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Emerging technologies in medical applications of 
minimum volume vitrification

Biopreservation refers to extended conservation of 
cellular life at ultra-low temperatures to store cells 
and tissues. Cryopreservation has extensive appli-
cations in modern medicine, including human 
fertility preservation [1–4], conservation and trans-
port of cells/tissues for transplantation [5] and stor-
age of cells for tissue regeneration and cell therapy 
[6–8]. There have been significant efforts to develop 
cryopreservation techniques and to optimize cryo-
preservation protocols for various cell and tissue 
types, such as embryos [9], h epatocytes [10], stem 
cells [11] and blood vessels [12,13]. 

During cryopreservation, cells /tissues 
undergo cooling to sub-zero temperatures at 
which biological activity is slowed down or com-
pletely stopped. At the end of the cryopreserva-
tion process, biopreserved cells are thawed, and 
ideally resume biological activity. During the 
cryopreservation process, cryoprotectant agents 
(CPAs) are needed to protect cells from cryo-
injury by decreasing the temperature at which 
intracellular ice formation occurs. CPAs act 
as osmotic buffers [14–16] and prevent harm-
ful critical electrolyte concentration gradients 
[17,18]. Moreover, CPAs stabilize cell membranes 
and maintain macromolecules in their native 
form [19,20]. Some examples of widely used 
CPAs include Dimethylsulphoxide (DMSO), 
1,2-propanediol (PROH) and ethylene glycol 
(EG) [21,22], sucrose, trehalose and mannitol. 

Slow freezing and vitrification are currently 
available methods in laboratories and clinics 
[23]. Slow freezing is an established technique 

pioneered in the early 1970s, which cryopreserves 
biological samples at controlled freezing rates to 
avoid intracellular ice formation and minimizes 
structural damage to the cell membrane [24] and 
cytoskeleton [25]. CPAs are used at relatively low 
concentrations (e.g., 1.5 M) [21] in slow freez-
ing, which has become a standard method for 
cell and tissue cryopreservation [26–29]. However, 
cells undergoing slow freezing processes still suf-
fer injury, due to the formation of ice crystals, 
extreme hyperosmolarity and dehydration [30]. 

As an alternative cryopreservation method, 
vitrification offers improved outcomes [23,31–34] 
by preventing the formation of ice crystals and 
the increase in ionic strength of unfrozen con-
centrated solutions [35,36]. Vitrification refers to 
conversion of the liquid phase directly into a 
glass-like solid. Vitrification techniques require 
higher CPA concentrations (e.g., 6–8 M) and 
higher cooling rates (e.g., -1500°C/min) com-
pared with slow freezing methods. Rapid cool-
ing rates can be achieved by immersing cells/
tissues directly into liquid nitrogen (-196°C) or 
liquid nitrogen vapor (-160°C). High CPA lev-
els used in vitrification lower the freezing point 
and increase the medium viscosity. However, it 
is known that these high CPA levels can cause 
osmotic shock and toxicity to cells resulting in 
alterations in the cytoskeleton [37–39], spindle 
d isassembly and chromosome dispersal [40]. 

Minimum sample volume (<1 µl) methods 
have been developed to reduce the adverse 
effects of high CPA concentrations needed for 
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vitrification. These methods have been effec-
tive to increase the cooling rates and reduce the 
required CPA levels. These approaches include 
open pulled straws (OPS) [41], glass capillar-
ies [42], electron microscopy grids (EMGs) [43,44], 
Cryoloop™ [45], Cryotop [46], gel loading 
tip [47,48] and droplet-based vitrification [10,49–51]. 
Even though cryobiological efficacy of mini-
mum volume vitrification methods has been 
demonstrated, these methods are operationally 
demanding and require high technical skills 
limiting their widespread utilization. Recent 
advances in nano- and micro-scale technolo-
gies allow the manipulation of nanoliter sample 
volumes. Examples include microfluidics for 
CPA loading/unloading to minimize osmotic 
shock [52], quartz capillary microchannels as vit-
rification carriers to increase cooling rates [11,53], 
and ejector-based droplet generation systems 
for vitrification of cells at high throughput 
[10,49,51,54,55]. There are other droplet generation 
methods including acoustics [51], inkjet [56] and 
microfluidics [57]. 

Nano- and micro-scale technologies have 
already demonstrated the potential to transform 
modern medicine with alternative approaches 
in diagnostics, surgical and therapeutic prac-
tices [58–61]. These technologies, when applied 
to biopreservation, could enable the widespread 
use of minimum volume vitrification approaches 
in the biopreservation realm. In this article, we 
describe the existing vitrification-based cryo-
preservation approaches with an emphasis on 
minimum volume droplet-based methods. We 
highlight the potential applications of these 
technologies in biopreservation of cells, tissues 
and tissue-engineered constructs. 

Vitrification 
The vitrif ication phenomenon was f irst 
described and investigated back in the 1890s [62]. 
Application of vitrification for cryopreservation 
with structurally ceased state was not recognized 
until 1937 by Luyet [63,64]. In vitrification, as the 
glass transition temperature is reached during 
cooling, the elevated viscosity of the glass-like 
solid conserves the natural disorder of molecules 
existing in liquid and stops all chemical reactions 
that require molecular diffusion, leading to met-
abolic inactivity and stability over time [65,66]. 
Thus, cells/tissues survive the cooling proc-
ess without significant damage resulting from 
ice-crystal formation. 

