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Abstract
Screening for effective therapeutic agents from millions of drug candidates is costly, time
consuming, and often faces concerns due to the extensive use of animals. To improve cost
effectiveness, and to minimize animal testing in pharmaceutical research, in vitro monolayer
cell microarrays with multiwell plate assays have been developed. Integration of cell
microarrays with microfluidic systems has facilitated automated and controlled component
loading, significantly reducing the consumption of the candidate compounds and the target
cells. Even though these methods significantly increased the throughput compared to
conventional in vitro testing systems and in vivo animal models, the cost associated with these
platforms remains prohibitively high. Besides, there is a need for three-dimensional (3D)
cell-based drug-screening models which can mimic the in vivo microenvironment and the
functionality of the native tissues. Here, we present the state-of-the-art microengineering
approaches that can be used to develop 3D cell-based drug-screening assays. We highlight the
3D in vitro cell culture systems with live cell-based arrays, microfluidic cell culture systems,
and their application to high-throughput drug screening. We conclude that among the
emerging microengineering approaches, bioprinting holds great potential to provide repeatable
3D cell-based constructs with high temporal, spatial control and versatility.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Advances in combinatorial chemistry have allowed the
emergence of chemical libraries consisting of millions of
compounds [1]. The drug development process involves
testing the metabolic function and toxicity of these compounds
to determine therapeutic efficacy and risk potentials
[2, 3]. Although animal models are commonly used for
drug development and pharmacokinetic studies, animal use

4 Author to whom any correspondence should be addressed.

in research is generally associated with significantly high
cost, time and labor-intensive processes, and faces ethical
concerns [4–7]. Cells patterned in an array format (i.e. cell
microarray) hold great potential in screening drug candidates
for efficacy and toxicity at high throughput [8]. Recent studies
have demonstrated that in vitro cell microarrays can prove
to be effective in drug-screening applications (e.g., libraries
from SPECS and Enamine) with reduced cost and time by
significantly reducing the need for animal testing studies
[8–11]. These microarrays enable cell analysis such as drug
treatment response, cell–cell and cell–extracellular matrix
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(ECM) interactions in a high-throughput manner (hundreds
to thousands of samples on a single glass slide) [8, 11–18].

Three-dimensional (3D) cell microarrays provide an
alternative to conventional two-dimensional (2D) multiwell-
plate-based assays. 3D cell culture mimicking native ECM
enables researchers to define structure-function relationships
and to model cellular events and disease progression
[19–23]. For example, tumor cells cultured on 2D and 3D
show different cell morphology [24], metabolic characteristics
(e.g., increased glycolysis of osteosarcoma cells in 3D
culture, differences in the lactate and alanine levels) [22, 25],
and drug response [26]. Several methods have been
developed to form 3D cell constructs such as spontaneous
cell aggregation, liquid overlay cultures, rotation and spinner
flask spheroid cultures, microcarrier beads, rotary cell
culture systems and scaffold-based cultures [27]. Recently,
spheroid-based drug-screening methods have emerged [28].
However, it is challenging to form 3D cell microarrays
using these methods. In contrast, emerging microengineering
technologies enable versatile fabrication of 3D cell-based
microarrays including soft lithography, surface patterning,
microfluidic-based manipulation and cell printing.

In vivo, cells are in a microenvironment that usually
consists of multiple cell types precisely organized in 3D
[29]. For instance, tumors are complex tissues composed
of, in the case of carcinomas, both cancer cells and stromal
cells such as fibroblasts and endothelial cells [30, 31, 32].
These stromal cells are a key determinant in the malignant
progression of cancer (e.g., angiogenesis [30], metastasis [33],
invasiveness [34]) and represent an important target for cancer
therapies [35]. However, the specific contributions of these
stromal cells to tumor progression are poorly defined and
many of the underlying mechanisms remain poorly exploited
[36, 37]. The spatial position of cells is also important for
their functionality which is regulated by the cell’s genetic
coding and its communication with neighboring cells [38].
A method that precisely positions cells forming 3D co-culture
models at large number in a repeatable manner (i.e. a co-culture
array) is helpful to understand the interaction between different
cell types such as to understand cancer pathogenesis and to
improve current therapies. In spite of the importance of cell
co-culture and advances in surface patterning and microfluidic
techniques, a controlled arrangement of multiple cell types in
an array format is challenging.

