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Manipulation and encapsulation of cells in microdroplets has found many applications in various

fields such as clinical diagnostics, pharmaceutical research, and regenerative medicine. The control

over the number of cells in individual droplets is important especially for microfluidic and bioprinting

applications. There is a growing need for modeling approaches that enable control over a number of

cells within individual droplets. In this study, we developed statistical models based on negative

binomial regression to determine the dependence of number of cells per droplet on three main factors:

cell concentration in the ejection fluid, droplet size, and cell size. These models were based on

experimental data obtained by using a microdroplet generator, where the presented statistical models

estimated the number of cells encapsulated in droplets. We also propose a stochastic model for the

total volume of cells per droplet. The statistical and stochastic models introduced in this study are

adaptable to various cell types and cell encapsulation technologies such as microfluidic and acoustic

methods that require reliable control over number of cells per droplet provided that settings and

interaction of the variables is similar.

1. Introduction

Microscale droplets (microdroplets) have widespread applica-

tions in various areas, such as inkjet printing,1 colloidal

research,2 biology,3,4 and medicine.5 Recently, cell encapsulation

in microdroplets has found new fields of application including

microfluidics,6,7 cryobiology,3,8–11 clinical diagnostics,12 cell

patterning,3,13–16 tissue engineering,13,17 high throughput drug

studies for cancer,15 stem cells,18,19 and pharmaceutical

research.20 These applications require control over the number

of cells encapsulated within individual droplets. For example,

individual cells can be encapsulated in microscale droplets as

single cell bioreactors13 to rapidly detect concentrations of

secreted molecules. However, a stochastic model for predicting

the number of cells in microdroplets with the current encapsula-

tion methods has not been developed.

There has been a growing interest in cell encapsulation in

nano- and micro-scale droplets for biological and genetic

analysis,21–25 in which the control over the number of cells in a

droplet and cell-to-cell distances are essential.26 On the other

hand, in a bottom-up tissue engineering approach, cell-encapsu-

lating hydrogels are used as building blocks, where the number

of cells per building block determines the overall cell density in

the resulting constructs.14,27,28 Cell density and cell-to-cell

distance are critical, which affect the structural and functional

properties of the engineered tissues.29 These applications all

require encapsulation of a few cells in a small volume of fluids or

microdroplets with highly controllable density for consistent and

repeatable results.

There are currently several cell encapsulation techniques at the

microscale, such as pneumatic valve-based bioprinting,14,30

acoustic technologies,3,13 inkjet bioprinting,31,32 laser bioprint-

ing,33 microfluidic based cell manipulation,34–37 and encapsula-

tion methods.38–40 All these techniques aim to manipulate cells in

microscale volumes, and control cell density and cell-to-cell

distance. However, the variability in number of cells per droplet

due to the stochastic nature of cell encapsulation is a barrier for

effective use of these techniques.

Previously, the number of cells per droplet and the dependence

on the concentration in a suspension and droplet size were

reported.13 The data were fit to a Poisson distribution to estimate

the probability of the number of cells per droplet using a
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simplified model that is not statistical or stochastic. That is, the

model did not determine the statistical relationship between the

variables explicitly. In this work, we perform this important

aspect of cell encapsulation, where we also include cell radius as

a predictor in one of the three models. We developed statistical

models to determine the relationship between the number of cells

per droplet (denoted NCPD henceforth), and the following

parameters: (i) cell concentration in the ejection fluid, (ii) droplet

size, and (iii) cell size in terms of radius. The models can also be

used to predict and control NCPD. Furthermore, we develop

stochastic models for total volume of cells per droplet based on

the above statistical models, hence the three parameters

considered. To the best of our knowledge this is attempted for

the first time for cell encapsulating droplets. We considered the

ranges of these parameters as follows: the cell concentration in

the ejection fluid (1, 2, 4, 8, and 16 million cells per milliliter

(mil ml21)), cell radius (3–16 mm) and droplet radius (300–

700 mm). We developed a statistical model of NCPD by negative

binomial regression as a function of these parameters using

generalized linear modeling techniques appropriate for count

data (i.e., data that provide the numbers or counts of particles or

units in a fixed region or time) and stochastic modeling of the

number and volume of cells as a form of negative binomial

process. The novelty here is the statistical modeling of number of

cells per droplet (as the response variable), based on the other

variables (size of droplets and cell concentration) as predictor

variables. The developed models can be used for reliable

predictions and to improve the control over cell encapsulation

in droplets, offering theoretical and experimental insights into

the involved mechanisms.