Vitrification usually requires addition of high 
levels of CPAs (permeable and/or nonperme-
able) (i.e., 6–8 M) prior to cooling. The use of 

nonpermeable CPAs, such as sugars (e.g., sucrose 
and trehalose) and polymers (e.g., polyvinylpyr-
rolidone and polyvinyl alcohol), can reduce the 
required permeable CPA concentration and 
enhance the glass transition process [67–69]. 
Another strategy is to use stepwise loading of 
CPAs, in which a pretreatment step with lower 
concentrations can be employed to minimize the 
osmotic shock and toxicity [23]. 

An increase in cooling rate facilitates cells to 
pass through the phase transition temperature 
rapidly, thereby decreasing cryoinjury to the 
cell membrane [70]. In addition, an increase in 
cooling and warming rates leads to vitrification 
at lower CPA concentrations, thus alleviating 
the detrimental toxic and osmotic effects to 
the cells [71]. To address these challenges, vit-
rification carrier systems have been developed 
to increase cooling and warming rates by using 
minimum volume approaches. However, most 
minimum volume vitrification systems have low 
throughput, which fits well with the cryopreser-
vation of reproductive cells (i.e., oocytes) that are 
collected in small quantities during the clinical 
process. However, throughput becomes a limita-
tion for vitrification of cells/tissues with larger 
process volumes, such as whole blood, blood 
components and stem cells. 

 n Carrier-based vitrification systems 
A variety of carrier systems have been developed 
for vitrification using minimum sample volumes 
(Table 1) [67,72,73]. Conventional plastic straw is 
one of the initial vitrification carriers used for 
cryopreservation of embryos [9], which provides 
a cooling rate of 2500°C/min and a warming 
rate of 1300°C/min. However, since this carrier 
system encompasses a large sample volume (i.e., 
45 µl) [74], it is hard to achieve an ultra rapid 
cooling rate, and high CPA concentrations are 
required to realize vitrification. To reduce the 
vitrification sample volume, several other meth-
ods have been developed; such as OPS (~1 µl) [41] 
and hemi-straw systems (~0.3 µl) (Figure 1a) [75]. 
Using these systems, cryoinjury was reduced as 
the cooling and warming rates (OPS: 16,700 and 
13,900°C/min; hemi-straw: >20,000°C/min) 
were higher than conventional straws. 

Glass capillaries were proposed as a vitri-
fication carrier, offering controllable cooling 
and warming rates using different diameters. 
For example, capillaries of 440 µm–2 mm 
in diameter could provide cooling rates of 
12,000–2000°C/min and warming rates 
of 62,000 to 5000°C/min, respectively [42]. 
The capillary approach has been applied for 
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cryopreservation of bovine oocytes [42] and 
embryos [76]. This method resulted in compa-
rable hatching rates compared with those using 
the OPS technique (glass capillary: 19%; OPS: 
27%; control: 80%), suggesting no critical dif-
ference in the cooling/warming rates relative to 
OPS. Closed pulled straws have been developed 
to avoid potential cross-contamination from 
direct contact with liquid nitrogen. Improved 
survival (79%) and spindle morphology conser-
vation [77] have been shown with this method 
compared with OPS (63%) for the v itrification 
of mouse oocytes. 

Quartz microcapillaries have been recently 
utilized for vitrification [11,53,78] given that 
higher heat transfer rates (cooling rate of 
250,000°C/min) can be achieved compared to 
glass and plastic capillaries. In this approach, 
thin-wall quartz micro capillary (outer diam-
eter: 0.2 mm; wall thickness: 0.01 mm) has led 
to ultrafast cooling rates of up to 250,000°C/
mm [11]. Therefore, this method lowered the 
CPA levels needed for vitrification. Accordingly, 
quartz microcapillaries have recently proved to be 
superior in terms of cell survival (murine embry-
onic stem cells [11] and mouse oocytes [79]) com-
pared to conventional straws, OPS and EMGs. 

Electron microscopy grid was developed to 
vitrify samples with a volume less than 1 µl, with 
theoretical cooling and warming rates of approx-
imately 150,000°C/min [43,44]. This system has 
been used for vitrification of bovine blastocysts 
[80] and showed similar embryo survival rates 
compared with nonvitrified blastocysts and an 
increased hatching rate (68%) compared with 

plastic straw vitrification (53%). A simplified 
EMG method has been used for mouse oocytes 
with survival and fertilization rates of 90.0% 
and 56.7%, respectively [81]. 

Cryoloop is one of the most clinically employed 
approaches to vitrify embryos and oocytes, 
which has demonstrated increased cell surviv-
ability compared to straw-based approaches after 
thawing [45]. In this approach, the carrier consists 
of a small nylon loop (0.7–1.0 mm in diameter) 
mounted on a stainless steel pipe inserted into 
the lid of a cryovial (Figure 1b). The sample is first 
placed on the Cryoloop, which has a thin layer of 
CPA film. The loop is then sealed in a cryovial, 
which is subsequently filled with liquid nitrogen. 
Since the sample volume is limited to the loop 
size, cooling rates as high as 700,000°C/min can 
be achieved due to the absence of a solid support 
and the minimum sample volume (<1 µl) that 
is used [46,82]. 