In this paper, we report the state-of-the-art advances
in microengineering methods to fabricate cell microarrays
and describe existing methods used to introduce drugs to
cell microarrays for drug-screening applications. Among
these emerging fabrication methods, cell printing holds great
potential to provide highly repeatable 3D tissue constructs,
since it can control the cell positions temporally and spatially.

2. 3D cell culture versus 2D cell culture

It has been shown that when cells are cultured in 2D
monolayers, significant perturbations in gene expression are
observed compared to cells in native tissues and in 3D
culture conditions [39]. Furthermore, 3D cellular constructs

can mimic the native tissue microenvironment and hence
better emulate the drug responses observed in animal models
compared to 2D monolayer cell cultures [24, 40, 41].
In vivo, cells are imbedded in 3D ECM with ligands such
as collagens and laminins that allow cell–cell communication
between neighboring cells [42, 43]. Furthermore, expression
of genes responsible for angiogenesis, chemokine generation,
cell migration and adhesion differs in 3D and 2D cultures
[25, 27]. For example, β1-integrin and epidermal growth
factor receptor (EGRF) in malignant human breast epithelial
cells are over-expressed when cultured in a 3D matrix, but not
in 2D monolayers [27]. In addition, tyrosine phosphylation,
which plays a role in signaling of focal adhesion kinase (FAK),
is down regulated in 3D culture [44]. Additionally, cancer
cells show different responses to anti-cancer agents in 3D
culture. Mouse mammary tumor cells have greater drug
resistance to melphalan and 5-fluorouracil in a 3D collagen
matrix as compared to 2D controls [45]. Anti-mitotic drugs
(doxorubicin and 5-fluorouracil) become effective after 24 h
of treatment in 2D cell culture (SA87, NCI-H460 and H460M
tumor cell lines), whereas they cannot show efficacy until
1 week later in hyaluronic-acid-based (HA-based) 3D culture
[46]. Furthermore, co-culture of endothelial, stromal, and/or
epithelial cells has been achieved within 3D systems, which
allows one to study the side effects of a drug on neighboring
stromal cells [25]. So far, accumulative evidence demonstrates
that in vitro 3D culture can better recapitulate in vivo cellular
response to drug treatment than 2D culture, and has potential
to be a superior platform for drug development. Based on
these observations, it can be suggested that cellular responses
to drug candidates observed in 2D may not be applicable to
in vivo response. Therefore, there is a need for in vitro 3D
cell culture models which would bridge the 2D monolayer cell
culture systems and the animal models [18, 19, 41, 47–49].

3. Microengineering methods to fabricate cell
microarrays

In this section, we describe the existing methods which
have been developed to fabricate cell microarrays, including
microwell-based methods, surface patterning methods,
microfluidic methods, and cell printing (table 1).

3.1. Microwell-based method to fabricate cell microarrays

With advances in microengineering such as microfabrication
and soft lithography, a high-density array of wells with
microscale well sizes (e.g., tens to hundreds of micrometers)
can be fabricated. When these wells are loaded with cells
via cell seeding due to gravity, cells immobilized inside these
microwells form cell microarrays.

Soft lithography has gained popularity in common
laboratory settings because of low cost, and compatibility
with a broad range of materials. In principle, multiple
steps are involved to create cell arrays using microwells,
including pattern design, fabrication of a photomask and a
master, fabrication of polydimethylsiloxane (PDMS) stamps,
fabrication of microwells, and loading cells of interest in
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Figure 1. Schematic illustrations of fabricating cell microarrays using soft lithography. A mask pattern is designed and a photomask is
fabricated based on the design. The mask is then used to fabricate the master on a silicon wafer via lithography. The silicon wafer master
can be used repeatedly as a mold for casting PDMS stamps. The PDMS stamp containing protruding columns is pressed onto another
hydrogel solution (e.g., PEG monomer solution) on a glass slide. The microwell array is formed by UV cross-linking of PEG and removing
the PDMS stamp from the formed microwells. Cells are seeded to microwells to form cell microarrays. Reprinted from [50] © 2008, with
permission from Elsevier.