2. Materials and methods

2.1. Cell-encapsulation in microdroplets

In this study, we used a commercially available droplet ejector to

generate cell encapsulating microdroplets (solenoid microvalve

ejector, model G100-150300, TechElan, Mountainside, NJ). We

have used this ejector to generate droplets encapsulating various

cell types (e.g., smooth muscle cells (SMCs), embryonic stem

cells, and cancer cells) with high cell viability,14,15,17,19,30 (Fig. 1).

The cell encapsulation systems involve the model formation of a

breaking droplet that encapsulates cells within the contents. In

this system, NCPD was controlled by changing the droplet radius

or cell concentration in the ejection fluid (i.e., cell suspension in a

syringe before ejection). In this study, we used data based on

smooth muscle cell (SMC) printing. We used primary bladder

SMCs from a Sprague Dawley rat. Most cell types are spherical

when suspended in solution. We perform ejection when the cells

are in suspension. The cell suspension was mixed by manual

pipetting before printing and the printing process took less than

1 min, which prevented cell settling in the reservoir. During

printing, a droplet was taken from the ejection fluid from the

bottom of the syringe via tubing that connected the syringe to the

ejector (Fig. 1). Images of printed cells in droplets were taken

using a bright-field microscope (Nikon TE2000). Number of cells

in printed droplets was counted manually in the 46 images

obtained. Cell radii were measured, assuming a spherical

geometry. Since it was challenging to measure droplet radius in

a three-dimensional (3D) spherical shape before landing on the

substrate surface, we used the two-dimensional (2D) radius of

the droplets on the surface (i.e. droplet spread radius), which

correlate to the 3D droplet radius. As the cell concentration in

the ejection fluid, we used 1, 2, 4, 8, and 16 mil ml21. We

collected data from 178 droplets at five cell concentrations (see

Table 1). There are several other factors affecting NCPD, which

were fixed in our experiments. These factors are: (i) dispensing

pressure in ejection reservoir (5 psi), (ii) cell type (rat SMCs), (iii)

fluid viscosity (0.2% collagen), and (iv) droplet ejection rate

(10 droplets per second). We provided the list of variables and

abbreviations used in the article in Table 2, and the ranges of

these variables in Table 3.

Fig. 1 (A) Cell encapsulation and microdroplet generation system. (B) A typical printed cell-encapsulating collagen droplet. Arrows represent the

smooth muscle cells (SMC) encapsulated in a droplet.

Table 1 Number of droplets for each cell concentration

Cell concentration (mil ml21) 1 2 4 8 16
Number of droplets 23 55 30 30 37
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2.2. Stochastic and statistical modeling of number of cells per

droplet

We hypothesized that the number of cells per droplet (NCPD)

highly depends on the droplet radius, cell radius, and cell

concentration in the suspension. To test this hypothesis, we

developed mathematical models to understand the stochastic

processes for NCPD and the total cell volume (per droplet). We

also assessed empirically these models by fitting them to the

experimental data. For count data, usually the relationship

between the mean and the variance is determined as Var(Yi) =

tmi, where Yi is the count variable with mean mi and t is the

dispersion parameter. Depending on the values of t, two sets of

models are used. If t equals one (i.e., not significantly different

than one), a Poisson regression model (a generalized linear

model (GLM) model) with logarithm function as the canonical

link function and Poisson distributed errors41 was fit to the data.

When t is significantly different than one, other GLMs such as

the negative binomial model are more appropriate.42 Our data

are consistent with the underlying assumptions for a GLM

model.

In the models, we used NCPD as the response (or dependent)

variable and the other variables (see Table 3) as the predictor (or

independent) variables in the GLM procedures. We applied a

model selection procedure to obtain a concise and descriptive

model (with the least number of variables possible, but with a

high explanatory power). We started with a model containing all

the variables (called ‘‘full model’’) with some non-linear terms

that were added to reflect the significant relationship between

NCPD and the predictor variables. The full model is then reduced

using a stepwise backward elimination procedure together with

Akaike Information Criteria (AIC),43 i.e. some insignificant

variables were removed until each of the remaining variables has

a significant effect on the NCPD at a = 0.05 level.

The underlying assumptions, model selection procedure, and

some of the discussion on the model diagnostics for each model

that we consider are detailed in the ESI{ for brevity in

presentation; as they are also peripheral for the main message

and results of this article.