Cryotop is a recently developed vitrification 
approach, which uses a polypropylene strip 
attached to a holder accompanied with a pro-
tective cap (Figure 1C). In this method, sample 
(<0.1 µl) is loaded with a glass capillary on top 
of the film strip. Then, the solution is removed, 
leaving behind a thin layer sufficient to cover the 
cells to be cryopreserved. The minimum sam-
ple volume used for this approach enhances the 
cooling rate up to 23,000°C/min, and warm-
ing rate up to 42,100°C/min [46]. Consequently, 
the Cryotop method has demonstrated higher 
efficiency for bovine oocyte vitrification com-
pared to plastic straws and OPS with improved 
fertilization and blastocyst development, and 

Table 1. Summary of vitrification carrier systems. 

Vitrification 
carrier 

Sample 
volume/size 

Cooling rate 
(ºC/min) 

Warming rate 
(ºC/min) 

Clinically 
in use 

Ref.

Conventional 
straw 

0.25 ml 2500 1300 Yes [9] 

Open pulled straw ~1 µl 16,700 13,900 No [41] 
Hemi-straw ~0.3 µl >20,000 N/A No [75,162] 
Electron 
microscopy grid 

<1 µl 150,000 150,000 [43–44]

Cryoloop 0.7–1.0 mm 
(inner diameter) 

700,000 N/A Yes [45] 

Cryotop <0.1 µl 23,000 42,000 No [46] 
Cryotip N/A 12,000 24,000 No [85] 
Gel loading tip 0.6–0.7 µl No [47–48] 
Quartz 
microcapillary 

~3 mm (inner 
diameter) 

250,000 N/A No [11,53,78] 

Minimum drop size 0.1–0.5 µl 130,000 N/A No [54,99–101]

Ejector-based 
droplet 

~ 1 nl N/A N/A No [10,49,51,102–
104]
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with higher percentage of typical spindle and 
chromosome morphology [83,84]. On the other 
hand, Cryotip constitutes a narrow capillary 
that can be heat-sealed at both ends after cell 
loading to provide a closed system. Although 
lower cooling and warming rates (12,000 and 
24,000°C/min, respectively) were reported with 
this system compared with the Cryotop method, 
survival of human blastocysts, pregnancy and 
delivery rates following vitrification did not dis-
play a significant difference [85]. 

In the gel loading tip method, the vitrifica-
tion solution volume is controlled by the pipette 
tip size (typically 0.6–0.7 µl) (Figure 1D) [47,48]. 
Using this vitrification method, the cleavage rate 

of bovine embryos and rabbit zygotes were lower 
than the rates achieved by the Cryotop tech-
nique [48]. This difference can be attributed to 
high CPA concentrations and the inferior c ooling 
rates offered by the gel loading tip approach. 

 n Limitations of carrier-based 
vitrification approaches 
Carrier-based minimum volume vitrif ica-
tion systems described here have successfully 
improved the survivability and functional-
ity of cells undergoing cryopreservation com-
pared with conventional plastic straw systems. 
However, a major challenge associated with 
these systems is the need for manual han-
dling, skilled technicians, hence, leading to 
a low throughput process. Nano- and micro-
scale droplet-vitrification offers a carrier-free 
approach, which involves generation of cell 
encapsulating CPA droplets followed by direct 
injection into liquid nitrogen [10]. Since no vit-
rification carrier or container is needed in this 
approach, higher cooling and warming rates can 
be achieved through direct contact with liquid 
nitrogen. More importantly, recent advances in 
nano- and micro-droplet generation and ejec-
tion technologies allowed effective vitrification 
of droplets in a continuous manner, which can 
potentially attain throughput levels required for 
most biopreservation applications, such as blood 
cryopreservation [86]. Recent developments in 
carrier-free, droplet-based vitrification methods 
are discussed in the next section. 

 n Carrier-free, droplet-based 
vitrification approaches 
Droplet-based vitrification involves loading of 
samples with vitrification solution, followed 
by deposition of the solution cell suspension in 
the form of microdroplets into liquid nitrogen 
[10,49,52]. Alternatively, droplets are deposited 
onto a surface with high thermal conductivity 
(e.g., aluminum), followed by rapid immersion 
into liquid nitrogen. The main advantage of 
this technique is the potential to achieve higher 
cooling and warming rates due to lower heat 
capacity of a microdroplet at the absence of a 
bulky carrier. Carrier-free techniques reduce the 
likelihood of ice crystal formation and reduces 
the CPA concentrations [49]. Encouraging results 
have been achieved by droplet-based vitrification 
techniques with various plant species [87,88]. The 
promising outcomes achieved with this technol-
ogy in plant biopreservation have paved the way 
for applications with mammalian cells, such as 
oocyte and embryo crypreservation [46,50,89,90]. 

Figure 1. Minimum volume vitrification carriers. (A) Hemi-straw, which was 
inserted into a 0.5 ml straw for storage, (B) Cryoloop [48], (C) Cryotop [48] and 
(D) gel loading tip [48]. Scale bar = 400 µm.
(B–D) Reproduced with permission from [48] © (2011) Elsevier.