Table 1. Comparison of different methods for fabricating a cell microarray.

Fabrication Cell co-culture Control over 3D Single-cell array Relevant
methods Throughput capability cell density capability capability references

Microwell Medium Yes Low Yes Yes [13]
Surface patterning Medium Yes Medium Yesa Yes [58–61, 131, 132]
Microfluidics Medium Yes Low Yes Yes [71, 73, 74]
Cell printing High Yes High Yes Yes [80, 91, 98, 100, 133]

a Cell encapsulating hydrogels are patterned on surface to form a 3D cellular structure [131, 132].

microwells (figure 1). Generally, a silicon wafer is used as
a substrate, on which a photosensitive, thin film (e.g., SU-8)
is placed. Once the film is exposed to UV light through
a designed photomask, the film becomes solidified with a
permanent microstructure created on the silicon wafer. The
silicon wafer mold can be used repeatedly as a microstructure
master for casting PDMS stamps, which can be prepared by
mixing PDMS prepolymer, thermally curing the polymer, and
peeling the resulted flexible and transparent films. The cast
PDMS stamp is then used to prepare microwell arrays on a
glass slide. Using this method, Moeller et al generated a
microwell array with a high resolution of 20 000 dpi, which
enables the fabrication of microwell arrays with seeded cells
at a greater density [50]. Due to the 3D microenvironment
on microwell arrays, mouse embryonic cells aggregate within
microwells and form homogeneously sized embryoid bodies
(EBs) [51].

Although PDMS has been widely used in biomedical
engineering, it is restricted by innate hydrophobicity,
absorption of organic solvents and small molecules, and water
evaporation [52]. Alternatively, polyethylene glycol (PEG)
and agarose can be used to fabricate microwells instead
of PDMS [51, 53–55]. For example, Karp et al showed
that homogenous and controllable EBs were formed within
microfabricated PEG microwells, which can be used for high-
throughput screening of drug candidates [51].

The shape and dimension of microwell arrays can be
defined according to photomask micropattern to control the
size and shape of cell aggregates in the wells [56]. By varying
the size, shape and depth of microwells, single-cell arrays can
be fabricated to evaluate cellular behavior at a single-cell level,
which may be absent in a cell aggregate [13]. High-throughput
measurements of single-cell responses are thus essential for a
variety of applications including drug screening, toxicology
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and cell biology [57]. However, the microwell method based
on soft lithography has limited flexibility in changing pattern
design due to reliance on photomasks.

3.2. Surface patterning for cell microarrays

Surface patterning is commonly used to prepare cell
microarrays, where material surface (generally a cell-resistant
surface) is modified locally in an array pattern with cell
adhesive biomolecules (e.g., collagen, laminin, fibronectin).
When cells are seeded onto the surface, they will attach only to
the patterned area modified with biomolecules of high affinity
to cells forming cell microarrays [14].

Via the surface patterning method, Flaim et al prepared a
cell microarray to study the effects of different combinatorial
matrices of ECMs on the differentiation of mouse embryonic
stem cells (ESCs) [58]. In this study, 32 different ECM
combinations were spotted onto a polyacrylamide gel-coated
glass slide using a standard DNA spotter (pin printing). Mouse
ESCs can only attach to ECM-coated areas, resulting in an
ECM-based cell microarray, which allows the investigation
of cell–ECM interactions in a high-throughput manner.
Similarly, Ceriotti et al microarrayed ECM proteins (e.g.,
fibronectin) on plasma-deposited polyethyleneoxide (PEO-
like) film-coated glass slides [59]. In another study, Anderson
et al developed a nanoliter scale platform synthesizing
biomaterial libraries in an array format with the aid of a robotic
liquid handling system [60]. With this method, 1700 cellular–
material interactions were simultaneously investigated on a
single glass slide.