3. Results and discussion

3.1. Modeling NCPD as a function of cell concentration and droplet

radius (Model D-C2)

The summary statistics (such as mean, median and first quartile)

of the variables of droplet radius, cell concentration, and NCPD

are summarized in Table 4 and the corresponding histograms are

plotted in Fig. 2. The histograms indicate a mild leftward skew

for droplet radii and severe rightward skew for NCPD whose

mean, 63.63, is much larger than its median, 21, while the

rightward skew is reduced for log(NCPD). In particular, the

standard deviations for NCPD, droplet radius, cell concentration,

and cell radius are 81.87, 91.99, 5.52, and 2.05 (Table 4). So

among these variables, the variation of cell radius is much

smaller compared to those of NCPD, cell concentration and

droplet radius in our setup. Here one might be misled by

comparing the ranges (maximum minus minimum) of these

variables which is not a robust measure of spread. Hence, we

first model NCPD as a function of only cell concentration (XCC)

and droplet radius (XDR) without considering the influence of

cell radius (XCR). Our experimental data (Table 4) show that the

variance of NCPD is significantly larger than its mean: Var(NCPD)

= 6702.70 and Mean(NCPD) = 63.63 with p , 0.0001 based on

Dean’s PB test for overdispersion44). This indicates that negative

binomial regression is more appropriate for our data compared

to the more common Poisson regression.

We start with the negative binomial GLM which models

logarithm of NCPD as a function of droplet radius and cell

concentration and obtain the following model:

log (E(NCPD))~{11:0022{0:0247|XDRz0:1890|XCC

z1:1528|
ffiffiffiffiffiffiffiffiffiffi

XDR

p

(1)

Since the model is log linear, we can translate these coefficients

into multiplicative effects in the predicted NCPD as

Model D-C2:

E(NCPD)~ 1:6663|10{5
� �

|0:9756XDR|1:2081XCC

|3:1672
ffiffiffiffiffiffiffi

XDR

p (2)

Observe that the expected value of NCPD increases as the

droplet radius or cell concentration increases. For example, the

expected log(NCPD) increase is 0.1890 for a one-unit increase in

Table 2 Notation (variable names and abbreviations) and its descrip-
tion for statistical modeling of number of cells per droplet

Notation Description

NCPD Number of cells per droplet
XDR Droplet radius (mm)
XCR Cell radius (mm)
XCC Cell concentration (million cells per milliliter)
XRR Radius ratio
GLM Generalized linear models
VT Total volume of the cells in a droplet (mm3)
Vi Volume of the cell i in a droplet (mm3)
a Level of significance for hypothesis testing
l Poisson rate parameter
m and s2 Mean and variance
n Number of observations
Q1, Q3 First and third quartile values

Table 3 Variables used in this study, their values and ranges

Variable Values and ranges

Cell concentration 1, 2, 4, 8, and 16 million cells per ml
Cell radius 3–16 mm
Droplet radius 300–700 mm

Table 4 Summary statistics of the variables: droplet radius, cell
concentration, NCPD for models that ignore the cell radius (top three
rows) and the cell radius (bottom row). The abbreviations are as in
Table 2

n mean SD min Q1 median Q3 max

NCPD 178 63.63 81.87 2.00 13.00 21.00 83.750 301.00
XDR 178 508.70 91.99 318.52 428.10 516.7 583.30 709.3
XCC 178 6.23 5.52 1.00 2.00 4.00 8.00 16.00
XCR 10 150 6.24 2.05 3.00 4.99 5.61 7.00 15.96
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cell concentration (i.e., if the cell concentration increases by 1 mil

ml21). That is, a one-unit increase in cell concentration causes

the expected NCPD to increase by a factor of exp(0.1890) =

1.2081, holding XDR constant. Notice also that the effects of the

cell concentration and droplet radius are both strong in

estimating NCPD, but that of the droplet radius is much greater.

Based on the diagnostic plots in Fig. 3, we observe that model

assumptions are satisfied for Model D-C2. Hence, when the cell

radius is fixed or its variation is negligible compared to that of

the other variables (i.e., when the variance of the cell radius is

much smaller compared to those of other variables), Model

D-C2 can be used to estimate the NCPD values for a given droplet

radius and a cell concentration (within the variable ranges given

in Table 3). For example, with a droplet radius of 500 mm and

cell concentration of 5 mil ml21, we estimate the expected NCPD

to be

E(NCPD)~ 1:6663|10{5
� �

|0:9756500|1:20815|3:1672
ffiffiffiffiffiffi

500
p

~29

The notation of the models is summarized in Table 5.

