Faculty Senate Meeting
Monday, September 29, 2014
3:30 p.m. - 5:30 p.m. – Adelbert Hall, Toepfer Room

AGENDA

3:30 p.m. Approval of Minutes from the April 24, 2014 Faculty Senate meeting R. Savinell

President’s and Provost’s Announcements

B. Snyder
B. Baeslack

3:35 p.m. Chair’s Announcements R. Savinell

3:40 p.m. Report from the Executive Committee R. Ritzmann

3:45 p.m. Report from Secretary of the Corporation C. Treml

3:50 p.m. Approval and Introduction of Faculty Conciliation Counselor; Conciliation Report R. Savinell
W. Leatherberry

3:55 p.m. Minor in Social Justice R. Williams
S. Hinze
D. Morris

4:00 p.m. Minor in Data Science R. French

4:05 p.m. Non-UPF Course Review Protocol J. Ruhl

4:15 p.m. Update from ad Hoc Committee on Course Evaluation Implementation J. Ruhl
R. Dubin

4:30 p.m. Draft Tobacco Free Campus Policy E. Click
L. Stark

4:45 p.m Faculty Senate Position on Ohio Science Bill G. Starkman
P. Princehouse

5:00 p.m. Revisions to Faculty Handbook: State of the University Address D. Carney

(5:10 p.m. New senators- optional introduction to the Senate)
Faculty Senate Meeting
Monday, September 29, 2014
3:30-5:30 p.m. – Adelbert Hall, Toepfer Room

Members Present
Alexis Abramson Peter Harte John Ruhl
Bud Baeslack Angelina Herin Sandra Russ
Timothy Beal Susan Hinze Robert Savinell
Cynthia Beall Jean Iannadrea Benjamin Schechter
Karen Beckwith Zina Kaleinikova Divya Seth
Cathy Carlin Kurt Koenigsberger Barbara Snyder
David Carney Xiaoyu Li Glenn Starkman
Susan Case Kathryn Mercer Alan Tartakoff
Queenie Cheong William Merrick Philip Taylor
Juscelino Colares Sonia Minnes Horst von Recum
Heath Demaree Diana Morris Rebecca Weiss
Nicole Deming Carol Musil Stuart Youngner
Peg DiMarco Pushpa Pandiyan Richard Zigmund
Mitch Drumm Mary Quinn Griffin Christian Zorman
Robin Dubin Roy Ritzmann
Karen Farell Andrew Rollins

Members Absent
Joseph Baar Lee Hoffer Betsy Tracy
Colleen Croniger Megan Holmes Mark Votruba
Scott Fine David Hussey Gillian Weiss
T. Kenny Fountain Lisa Lang Amy Zhang
Carol Fox Eric Lavik
Jessie Hill J. Martin Palomo

Others Present
Chris Ash Arnold Hirshon Sue Rivera
Amy Backus Barbara Juknialis John Sideras
Kathleen Blazar Marilyn Mobley Jeff Wolcowitz

Call to Order
Professor Robert Savinell, chair of the Faculty Senate, called the meeting to order at 3:30 p.m.

Approval of Minutes
Hearing no objections, the Faculty Senate meeting minutes of April 24, 2014 were approved as submitted.
President’s Announcements

President Barbara Snyder reported that the Tinkham Veale Student Center had opened on Sunday, August 24th with a dessert reception and music by Ok Go. The ceremony went very well. Unfortunately 24 hours later the university heard the tragic news that four CWRU undergraduates had been killed in a private plane crash. It was a difficult way to begin the academic year. The campus community response has been tremendous and the team from Student Affairs has worked extremely hard. A memorial service took place and three out of the four families attended.

Two upcoming events will be held in the new Tinkham Veale Center Ballroom. The first, which is scheduled for this evening, is author Zadie Smith who is speaking as part of the Writers Center Stage Series. This series had previously been held at Playhouse Square but has moved to the CWRU campus. The second event is the Inamori Ethics prize symposium and award ceremony on October 1st.

Provost’s Announcements

Provost Bud Baeslack reported that Sue Workman, new CIO, started today. She comes to CWRU from Indiana University. A new Vice President for Research will be announced in the next week or so.

Chair’s Announcements

Prof. Robert Savinell welcomed all senators and thanked them for allowing him to serve as chair of the Senate. Prof. Savinell also welcomed Jennifer Jackson, new department assistant in the Office of the Faculty Senate. There will be a special session at the end of the meeting for new senators. A memorial bench for Professor Steven Garverick has been installed on campus. Prof. Garverick passed away unexpectedly last year after serving as chair of the Senate for a very brief period.

Report from the Executive Committee

Professor Roy Ritzmann, vice chair, gave the report from the September 8th Executive Committee meeting. The Executive Committee discussed proposed revisions to the research misconduct policy. The Committee approved sending the revisions to the By-Laws Committee for review. Professor Andrew Rollins, CSE, was approved as the Faculty Senate representative to the Conflict of Interest Committee. This appointment only requires Executive Committee approval and not approval of the Faculty Senate. Several items on the meeting agenda were postponed due to insufficient time including a presentation from Carolyn Gregory, Vice President of Human Resources, on gender affirmation services and revisions to the charge for the Faculty Senate Graduate Studies Committee.

Report from Secretary of the Corporation

Ms. Colleen Treml, deputy general counsel, reported, that since the last Faculty Senate meeting in April, the CWRU Board of Trustees approved the university’s sexual misconduct policy effective as of July 1, 2014. It also approved five CSE graduate certificates. The full report is attached.

Approval of Conciliation Counselor/ Conciliation Report

The Faculty Senate approved the appointment of Wilbur Leatherberry, Emeritus Professor of Law, as the university’s new faculty conciliation counselor, effective July 1, 2014. Prof. Leatherberry succeeds Emeritus Professor Wallace Gingerich who served as the university’s first conciliation counselor. Prof. Leatherberry reported that last year Prof. Gingerich met with eleven faculty members. He also said that just two grievances have been filed since 2010.

Attachment

Minor in Social Justice

Professors Rhonda Williams, Susan Hinze and Dianna Morris presented the proposed minor in social justice. The minor has been developed over the past four years and was an outgrowth of the Alliance on Social Justice. The minor has been approved by all requisite bodies. Even though it will be housed in the CAS it is a university-wide program. The Introduction to Social Justice course is being taught for the third time this semester. A senator asked whether
the university will offer a major in this field. It is anticipated that if all goes well, a major will be offered in the future. The Faculty Senate voted to approve the minor in social justice. Attachment

Minor in Data Science
Professor Roger French, CSE, presented the minor in data science. The minor will be housed in the CSE but will have faculty from five different schools teaching courses. The minor is directed towards students studying in “domain” areas; Engineering and Physical Sciences, Health and Business. Other domains may be developed in the future. Students in the current domains will satisfy most of their prerequisites through their majors, however if additional domains are added, the question of prerequisites for those areas will need to be considered. The Faculty Senate voted to approve the minor in data science. Attachment

Non-UPF Course Review Protocol
Professor John Ruhl, chair of FSCUE presented the proposed non-UPF Course Review Protocol. The proposal details the process for review of undergraduate courses and programs, including requests for one-term course approvals, from non-UPF schools. The protocol was distributed to the college and schools and the feedback had been mostly positive. A senator suggested that in the future there be more communication between FSCUE and the non-UPF school making the request. A motion for a friendly amendment was made to include a representative from the non-UPF school in FSCUE’s deliberations. Prof. Ruhl accepted the friendly amendment and the following amending language was proposed: “A representative from the unit proposing the action will be invited to participate in the Curriculum Subcommittee’s discussion.” The Senate voted to approve the amending language and subsequently approved the protocol. Attachment

Update from ad hoc Committee on Course Evaluation Implementation
Professor Robin Dubin, chair of the ad hoc Committee on Course Evaluation Implementation, presented the committee’s recommendations. The committee would like to see the new course evaluations implemented this fall and recommends using the vendor EvaluationKit to pilot the program. FSCUE had recommended that students not receive grades until they completed course evaluations. The ad hoc Committee determined that this would be too difficult to implement for the fall semester. FSCUE also recommended that evaluations remain open until all grades are due. The ad hoc committee suggested that course evaluations remain open only until the end of the final exam period. This compromise would allow individual faculty members to determine whether students could see their grades before completing the evaluation because faculty could choose to post their grades after the evaluations closed. When the recommendations were presented to the Faculty Senate Executive Committee, several members expressed concern about this recommendation because the variation in whether the students knew their grade before completing the evaluation would make it difficult for promotion and tenure committees to interpret the results. After receiving this feedback from the Faculty Senate Executive Committee, Prof. Dubin discussed various options with FSCUE. In order to avoid this issue, FSCUE voted to continue the university’s current practice of keeping evaluations open until the end of classes. Professor Dubin noted that since EvaluationKit would give professors the option of having students complete the evaluations in class, this might not be a burden on students.

Other recommendations from the ad hoc committee included permitting faculty (and others, as appropriate) to add questions from a question library, and adding a textual analysis function in the future. The Provost’s office will work with ITS to oversee implementation of the evaluations and will make a decision about what to do at the end of the pilot. The Faculty Senate Executive Committee will craft a system to monitor and recommend changes to the course evaluation system.