Hemi-straw
Outer cover straw

CPA microdrop-embryo
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Landa et al. has employed this technique for 
cryopreservation of mouse embryos [46,89]. In 
this study, after pre-equilibration in medium 
with 10% glycerol, embryos in 5–20 µl volume 
droplets were directly immersed into liquid 
nitrogen. High survivability (greater than 90%) 
and developmental potential was demonstrated 
with eight-cell embryos frozen in microdroplets, 
in which greater than 83% of embryos developed 
to blastocysts and more than 73% of embryos 
underwent implantation after 48 and 96 h of 
in vitro culture [89]. However, in this study, intro-
ducing a droplet (5–20 µl) directly into liquid 
nitrogen led to the suspension and hovering of 
the droplet on the surface surrounded by liquid 
nitrogen vapor blanket (Figure 2), which is known 
as the Leidenfrost phenomenon [49]. The vapor 
blanket becomes the bottleneck for effective 
heat transfer. Despite this drawback, carrier-
free vitrification systems can still provide higher 
heat transfer rates than carrier-based systems, 
if smaller size droplets are used. Papis [50] and 
Dhali [90] utilized a similar direct droplet immer-
sion method with reduced vitrification volume 
(i.e., 6 µl) for bovine oocyte and mouse zygote 
vitrification, and higher cleavage and blastocyst 
rates were observed compared with those droplet 
vitrification methods that used larger droplets. 

The enhancement in cryo preservation outcomes 
could be attributed to the increased cooling rates 
achieved with smaller droplets. 

Solid surface vitrification (SSV) [91] method 
vitrifies droplets without direct contact with liq-
uid nitrogen. In this approach, cells/tissues in 
a small droplet of CPA solution are placed with 
pipettes or glass capillaries onto a metal surface 
(e.g., aluminum foil) cooled by liquid nitrogen 
or liquid nitrogen vapor (Figure 3a). SSV has been 
utilized for cryopreservation of in vitro-matured 
oocytes derived from cattle [92], goat [93] and pig 
[94,95] by encapsulating 5–10 oocytes in a 1–2 µl 
droplet of the vitrification solution. However, 
these studies displayed low rates of developmen-
tal competence of vitrified oocytes after activa-
tion [92] or IVF [94,96]. In addition, the cleavage 
rate of vitrified oocytes was reduced (14%) com-
pared with noncryopreserved oocytes (46%), 
suggesting that damage still existed even though 
the plasma membrane integrity of the vitrified 
oocytes was maintained. The decreased devel-
opmental competence could be attributed to 
compromised spindle and/or chromosome con-
figuration caused by vitrification as suggested 
in previous reports [96,97]. This potential cry-
oinjury could be resulting from inefficient heat 
transfer within a relatively bulky droplet that 

Droplet ejector
Ejected droplet

LN vapor layer

LN layer

Droplet

Droplet
Droplet

LN vapor

LN vapor

LN 

LN LN 

Figure 2. Generation of droplets and levitation of droplets on top of liquid nitrogen. 
(A) Experimental setup and the behavior of droplets over time. (B) Droplet swimming in the liquid 
nitrogen. The droplet in darker color is surrounded by the liquid nitrogen vapor as shown in the 
schematic drawing. (C) Droplet sunk in the liquid nitrogen. (D) Droplet floating on top of 
liquid nitrogen.
Reproduced with permission from [49]. 
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contains 5–10 oocytes. The heat transfer effi-
ciency can be improved by reducing the droplet 
volume through encapsulating a single oocyte. 

Minimizing the volume of vitrification solu-
tion containing cells/tissues not only offers the 
obvious benefit of increasing both cooling and 
warming rates, but also decreases the likelihood 
of ice crystal nucleation/formation [98]. Although 
there is no clear definition of what volume can be 
defined as ‘minimum’ for vitrification, it usually 
refers to a volume around, or less than, 1 µl [46]. 
Based on this principle, Arav et al. [99–101] devel-
oped the minimum drop size (MDS) technique, 
in which nanoliter (0.1–0.5 µl) volumes of vitri-
fication solution was used. The MDS technique 
has been successfully used to vitrify porcine 
[99,100] and bovine [101] oocytes, and bovine 
and sheep embryos [54]. The MDS method was 
recently modified by depositing 0.1–0.5 µl drop-
lets on glass coverslips followed by immersion 
into liquid nitrogen or nitrogen slush (Figure 3b). 
This technique was shown to maximize the cool-
ing rates up to 130,000°C/min, allowing up to 
a 50% reduction in CPA concentrations com-
pared with conventional vitrification protocols 
(Figure 3C–3F) [54]. 

Improved cryopreservation outcomes have 
been demonstrated with droplet-vitrification 
methods for oocyte and embryo cryopreserva-
tion compared to slow freezing and conven-
tional straw-based vitrification methods with 
increased survivability and function. However, 
the labor- and time-intensive procedures often 
limit the throughput for cell vitrification. In 

addition, the limited control over the droplet 
size prevents a uniform size distribution among 
the generated droplets, which causes inconsist-
encies in droplet vitrification. Thus, application 
of the tech nologies listed above to vitrify cells 
in a bulk processing volume, such as red blood 
cells (RBCs), stem cells and hepatocytes, has not 
been practical. 

Recently, Demirci et al. demonstrated ejection-
based droplet-vitrification, with which a single to 
few cells could be encapsulated in reduced droplet 
volumes (1.5–500 nl) with a negligible reduction 
in cell viability [10,51]. This droplet generation 
and ejection technology has been demonstrated 
to generate droplets at high-throughput with rates 
up to 1000 droplets per second [10,49,51,102–104]. 
Moreover, there are other droplet generation tech-
nologies that offer extremely small droplet vol-
umes (<1 nl) based on acoustic ejection [51,105–107], 
which has the capability to generate smaller drop-
lets than the methods described above. Smaller 
droplets could allow the vitrification to occur 
at even higher cooling and warming rates than 
the MDS technique, while using significantly 
reduced CPA concentrations (~1.5 M), and hence 
minimizing the osmotic and mechanical stress 
to cells. It was also experimentally demonstrated 
that there is a relationship between droplet size 
and CPA concentrations, suggesting that small 
droplets vitrify at lower CPA concentrations [10]. 
With this method, droplets maintain their 
spherical shape when ejected and dropped into 
liquid nitrogen. This may provide even cooling 
of droplets from surface to center compared to 