3.2. Modeling NCPD as a function of cell concentration, droplet

radius, and cell radius (Model D-C3)

Unlike Model D-C2 (Table 5), at this stage of analysis, we

consider the cell radius (XCR) as a potentially important factor in

explaining or modeling the NCPD by incorporating cell radius

into the modeling procedure. That is, the response variable of

interest (NCPD) is modeled as a function of independent

(predictor) variables, i.e. cell concentration (XCC), droplet radius

(XDR), and cell radius (XCR). We treat each cell related data as a

single data point, so for the cells in each droplet, NCPD values are

replicated, as well as XCC and XDR values. Hence, we have 9539

sets of XDR, XCR, NCPD and XCC values from 148 droplets at five

cell concentrations. Our experimental data showed that the

variance of NCPD is significantly larger than its mean: Var(NCPD)

= 8211.90 and Mean(NCPD) = 168.74 with p , 0.0001 based on

Dean’s PB test for overdispersion. This indicated that negative

binomial regression is more appropriate.

We implement the negative binomial GLM that models the

logarithm of NCPD as a function of droplet radius, cell radius,

and cell concentration together with non-linear terms. By our

model selection procedure, the model is reduced to one that only

contains XDR and XCC as predictors. That is, in the presence of

droplet radius and cell concentration, cell radius has no

significant contribution to modeling NCPD. However, this does

not necessarily mean that XCR has no impact in the modeling of

NCPD. In particular, if the cell radius is used as the only predictor

variable in modeling the response variable NCPD, then it is

significant. We construct models at each cell concentration value

treating cell concentration as a qualitative factor (i.e., Model

D-C3). This is justifiable, because in practice, usually an

experimenter takes XCC to be any one of the 5 values specified.

When many replications are taken at few levels of a numerical

variable, it is a common practice to also treat this numerical

variable as a categorical variable which sometimes provides a

better fit of the model to the data at hand. With such modeling,

we observe that the cell radius is significant at some cell

concentration levels (1 and 8 mil ml21), but not at other levels (2,

4, 16 mil ml21). For example, for XCC = 1 mil ml21, we have

log (E(NCPD))~22:2990z0:0366XDR{1:5999
ffiffiffiffiffiffiffiffiffiffi

XDR

p

{1:7804
ffiffiffiffiffiffiffiffiffi

XCR

p

z0:3071XCR

(3)

When these coefficients are translated into multiplicative

effects in the predicted NCPD count, we get

E(NCPD)~4:8345|109|1:0372XDR |0:2019
ffiffiffiffiffiffiffi

XDR

p
|0:1686

ffiffiffiffiffiffiffi

XCR

p

|1:3594XCR

(4)

See Table 6 for the explicit forms of Model D-C3 for each cell

concentration. Notice that the dependence of NCPD on XCR and

XCD is different at each XCC. Observe that NCPD increases with

increasing droplet radius, while NCPD tends to decrease with

increasing cell radius. For example, at XCC = 1 mil ml21, for a

one-unit increase in cell radius from, say 5 to 6 mm (i.e., if cell

radius value increases by 1 mm at 5 mm), the decrease in log of

expected NCPD is 0.0729 or the expected NCPD decrease is by a

factor of exp(20.0729) = 0.9297, when XDR is held constant.

Fig. 2 Histograms of droplet radii (left), NCPD values (middle) and logarithm of NCPD values (right).
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Furthermore, the droplet radius has a stronger influence on

NCPD compared to the cell radius.

Based on the diagnostic plots presented in Fig. 3, we observe

that model assumptions are valid in this case. Hence, when the

cell radius is considered, Model D-C3 is a good alternative to

estimate the NCPD values for a given droplet radius and cell

radius, at the cell concentrations tested in this study (1, 2, 4, 8,

and 16 mil ml21). That is, if one wants to use these cell

concentration values in a cell encapsulation experiment, Model

D-C3 can be employed. For example, for a droplet radius of

500 mm, a cell concentration of 1 mil ml21 and a cell radius of

15 mm, we estimate the expected NCPD to be

Fig. 3 Diagnostic plots for Model D-C2 (top row), Model D-C3 (middle row) and Model R2-C2 (bottom row). The deviance residuals versus

predicted values (left) and the normal QQ-plot for deviance residuals versus theoretical quantiles, where the straight line passes through the first and

third quartiles (right).
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E(NCPD)~4:8345|109|1:0372500|0:2019
ffiffiffiffiffiffi

500
p

|0:1686
ffiffiffiffi

15
p

|1:359415~12

On the other hand, Model D-C2 is also applicable to any cell

concentration value within 1–16 mil ml21 range. However, for

concentration values other than 1, 2, 4, 8, and 16 mil ml21, one

can also estimate NCPD values with linear interpolation. For

example, at XDR = 500 mm and XCR = 10 mm, Model D-C3

estimates NCPD value to be 22 for XCC = 4 mil ml21 and 105 for

XCC = 8 mil/ml. Then, at the same XDR = 500 mm and XCR =

10 mm values, for XCC = 5 mil ml21, by linear interpolation, we

obtain NCPD&22z
5{4

8{4

� �

(105{22)~42:75.