Since the ad hoc Committee had been charged with determining the procedures for course evaluation implementation, Senate approval was not required. Attachment

Revisions to Faculty Handbook: State of the University Address
Professor David Carney, chair of the By-Laws Committee, presented proposed revisions to Chapter 2, Article IV, Sec. A of the Faculty Handbook. The proposed revisions give the President the option to provide a written state of the
university report rather than having to provide an oral report at the annual meeting of the University Faculty. The meeting has been poorly attended in the past. If the President chooses to provide a written report, the proposed revisions state that he/she must make another in-person opportunity available for faculty. The Faculty Senate voted to approve the revisions. Attachment

Draft Tobacco Free Campus Policy
Professor Elizabeth Click, CWRU Medical Director, is asking the Faculty Senate to endorse the concept of a tobacco free campus. Prof. Click is seeking endorsement from several groups on campus. If the concept is endorsed, a task force will be convened to draft a policy. Members of the Senate asked about e-cigarettes and smokeless tobacco and whether the policy would prohibit both of these from campus. Prof. Click said that she expected that both would be prohibited. Concerns were raised about international students who may have a very different cultural perspective on this issue; rules for visitors on campus; and whether students will be forced off campus into unsafe areas in order to smoke. A member of the Senate asked whether endorsing the concept of a tobacco free campus would prevent the Senate from objecting to the terms of the policy once it has been drafted. Prof. Click said that this question had come up with USG also and that endorsement of the policy would not be required if there are objections. The charge to the task force, however, will be to work on developing a tobacco free policy for the entire campus. The Faculty Senate approved the concept of a tobacco free campus, with one dissenting vote. Attachment

Faculty Senate Position on Ohio House Bill 597
Professor Glenn Starkman and Professor Patricia Princehouse presented a draft Faculty Senate resolution in opposition to Ohio House Bill 597. Prof. Starkman said that the Bill repeals the common core science standards and replaces them with education that would allow intelligent design and creationism to be taught alongside evolution in science classes. A senator said that the Faculty Senate had endorsed a similar resolution in the past. President Snyder requested that the resolution exclude any references to individuals such as the sponsor of the Bill and the Governor. It should simply be a statement in opposition to the principle. President Snyder said that including language asking the legislature to defeat the bill would be acceptable. A motion was made and seconded to submit a revised resolution to the Senate Executive Committee at its next meeting. The Executive Committee will be responsible for determining whether the revised resolution is sufficient. Attachment

The formal meeting was adjourned at 5:25pm

The chair and vice chair of the Senate held a welcome for the new faculty senators.

Approved by the Faculty Senate

Rebecca Weiss
Secretary to the University Faculty
Cases Served: 11

Issues brought

9 individual conflict (tenure, workload, supervisory relationship)
2 departmental functioning

Observations and impressions [January 1, 2010 – June 30, 2014]

• Since its inception in January, 2010 the Conciliation and Mediation Program has served an average of 12 cases each year.
• In most instances an individual faculty member has a conflict with her or his dean or department chair over workload assignments; tenure/promotion/compensation; or supervision/management style.
• Interpersonal conflict between colleagues arises less often but generally is resolved more easily.
• Occasionally there is not a conflict per se, but the faculty member needs an ombudsperson to help them get what they are entitled to in the university system.
• In the overwhelming majority of cases the individual faculty member does not wish to involve the other party directly in the conciliation/mediation process, but prefers to handle the situation themselves.
• Since the Conciliation and Mediation Program began in 2010 only 2 grievances have been filed; one of these cases had pursued mediation prior to filing the grievance.

Submitted by: Wallace J. Gingerich, Professor Emeritus
CIFRU Action Form for Majors/Minors/Programs/Sequences/Degrees
(instructions on back)

College/School: College of Arts and Sciences
Department: This is a University-wide initiative with no home department. We are requesting the program be housed for now in the College of Arts and Sciences.

PROPOSED:

- X major
- ___ minor
- ___ program
- ___ sequence
- ___ degree

TITLE: Social Justice Minor

EFFECTIVE: Fall (semester) 2014

DESCRIPTION:

See Attached Social Justice Minor Rubric

Is this minor:

- X new
- ___ modification
- ___ replacement

If modification or replacement please elaborate: NA

Does this change in minor involve other departments?

- X Yes
- ___ No

If yes, which departments? As specified in the rubric, approved courses for the Minor are housed in eight departments and two programs in the College: History, Ethnic Studies, Philosophy, Women’s and Gender Studies, Modern Languages and Literatures, English, Religious Studies, Sociology, and Political Science. In addition, two approved courses are located each in the School of Management’s Organizational Behavior Department, as well as the Master’s of Public Health Program in Medicine.

Proposal resubmitted 9/23/13

SIGNATURES:

Program Director for Social Justice Institute:

Ronald Williams 12/6/12

Department Chairs: (SEE ATTACHED SIGNATURE PAGES)

Program Curriculum Committee Chair:

Susan W. King 12/6/12

College/School Dean(s):

4/1/14

UUF Curriculum Committee Chair:

File copy sent to:

- X Registrar
- ___ Other:

Office of Undergraduate Studies/Graduate Studies

R. Williams 3.11.14 - Social Justice Program
Department Chair, English

Program Chair, Ethnic Studies

Department Chair, Modern Languages and Literatures

Department Chair, Philosophy

Department Chair, Political Science

Department Chair, Public Health

Department Chair, Religion
Dec 5 (1 day ago)
Jonathan Sadowsky
to Marissa, me

I'm home with sick child. But I am prepared to sign. You could fish out of my mailbox and get signature from Marissa Ross, whom I empower to sign for me with this e-mail. JS

Department Chair, History

Jonathan Sadowsky/me

Ronald E. Fry, Chair of the Department of Organizational Behavior

-------- Forwarded message --------
From: Ronald Fry <rnf5@case.edu>
Date: Tue, Dec 4, 2012 at 5:14 PM
Subject: Re: TIMELY: Social Justice Institute Minor Program: Approval Needed
To: Lila Robinson <lila.robinson@case.edu>
Cc: Rhonda Williams <ryw@case.edu>, "Susan, W Hinze" <susan.hinze@case.edu>

Rhonda and Susan,

I am away with our MPOD students on a study tour in Europe and not returning until the 14th.

I approve the inclusion of Professor Susan Case's course in the new curriculum for the Social Justice minor.

Either of you can sign for me if a signature is required.

Thank you,

Ron fry
September 23, 2013

Re: Resubmission of Social Justice Minor Program for Approval

This memo serves as notice of resubmission, for approval by the College of Arts & Sciences, of the Social Justice Minor Program. The Institute desires its Minor Program to be operational in Spring 2014. Original documents from our December 2012 submission are attached as Appendix A (Proposed New Minor for CAS) and Appendix B (Justification for Minor in Social Justice).

After assessing reviews and comments from the curriculum, budget, and executive committees, and engaging in follow-up conversations and meetings with the CAS Executive Committee, CAS Dean Cyrus Taylor, and Provost Bud Baeslack, the Social Justice Institute’s Curriculum Development Team has confidence that it has addressed the questions and concerns raised. Please find a synopsis below.

Thank you for your time, attention, and support of the Social Justice Minor Program.

1. Outstanding Approval of Curriculum’s Core Courses

- SJI’s Curriculum Development Team has drafted and submitted for approval syllabi for its two core courses that had not initially been submitted. Both courses have been submitted to CEP for approval.

 - The first, SJUS 200, is its one-credit course offering a real-world seminar experience. The course encourages students to attend out-of-classroom events on campus and in the community that relate to social justice, with a particular focus on topics and themes that meet the learning objective of the Minor. Social Justice Minors are expected to attend 8 lectures, workshops, and other events approved by their advisor. (See Appendix C.)
The second, SJUS 300, is the capstone course. Students are required to complete a capstone experience, applying the knowledge in their major field of study or within the social justice minor. The capstone experience is to be developed and administered by the major adviser and the social justice faculty adviser. The SJ capstone experience should conform to the requirements for the SAGES capstone. Given the latter requirement, the Curriculum Team co-chairs submitted the latter course to Peter Whiting for review. Peter Whiting has given his support. (See Appendix D.)

2. Sustainability & Financial Concerns

As outlined in the original Proposed New Minor document, there are not significant additional financial costs. However, please, see below the Institute’s specific responses to the concerns raised.

- **SJUS 100 Introductory Course Rotation:** In a summer meeting with Dean Taylor and Provost Baeslack, the Institute was asked to submit a 3-year rotation of faculty members who would co-teach the SJUS 100 course so that the Dean and Provost could seek pre-approval for the participation of identified faculty members from the appropriate chairs and deans. The Institute did this, and Dean Taylor has proceeded to secure the requisite approval. The CAS Dean also has agreed to proactively negotiate the terms of participation, on a case-by-case basis for faculty, with support of the Provost. As the initial three-year rotation ends, the Institute will once again — as an established practice — establish its new three-year rotation and with the appropriate administrators once again seek approval from the requisite chairs and deans. This will ensure ongoing coverage of the introductory core course for the Minor Program.

- **Course Rostering & Financial Cost:** The Institute’s administrator as the staff person, with help from the Institute Director and the co-chairs of the Curriculum Team (all faculty members), will make sure that the core courses are rostered. This does not require additional support, beyond the payment of staff salary already given.

The aforementioned faculty members — as members of the Leadership Team and Curriculum Team — also will continue to review and assess courses already approved for the Minor Program, as well as potential new courses that could be approved for the Minor Program.

The Director is now considering plans to identify an SJI “academic director” in FY’15 who would oversee this particular function as part of her/his responsibilities, as well as the Institute’s ongoing curriculum development initiatives and pedagogical innovation.
The "academic director" will be paid a nominal stipend (about $4-5,000 annually) either in the form of additional salary or research & travel funds. The Institute can support this for at least the next 2-3 years as we pilot the Minor Program – without additional development dollars, which is anticipated in the future.

- **Range of Courses Available to Support the Minor:**

 o As specified in the original proposal, the Institute already has identified and approved a critical mass of existing courses that will fulfill the Minor Program. These will be listed on the SJI website so students have a central location to consult for available courses.

 o The Institute also will launch in September a series of “calls for proposals.” The proposals will be due in December 2013, and the announcements of awards will be made in February 2014. One of these CFPs offers “Social Justice Course Redesign” opportunities. The CFP is explicitly for faculty who wish to re-design a course currently in the undergraduate curriculum to include a significant focus on social justice. These courses will maintain a home department designation, and may be cross-listed with a SJUS designation.

Sincerely,

Rhonda Williams, Director of the Social Justice Institute

Susan W. Hinze and Diana Morris, Co-Chairs of the SJI Curriculum Committee
Guidelines for College Consideration of
Proposed New Minor College of Arts and Sciences
November 30, 2012

Attached please find our proposed Social Justice Minor Program, complete with a justification for the development of a university-wide curriculum and signature identity for CWRU in Social Justice Studies. Our document has evolved over a two-year planning process, and is a coherent entity highlighting the process of curricular collaboration and innovation, evidence of student appeal, the mission and objectives of the planned curriculum, and details of the requirements for a Minor in Social Justice Studies.