Recently, Zawko et al developed an inexpensive, off-the-
shelf surface patterning method (figure 2) to fabricate cell
microarrays [61]. The method is based on micropatterning of
3D alginate grids on glass slides using a woven nylon mesh,
eliminating the lithography step. The hydrogel grids were used
to guide cell seeding on a glass slide to form cell microarrays
at a density of 21 000 spots cm−2 (single cell array) or
6000 spots cm−2 (multi-cellular array).

3.3. Microfluidic methods

Microfluidics has emerged as a promising technology with
widespread applications in engineering, biology and medicine
[62, 63]. Microfluidics offers special advantages for
manipulating cells since local cellular microenvironment
can be controlled [64]. Cell microarrays containing
multiple cell types have been fabricated using microfluidic
methods [65–68].

Meyvantsson et al developed compartmentalized
microfluidic cell arrays with a high density (up to 768 micro-
chambers in a 128 × 86 mm2 area) [69]. In this array, cells
in a 2D or 3D microenvironment were cultured via droplet-
based passive pumping with maintained basic microfluidic
operations including routing, compartmentalization and
laminar flow. The use of external tubing and valves to
control the liquid flow was avoided because of direct access
to individual elements via holes in the microfluidic channel
surface. This design offers the advantage of reduced device
volume and minimal dead volumes. In another study, Wang

et al developed a microfluidic cell array with individually
addressable chambers controlled by pneumatic valves for
cell culture and cell-reagent response [66]. In this cell
array, different types of cells can be directed into designated
chambers for culture and observation. Mirsaidov et al
fabricated a 3D co-culture cell microarray by integrating
microfluidics and time-shared holographic optical trapping
(figure 3) [65]. In this method, E. coli were manipulated
using 3D arrays of optical traps, and then conveyed to an
assembly area using a microfluidic network (figure 3(a)). In
the assembly area, the cells were encapsulated and assembled
in a small volume (30 × 30 × 45 μm3) of PEG (figure 3(b)).
This step was repeated to form cell microarrays (figure 3(c)).
However, the optical trapping force is dependent on laser
power which may affect cell viability [65], and limits the
maximum area of the array (350 × 350 μm2). In addition, Wu
et al formed a microfluidic platform allowing self-assembly
of spheroids of tumor cells and characterized the dynamics of
spheroid formation [70]. In this study, U-shape traps, which
have inner volume of 35 × 70 × 50 μm3, were designed and
integrated in the microfluidic array device. It was observed that
MCF-7 breast cancer cells formed spheroids (7500 spheroids
per cm2) with a narrow size distribution (10 ± 1 cells per
spheroid). The perfusion of cell media allows for prolonged
cell culture period, which can be potentially used to evaluate
anti-cancer drugs in a high-throughput manner [70].

Microfluidic technologies have also been used to fabricate
single-cell microarrays [71–73]. Kaneko et al developed a
cell microarray loaded with single cardiomyocytes, which
were interconnected via microfluidic channels [72]. With
this cell microarray, it is found that cell–cell communication
affects cell response to drug treatment. Recently, Xu et al
designed a microfluidic single-cell microarray for testing drug
response of individual cells [73]. The array consisted of
8 parallel channels with 15 cell-docking units in each channel.
This design enabled simultaneous monitoring of the cellular
responses exposed to various drug candidates (e.g., specific
activators and inhibitors of the Ca2+ release-activated Ca2+

channels) in multiple microchannels. Moreover, combinations
of hydrogels and microfluidics have been used to fabricate
3D cell microarrays, which may provide new methods for
drug screening in a physiologically relevant environment. For
example, Tan and Takeuchi developed a bead-based dynamic
3D cell microarray by introducing cell encapsulating alginate
beads into a microfluidic system, and arraying the beads using
a fluidic trap [74].