3.3. Modeling NCPD as a function of cell concentration and the

ratio of droplet radius to cell radius (Model R2-C2)

We modelled NCPD as a function of XCC and ratio of droplet

radius to cell radius for each cell, called the radius ratio and

denoted XRR. Negative binomial regression is more appropriate

here, since Var(NCPD) = 6702.70 is significantly larger than the

mean: Mean(NCPD) = 63.63, p , 0.0001 based on Dean’s PB test

for overdispersion. We used cell droplet data on 171 droplets and

10,226 cells.

We implemented the negative binomial GLM with XRR and

XCC as predictors and obtain the following reduced model

log(E(NCPD)) = 2.0485 + 0.0021 6 XRR + 0.3546 6 XCC

2 0.0098 6 X2
CC (5)

The coefficients of the log linear model can be translated into

multiplicative effects in the predicted count as

Model R2-C2:

E(NCPD)~7:7564|1:0021XRR|1:4256XCC|0:9902X 2
CC (6)

Note that NCPD tends to increase as XCC or XRR increases.

That is, when the cell concentration increases, it is more likely to

have more cells per droplet. Similarly, when the ratio of droplet

radius to cell radius increases, the droplet volume tends to be

much larger than the cell volumes, so it is more likely to

encapsulate more cells in such droplets. For example, the

expected log(NCPD) increase is 0.0021 for a one-unit increase in

radius ratio (i.e., if the radius ratio increases by 1). That is, a one-

unit increase in radius ratio causes the expected NCPD to increase

by a factor of exp(0.0021) = 1.0021, holding XCC constant. When

the cell radius is fixed or its variation is negligible compared to

the variation in the other variables (i.e., when the variance of cell

radius is much smaller compared to that of other variables),

Model R2-C2 can be used to estimate the NCPD values for a

given radius ratio and a cell concentration within the range of the

variables. The ranges for the droplet radii and cell radii in

Table 3 yield the range for XRR to be 18.75–233.33. For example,

with the radius ratio being 500 mm/10 mm = 50 and the cell

concentration being 1 mil ml21, we estimate the expected NCPD

to be

E(NCPD) = 7.7564 6 1.002150 6 1.42561 6 0.99021 = 12.

Furthermore, the model diagnostic plots in Fig. 3 suggest that

although the model assumptions seem to be not severely

violated, the quantile-quantile (QQ)-plot suggests more severe

non-normality compared to other models. Besides, the plot of

the deviances indicates a worse fit compared to other models (see

Fig. 3).

3.4. Comparison and discussion of the models for NCPD

The models D-C2, D-C3, and R2-C2 have AIC values of

105,376.6, 100,407.1, and 103,697.8 respectively. Hence D-C3

with the smallest AIC value provides the best fit to the available

data. Further, comparing the above three models, we find that

the inclusion of the cell radius and treating cell concentration as

a categorical variable in Model D-C3 provides a significant

improvement over Model D-C2 (likelihood ratio x2 = 5001.4, df

= 16, p , 0.0001). However, the effect of the cell radius is not as

strong as the other variables in the modeling of NCPD. For

example, for a five-fold increase in cell radius, which is roughly

the ratio of the largest cell radius to the smallest cell radius in our

data, the expected value of NCPD decreases by a factor of 1.0470

Table 6 Model D-C3: The negative binomial model for NCPD at each cell concentration.