We appreciate the questions posed by the CAS Budget Subcommittee and the CSPSC, and do our best to answer the questions in the order they are proposed in this form---CAS guidelines for college consideration of a new degree program. Please note that there is some overlap between our attached document, and the answers to the questions, below. In sum, we view the potential benefits of our proposal as outweighing potential risks, and hope we have incorporated ample information about financial issues, the attractiveness of our program to students, the potential effect on research and creative activity and reputation, and congruence with the college’s strategic plan.

1. How is the proposed program important to the sponsoring department/interdisciplinary program? Discuss the relationship between the proposed new program and current programs (graduate and/or undergraduate), including its impact with respect to allocation of resources.

The proposed program is a stand alone interdisciplinary university-wide program, with no sponsoring department. The program has been developed as part of the CWRU Social Justice Institute, created from the Provost’s interdisciplinary Alliance Investment Grants and in line with the University’s strategic, interdisciplinary priorities. As a university wide institute, the Social Justice Institute has a mission to advance education, research and community that inspires creative, sustainable, and just solutions to social problems.

The curriculum presented here achieves the first and second goals of the Social Justice Institute: 1.) supporting innovative and synergistic research, scholarship and pedagogy; and 2.) building and supporting social justice leaders.

The relationship between the proposed minor in Social Justice and current programs is synergistic. Our minor has two required SJUS courses: Introduction to Social Justice, and the Social Justice capstone. Hence, some faculty teaching time may need to be reallocated to the required courses from other departments. Since the SJJ has already hired two faculty in Social Justice, with plans for 2-3 more, we anticipate some course coverage through the SJJ hires. The other four electives are chosen from a list of thoroughly vetted courses that are housed in other departments and approved by faculty and department Chairs as electives for SJUS. We view the program design as a win-win: our SJUS students benefit from the expertise of faculty across the college and university, and the social justice program will draw students into courses housed in other departments thus boosting enrollments for home departments.

If a SJUS required course is taught by a faculty member outside the college, there is potential for a
portion of the tuition to be directed to that faculty’s home department depending on the university’s formula. The actual amount of monies reallocated would be minimal even in this scenario.

2. What is the perceived need or market for the program?
We share a sentiment expressed from the Office of the Provost and other forums at the University that Social Justice, as a topic and as a Minor, holds great appeal for students from different schools. Members of the curriculum committee have each related interest from students within their schools. For instance, in the School of Nursing, a significant lure for potential undergraduate students and parents is the 10-week community-based immersion experience that focuses on health policy and inequality, culture and ethics. The opportunity to incorporate nursing study in the social justice minor has the potential to be attractive to the same students. In Electrical Engineering and Computer Science within the School of Engineering, a significant cohort of students were excited and intrigued by the possibility of a Social Justice minor. During a College of Arts & Sciences Open House, students and their parents explicitly expressed enthusiasm and interest in a Social Justice program of study.

In addition to this, focus group and survey research was conducted by students in School of Management Professor Susan Case’s Managing Diversity and Inclusion class. The research was designed to assess the general CWRU student body interest in social justice as an undergraduate minor and graduate certificate program. Undergraduate students were drawn from the College of Arts and Sciences, Engineering, Nursing, and Weatherhead. With regard to the Social Justice undergraduate minor, strongest interest came from students in the humanities, social sciences, nursing, and WSOM. Many of these students wanted the program to include a field experience as well as international scope. They could see how such an emphasis would be helpful to them in their current areas of study.

Finally, the signature “Introduction to Social Justice” course was taught for the first time during Spring of 2012. Co-taught by Director of the SJI, Dr. Rhonda Williams, and Cellar Professor of Nursing, Dr. Diana Morris, the course achieved full enrollment with \(N = 18 \) students and further demonstrates the appeal of the program. Students in the class were from first through fourth years, and from a range of academic backgrounds and majors. Several students were already engaged in an area of social justice, and were eager to learn more about developing problem-solving skills and strategies to their areas of interest; such needs would be addressed through completion of the Social Justice Minor. In addition, most students from the SJUS 100 course expressed an interest in pursuing additional social justice coursework.

Assessing all of this information, the planning team believes that there is substantial existing interest in a Social Justice Minor that would enhance student exposure to social justice issues in the United States and throughout the world and that would develop their skills to become leaders and advocates of change. The team also believes that there is profound potential for teaching students, not fully convinced of its pertinence, about how social justice can enhance their personal, intellectual, and professional lives — no matter what their areas of study.

The interdisciplinary team of faculty on the SJI Curriculum Committee was enthusiastic about program development and found the process intellectually valuable demonstrating faculty interest and potential for future collaborative projects across departments and units.

Beyond the interest of those faculty planning the curriculum is the interest of faculty who were invited to include their course in the review process for the minor.
3. What are the projected costs necessary to mount the program? More specifically, what are the projected needed near- and long-term resources and estimated costs for: faculty, staff, graduate student support, space, university resources (e.g., library needs).

Near term resources have been provided by seed funding from the Provost’s Interdisciplinary Alliance Investment Grant (IAIG). Funds from the grant have underwritten the curricular development of the minor, as well as resources for faculty to retool courses in line with the SJ Minor objectives, or create entirely new courses. This initiative is still in process.

The Social Justice Institute has a library budget (KSL) in keeping with their support of the SJ1.

In addition, the College has already agreed to support the SJ1 and its effort to provide an innovative curriculum and new research partnerships. The two new SJ1 hires (with three additional hires expected) are evidence of this significant contribution. New faculty are contributing to the curriculum by teaching existing courses (e.g., John Flores is co-teaching SJUS 100 in Spring 2013; Tim Black will co-teach in Spring 2014), developing new courses, supervising capstones, and advising students. While the faculty were SJ1 hires, their respective departments (History and Sociology thus far) have reaped the benefits of having new faculty to support departmental programs. Other faculty across the university have expressed interest in teaching SJUS (e.g., Diana Morris from Nursing co-taught Spring 2012 and is scheduled for Spring 2013), developing new courses, and supervising capstones.

With the exception of the signature course and the capstone experience, the minor thus far draws upon existing courses. As outlined in the attached narrative and noted above, the SJ1 Curriculum Committee has already engaged in a lengthy process to identify appropriate courses. Existing funds will cover curricular innovation, including the voluntary retooling of existing courses and the creation of brand new courses with an explicit social justice framework that meets the established mission and objectives of the Minor Program.

The cost of the program over the longer term will be partially absorbed by the Social Justice Institute in the form of SJ1 faculty who are expected to teach approved social justice courses, and SJ1 staff who can help coordinate Minor matters. Since the College of Arts and Sciences is the lead school in this University-wide initiative, we expect continued support from administration, staff, and faculty for our innovative curricular development. In sum, costs to the College, beyond what has already been promised, are fairly limited for mounting and maintaining the Minor Program. In the future, we do hope to expand the Minor to a Major, as well as offer graduate and professional curricular opportunities. The director is in regular contact with the Dean of the College, as well as central development, as SJ1 works on a development strategy, plan, and “wish list” (such as undergraduate social justice scholarships) that, if secured, will support the expansion of curricular opportunities in the future.

4. What is the projected income associated with the new program? Identify likely sources and assess the near- and long-term likelihood of raising funds to support the program in such categories as external and internal grants, philanthropy and other non-grant external funding, and tuition.

A Social Justice Minor puts us ahead of the curve relative to our peer institutions (see #5, below) and
could attract potential students. Integrating our social justice mission through the Minor may enhance the overall attractiveness of the Social Justice Institute to potential donors.

5. What are the national and international competitive programs and their resources?

A survey of our peer institutions (Brandeis, Carnegie Mellon, Emory, NYU, University of Chicago, University of Rochester and Washington University) reveals social justice programmatic initiatives but only one curriculum program. Brandeis offers a 15 hour (plus 1 internship) Minor in Social Justice and Social Policy. The others offer a range of programs, including The Center for Social Concern at Johns Hopkins and the Social Justice Center at Washington University.

Implementing a Minor Program at CWRU sets us apart from our peers in a distinctive manner; integrating our Social Justice commitment into the curriculum makes it foundational and provides opportunity for students to “get” social justice at a deeper, broader level than they would if they were simply involved in an occasional social justice program.

In Appendix A, we provide detail about program and curricular offerings in social justice in select peer institutions. We also provide information on innovative social justice programs springing up on the national scene. For example, Miami of Ohio, Northeastern Illinois University, ASU and James Madison offer some form of a Minor and/or Major in Justice Studies. Many of these programs and initiatives are housed in specific departmental- or school-based units. For instance, while ASU has a School of Social Transformation that serves as an umbrella and home for an MS in Justice Studies and MA in Social and Cultural Pedagogy, as well as doctoral degrees in Gender Studies and Justice Studies, it is housed in the College of Liberal Arts and Sciences. Miami University’s program is based out of the Sociology Department. The University of Illinois at Chicago recently founded a Social Justice Initiative, complete with plans for faculty cluster hires. Finally, a grant of $23 million from the Arcus Foundation is funding the Center for Social Justice Leadership at Kalamazoo College. The program is an aspirational model for us, with four full-time staff members, endowed faculty chairs, fellowships for undergraduates and faculty, as well as comprehensive social justice programming for the college community.

6. How does the proposed program: a.) move the college’s strategic plan forward in regard to the goals for undergraduate and/or graduate education; b.) strengthen the discipline through scholarship; c.) foster collaboration across disciplines?; d.) increase attractiveness of the department and college?

The CAS strategic plan highlights our mission of creating skilled and informed citizens who can serve local and national communities through collaboration and service. The Social Justice minor is designed to educate students about the meanings of social justice and how to promote it as informed citizens through their chosen career and life paths. The structure of our program promotes the growth and development of social change leaders. And the content of our Minor fosters collaboration across disciplines. Finally, the social justice minor enhances the attractiveness of the College and University by promoting a program dedicated to creating a democratic society that is diverse, inclusive and equitable.
7. How does the proposed program relate to the university’s strategic plan?