3.4. Cell printing

Cell printing is an emerging technique [75] and has been
used to fabricate 2D or 3D cell microarrays. Cell printing
is different from other cell microarray approaches described
above: (i) cell printing is automated through computer-
control enabling high-throughput manufacturing of cell arrays
with high spatial resolution and control [76, 77], e.g., the
dimensions of the array and spot-to-spot distances can be
altered; (ii) cell printing can place different types of cells
onto intended positions (spatial control) by switching multiple
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(a)

(b)

Figure 2. Fabrication of a cell microarray using surface patterning [61]. (a) Alginate dip-coated in a nylon mesh is stamped on a cell
adhesive substrate (e.g., glass). Alginate is crosslinked after water evaporation with a solution of calcium chloride forming hydrogel spots.
The cell microarray is achieved by seeding cells within the hydrogel compartments. (b) A fibroblast array with density of 21 000 cm−2 was
achieved using this method (24 h in culture). Figures reprinted from [61]; reproduced by permission from the Royal Society of Chemistry.

ejecting nozzles temporally [78]; (iii) 3D cell models can
also be fabricated using cell printing [79–81]; (iv) cell
printing has been shown to produce repeatable and uniform
3D cell aggregates and constructs [78, 81]. Current cell
printing and deposition techniques include inkjet printing
[82, 83], laser printing [76, 84, 85], bio-electrosprays
(BES) [86], and cell spotting [87, 88]. However, there
are challenges with existing cell printing technologies such
as low cell viability, loss of cellular functionality and
clogging of ejectors. Recently, several improved droplet
generation methods were introduced [89–93]. Acoustic cell
printing technologies have been developed to deposit cells
and polymers that are sensitive to heat, pressure and shear
[91, 94–98]. Alternatively, valve-based printing has been used
to print cell-encapsulating hydrogels [100], single cells for
RNA analysis [102] and blood cells for blood cryopreservation

[103, 104]. These technologies have advantages over existing
printing technologies in terms of higher cell viability and
functionality [98, 105].

Hart et al [87] used a robotic microarray spotting device
(pin printing) to print cells onto streptavidin-coated slides in an
array format. With this method, high density has been achieved
with ∼4700 discrete HeLa cells printed on a single slide using
an 8-ejector printer. Recently, cell printing has been used to
directly deposit cell encapsulating scaffolding materials (e.g.,
ECM materials such as collagen, alginate, elastin, and agarose)
onto glass surfaces at high throughput to 3D cell microarrays
(e.g., figure 4) [100, 106, 107]. The scaffolding materials
can support cells mechanically and allow for perfusion of
nutrients, thus enabling long-term cell culture [108–110]. For
example, cells can be encapsulated in nanodrops of collagen
or alginates, which are mounted onto a functional glass slide
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(c)

(b)

(a)

Figure 3. Fabrication of a cell microarray using microfluidic methods [65]. (a) Time-multiplexed, 3D arrays of optical traps were used to
manipulate cells. The optical traps were created using infrared light (red path) from a Ti:sapphire laser beam. A microfluidic network is
used to deliver the multiple types of cells mixed with hydrogel precursor to the assembly area: two types of cells (E. coli RFP, E. coli GFP)
flow in different channels with a third cell-free channel in middle. In the assembly area, the cells are encapsulated within the hydrogel
through photo crosslinking forming cell array ((b) 2D 5 × 6 microarray). (c) Nine homogeneous 4 × 4 microarrays of G1 E. coli forming a
3 × 3 microarray. Figures reprinted from [65]; reproduced by permission from the Royal Society of Chemistry.

Table 2. Comparison of different methods to add drugs to cell-based assays.

Fabrication methods Throughput Cross-contamination 3D drug loading capability Relevant references

Drug patterning Medium Yes Yes [112]
Stamping method Medium Yes Yes [88, 113]
Microfluidic drug loading Low Yes No [117]
Aerosol spray High No No [115]

by a robotic system to form 3D cell microarrays [60, 88, 111].
The same bioprinting platform can then be used to deliver the
drug candidates into the cell arrays in a controllable and high
throughput manner. Therefore, bioprinting technology offers
a versatile method for formation of the 3D cell arrays followed
by compound delivery and testing.