Cell concentration (mil ml21) The model

XCC = 1 E(NCPD)~4:8345|109|1:0372
XDR

|0:2019
ffiffiffiffiffiffiffi

XDR

p
|0:1686

ffiffiffiffiffiffiffi

XCR

p
|1:3594XCR

XCC = 2 E(NCPD)~ 8:2390|10{23
� �

|0:9081XDR |96:8620
ffiffiffiffiffiffiffi

XDR

p
|0:8627

ffiffiffiffiffiffiffi

XCR

p

XCC = 4 E(NCPD)~ 3:8970|10{9
� �

|0:9588XDR |6:8313
ffiffiffiffiffiffiffi

XDR

p
|0:1740

ffiffiffiffiffiffiffi

XCR

p

XCC = 8 E(NCPD)~ 2:7180|102
� �

|1:0070XDR |0:8088
ffiffiffiffiffiffiffi

XDR

p
|1:1030

ffiffiffiffiffiffiffi

XCR

p

XCC = 16 E(NCPD)~1:4094|0:9967XDR |1:3299
ffiffiffiffiffiffiffi

XDR

p
|1:1143

ffiffiffiffiffiffiffi

XCR

p

Table 5 Abbreviations used for the notation of models are indicated by the bold face and capitalization in the description column

Modelsa Description

Model D-C2 Modeling NCPD as a function of Droplet radius and Cell Concentration
Model D-C3 Modeling NCPD as a function of Droplet radius, Cell Concentration, and Cell radius
Model R2-C2 Modeling NCPD as a function of the ratio of droplet Radius to cell Radius and Cell Concentration
a The MS Excel and R code of the three statistical models (i.e. D-C2, C-D3, and R2-C2) are provided as a supplement.{
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at cell concentration XCC = 1 mil ml21 and increases by a factor

of 1.2489 at cell concentration XCC = 8 mil ml21. Therefore, we

can conclude that the influence of cell radius is statistically

significant in modeling NCPD, but its practical significance is only

moderate. Hence, for practical purposes, Model D-C2 is better

along the lines of principle of parsimony, i.e., simple yet

explanatory for estimating NCPD.

Comparing Model R2-C2 with Model D-C2, we observe that

using the radius ratio instead of droplet radius does not significantly

improve the model performance in the sense that the fit of Model

R2-C2 is not better than that of Model D-C2. In fact, Model D-C2

is better in explaining the variation in NCPD compared to Model

R2-C2 (the likelihood ratio x2 = 1678.8, df = 0, p , 0.0001).

On the other hand, comparing Model R2-C2 to Model D-C3,

we see that Model D-C3 is significantly better in explaining the

variation in NCPD compared to Model R2-C2 (the likelihood

ratio x2 = 3322.6, df = 16, p , 0.0001). That is, the raw radius

values for droplets and cells are better for explaining the

variation in NCPD compared to the radius ratios. Therefore, if

the cell radius is fixed or its variation is negligible, Model D-C2

can be applied; otherwise Model D-C3 should be applied. These

models explain the encapsulation process that determines the

number of cells per droplet. Further, we can perform predictions

to control the conditions that will yield designed cell encapsula-

tion performance (i.e., NCPD with high probability).

Furthermore, if the cell concentration and droplet radius are

fixed, the dependence of NCPD on cell radius can be determined

more precisely. The cell radii can be measured by imaging cells in

suspension. It takes time for the cells to attach to a surface and

spread after ejection. We eject the cells in suspension form;

hence, their spread sizes on the surface do not come into play.

Some cells may seem larger in cultures, since they spread,

however, their sizes range within the tens of microns when they

are suspended and become spherical. The cell concentration can

be precisely controlled, and the cell radius is dependent on the

cell type. The droplet radius is measured after the droplet lands

on the substrate. However, this does not mean that we cannot

control the droplet radius. The droplet size is controlled by the

valve-opening duration as described in the methods. The longer

the microvalve stays open the larger the droplet that is ejected.

Hence, to make use of the presented models in this work in

estimation or prediction, we also determine the conditions of the

experimental settings to achieve specific droplet radius values on

the substrate. Therefore, for a given cell type, models can

determine the required cell concentrations and droplet radius to

achieve a predetermined number of cells per droplet with a high

probability. Additionally, for given cell concentration and

droplet radius values, models can estimate the expected number

of cells per droplet with a high probability.

See also Table 7 for estimated values of NCPD for XDR =

500 mm, and XCR = 15 mm for each of 1, 2, 4, 8, and 16 mil ml21

XCC values. For small XCC values (i.e., for XCC =1 and 2 mil ml21),

the models agree with the prediction of NCPD values. However, for

larger XCC values, Model D-C3 is more reliable. For higher

concentration values Models D-C2 and R2-C2 seem to be over-

averaging, and, hence, underestimating the NCPD values. For

concentration values other than 1, 2, 4, 8, and 16 mil ml21, one can

perform a linear interpolation based on Model D-C3 as described

at the end of Section 3.2.