The Social Justice Alliance/Institute is one of the four pillars of the 2008 Strategic Plan, and the Minor is an outgrowth of the Social Justice Institute. As a multidisciplinary, multi-school program, the minor includes faculty and students from medicine, dentistry, public health, engineering, law, social work, and the social sciences and humanities. Central to our mission is educating students to become change agents in local, national and international arenas. The Director of the Institute is in conversation with other directors or leaders in social justice at other universities. We view the Minor as a key component of the SJI with the potential to increase diversity on campus and strengthen institutional resources.

8. How will the program contribute to CWRU’s reputation regionally, nationally, and internationally?

As outlined in our Social Justice Institute precis, an interdependent 21st century world requires exploration of the social, political, economic, technological, and scientific developments of our diverse and global society. Our academic program requires students to ponder hard questions: what are the impacts of these developments on all people, those with privilege and those without? What kind of society do we want to live in? What is social justice? While Social Justice centers and institutes are springing up at colleges and universities elsewhere, we believe our interdisciplinary curricular approach to the questions raised is truly distinctive. As our signature core course makes clear, we bring multiple views and academic perspectives to the academic table. Students are exposed to cross-disciplinary ways of thinking.

Furthermore, developing a new curricular model in social justice has potential application nationally and internationally. SJI is currently engaged in regional and national networking and development of new models for social justice-related work in higher education. The Minor is an important component of the Institute, and the distinctive interdisciplinary design has potential to enhance the reputation of the college and university. The SJI is the basis of a Case Study to be included in an anthology by Michael Austin in 2013. The chapter, by Rhonda Williams, is titled “A Case Within a Case: Social Justice for Active Citizenship.” Finally, students who minor in Social Justice will be conducting applied research and become producers of knowledge, further contributing to CWRUs reputation on the regional, national and international social justice scene.

9. To what extent does the new program reflect a change of departmental priorities and subsequent reallocation of resources?

Since the Minor program is a multi-school interdisciplinary program, the reallocation of resources for one specific department is minimal. However, the SJI Minor program relies upon college level support and benefits for the institute and its proposed goals.
JUSTIFICATION FOR MINOR IN SOCIAL JUSTICE

In the Spring of 2010, the CWRU Social Justice Institute (SJI) received funding from the Provost’s Interdisciplinary Alliance Investment Grants which were created to advance the University’s strategic, interdisciplinary priorities. SJI is a university wide institute whose mission is to advance education, research and community that inspire creative, sustainable, and just solutions to societal problems. The goals of SJI include:

- supporting innovative and synergistic research, scholarship and pedagogy;
- building and supporting social justice leaders;
- forging productive relationships across boundaries within the university and into the community.

In order to achieve the first and second goals, a key component of SJI’s IAIG proposal was to address pedagogy and curriculum development in order to develop future social justice scientists, scholars, and leaders. To that end, recruitment of members to the Social Justice Institute’s curriculum planning team began during Spring and Summer 2010. The planning team, which has representation from the SJI leadership team, the College, and six of the seven schools, began its work September 2010 and met almost every 2-3 weeks thereafter. The committee includes: Rhonda Y. Williams, SJI Director (CAS, History); David Crampton (WSASS); Susan Case (WSOM); Susan Hinze (CAS, Sociology); Marilyn Mobley, Vice President, Inclusion, Diversity & Equal Opportunity (SJI Leadership Team member and CAS, English); Marc Buchner (CSE); Elliot Posner (CAS, Political Science); John Flores (SJI Leadership Team member and CAS, History); Jennifer Madden (Graduate Student, WSOM); Diana Morris (SON); Scott Frank (SOM); Jonathan Entin (Law).

The proposed Social Justice Minor is the first phase of the broader effort to develop a university-wide curriculum, and by extension a signature identity, for CWRU in social justice studies at the undergraduate and graduate levels. Educating future leaders throughout the university is central to the vision and mission of the Social Justice Institute and its alliance-based work.

Curricular Collaboration & Innovation

Influenced by, and integrated with, the Social Justice Institute’s other initiatives and collaborative approach, the foundation of the newly established Social Justice Minor is a cross-disciplinary, team-taught core course that will introduce students to social justice from a range of perspectives. While we have discovered commitment to and expertise in social justice across the schools, we have also come to realize that there are multiple views and academic perspectives on the meanings of social justice and how to promote it. An innovative component of this curriculum is the featured “signature core course,” which will introduce students to this cross-disciplinary way of thinking at the outset and promote an intellectual culture of collaboration. This course will weave together the richly diverse contributions of scholars from different disciplines and schools.

Student Appeal

We share a sentiment expressed from the Office of the Provost and other forums at the University that Social Justice, as a topic and as a Minor, holds great appeal for students from different schools. Members of the curriculum committee have each related interest from students within their schools. For instance, in the School of Nursing, a significant lure for potential undergraduate students and parents is the 10-week community-based immersion
Social Justice Institute Curriculum Development Document
SJ Minor Rubric

experience that focuses on health policy and inequality, culture and ethics. The opportunity to incorporate nursing study in the social justice minor has the potential to be attractive to the same students. In Electrical Engineering and Computer Science within the School of Engineering, a significant cohort of students who were excited and intrigued by the possibility of a Social Justice minor. Recently, during a College of Arts & Sciences Open House, students and their parents explicitly expressed enthusiasm and interest in a Social Justice program of study.

In addition to this, focus group and survey research was conducted by students in School of Management Professor Susan Case’s Managing Diversity and Inclusion class. The research was designed to assess the general CWRU student body interest in social justice as an undergraduate minor and graduate certificate program. Undergraduate students were drawn from the College of Arts and Sciences, Engineering, Nursing, and Weatherhead. With regard to the Social Justice undergraduate minor, strongest interest came from students in the humanities, social sciences, nursing, and WSOM. Many of these students wanted the program to include a field experience as well as international scope. They could see how such an emphasis would be helpful to them in their current areas of study.

Finally, the signature “Introduction to Social Justice” course was taught for the first time during Spring of 2012. Co-taught by Director of SJU, Dr. Rhonda Williams, and Cellar Professor of Nursing, Dr. Diana Morris, the course achieved a full enrollment with N = 18 student and further demonstrates the appeal of the program. Students in the class were from the first through fourth years, and from a range of academic backgrounds and majors. Several students were already engaged in an area of social justice, and were eager to learn more about developing problem-solving skills and strategies to apply in their areas of interest; such needs would be addressed through completion of the Social Justice Minor. In addition, most students from the SJUS 100 course expressed an interest in pursuing additional social justice coursework.

Assessing all of this information, the planning team believes that there is substantive existing interest in a Social Justice Minor that would enhance student exposure to social justice issues in the United States and throughout the world and that would develop their skills to become leaders and advocates of change. The team also believes that there is profound potential for teaching students, not fully convinced of its pertinence, about how social justice can enhance their personal, intellectual, and professional lives – no matter what their areas of study.

Additional Knowledge and Skills
The Minor program will provide students with opportunities to enhance their major and career choices through curricular efforts and learning experiences designed to help students develop knowledge, skills, and abilities to become thoughtful advocates and leaders of societal change.

Cross-listed Courses & Providing New Frameworks
For the social justice minor, the signature core course is the “new” foundational course. The minor will draw upon existing courses, not only cross-listing them with a social justice identified curricular designation, but strategically grouping those courses under broad areas of concentration to provide students with frameworks for understanding the interconnections between what are often perceived as disparate and disconnected fields of study and inquiry. New courses will be developed and offered as new affiliated Social Justice Institute faculty are hired (underway), and social justice curricular innovation mini-grant and “new scholars” programs are launched (in planning).
Social Justice Institute Curriculum Development Document

SJ Minor Rubric

Academic Advisement for Minor in Social Justice
As a pillar of the university’s Forward Thinking strategic plan, the university wide Social Justice Institute (SJI) provides a venue and a creative model for supporting and encouraging pedagogical innovation and curriculum creation. A key component is the responsibility for academic advisement of undergraduate students pursuing a minor in social justice. Existing policy regarding academic advising roles states that academic/departmental representatives who function as faculty advisors for majors and minors have “specific knowledge of the department; connection with faculty within a department, and knowledge of opportunities for engagement within the department; and familiarity with major/minor requirements” (http://www.case.edu/provost/upstudies/year1/FSEMVisitHandout.pdf). Therefore, academic advisement of undergraduate students seeking a minor in social justice will be based in the Social Justice Institute (e.g. academic department).

The Director of the Social Justice Institute (or a duly appointed representative) will be responsible for academic advisement including the assignment of academic advisers from the Institute’s participating faculty for students declaring a minor in social justice. The student will complete and sign a minor declaration form after meeting with the Director to obtain her/his signature and the name of the assigned faculty advisor. The student will then return the form to Office of Undergraduate studies in accordance with current procedures (http://www.case.edu/bulletin/09-11/undergraduate_academic_advising.htm).

The faculty advisor and student will meet (in person, by telephone, or electronically) at least once a semester to discuss the student’s minor plan of study and the student’s progress, including participation in Institute activities. In addition, the advisor will work with the student to plan, supervise, and evaluate a capstone experience required for the social justice minor. If a student chooses to do his/her social justice capstone concurrently with a required major capstone, the social justice academic advisor will collaborate with the student and the student’s major advisor in planning, approving, and evaluating the learning objectives and completion of the capstone activities.

THE CURRICULUM: THE SOCIAL JUSTICE MINOR PROGRAM

Mission
The Social Justice Program prepares students across the university to address national and global inequities. The curriculum will emphasize history, theory, and practice of social justice; the distribution of power, resources, and opportunities; and appropriate individual and collective remedies for social injustices. Through cross-disciplinary study, dialogue, research, active community engagement, and advocacy and leadership development, the curriculum promotes understanding of one’s place in and responsibility to community, country, and planet.

Objectives
The Social Justice program will offer courses and other learning experiences designed to help students become engaged, thoughtful, knowledgeable, and skilled citizens. The curriculum will provide students with the opportunities to integrate major and career choices with concerns about social justice. The following are the objectives:
Social Justice Institute Curriculum Development Document
SJ Minor Rubric

1. Students will describe competing perspectives concerning diversity, equality, fairness and human rights in historical and contemporary local and global contexts.