Capillary

Metal cube
Liquid 
nitrogen
Styrofoam

Vitrified 
microdrops 
with cells

Glass capillaries
0.2 mm

1.0–1.5 µl

0.05–0.10 µl

0.6 mm

1.6 mm

1.1 mm

0.3–0.6 µl

Figure 3. Droplet vitrification. (A) The solid surface vitrification device. A metal cube covered with 
aluminum foil was partially submerged into liquid nitrogen. Microdroplets of vitrification solution 
containing the oocytes were dropped onto the cold upper surface of the metal cube and are 
instantaneously vitrified. (B) The modified minimum drop size technique. Droplets of various sizes 
were placed on glass cover slips using capillaries. (C–F) Droplets generated by MDS technique during 
vitrification with (C) ice crystals, (D & E) with fractures, and (F) without crystallization and fractures 
using CPA concentration reduced by 50% of those used in (C). 
Reproduced with permission from [54] © (2010) Elsevier.
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other droplet-vitrification approaches discussed 
above, such as solid surface vitrification, in which 
hemispheres were generated instead of spheres. 
Various mammalian cell types (AML-12 hepa-
tocytes, NIH-3T3 fibroblasts, HL-1 cardiomyo-
cytes, mouse embryonic stem cells and RAJI cells) 
were ejected using droplets with high viability 
(>89%) after recovery [10,49]. 

Although most of the minimum volume vitrifi-
cation approaches were initially designed for cryo-
preservation of reproductive cells (e.g., embryos 
and oocytes), advances in biomedical sciences and 
regenerative medicine will broaden the applica-
tions of vitrification technologies to find broad 
applications, such as preserving high quality cell/
tissue sources for transplantation and cell therapy, 
and extending shelf-life of tissue engineered con-
structs for tissue regeneration. For future clinical 
applications, the ejection systems are sterilized and 
operated in sterile hoods [108,109]. Furthermore, 
sterile liquid nitrogen can be used to avoid 
potential contamination [110]. Sterilization of liq-
uid nitrogen has been shown by methods using 
sterile polytetrafluoroethylene (PTFE) cartridge 
fi lteration [111] or ultra-violet (UV) radiation [112]. 

Applications of vitrification in 
cryopreservation of cells & tissues 
The procedures used to cryopreserve cells or 
tissues depend on several factors, including 
cell size, cytoplasm volume and types of cells 
in the population. Most mammalian cells can 
be cryopreserved by using the slow-freezing 
method with a cooling rate of approximately 
-1°C/min and rapid warming, which results in 
more than 90% retained cell viability. However, 
there is a challenge to cryopreserve cells that 
have a large cytoplasm (e.g., oocytes) due to 
the harmful effects of intracellular ice crystal 
formation. There are also challenges associated 
with cryopreservation of tissues with mixed cell 
populations of varying sizes, since the optimal 
freezing procedure for each cell type is different. 
Thus, cryopreservation methods preserving the 
utmost cell viability after recovery are desired. 
As discussed earlier, vitrification has presented 
great potential to address the particular chal-
lenges listed above since it has demonstrated 
improved viability after both freezing and thaw-
ing c ompared with other methods (Table 2). 

 n Vitrification of reproductive cells 
Cryopreservation remains a practical option to 
preserve and extend human fertility in modern 
clinical practice [113,114]. Embryo cryopreserva-
tion has become a routine procedure in IVF 

clinics [115]. Patients who might have ethical or 
religious concerns on embryo freezing potentially 
consider cryopreservation of oocytes as a viable 
option. This technology is particularly valuable 
for cancer patients, offering an opportunity to 
preserve fertility before chemotherapy or radiation 
treatment. However, oocytes cryopreserved using 
slow freezing or traditional vitrification methods 
have not led to birth rates that are acceptably high 
for clinical applications after implantation in vivo 
(<5%) [116,117]. This is mostly due to irreversible 
damage to oocytes, such as zona hardening and 
misalignment of the chromosomes [113]. The dis-
tinct advantages of vitrification have led to wide 
investigation for fertility preservation, especially 
as a possible means to increase oocyte survival, 
pregnancy and birth rates. 