4. Stochastic modeling of number and volume of cells
per droplet

4.1. NCPD modeled as a negative binomial process

In Sections 3.1–3.3, we have shown that the volume of the

droplet, i.e. droplet radius and cell concentration are the main

factors to determine the NCPD values. For a 3D region R with a

certain volume in the ejection fluid, the number of cells in R

denoted N(R), can be modeled as a negative binomial process

with the following probability distribution function (pdf):

P(N(R)~k)~
C(kzr)

k!C(r)
1{

lV(R)

lV (R)zr

� �r
lV (R)

lV (R)zr

� �k

(7)

for k = 0, 1, 2,... and where l is the rate parameter with its unit

chosen to be mil ml21 (so l = XCC), and V(R) is the volume of

the region R in ml, and r~
lV (R)

t{1
Var(N(R)) = t 6 Mean(N(R)).

Since the ejection fluid is assumed to be homogenized and droplets

are taken from the fluid so that a droplet represents a region with

volume V(D). In particular, the number of cells per droplet, NCPD,

has the distribution as in eqn (7) with V(R) being replaced by V(D).

4.2. Total volume of cells per droplet modeled as a compound

spatial inhomogeneous negative binomial process

In the cell encapsulation procedure, the cell radius may vary in a

range even for a given cell type. Furthermore, NCPD is also related

with the cell radius (or volumes). Therefore, a more complex

model that incorporates the randomness in the cell radius in

addition to the negative binomial property of the number of cells

is the compound homogeneous negative binomial process. Given

a droplet, let VT(D) be the total volume of the cells at a droplet

and Vi is the volume of cell i in the droplet for i = 1, 2,…,N(D)

where N(D) = NCPD in the droplet. Then

VT(D)~
XN(D)

i~1
Vi (8)

where N(D) is the homogeneous negative binomial process

described in Section 3.5.1. In particular, using eqn (8), we get

with Model D-C2:

VT(XDR,XCC)~
PN(XDR,XCC)

i~1 Vi (9)

with Model D-C3:

VT(XDR,XCC,XCR)~
PN(XDR,XCC,XCR)

i~1 Vi (10)

with Model R2-C2:

VT(XRR,XCC)~
PN(XRR,XCC)

i~1 Vi (11)

In the model in eqn (10), N(D) directly depends on the cell

radius, so it is a dependent-type compound negative binomial

Table 7 Estimated NCPD values based on the models D-C2, D-C3, and
R2-C2 for XDR = 500 mm and XCR = 15 mm

Cell concentration (million cells ml21) 1 2 4 8 16
D-C2 14 16 24 51 233
D-C3 12 14 24 113 241
R2-C2 12 16 29 76 195

This journal is � The Royal Society of Chemistry 2012 Lab Chip
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process. In the model of eqn (9), N(D) only depends on the

droplet radius and the cell concentration. There is a positive

relationship with a small slope between the cell radius and the

droplet radius (see Fig. 4 (right)). So, the model in eqn (9) can be

assumed to be a compound negative binomial process.

What remains is the distribution of the volume, Vi, of the cells

that can be determined by measuring the cell radii and assuming

a spherical cell geometry, i.e., V~
4

3
pX 3

CR. Hence, it suffices to

determine the distribution of the cell radii, XCR. We present the

kernel density estimates of the cell radii for the cell concentration

values (only 1, 2, and 4 mil ml21 are presented) in Fig. 5. The figures

for the other concentrations are similar, hence are not presented here.

These figures support the claim that cell radii are log-normal with

different parameters at each cell concentration. The distribution of

the logarithm of cell radius in our data can be modeled as a mixture

of normal distributions. Therefore, the cell radii (pooled together in

the aggregate data) as a mixture of log-normal distributions has the

pdf fx(x)~
X

n

i~1

aifYi
(x) where n = 5, i stands for cell concentration

2i21 mil ml21 for i = 1, 2,…,5, and ai is the proportion of cells from

concentration i, and fYi
(x) is the pdf of cell radii at concentration i.

That is, log(Yi)yN(mi, si) (i.e. log(Yi) is distributed as normal

distribution with mean mi and standard deviation si). In particular,

we presented the distribution parameters for each concentration in

Table 8.

5. Conclusions

Our statistical models in Section 3 estimate the relationship

between number and volume of cells per droplet (NCPD) and

other variables including cell concentration (XCC), droplet radius

(XDR), and cell radius (XCR) using negative binomial regression.