2. Students will evaluate a wide range of academic literatures focused on inequity, discrimination, and exclusion based on age, (dis)ability, ethnicity, gender, immigration status, national origin, race, social class, health status, educational experience, religion, and sexual identity.

3. Students will analyze the role of political and economic systems; power and privilege; and social movements in promoting change.

4. Students will distinguish how cultural practices, social relations, social structures (e.g., the class system), and institutions (e.g., education, religion, business, medicine and law), can reproduce, reduce or eliminate inequalities.

5. Students will examine the disparate consequences of the social and physical environment and available resources on human development and wellbeing.

6. Students will demonstrate skills to facilitate social change from diverse community, academic, and professional perspectives.

7. Students will critically assess their own understanding of social justice and be sensitive to that of others. This enterprise will include grappling with different ethical, philosophical, and religious traditions. Thus, students will become aware of their place in the world and develop the capacity for critical thinking about social justice.

8. Students will demonstrate the tools necessary to become engaged citizens and active participants in shaping the social world.

Minor Requirements
19 total credits, including the required Signature Core Course, Capstone, and 1-credit “Real World Seminar Experience.” Students may count 2 courses toward both their Social Justice Minor and other academic requirements.

Developing a Field of Study
Students will work with a Social Justice faculty advisor to create a program of study. Students will have an opportunity to examine the particular aspects of social justice that concerns them most. Two courses – the introductory signature core course and a capstone – are required (6 credits). For the remaining required credit hours, students will choose one course from each of the (3) three focus areas and an additional elective course from any area.

Signature Core Course: “Introduction to Social Justice: A Case Approach”
Undoubtedly, there are multiple views and academic perspectives on the meanings of social justice and how to promote it. An innovative component of this curriculum is the featured “signature core course,” which will introduce students to this cross-disciplinary way of thinking at the outset. This team-taught core course features a case study and experiential learning approach that introduce students to social justice through a range of perspectives.
Capstone Experience

Students shall complete a capstone experience, applying the knowledge in their major field of study or within the social justice minor. The capstone experience should be developed and administered by the major adviser and the social justice faculty adviser. The SJ capstone experience should conform to the requirements for the SAGES capstone.

Areas of Focus

Areas of focus were delineated based on the three broad areas of concentration to provide students with frameworks for understanding the interconnections between what are often perceived as disparate and disconnected fields of study and inquiry. Existing courses were initially reviewed for the potential to meet the SJ minor objectives. Course faculty of identified courses were asked if they wanted a specific course reviewed for inclusion in the minor. If faculty had an interest, they were asked to complete a survey monkey questionnaire regarding the goodness of fit with the SJ minor objectives. The SJ curriculum committee went through several iterations to review the course syllabus and survey monkey results that included a faculty statement of willingness to list their course and designate the appropriate focus area. The curriculum review process is ongoing, and we expect additional courses to be added for approval. Several are in process, and some faculty New courses will be developed and offered as new affiliated Social Justice Institute faculty are hired (new hire Fall 2012), and social justice curricular innovation mini-grant and “new scholars” programs are launched in progress.

Focus 1: “Ethics, Politics, and Economics”

Courses in this focus area draw upon classic and contemporary debates about the origins and evolution of economic, political, and societal arrangements as a starting point for addressing a series of pressing questions such as: Are the existing arrangements just? To what extent are they amenable to change? What are the preferred alternatives, and how can they be realized?

APPROVED LIST OF COURSES

HSTY/ETHS 274 -- Race: The History of an Idea
PHIL 316 Topics in Philosophy--African Political Thought
PHIL 325/425 -- Philosophy of Feminism
PHIL 334/POSC 354/454 -- Political and Social Philosophy

Focus 2: “Social Inequality, Power and Privilege”

Courses in the social inequalities focus area explore the unequal distribution of social resources, and the practice and experience of discrimination, oppression, and exclusion based upon social statuses as a starting point for addressing a series of questions such as: What is a fair distribution of resources? How do cultural practices, social relations, social structures and institutions reproduce, reduce, or eliminate inequalities? What are the consequences of social inequality for health, development, and well-being of individuals and communities? How are distributions and uses of power connected to social inequalities?
Social Justice Institute Curriculum Development Document
SJ Minor Rubric

APPROVED LIST OF COURSES
ETHS/WGST/FRCH/WLIT 335/435 Women in Developing Countries
ETHS 352/WGST African Feminisms
HSTY 208 -- Social History of Crime
HSTY/WGST/ETHS 318 History of Black Women in the U.S.
HSTY 363/463 -- Gender in America
MPHP 306 -- History and Philosophy of Public Health
ORBH 370 - Women in Organizations
RLGN 207 Women and Religion
RLGN 338/WGST 339: Black Women and Religion
SOCI 262 -- Disability in Society
SOCI 302 Race and Ethnic Minorities in American Society
SOCI 326/WGST 326 -- Gender, inequalities, and Globalization
SOCI 349 Social Inequality
SOCI 355/455 -- Law, Social Policy, and Children's Rights
SPAN 342 Feminist Voices in Latin American Literature
WGST/SOCI 201 (x-listed ENGL/PHIL/HSTY/RLGN) -- Introduction to Women's and Gender Studies

Focus 3: Social Movements and Social Change

This focus area centers on the role of collective action in creating social change. It provides students with a foundation in social movement theory and illustrates the significance of public dialogue and civic engagement. This focus will address a series of questions such as: What are competing models of social change? What role have social movements played in U.S. and global history? How do social movements form? How have states responded to social movements? What is the relationship between democracy and social movements? How have different technological innovations advanced or impeded social movements? What are the necessary knowledge and skills to implement social change?

APPROVED LIST OF COURSES
HSTY/ETHS 280 -- History of Modern Mexico
HSTY 381/481 -- City As Classroom
POSC 322 -- Political Movements and Political Participation
POSC 346/446: Women and Politics
RLGN 325 Justice, Religion, and Society: Doing Peace and Justice in Cleveland
SPAN 315 Latin American Cultural Conflicts
SPAN 336/436 Chicano/a Literature and Identity

1-Credit Requirement: Real World Seminar Experiences (Pass/Fail)
This Real World Seminar Experience element encourages students to attend out-of-classroom events on campus and in the community that relate to social justice, with a particular focus on topics and themes that meet the learning objective of the Minor. Social Justice Minors are expected to attend 8 lectures, workshops, and other events approved by their advisor.

The Real World Seminar Experiences course requires students to attend out-of-classroom events on campus and in the community that relate to social justice, with a particular focus on topics
and themes that meet the learning objectives of the Minor. Social Justice Minors need to attend and report on at least eight of these events over the course of their Minor experience.

Prior to each Fall and Spring semester, the Social Justice Director will appoint one of the Social Justice Undergraduate advisers to coordinate the offering of the Seminar. It is expected that this role will rotate among the Social Justice advisers. If not faculty advisor is available to perform the coordinator’s role during a particular semester, then the Director will perform this role by default.

The Seminar Coordinator will work with the Director to select a variety of on-campus and off-campus events that students can use to satisfy the seminar. When feasible these events will be publicized in advance on the Social Justice Institute’s website on a web page devoted to the Seminar.

In addition, students may petition to have other events approved. Students will approve the following information: Event Date, Event Time, Event Location, Event Abstract, and a brief description of the Event’s Relevance to the topic of Social Justice. The petitions will be forwarded to the Seminar Coordinator for approval.

It is also the Seminar Coordinator’s function to maintain a student database that contains event records. The Event Records include an analysis of the event: a) justification; b) specific quotes that talk about the relevance of the program; and, c) raises questions regarding the program event. Each student’s Seminar completion status and these reports will be sent to the students. Upon completion of the required eight events, the student will enroll in the next Seminar course to obtain credit.
SJUS 200: Engagement Seminar: Experiential, Community Based Learning
Case Western Reserve University
Syllabus

Course Instructor: Professor Social Justice Institute Advisor
Contact Information: XXX

"Being good is easy, what is difficult is being just.”
— Victor Hugo

"Truth never damages a cause that is just.”
— Mahatma Gandhi

Course Description

This one-credit seminar is designed to provide real life engagement with the community, and to facilitate student interaction with themes and topics that meet the learning objectives of the Social Justice Minor. Students will attend a set number of out-of-classroom events on campus and in the community to learn from community members, workers and leaders who are actively experiencing, educating about, and addressing social justice issues. Engagement in the community and with diverse stakeholders is necessary to developing awareness and sensitivity to the context and forms of justice and injustice within socio-political constructs. Further, direct engagement is necessary to begin to synthesize and integrate the knowledge and skills necessary to develop oneself as an active agent for change and responsible citizen. Therefore, emphasis will be placed on observing and analyzing the efficacy of strategies for individual resistance and social action.

Course Objectives

Attendance and participation at out-of-classroom events and real world experiences build on the substantive content of the minor core course, "SJUS 100 Introduction to Social Justice." In addition, student involvement at talks and events will facilitate preparation for the required Social Justice Capstone Project (SJUS 398).

A designated Social Justice Institute faculty advisor will approve 8 lectures, workshops and other events over the course of the semester that are deemed in line with the mission of the Social Justice Minor Program. In particular, approved events will help prepare students to address national and global inequities. Approved events will further our curricular mission: emphasis on history, theory and the practice of social justice; the distribution of power, resources and opportunities; and
individual and collective remedies for injustices. The cumulative impact of out-of classroom experiences at local, national or international levels will promote understanding of one's place in and responsibility to community, country and planet.

Students may not receive credit for events required in other classes. On average, we expect students will spend about 16 hours total at the 8 approved events. A shorter event may have more impact than a longer event; therefore, our goal is 8 different lectures, workshops or events rather than a tally of hours. Those activities must be completed in one semester.

