reboiler compositions are shown in Figure 12. CAP and
BT are found as 308 mol/h and 7.59 h, respectively. The
errors in estimation of CAP and BT are 21% and 8%,
respectively. The error in CAP is large however; the

composition errors are 3%, 2% and 0.5%, respectively for
cyclo-hexane, n-heptane and toluene. Thus, this batch dis-
tillation column can be controlled satisfactorily for variable
reflux ratio policy by the use of EKF estimator utilizing a
simplified model.

CONCLUSIONS

The study is aimed to estimate the compositions in
the multicomponent batch distillation column from
temperature measurements using EKF estimator. It is
found that, the most important part of the modelling

Figure 9. Effect of the period of temperature measurements for Dtm ¼ 20 min. (a) Reflux-drum compositions; (b) reboiler compositions.

Figure 10. Effect of the initial conditions for x0 ¼ [1/3; 1/3; 1/3] and P0 ¼ 0.1. (a) Reflux-drum compositions; (b) reboiler compositions.
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affecting the performance of the EKF estimator is the selec-
tion of the VLE formulation. EKF parameters of the diag-
onal terms of process noise covariance matrix and the
diagonal terms of measurement model noise covariance
matrix are tuned in the range where the estimator is
stable and selected basing on the least sum of individual
IAE scores for the reflux-drum and the reboiler compo-
sition estimates. It is also found that, increasing the
number of temperature measurements above the rec-
ommended value of NC does not result in a better perform-
ance. Although the observability criterion makes NC2 1

temperature measurements sufficient, using NC measure-
ments improves the performance of EKF estimator. The
measurement locations must be spread through out the
column homogeneously for a better performance. Decreas-
ing the measurement period value increases the estimator
performance, and is limited by the computational power
of the digital computer especially in real-time applications.
The designed EKF estimator is successfully used in the
composition—feedback inferential control of MBDC oper-
ated under variable reflux-ratio policy with an acceptable
deviation of 0.5–3% from the desired purity level of the

Figure 11. The closed-loop responses of the MBDC under the scheduling controller with actual composition feedback. (a) Reflux-drum compositions;
(b) reboiler compositions.

Figure 12. The closed-loop responses of the MBDC under the scheduling controller with estimated composition feedback. (a) Reflux-drum compositions;
(b) reboiler compositions.
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products. The method proposed in the study utilizes a very
simple model for EKF which is tested in a typical batch dis-
tillation column for estimation of states and which can also
be utilized in continuous distillation columns easily.

NOMENCLATURE

t time
x vector of the nonlinear system states
f vector of the nonlinear system functions
u vector of the nonlinear system inputs
G process noise coupling matrix
w vector of the nonlinear system noise process
E f.g expectation
z vector of the nonlinear measurements
v vector of the nonlinear measurement noise process
Q covariance matrix of the nonlinear system noise process
R covariance matrix of the nonlinear measurement noise process
x̂ vector of the state estimates
P covariance vector of the estimation error
F system matrix of the linearized system model
H system matrix of the linearized measurement model
R reflux ratio
Q1 reboiler load
T temperature measurements
q diagonal terms of process noise covariance matrix
r diagonal terms of measurement model noise covariance matrix
Dtm measurement period
t variable for integration
NC number of components
NT number of trays
NM number of measurements
VLE vapour–liquid equilibrium
Dt time step for the simulation integration

Subscripts
k value at kth time index
0 initial time value
_ vector

Superscripts
. time derivative
T transpose
^ estimated values
þ best estimate value
2 prediction value
0 general forms
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