Considering the nature of the relationships and the structure of

the statistical models, we conclude that the influential factors

that affect NCPD are the cell concentration, droplet radius, and

cell radius, with the former two having greater influence.

Furthermore, if the cell concentration is fixed, more subtle

relationships are observed between NCPD values versus droplet

and cell radii (see Model D-C3). On the other hand, our

stochastic models in Section 4 incorporate the statistical models

in Section 3 to describe the total volume of cells per droplet as a

compound spatial inhomogeneous negative binomial process.

In conclusion, we have developed three statistical models,

namely, Models D-C2, D-C3, and R2-C2. The models are more

appropriate under different conditions (cell concentration,

droplet radius, and cell radius) to optimize NCPD, i.e., estimate

the optimal conditions to encapsulate a desired number of cells

within a nanoliter droplet volume. For example, if one wants to

estimate NCPD at the specific cell concentration values in Table 3,

Model D-C3 is the most appropriate choice, while if one wants

Fig. 4 Cells in a typical printed droplet and quantification of their radii. (A) An image of cells encapsulated in a printed droplet. Arrowheads in the

inset indicate some of the cells encapsulated in a droplet. (B) A scatter plot of cell radius versus droplet radius values.

Fig. 5 Kernel density estimates of the log of the cell radii for cell concentrations 1 mil ml21, 2 mil ml21, and 4 mil ml21.

Table 8 Mean and standard deviation values for the mixed log-normal
distribution in Section 4.2

Cell concentration (million cells ml21) 1 2 4 8 16
mi 6.29 6.07 6.65 5.95 5.83
si 2.38 2.22 2.05 1.69 1.93

Lab Chip This journal is � The Royal Society of Chemistry 2012
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to estimate for any cell concentration value within a vicinity of

1–3 mil ml21 (i.e., around small cell concentration values relative

to the ones considered), Model D-C2 could be employed.

Considering Models D-C2, D-C3, and R2-C2 (Table 5) based on

our experimental data, we conclude that each of the three

variables (e.g., cell concentration, droplet radius, and cell radius)

can be estimated for a specific goal when the other two are given.

For example, for a given droplet and cell radii, the cell concentration

can be estimated to achieve a specific NCPD value. Thus, one can

design the conditions for a desired NCPD, based on the models

introduced here; or in a given setup, one can estimate the number of

cells per droplet reliably. In particular, at the specific cell

concentration values in Table 3, one might employ Model D-C3

for estimation or prediction purposes. On the other hand, for

smaller cell concentration values (i.e., between 1–3 mil ml21), one

might employ Model D-C2 as well. For larger cell concentration

values (i.e., 3–16 mil ml21), we recommend the linear interpolation

based on Model D-C3 (see end of Section 3.2). Model R2-C2 is fit

mostly for comparative purposes, and found to perform less

efficiently than the other two models in the sense that the goodness

of fit for the other models are better than Model R2-C2.

The models introduced in this paper are applicable to different

cell types, other encapsulation media and cell encapsulation

technologies, which require a reliable control over the number

of cells per microdroplet. The models are usable when

the experimental setup is replicated in the current form.

Additionally, the models developed in this study and steps taken

to validate the experimental and modeling results are applicable

broadly to other cell encapsulation systems, since similar para-

meters such as cell concentration and droplet size that are analyzed

here apply. For example, if the setup, e.g. dispenser does not

seriously confound the relationship between number of cells per

droplet and the other variables, then the models are applicable in

that setting as well. Otherwise, the models are instructive in forming

models of dispenser families that affect the droplet formation or

number of cells per droplet that are substantially different than our

setup. In addition, we expect viscosity to affect the overall system

when ejecting different solutions. Since the droplet is generated

under constant pressure, the viscosity will affect the droplet size

with keeping all the other conditions the same. However, we do not

expect an effect of viscosity on the number of cells per droplet if the

droplet sizes are the same. The statistical and stochastic models

introduced in this study are adaptable to various cell types and cell

encapsulation technologies such as microfluidic and acoustic

methods that require reliable control over the number of cells per

droplet provided that setting or interaction of the variables is

similar to ours. Here, by adaptability we mean that certain

parameters are common to all cell encapsulation systems, e.g., cell

concentration and droplet size. A few restrictions of the model are

provided in Section S1 of the ESI { as the underlying assumptions

for the models. Hence, the models developed in this study can be

used to provide reliable predictions and to improve the control over

cell encapsulation in droplets for a wide range of applications in

biomedicine and biomedical research.
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