Grading

Students must attend an approved event, and write up a critical reflection on the event. Completion of these requirements will result in a letter grade using the scale A-F. The assignment of grades is left largely to the discretion of the faculty advisor.
SJUS 398: Social Justice Capstone Project
Case Western Reserve University
Syllabus

Course Instructor:
Professor TBA

Contact Information:
XXX

Meeting Time:
TBA

Meeting Location:
TBA

"The good we secure for ourselves is precarious and uncertain . . . until it is secured for all of us, and incorporated into our common life."
Jane Addams

Course Description

SJUS 398 is the culminating, integrative course for the social justice minor. In this course, students will identify and develop a project that addresses a relevant justice issue. Students will apply knowledge from historical and theoretical justice frameworks, and emphasis is placed on critical analysis of the issue. Students will have the opportunity to engage with stakeholders in a community-based immersion experience in local, national or international settings. This culmination course is designed to provide students with an opportunity to demonstrate foundational skills facilitating social change from diverse community, academic, and professional perspectives. Finally, students will work to select and perhaps implement remedies such as individual resistance, policy, advocacy and social action, and collective struggle to address the respective injustice.

Course Objectives

There are two major objectives.

First, in line with the objectives of the Social Justice Minor, the capstone is designed to facilitate and support synthesis and integration of social justice knowledge and skills through experiential learning and community engagement. Specifically, students will be aware of and incorporate objectives appropriate to their project from the following list:

1. Students will describe competing perspectives concerning diversity, equality, fairness and human rights in historical and contemporary local and global contexts.

2. Students will evaluate a wide range of academic literatures focused on inequity, discrimination, and exclusion based on age, (dis)ability, ethnicity, gender,
immigration status, national origin, race, socio-economics, health status, educational experience, religion, and sexual identity.

3. Students will analyze the role of political and economic systems: power and privilege; and social movements in promoting change.

4. Students will distinguish how cultural practices, social relations, social structures (e.g., the class system), and institutions (e.g., education, religion, business, medicine and law), can reproduce, reduce or eliminate inequalities.

5. Students will examine the disparate consequences of the social and physical environment and available resources on human development and wellbeing.

6. Students will demonstrate skills to facilitate social change from diverse community, academic, and professional perspectives.

7. Students will critically assess their own understanding of social justice and be sensitive to that of others. This enterprise will include grappling with different ethical, philosophical, and religious traditions. Thus, students will become aware of their place in the world and develop the capacity for critical thinking about social justice.

8. Students will demonstrate the tools necessary to become engaged citizens and active participants in shaping the social world.

Second, in line with the SAGES capstone requirements, SJUS 398 will include critical thinking, regular oversight by instructor, periodic written and oral reporting of progress, a final written report describing the project activity, and a final public presentation.

Grading

SJUS 300 is part of the General Education Requirements of the university and therefore must result in a letter grade using the scale A-F.

Required Readings: TBD.

Students are required to read foundational theoretical and methodological works relevant to their project, as well as the substantive literature on their specific social justice topic.
This undergraduate Minor in Applied Data Science (ADS) is based in the Case School of Engineering, and available as a minor to students across CWRU. The ADS Minor will be an important complement to the DSA Major being developed in the Electrical Engineering and Computer Science department of CSE.

The minor is directed to students studying in the domains of Engineering and Physical Sciences (including Energy and Manufacturing), Health (including Translational and Clinical), and Business (including Finance, Marketing, and Economics). Successful completion of the ADS minor requirements leads to a “Minor in Data Science and Analytics” for the graduating student.

The ADS minor represents that the students have developed knowledge of the essential elements of Data Science and Analytics in the area of their major (their domain of expertise). A year long, cross university CWRU research project on data science needs in industry and society showed many educational opportunities for CWRU in this area. The research, data, and findings from this effort are in the supplementary documents in the appendix and are discussed in the Minor Justification.

Elements of the DSA minor:

The minor is structured so that the students who qualify for the minor have a working understanding of the basic ADS tools and their application in their domain area. This includes: 1. Data Management: datastores, sources, streams; 2. Distributed Computing: local computer, distributed computing such as hadoop or other cloud computing; 3. Informatics, Ontology, Query: including search, data assembly, annotation; and 4. Statistical Analytics: tools such as R statistics and high level scripting languages (such as Python).

Students will develop comprehensive experience in the steps of data analysis. Step 1: define the ADS questions, and Step 2: identify, locate, and/or generate the necessary data, including defining the ideal data set and variables of interest, determining and obtaining accessible data and cleaning the data in preparation for analysis. These are followed by Steps 3 through 6. Step 3: exploratory data analysis to start identifying the significant characteristics of the data and information it contains. Step 4: statistical modeling and prediction, including interpretation of results, challenging results, and developing insights and actions. Step 5: synthesizing the results in the context of the domain and the initial questions, and writing this up. And finally Step 6: the creation of reproducible research, including code, datasets, documentation and reports, which are easily transferable and verifiable.

The curriculum is based on five, 3 credit, courses progressing from Level 1 to Level 5, which cover the spectrum of learning needed to achieve domain area expertise in data science and analytics. The courses are chosen to be both cross cutting, i.e., intermixing students from across the university in the fundamental ADS concepts such as scripting and statistics (Levels 1, 2, and 4), and domain area focused (Levels 3 and 5). In addition, Level 4 allows for UG research experience of data science and analytics, in the students’ domain area. This meets the 15 credit requirement of a minor.

The ADS minor is a single minor that can be attained by students whose majors are in many different
departments and schools. Their major helps to define their domain area of expertise, and their ADS minor represents their familiarity and learning of the methods of Data Science and Analytics applied in their domain area. The current domain foci can be organized into Engineering and Physical Sciences (e.g., with domain of Astronomy), Energy and Manufacturing, Health (e.g., Translational or Clinical), and Business (e.g., Finance or Marketing).

The data types found in these domains are diverse. They include time series and spectral data for Energy and Astronomy, and sensor and production data and image and volumetric data for Manufacturing. In Health, Translational DSA includes Genomic, Proteomic and other Omics data, while Clinical DSA includes patient data, medical data, physiological time series, and mobile data. Business data types include financial and economic data for Finance, and operations and consumer behavior data for Marketing.

Justification:
See attached Justification, and associated appendices.

This Minor in Applied Data Science is part of the CWRU/BHEF initiative in Undergraduate Data Science, which includes a Data Science and Analytics Major and this Applied Data Science Minor.

Is this major/minor/program/sequence/degree: ___X___ new
 ___ modification
 ___ replacement

If modification or replacement please elaborate:

Does this change in major/minor/program/sequence/degree involve other departments? ___X___ Yes
 ___ No

If yes, which departments? ___It involves the Data Science and Analytics Faculty, who are from many departments and many schools, including CSE, CAS, SOM, SON, WSOM _____________________________

Contact person/committee: ___Roger H. French ____________________

SIGNATURES:

<table>
<thead>
<tr>
<th>DATE</th>
<th>Department</th>
<th>Curriculum</th>
<th>Chair(s)/Program</th>
<th>Directors:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>James McGuffin-Cawley</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DATE</th>
<th>Department</th>
<th>Curriculum</th>
<th>Committee</th>
<th>Chair:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DATE</th>
<th>Department</th>
<th>Curriculum</th>
<th>Committee</th>
<th>Chair:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

File copy sent to: ___Registrar ___Office of Undergraduate Studies/Graduate Studies
 ___Other:
Dear all,

Based on the feedback from a majority of our committee members, the committee has approved the minor.

Specific comments about course options at each level will be discussed afterwards.

Kathleen,

Is this email sufficient or do you need my signature on the PAF?

--
Jing Li, Ph.D.
Associate Professor
Computational Biology lab @ Case (PI)
Department of Electrical Engineering and Computer Science
Case Western Reserve University
Kathleen can sign for me as I am in England all week.

On Apr 27, 2014 11:41 PM, "Roger French" <rxf131@case.edu> wrote:

Hi Jing,

 Hows headway on signing off on the ADS Minor Action Form by the CSE UG Comm.

 After that it goes to Gary Wnek, and then its to Jeff Wolcowitz.
Hi Roger: It is OK to list ENGR 131, EECS 132 and the new course EECS 133 (which requires approval) in the list of courses for the Data Science minor. Ken

EMSE: Materials Science and Engineering, CSE: Jim McGuffin-Cawley

SYBB: Systems Biology, SOM: Mark Chance

MAMS: Mathematics, CAS: Daniela Calvetti

ASTRO: Astronomy, CAS: Chris Mihos
Justification for Minor in Applied Data Science (ADS)

CWRU and the Business Higher Education Forum initiated a Data Science Workforce Project in July 2013 under the leadership of President Barbara Snyder and Provost Bud Baeslack (Appendix I).

The need for education in Data Science in higher education has been established by this project. Companies of all sizes are using data science and analytics. From the BHEF 2014 Winter Data Science Overview:

“A 2011 report by McKinsey Global Institute, *Big Data: The Next Frontier for Innovation, Competition, and Productivity*, noted that “big data” is growing at a rate of 40 percent each year and has the potential to add $300B of value to the nation’s health care industry alone, with broad application in virtually every sector, as well as scientific organizations and cultural institutions. Projections by Gartner, Inc., indicate that in less than 12 months, 4.4 million IT jobs to support big data will be created globally. About 1.9 million of those jobs will be within the United States, and big data has the potential to create three times that number of jobs outside of IT.” [Emphasis added.]

This project did research on the needs for Data Scientists and the activities at CWRU and peer institutions (Appendix II). In November 2013, an industry roundtable workshop was held on campus to address the needs and demand for Data Scientists and what skill sets and areas of expertise were considered important. (Appendix III).

From this work, Case Western Reserve University and the Case School of Engineering committed to launch Data Science and Analytics Programs. (Appendix IV). In collaboration with corporate partners, Case Western Reserve University is working to launch a degree program in Data Science. The major is to be housed in EECS in the Case School of Engineering and will include a core curriculum of statistics, database systems, data visualization, data privacy, and other data analytics.

The BHEF Data Science Overview (Appendix V) goes on to say that “(w)hile there is a considerable need nationally for data scientists, there is an even greater workforce need for the analytics-enabled professional who can marry a deep background in a particular field (e.g., engineering, economics, or business) with a strong understanding of the applications of analytics and visualization tools.”