4. Methods for adding drugs into cell-based assays

Controlled delivery of drug candidates into cell microarrays
is the key to successful drug screening (i.e., decreased
failure rate) at high throughput. A direct way is to load
drug candidates to each spot using a robotic system (e.g.,
Perkin Robot Loading System). However, loading thousands
of chemicals to cell microarrays usually takes hours and
even days, which significantly affects the viability of cells
during the loading process and the reproducibility of cell-
to-drug responses. In addition, it is essential to introduce
chemical or genomic stimuli to each cell spot and avoid
cross-contamination between thousands of spots on the cell
microarray. To address these technical difficulties, various
methods have been developed to efficiently deliver drugs to cell

microarrays, including drug patterning [112], stamping [113],
microfluidic drug loading [114] and aerosol sprays [115, 116].
These methods differ in throughput, compatibility with co-
culture arrays, and control over the cell density (table 2).

4.1. Drug patterning

Drug patterning utilizes a printing robot to array chemicals
on a substrate. When cells are seeded on the top of this
chemical loaded substrate, only cells on each arrayed dot
are affected and then form affected-cell array. Since drug
patterning does not need cell printing, the method is easy to
be utilized in high-throughput drug screening. For example,
Bailey et al developed a drug patterning method to screen
for small molecular compounds using mammalian cells at
high throughput [112]. In this system, small molecular
compounds were encapsulated in a scaffold made of poly-(D),
(L)-lactide/glycolide copolymer (PLGA). On a Ni-chelated
slide, small molecular compounds were spotted (pin printing).
Cells were then seeded on top of these spots to form a
monolayer of cells. Since compounds encapsulated in the
PLGA matrix can slowly diffuse to attached cells, the dose-
response can be plotted as a function of distance to the spot
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(b)

(c) (d)

(a)

Figure 4. Fabrication of a cell microarray using the cell printing method. (a) Schematic of a printing system. A valve-based ejector is
connected with a 3D stage which offers ejection of cell encapsulating droplets (e.g., hydrogels) high spatial resolution. (b) The droplets can
be patterned in an array format on a substrate (e.g., Petri dish, glass slides). (c) A sample of high-density cell microarrays.

center. It was observed that the reduced expression of tuberous
sclerosis complex gene 2 (TSC2), which was achieved by
transient RNAi, was highly correlated to the resistance of cells
to a compound, mactecin II. Combined with imaging-based
readouts, the drug patterning method consumed small amounts
of test compounds and few cells compared to microplate-
based screening methods. However, the diffusion of gradually
released drugs requires large spot-to-spot distance to avoid
crosstalk between neighboring spots, thus limiting the cell
densities.

4.2. Stamping method

The stamping method involves two chips, one is a cell chip
on which cells are arrayed, and the other is a drug chip.
When high-throughput screening is initiated, chemicals are
spotted on a drug chip and then stamped onto a cell chip.
The stamping method makes it possible that thousands of
screening experiments are performed on a single glass slide.
For example, Lee et al developed a simple cell array-based
stamping method to evaluate the drug metabolic process,
which is mainly mediated by enzyme P450 in liver cells,

at high throughput [88, 113]. This stamping method is
consisted of three major steps, including fabrication of cell
arrays, drug loading (stamping) and data analysis (figure 5).
Initially, an array chip (metachip) containing human P450
and prodrugs was prepared. The selected prodrugs can be
cyclophosphamide, tegafur and acetaminophen, which were
the substrate of P450. When spotted on the array (pin printing),
prodrugs were digested by P450, generated metabolites,
mimicking the metabolism of prodrugs in vivo. Meanwhile,
3D cell aggregate arrays were prepared by spotting collagen
solution containing MCF-7 breast cancer cells onto collagen-
modified slides. Upon stamping, metabolites of prodrugs from
the chip can diffuse into 3D cell aggregate array and affect
cell proliferation. Monitoring of biological events on the
cell array allows evaluating the bioactivity/toxicity of prodrug
metabolites. Wu et al developed a stamping method suitable
for screening drug–drug interactions in cell-based assays [55].
This stamping method includes a drug combination chip and
cell chip. Drug combinations were printed on a PDMS
post-array and stamped to the cell-seeded microwells. In
this way, drug combination effects were evaluated in the
sealed chamber, and three chemicals were found to have the
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(a)