Vitrification of oocytes 
Vitrification of bovine, mouse and human 
oocytes have been studied using various vitrifi-
cation carrier systems [74,77,118]. Vajta et al. used 
the OPS method for the vitrification of bovine 
oocytes, and reported that 50% of the vitrified 
oocytes cleaved and 25% of them developed 
into blastocysts after IVF, with pregnancies 
achieved following transfer at both oocyte and 
blastocyst stages [41]. Similar survival rates were 
observed when EMG and Cryoloop approaches 
were used. However the cleavage rate (EMG: 
30%, Cryoloop: 26 vs fresh oocytes: 50–70%) 
and blastocyst development (EMG: 15 vs fresh 
oocytes: 40%) after IVF were significantly 
reduced [44,119]. Morato et al. compared Cryotop 
to OPS for vitrification of bovine oocytes, and 
showed that Cryotop was superior to OPS 
approach yielding higher cleavage (46 vs 32%) 
and blastocyst rates (5 vs no blastocyst), with 
uncompromised spindle and chromosome con-
figurations (60 vs 38%) [84]. Higher survival 
rates and improved conservation of spindle mor-
phology have been achieved with mouse oocytes 
by using close pulled straws (79 and 93%) rather 
than conventional straws (77 and 79%), micro-
scopy grids (39 and 95%) and OPS (63 and 
89%) [77]. When vitrifying mouse oocytes using 
electron microscopy grids, significant reduction 
in hatching rates (39 vs 85% for fresh oocytes) 
was observed [81]. The Cryoloop approach proved 
successful in vitrification of mouse oocytes, 
showing comparable survival, fertilization and 
blastocyst development rates, intact spindles 
and similar chromosome morphology to fresh 
oocytes [120,121]. When quartz microcapillaries 
were used to vitrify mouse oocytes, similar sur-
vival, fertilization and blastocyst development 
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rates to fresh oocytes were observed. However, 
with this method, when blastocyts derived 
from vitrified oocytes were transferred to sur-
rogate mothers, lower birth rates were observed 
(19%) compared with those obtained from fresh 
oocytes (23%) [79]. 

In the case of human oocytes, when the OPS 
method was used for vitrification, high survival 
and fertilization rates (68.6 and 71.7%) were 
achieved. However, pregnancy (15.3%) and 
birth (4.6%) rates were still relatively low [122]. 
Cryoloop and hemi-straw systems were also 
tested for vitrification of human oocytes [123], 
and similar survival rates were observed with 
these two approaches (81 vs 85%, respectively). 
Another study [124] using the Cryoloop for vitrifi-
cation of human oocytes reported similar results 
with moderate fertilization rate (72%), low preg-
nancy rates (5–6%), and reduced rates of nor-
mal meiotic spindles and chromosomes [125]. On 
the other hand, encouraging results have been 
reported with the use of the Cryotop method 
for human oocyte vitrification, with higher 
survival (90–99%), fertilization (81–93%) 

and pregnancy (32–41%) [46,83,113,126] rates. 
However, there is still need for improvement to 
achieve higher success rates. 

Vitrification of embryos 
Early-stage embryos
Vitrification of bovine early-stage embryos 
was demonstrated using 0.25 ml conventional 
straws with post-thaw cleavage rates less than 
5% [127]. By contrast, higher survival rates and 
better conservation of normal cell morphol-
ogy were achieved when OPS (88%) and close 
pulled straws (85%) were used [128]. For human 
early-stage embryo vitrif ication, the hemi-
straw method resulted in comparable survival 
rates with higher development potential than 
Cryoloop (38 vs 29%) [123]. However, higher 
survival (85%) and pregnancy (44%) rates were 
observed in a separate study, which also utilized 
Cryoloop for vitrification of human embryos 
leading to births [129]. Successful results were 
also demonstrated with the Cryotop method for 
vitrification of early-stage human embryos, with 
higher levels of survival (100%), cleavage (93%) 

Table 2. Vitrification methods for cell and tissue cryopreservation.

Cells/tissues Challenges for 
cryopreservation 

Commonly used 
vitrification methods 

Survival/viability Limitations Ref.

Corneal grafts Endothelium damage 
(intracellular freezing at high 
cooling rates, solution effect 
injury at low cooling rates) 

Nonpermeating CPAs, 
Teflon-coated bag as 
vitrification carrier 

<10% CPA toxicity, 
devitrification during 
heating process 

[163–165] 

Human 
embryonic stem 
cells 

Sensitive to CPA, requires 
extremely critical timing and 
high degree of skill 

OPS (1–20 µl), 
Glass straw (20–130 µl) 

>75% Time consuming, 
labor intensive 

[12,144] 

Adult stem cells Loss of undifferentiated state 
and viability 

OPS >80% Time consuming, 
labor intensive 

[12,140,144]

Tissue 
engineered 
constructs 

CPA needs to permeate entire 
TEC to prevent ice formation 

Glass vial 95% Organs are too large to 
be vitrified 

[12–13] 

Chondrocytes/
cartilage 

CPA concentration required to 
prevent ice formation 

Glass vial Chondrocytes: 93% 
Cartilage: 85% 

High thermal processing 
required to be rapid 
enough 

[12,161] 

Tissue 
engineered 
blood vessels 

Stiffening of biomaterials 
during freezing 

CPA concentration >50% 
(v/v)

50% Viability loss during 
warming 

[12–13] 

Oocytes/
zygotes/cleaved 
embryos 

Extremely sensitive to CPAs OPS, Cryoloops, Cryotop, 
0.25 ml straw, EM copper 
grid, solid surface 

Zygotes: 
90% survival, 
82% cleavage, 
30% blastocyst 

Hardening of the zona, 
misalignment of 
chromosomes 

[67,113] 

Sperm Sensitive to osmotic shock, 
large volume 

Multi-thermal gradient 50% decrease 
in motility 

Large sample volume, 
optimal cooling 
rate needed 

[54,67] 

Ovarian tissue Large sample size Straws or grids Pyknosis, 
vacularization, cell 
swelling detected 

Hard to preserve large 
samples, must be cut into 
pieces, crystallization 
during cooling 

[67,166] 

CPA: Cryoprotectant agent ; EM: Electron microscopy; OPS: Open pulled straws; TEC: Tissue engineered constructs.
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and blastocyst (52%) rates compared with the 
results obtained with other approaches detailed 
above [46]. 