The ADS minor will fulfill this need for students with Data Science capabilities who intend to major in fields other than Computer Science, such as Materials Science, Nursing, Management, or Arts and Sciences. The students who graduate with the ADS Minor, will be domain experts with a foundation in the application of Data Science in the domain of their major. Courses will
be available across the university with initial offerings in WSOM, FPBSON, and CAS, in addition to CSE.

The Curriculum: Minor in Applied Data Science

The minor is structured so that the students who qualify for the minor have a working understanding of the basic ADS tools and their application in their domain area. This includes: 1. Data Management: *i.e.*, datastores, sources, streams; 2. Distributed Computing: local computer, distributed computing such as hadoop or other cloud computing; 3. Informatics, Ontology, Query: including search, data assembly, annotation; and 4. Statistical Analytics, including tools such as R statistics and high level scripting languages (such as Python).

Students will develop comprehensive experience in the steps of data analysis. Step 1: define the ADS questions, and Step 2: identify, locate, and/or generate the necessary data, including defining the ideal data set and variables of interest, determining and obtaining accessible data and cleaning the data in preparation for analysis. These are followed by Steps 3 through 6. Step 3: exploratory data analysis to start identifying the significant characteristics of the data and information it contains. Step 4: statistical modeling and prediction, including interpretation of results, challenging results, and developing insights and actions. Step 5: synthesizing the results in the context of the domain and the initial questions, and writing this up. And finally Step 6: the creation of reproducible research, including code, datasets, documentation and reports, which are easily transferable and verifiable.

Minor Requirements

The curriculum is based on 5 courses, progressing from Level 1 to Level 5, which cover the spectrum of learning needed to achieve domain area expertise in data science and analytics. The courses are chosen to be both cross cutting, *i.e.*, intermixing students from across the university in the fundamental ADS concepts such as scripting and statistics (Levels 1,2, and 4) and domain area focused (Levels 3 and 5). In addition, Level 4 allows for UG research experience in the students’ domain area.

The ADS Minor consists of three cross cutting core courses at Levels 1, 2, and 4 and two domain focused courses (3, 5). Each of these courses is 3 credits, to meet the 15 credit hour requirement of a minor. For the level 4 UG research course, the research topic will be approved by the ADS minor advisor, and will also be a 3 credit project. This will provide ADS minor students both the domain focused ADS learning they need, and a broadening perspective on applications, methods, and uses of ADS in other domain areas.
<table>
<thead>
<tr>
<th>Level</th>
<th>Physical Sciences</th>
<th>Energy</th>
<th>Manufacturing</th>
<th>Translational</th>
<th>Clinical</th>
<th>Finance</th>
<th>Marketing</th>
<th>Economics</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Astronomical Techniques</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cross-listed Courses Counted Toward ADS Minor Requirements

Established courses ready to be included in the ADS Minor are found in CAS (Mathematics, Astronomy, Philosophy); CSE (Materials Science, Electrical Engineering and Computer Science, Manufacturing), SOM, SON, and WSOM (Business and Finance).

Each of the courses that meet the requirements for the ADS Minor can also be taken by students to meet requirements in Major programs, and therefore serve a dual purpose in our academic offerings. Even though each program, department and school may have its own criteria on whether a given course could be “double counted” towards major and minor requirements.

Level 5:
- ASTR 306: Astronomical Techniques
- EMSE 354*: Data Science Modeling and Prognostics for Energy
- EMSE 367*: Modeling and Prognostic Data Science for Manufacturing
- SYBB 459: Bioinformatics for Systems Biology
- SYBB 322**: Clinical Informatics at the Bedside and Bench Part 2
- MKMR 308: Measuring Marketing Performance
- MKMR 310: Marketing Analytics

Level 4: (Subject to approval by DSA minor advisor)
- EMSE 325: Undergraduate Research
- SYBB/BIOl 388: Undergraduate Research in Biology
- ASTR 369: Undergraduate Research in Astronomy

Level 3:
- EMSE 353*: Data Science for Energy: Data Sources, Assembly, and Exploratory Data Analysis
EMSE 366*: Exploratory Data Science for Manufacturing
SYBB 311**: A-D, A- Technologies in Bioinformatics, B- Data Integration in Bioinformatics, C- Translational Bioinformatics, D- Programming in Bioinformatics
SYBB 321**: Clinical Informatics at the Bedside and Bench Part 1
MKMR 201: Marketing Management

Level 2:
STAT 201: Basic Statistics for Social and Life Sciences
STAT 312: Basic Statistics for Engineering and Science
SYBB 210**: Statistics and Tools for Data Science

Level 1:
ENGR 131 Elementary Computer Programming
EECS 132: Introduction to Programming in Java
EECS 133*: Programming for Data Science

*CAF in preparation, **CAF submitted for approval (4xx level already exists)

Domains

The ADS minor is a single minor that can be attained by students whose majors are in many different departments and schools. Their major helps to define their domain area of expertise, and their DSA minor represents their familiarity and learning of the methods of Applied Data Science in their domain area. The current domain foci can be organized into Engineering and Physical Sciences (e.g., with domain of Astronomy), Energy and Manufacturing, Health (e.g., Translational or Clinical), and Business (e.g., Finance or Marketing).

The data types found in these domains are diverse. They include time series and spectral data for Energy and Astronomy, and sensor and production data and image and volumetric data for Manufacturing. In Health, Translational ADS includes Genomic, Proteomic and other Omics data, while Clinical ADS includes patient data, medical data, physiological time series, and mobile data. Business data types include financial and economic for Finance, and operations and consumer behavior data for Marketing.

Applied Data Science Minor Initiating Faculty

The ADS Minor is based in the Case School of Engineering, and is founded by the initial ADS Minor Faculty from schools across the university. The current members of the ADS Minor Faculty are as follows.

<table>
<thead>
<tr>
<th>Name</th>
<th>ADS Faculty</th>
<th>Dept.</th>
<th>School</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roger French</td>
<td>EMSE</td>
<td>CSE</td>
<td></td>
</tr>
<tr>
<td>GQ Zhang</td>
<td>EECS</td>
<td>CSE</td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>Department</td>
<td>College</td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>--------------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>Jim McGuffin-Cawley</td>
<td>EMSE</td>
<td>CSE</td>
<td></td>
</tr>
<tr>
<td>Alexis Abramson</td>
<td>EMAE</td>
<td>CSE</td>
<td></td>
</tr>
<tr>
<td>Mark Chance</td>
<td>SysBio</td>
<td>SOM</td>
<td></td>
</tr>
<tr>
<td>Colin Drummond</td>
<td>Healthcare IT and Informatics</td>
<td>SON</td>
<td></td>
</tr>
<tr>
<td>Jagdip Singh</td>
<td>Design & Innovation</td>
<td>WSOM</td>
<td></td>
</tr>
<tr>
<td>Robin Dubin</td>
<td>Economics</td>
<td>WSOM</td>
<td></td>
</tr>
<tr>
<td>William Mahnic</td>
<td>Finance</td>
<td>WSOM</td>
<td></td>
</tr>
<tr>
<td>Jennifer Carter</td>
<td>EMSE</td>
<td>CSE</td>
<td></td>
</tr>
<tr>
<td>Chris Mihos</td>
<td>Astronomy</td>
<td>CAS</td>
<td></td>
</tr>
</tbody>
</table>

Academic Advisement for Minor in Applied Data Science

Existing policy regarding academic advising roles states that academic / departmental representatives who function as faculty advisors for majors and minors have “specific knowledge of the department; connection with faculty within a department, and knowledge of opportunities for engagement within the department; and familiarity with major / minor requirements”. Therefore, academic advisement of undergraduate students seeking a minor in ADS will be based in the departments of the faculty teaching courses in the minor.
Applied Data Science
Minor Action Form

Appendices

Appendix I. Case Western Reserve University and Business Higher Education Forum Data Science Workforce Project

Appendix II. Data Science Matrix for Case Western Reserve University Peer Institutions

Appendix III. Data Science Industry Roundtable – Monday, November 4, 2013: Summary

Appendix IV. Project Statement: New Undergraduate Degree Program in Data Science

Appendix V. BHEF Winter 2014 Meeting: Data Science Overview

Appendix VI. Key Word Glossary: Data Science & Analytics

Appendix VII. Syllabi
Case Western Reserve University and Business Higher Education Forum
Data Science Workforce Project

Companies and governments use data science and advanced analytics to drive innovation, shape strategy and inform decision-making.

The field of data science addresses this need. Combining mathematics, statistics, data engineering, computing and other disciplines, data science uncovers competitive advantages, new opportunities, customers’ needs, or previously unforeseen challenges.

Imagine what data science could mean to your business.

Our faculty has, and Case Western reserve is responding with new undergraduate programs in data science. Numerous studies underscore the need:

- McKinsey Global Institute predicts a nationwide shortage of 140,000 to 190,000 workers with “deep analytical skills,” and a deficit of 1.5 million managers capable of using big data analytics for actionable insights in their decision-making.

- McKinsey predicts a 40 percent annual growth in global data and $300 billion in potential value-add of data analytics to the nation’s health care industry alone.

- Gartner Inc. indicate that by 2015, 4.4 million information technology jobs globally will be created to support data science and analytics, generating 1.9 million IT jobs in the U.S.,

- The U.S. government anticipates a shortage of about 50,000 qualified workers in health IT between 2010 and 2015. Healthcare companies are increasingly borrowing technology specialists from other industries.

Case Western Reserve is collaborating with the Business-Higher Education Forum to create exciting programs in data science, and we need your help. What skills do you need from our graduates? How can we tailor our program to best meet your needs? We seek you input on our curriculum and your support for research internship and co-op opportunities for students at your organization.

Collaboration with corporate partners is a powerful tool. We recently launched three new master’s programs in our School of Engineering based on feedback from 60 companies. We aim to replicate that success here, while creating a national model for undergraduate education in data science.

About Case Western Reserve University
Case Western Reserve University is one of the country’s leading private research institutions. Located in Cleveland, we offer a unique combination of forward-thinking educational opportunities in an inspiring cultural setting. Our leading-edge faculty engage in teaching and research in a collaborative, hands-on environment. Our nationally recognized programs include arts and sciences, dental medicine, engineering, law, management, medicine, nursing and social work. About 4,200 undergraduate and 5,600 graduate students comprise our student body. Visit case.edu to see how Case Western Reserve thinks beyond the possible.