(b)

(c)

Figure 5. Schematic illustration of drug loading using the stamping method [88]. The stamping method consists of three main steps to
achieve precise drug loading. (a) Compounds of interest are spotted on an array chip (Metachip). (b) Cells are grown on a PDMS base,
defined as a cell array (DataChip). (c) The array chip and DataChip are stamped together to allow for perfusion. The toxicity of compounds
on cells is evaluated using live/dead staining on the cell array. Each cell spot has a diameter of 600 μm. Reproduced by permission from
PNAS [88]. © 2008 National Academy of Sciences, USA.

drug–drug interactions with verapamil. The stamping method
offers opportunities for rapid and inexpensive combinatorial
drug screening to the common research lab. This cell array-
based stamping method is simple and rapid, significantly
reducing the complexity of drug loading to cell array and thus
improving the throughput [88].

4.3. Microfluidic drug loading

Methods based on microfluidics have also been developed to
deliver drugs onto high-throughput drug-screening platforms.
For instance, Hung et al fabricated a PDMS microchamber
containing 10 × 10 arrays as a drug-screening platform
on which long-term cell culture is enabled [117]. The
microchamber is surrounded with microchannels to exchange
medium and load reagents for biochemical assays. HeLa
cells are introduced into the microchamber by a syringe
and continuous perfusion of the medium through these
microfluidic channels enables long-term cell culture at 37 ◦C.
However, this method has some drawbacks such as
inhomogeneous cell distribution in the 10 × 10 arrays and
challenges in further miniaturization of the device. In
another study, Upadhyaya et al developed a microfluidic

device to control drug supply in a cell-based microarray for
high-throughput screening [114]. This device consists of
three layers, an agar gel to support adherent cell culture, a
micropatterned nanoporous membrane layer and a PDMS layer
containing two microfluidic channels (figure 6). Compounds
of interest can be loaded into the microchannel and then
spatially distributed via an electrical field into the agar gel
through the nanoporous membrane. By controlling the electric
field across the nanoporous membrane, microscale drug spots
with the diameter as small as 200 μm can be obtained with
inter-spot distances ranging from 0.4 to 1 mm. In both
studies, microfluidics drug delivery has been demonstrated,
with potential to enable long-term evaluation of drug-cell
interactions at high throughput [114, 117].

4.4. Aerosol spray

To load the protein solution on a chemical array
simultaneously, aerosol spray is an efficient way. In this
method, thousands of chemicals are first arrayed on a substrate
and then the protein solution is sprayed. Then chemicals are
reacted with the protein solution simultaneously and ultra-
high-throughput screening can be performed. For example,
protein microarrays are often used to evaluate the interactions
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(a)

(b)

Figure 6. Schematic of the microfluidic device for high-throughput
drug loading [114]. (a) This device consists of three layers, a gel
layer to support adherent cell culture, a micropatterned nanoporous
membrane and a microfluidic layer made by PDMS.
(b) Compounds of interest can be loaded into the microchannel
patterned on the PDMS layer and spatially located into the gel layer
through the nanoporous membrane upon an electric field. Figures
reprinted from [114]; reproduced by permission from the Royal
Society of Chemistry.