Blastocysts
Both OPS and EMGs have been used for vit-
rification of bovine blastocysts. Using OPS, 
pregnancies were achieved following blas-
tocyst transfer, although low survival rate was 
observed [41]. When EMGs were used for vit-
rification of bovine blastocysts, no significant 
difference was observed in survival rates between 
vitrified and nonvitrified blastocysts. However, 
survival rate was reduced 48 h after the vitrifica-
tion procedure compared with nonvitrified cells 
(73 vs 84%) [80]. 

Higher survival rate (82%) was achieved with 
vitrification of mouse blastocysts using OPS com-
pared with conventional plastic straw method 
(69%) [130], which can be attributed to reduced 
vitrification volume of OPS. On the other hand, 
closed pulled straws showed higher pregnancy 
and birth rates (70 and 45%) compared with 
the OPS (20 and 8%) and conventional straws 
(10 and 5%) obtained after transferring vitrified 
expanded blastocysts to the uterus of a pseudo 
pregnant mouse [131]. The Cryoloop approach 
also resulted in high implantation (80%) and 
fetal development (55%) rates of vitrified mouse 
blastocysts after being transferred to pseudopreg-
nant recipients, which were comparable to those 
observed with nonvitrified cells [45]. 

A number of approaches have been used for 
vitrification of human blastocysts, including 
EMGs, hemi-straw, Cryoloop and Cryotop. 
EMGs yielded high survival (83–90%), hatch-
ing (49%), implantation (29%) and pregnancy 
rates (34–48%) [132,133], which were compara-
ble to those obtained using Cryoloop [45,134–137] 
and Cryotop [46,138] (90 and 53% for survival 
and pregnancy rates, respectively). The results 
obtained using the hemi-straw method resulted 
in lower survival, hatching (19%), implantation 
(13%) and pregnancy (19%) rates compared 
with other approaches described above [75]. 

Vitrification of oocytes and embryos using 
various minimum volume carriers all showed 
improvements compared with conventional 
straws. However, it should be noted that the 
results achieved with these methods are highly 
dependent on the skills of the embryologist, and 
hence comparisons between different studies 
have to take this as a consideration for future 
biopreservation technologies. The variations 
due to manual processes could potentially be 
eliminated, if automated systems are applied. 

It should also be noted that the efficiencies 
of these methods depend on the species and 
d evelopmental stages of embryos in preservation. 

 n Vitrification of stem cells 
Regenerative medicine has shown potential to 
repair or replace tissue/organ function lost due 
to disease, damage or congenital defects [139]. 
The strategies presently under development 
include transplantation of stem cells, manipu-
lation of a patient’s own stem cells, and the use 
of scaffold materials that provide biochemical 
signals to stimulate stem cells to start differentia-
tion. Therefore, it is crucial to be able to preserve 
stem cells for future regenerative therapies. 

Biopreservation of stem cell lines is often chal-
lenging due to the difficulty in conservation of 
undifferentiated phenotypes through cycles of 
cell division. Hence, it is hard to provide persist-
ent and qualified cell sources for clinical use [140]. 
Cryopreservation provides an affordable, fast, 
and efficient solution for stem cell banking for 
both research and clinical use. Vitrification has 
been successfully used to preserve various types of 
stem cells, such as embryonic stem cells [141], mes-
enchymal stem cells [142] and hemopoietic stem 
cells [143]. Current vitrification protocols for stem 
cells consist of stepwise addition of vitrification 
solution to minimize osmotic shock, in which a 
small volume of the CPA solution and cells are 
immersed directly into liquid nitrogen. Upon 
warming, a series of stepwise dilutions is suffi-
cient to completely remove the vitrification solu-
tion. After vitrification, cell viability in higher 
than 80% was achieved [144]. On the other hand, 
cryopreservation of stem cells using slow freezing 
resulted in a survival rate of only 10% [140]. 

Both Cryotip and quartz microcapillaries 
have been tested for the vitrification of mouse 
embryonic stem cells. When Cryotip approach 
was used, more than 99% of the cells survived 
after warming [145]. By using the quartz micro-
capillary approach, murine embryonic stem cells 
were successfully cryopreserved without compro-
mising their undifferentiated phenotype expres-
sion postvitrification [11]. OPS approach was used 
to vitrify human embryonic stem cells derived 
from the inner cell mass of human blastocysts 
[146,147]. The achieved cell attachment postwarm-
ing was comparable to those of nonvitrified stem 
cells, although a small percentage of nonspecific 
differentiation was observed (24%). However, 
the pluripotency of stem cells was retained after 
warming [147]. The efficiency of other vitrifica-
tion approaches for human embryonic stem cell 
preservation needs further investigation. 
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Vitrification approaches used for stem cell 
cryo preservation discussed above are time 
consuming and require a high level of skill to 
prevent cell loss. In addition, given the large 
number of cells to be preserved, a high through-
put approach is needed. Therefore, the ejector-
based carrier-free droplet-vitrification technique 
described above could be a suitable candidate 
technology for stem cell vitrification with its 
high-throughput processing capability and the 
use of lower CPA concentrations with small 
droplet size. 

 n Vitrification of tissue 
engineered constructs 
Tissue engineering technologies have the poten-
tial to develop regenerative therapies for cur-
rently incurable diseases and untreatable con-
ditions, such as diabetes, heart disease, renal 
failure, osteoporosis and spinal cord injuries 
[148–153]. The ability to cryogenically preserve 
tissue engineered constructs (TECs) would 
be indispensable for successfully transferring 
replacement tissues from the laboratory setting 
to the clinic. This would allow distributing cell-
based products to patients on a demand basis by 
increasing the shelf life of the products. 