between chemicals and enzymes. However, immobilization
of chemicals onto glass slides in an array format is time
consuming and often leads to protein degradation [118, 119].
Furthermore, it is challenging to rapidly deliver droplets
to each spot without evaporation and causing cross-
contamination. To address these challenges, Gosalia et al
established a platform for enzymatic reactions in a nanoliter
liquid phase [115]. In this method, a library of 352 compounds
was microarrayed in glycerol droplets on ten glass slides
at a density of 400 spots cm−2. Biological samples such
as caspases 2, 4 and 6, thrombin and chymotrypsin were
aerosolized and sprayed onto the drug microarray using an
ultrasonic nozzle. Enzymatic reactions were carried out by
subsequent spraying the drug microarray with nanoliters of
reagents, significantly reducing the consumption of materials
and reagents. Similarly, Ma et al also used the spray strategy
to achieve ultra-high-throughput drug screening [116]. Via
this strategy, over 6000 homogeneous reactions per 1 ×
3 inch2 microarray were carried out, which significantly
reduced the amount of reagents used (1 nl) by >10 000-
fold compared to the 384-well plate assays (10 μl). This
technique is compatible with many conventional well-based
reactions and can be carried out using instruments available in
industrial and academic institutions, such as liquid handlers,
DNA microarrayers, chip scanners and data analysis software.
Hence, this spray method can be simply implemented to
achieve high-throughput drug screening without the need for
sophisticated equipment.

5. Conclusions and future perspectives

Identifying millions of drug candidates for disease treatment
is costly and time consuming with current drug-screening
technologies such as the multiwell-plate-based screening
method. Cell-based microarrays have recently been employed
to address the challenges associated with conventional
microwell-plate-based methods for high-throughput drug-
screening applications. Cell microarrays have been
broadly used as a biological tool to study target selection,
drug candidate identification as well as preclinical test
and drug dosage optimization [120, 121]. Current
microarray fabrication methods include soft lithography,
surface patterning, microfluidic methods and cell printing,
which provide a platform to studying cell responses to different
treatments (e.g., drug screening, cytotoxicity screening) in a
high-throughput manner. These methods, which can increase
the throughput with significantly reduced cost on amounts
of expensive test reagents and materials (e.g., chemical
compounds, cells), are needed [16]. However, as the number
and types of cells to control increase, tracking these cells
in microchannels with multiple valving steps requires a
complex peripheral system before and after sorting, as the
cells need to travel and be spatially patterned at a specific
location as required by some of the existing applications.
These emerging cell-based methods are broadly applicable
and can be extended to applications such as assessing stem
cell differentiation, characterizing interactions between cells
and their microenvironment, and analyzing genomic functions
by RNAi.

There are several challenges associated with cell
microarrays as high-throughput drug-screening methods.
One of the main challenges is efficient loading of drug
candidates into the cell microarrays. Several methods have
been developed to address this challenge, including drug
patterning, stamping, microfluidic drug loading and aerosol
spray methods. Although these methods enable the application
of cell microarrays in high-throughput drug screening, there
remain unaddressed challenges. For example, an ideal
polymer is needed to maintain biological and chemical
properties of various drug candidates in drug patterning
methods. Also, in stamping and aerosol spray methods, tests
are performed in the same fluid medium limiting the range
of experimental conditions that can be attained (i.e., lack
of compartmentalization) and cross-contamination between
neighboring spots always exists which limits the cell density.
Therefore, further advances are needed to develop efficient
techniques to load drugs into microarrays without cross-
contamination. Cell printing holds great potential to address
this challenge and could be used for drug loading, as it has
been utilized to load growth factors and other biomolecules
with or onto cells [122–124]. Another challenge is to form 3D
cell arrays. For instance, only limited human tumor cell lines
(<100) can form and grow in 3D spheroid format in vitro,
which is a typical native cancer structure [125]. Although
cellular constructs in 3D can be formed with existing methods
in an array format (e.g., microwells, microfluidics, printing),
further studies are needed to verify that these constructs show
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a similar, if not the same, response to drug treatment. For
instance, the existing in vitro platforms of 3D cellular models
are not relevant to most human cancers in vivo (e.g., cancers of
the blood) [126]. In addition, screening cell response to drugs
at high-throughput (e.g., via imaging) and analysis of such a
large amount of screening data are also challenging. This may
become a major bottleneck for drug-screening applications
[127]. With advances in microscopy and corresponding image
analysis techniques [128–130], cell microarrays and emerging
drug loading techniques, especially bioprinting, hold great
potential to provide highly repeatable 3D cellular constructs
that could be a powerful tool for studying cell-drug response
in a high-throughput manner.
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