With the recent developments in cryogenic 
science, cryopreservation of tissues and TECs 
for extended periods of time has become achiev-
able. The tissues that have been found incom-
patible with freezing protocols are generally 
highly vascularized due to endothelium damage. 
So far, animal intestines and ovaries have been 
successfully recovered from the cryopreservation 
process, showing function after transplantation. 
The primary issue with tissue and TEC cryop-
reservation is preventing ice crystal formation 
and maintaining the integrity and mechanical 
properties of both the cells and extracellular 
matrix (ECM) during cooling and thawing 
steps. In addition, dehydration that occurs 
during the freezing process results in a stiffer 
tissue due to increased crosslinking between 
collagen fibers [140]. Thus, slow freezing is not 
optimal for cryopreservation of tissues or TECs 
due to the difficulties in preserving the struc-
tural stability of biomaterials and regenerative 
tissue integrity during liquid-ice phase transi-
tion. Vitrification appears to be a more promis-
ing modality for TEC cryo preservation, since it 
can maintain tissue integrity by preventing ice 
crystal f ormation [140]. 

Vitrification of various TECs, such as tissue 
engineered (TE) bones (TEBs) [154], TE pancre-
atic substitutes (TEPS) [155,156], and TE blood 

vessels (TEBVs) [157], have shown encouraging 
results. Song et al. demonstrated the vitrification 
of TEPS using DMSO and 1,2-propanediol, 
showing comparable results with the nonfro-
zen control [156]. In the case of TE cartilage 
cryo preservation, chondrocytes showed sur-
vival rates of up to 93% after vitrification [158]. 
Similarly, vitrification of rabbit cartilage has 
resulted in high viability (>80%) after thaw-
ing [159]. In addition, improved cryopreservation 
outcomes were observed by vitrification of native 
vascular tissues compared to those by slow freez-
ing [160,161]. More than 80% of the maximum 
contractions were maintained in vitrified ves-
sels with similar responses to drug stimulation, 
while less than 30%, were retained in frozen 
vessels [160]. In a separate study, a vitrification 
solution consisting of DMSO, propylene gly-
col and formamide was used for a collagen-
based TEBVs, and negligible ice formation was 
observed. By contrast, extensive ice formation 
was observed in frozen specimens using the slow 
freezing method. Thus, vitrification seems to be 
an appropriate approach for TEBV cryopreser-
vation. However, a similar reduction in viabil-
ity was observed in both frozen and vitrified 
constructs (38 vs 39%) compared with fresh 
samples (63%) [140]. 

Compared with slow freezing, enhanced out-
comes have been shown for TEC cryopreserva-
tion using vitrification. However, challenges 
still exist with current existing approaches. For 
instance, it is not practical to achieve ultra-rapid 
vitrification using minimum volume approaches 
given the large TEC size, and high CPA con-
centrations have to be used for vitrification to 
occur. Moreover, it is important to ensure that 
vitrification solution is present throughout the 
construct and cells. Additionally, toxicity and 
cellular osmotic shock of high levels of CPAs 
is another challenge for TEC vitrification, so it 
is necessary to minimize CPA concentrations 
to reduce damage to cells. Furthermore, opti-
mizing protocols for CPA removal is also vital 
to avoid devitrification since construct viability 
has been found to decrease during the warming 
process [13]. 

Conclusion & future perspective
In this article, we presented the minimum vol-
ume vitrification approaches and their appli-
cations in medicine. Minimum volume vitrifi-
cation approaches reduce CPA concentrations 
required for vitrification since they can attain 
increased cooling and warming rates. Hence, 
this process enables reduced toxicity and 
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osmotic shock to cells and tissues that undergo 
cryopreservation processes. Among these 
methods, droplet-vitrification offers further 
potential advantages, allowing vitrification at 
even higher cooling rates using smaller droplet 
sizes. However, challenges still remain, such as 
throughput limitations and demand for skilled 
operators. Therefore, future research efforts 
need to focus on improving current vitrification 
approaches by developing novel vitrification sys-
tems that can minimize both the dependence 
on skilled operators as well as variations due 
to manual handling process steps. Emerging 
nano- and micro-scale technologies enable sam-
ple manipulation in small scales. The successful 
integration of these technologies with the cur-
rent know-how in cryobiology has the potential 
to address these needs by offering automation 

and high throughput operation in biopreserva-
tion, leading to an increase in successful clinical 
biopreservation outcomes.
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Executive summary

 � Existing and emerging applications of vitrification include cryopreservation of reproductive cells, stem cells, blood and tissue 
engineered constructs. 

 � Vitrification displays significant improvement in post-thaw cell viability and function compared with the traditional slow freezing 
methods by eliminating ice crystal formation. 

 � Vitrification using minimum sample volume enables increased cooling and warming rates and the utilization of lower cryoprotectant 
agent concentrations, thus reducing toxicity and osmotic shock to cells/tissues. 

 � Minimum volume vitrification systems are divided into two categories: carrier-based and carrier-free (droplet-based vitrification) systems. 
 � Droplet-based vitrification offers potential advantages over carrier-based vitrification methods, allowing vitrification at even higher 

cooling rates using smaller sample sizes. 
 � Emerging nano- and micro-scale technologies have the potential to improve throughput limitations and reduce skill dependence of the 

current vitrification systems by enabling sample manipulation in a small scale. 
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