About the Business-Higher Education Forum
Now in its 35th year, BHEF is the nation’s oldest membership organization of Fortune 500 CEOs and research university presidents dedicated to advancing innovative education and workforce solutions and improving U.S. competitiveness. BHEF’s business and academic members collaborate in regions across the country to design and deploy education-workforce solutions in the high-demand and emerging fields that are so critical to innovation and national security. BHEF and its members drive change locally, work to influence public policy at the national and state levels, and inspire other leaders to act.
Methodology

- Worked with CWRU to develop list of 22 peer institutions
- Collected data on Degree Programs, Departments, Centers, and Courses supporting data science
 - searched for terms “data science,” “data analytics,” “data mining,” and “informatics” for each university
 - searched through relevant program curriculums and courses for each university
 - conducted university-specific searches based on data science research expertise
Peer Matrix is a Work in Progress...

- Many university websites are difficult to navigate
 - Course listings were occasionally password protected or not centrally located for a department
 - Centers/Institutes rarely listed in a central location
- Data science courses scattered throughout University
 - Difficult to find courses with field-specific data science courses (e.g., in social science or astronomy)
- Names of industry partners not usually recognized on University websites
 - May require specific searches to find industry partners
Commonly Offered Courses in Data Science

• To create an data science expert graduate, there are several “core” courses that are offered at multiple institutions
 o data structures
 o database systems
 o data mining
 o statistics
 o computer vision
 o machine learning

• To create a data science enabled graduate, there are a few “core” courses that are offered at multiple institutions
 o business analytics
 o bioinformatics
 o health informatics
 o computational biology
 o genomics
Conclusions on Data Science Programs

• Nearly all data science courses are located within the Computer Science Department
 - Other common choices include Information Science; Computer Science & Engineering; Bioinformatics; School of Business

• Nearly all data science education is targeting the graduate level
 - Undergraduate education targets upper-level students

• Courses and curriculum vary significantly across institutions
 - Data science programs support research interests/strengths of university

• No clear common understanding of a “data science training/education” at the undergraduate or graduate level
 - At graduate level, training/education is highly field specific
Implications for CWRU

• CWRU has the opportunity to be a national leader in defining a “core” curriculum in data science, particularly at the undergraduate level
 o Foundational topics could include statistics, database systems, data visualization, pattern recognition, data privacy, data analytics

• Data science concentrations within current disciplinary areas can create a significant number of “data science enabled” graduates
 o Inclusion of a hands-on learning experience, such as a co-op or internship, demonstrates to employers that graduates have applicable skills

• CWRU can build on its strengths to expand data science education/training and create ties with industry
 o Health sector represents a critical area of comparative advantage for Cleveland and Northeastern Ohio
 o Other sectors in Cleveland also have a strong demands in data science
Mentioned fields include computer science, bioinformatics, machine learning, computational biology, data mining, pattern matching, data warehousing, digital transformation, social media, security, and more. Programs are offered at various institutions such as Emory University, Georgia Tech, Lehigh University, and Massachusetts Institute of Technology.
New York University

Business School; Biology; Mathematics; Computer Science; Physics; Economics; Statistics

Initiative in Data Science and Statistics

MS in Data Science (first cohort started in fall 2013); MS in Applied Urban Science and Informatics; MA in Applied Quantitative Analytics; MBA with a Specialization in Business Analytics; MS in Business Analytics; MS in Applied Statistics for Social Science Research; PhD in Biostatistics; MS in Scientific Computing Data; PhD in Computer Science (Machine learning/Artificial Intelligence Specialization); PhD in Statistics; Advanced Certificate in Applied Urban Science and Informatics; MS or PhD in Information Systems; MS or PhD in Mathematics; MS or PhD in Biology; MA in Economics; MS or PhD in Physics; PhD in Music Technology

developing and utilizing automated methods of analyzing data
data science; statistical and mathematics methods; machine learning and computational statistics; big data; inference and representation

The Ohio State University

College of Medicine (biomedical Informatics); College of Engineering (Department of Computer Science and Engineering and Department of Electrical and Computer Engineering); Discovery Themes Initiative (ten-year, multi-million dollar investment designed to help Ohio State attract new tenured and tenure-track faculty in the Discovery Theme areas, using data analytics as a foundational tool for tackling the challenges within their Theme);

MS, PhD, MPH, in Biomedical Informatics; PhD, BS, BA, or minor in Computer and Information Science; BS or MBA (Business Administration with Information Systems, Business Analytics, or Management Sciences option); BS (Electrical and Computer Engineering); PhD in Biostatistics

integration of large-scale data analysis; management, processing, and visualization; biomedical informatics; modeling and problem solving with spreadsheets

introduction to bioinformatics; biomedical informatics; imaging informatics; database systems; data structures and algorithms; pattern recognition and machine learning, computer vision; regression analysis; multivariate analysis; Bayesian analysis; statistical analysis of genetic data; introduction to genomics; analysis of high content and high throughput data for neuroscience; invitation to probability; data management; business analytics; business statistics; decision sciences; information systems planning and management

Penn State University

Statistics; Computer Science & Engineering; Information Sciences & Technology; Geography; Political Science; Sociology; Anthropology; Economics;

IGERT Program in Big Data in Social Science;

PhD or PhD minor in Social Data Analytics; MS or PhD minor in Computational Cybersecurity; Graduate certificate in Applied Statistics (on-line)

social science

analytics; data mining; machine learning; visual analytics; social data analytics; privacy in statistical databases; big social data and the law; the information environment; data privacy; learning and games; network science; vision-based tracking; computational regularity; large data sets; pattern recognition; web analytics; spatial analysis; information retrieval and organization; statistics; social network analysis; democratic representation; big data approaches; spatial demography; geospatial science in anthropolgy; biological data analysis; networks in life science; concurrent scientific computing; concurrent matrix

Rensselaer Polytechnic Institute

Information Technology; School of Management; Data Science Research Center; Exploratory Center for

BS, MS, or PhD minor in Information Technology and Web Science; MS in Business analytics

information systems for management; data resource management; knowledge discovery with Launched September 2013

monthly seminars

GE Global Research; IBM

Stanford University

Statistics; Computer Science; Biomedical computation

Center for Clinical Informatics;

Mining Massive Data Sets graduate certificate (school of professional development); MS in Biomedical Informatics; MS in statistics; BS,MS, or PhD in Computer Science; BS in Biomedical Computation

social and information network analysis; machine learning; mining massive data set; information retrieval and data search; biomedical informatics; modeling biomedical systems; representations and algorithms for computational molecular biology; translational bioinformatics; biomedical image analysis and representation; machine learning; artificial intelligence; data mining; image analysis; human-computer interaction; systems engineering; scientific and numerical computing; data driven medicine; data mining and analysis; computer

University of California Berkeley

School of Information

Affiliated with Center for Law and Technology; Center for New Media; Blum Center for Developing Economies; Center for Information Technology Research in the Interest of Society; Townsend Center for the Humanities; Electronic Cultural Atlas Initiative; Information and Communication Technologies and Development; D-Lab (Helena Berkeley faculty; staff; and graduate students move forward with world-class research in data intensive social science)

MS in Information Management and Systems; MS in Information and Data Science; PhD in Information Management and Systems

information and computer science design; social sciences, management human-computer interaction; information economics and policy; information law and policy; information organization and retrieval; information systems design; social aspects of information and communication technologies and development

history of information; social and organizational issues of information; information law and policy; needs and usability assessment; managing in information-intensive companies; information technology economics; strategy, and policy; cyberlaw; information visualization and presentation; technologies for creativity and learning; information systems and health care; designing mobile experiences; data mining and analytics in intelligent business services; alternative visions of technology; health care and strategy; media. new and otherwise; working with open data; information access; data science and analytics; through leaders; web architecture and information management; technology and poverty; information organization and retrieval; privacy, security, and cryptography; user interface design and development; database management; quantitative research methods for information systems and management; finding health in the US; health care and the information economy; social data revolution

On-line MS in Information and Data Science to enroll first class of 30 students January 2014; Currently more than 100 students enrolled in MS in Information Management and Systems; 20-25 in PhD program

Some courses are seminar series courses
Case Western Reserve University / Business-Higher Education Forum

Data Science Industry Roundtable – Monday, November 4, 2013

Breakout Session Roundup - Overview

Shared Current Hire Characteristics:

- Companies are hiring both recent and mid-career graduates from a range of data science-related fields, including: engineering, statistics, software development, business analytics, etc..
- Appreciation for seasoned employees who have experience with current and legacy computer systems and tools.
- Strong desire to have new hires with real-world experience.

Shared Skill Gap Assessments:

- Need for better communication skills (speaking, writing, presenting, and convincing).
- Need for more hands-on experience before day one.
- Need for increased understanding of the “business case” behind data science applications – including finance and economics.

Shared Suggestions:

- New hires should be able to think critically and communicate well: ask questions, explore data, defend positions, work in a team and accept new direction.
- Data scientists don’t need to be subject matter experts, but they need to know some and learn more specific to industry sector.
- Pair undergrads with more experienced employees.
- Offer/create more internships, co-ops, real world experiences.
Case Western Reserve University / Business-Higher Education Forum

Data Science Industry Roundtable – Monday, November 4, 2013

Breakout Session Roundup – 1

Services:

The Services group outlined key skills a data science enabled employee would possess:

- **Characteristics of Current Hires:**
 - Mathematicians
 - Statisticians
 - Engineers

- **Existing Skills Gap not being addressed:**
 - Data Science focus with business/discipline minor
 - Required understanding the full data lifecycle
 - Need 21st century competencies
 - Ability to deal with unstructured environments and problems
 - Awareness of computing infrastructure
 - current and legacy systems
 - Have managerial courage in reporting

- **Suggestions**
 - Develop skills beyond only coding
 - Encourage structured thought processes
 - Train in analytical thinking
 - Provide exposure to behavioral sciences
 - Offer breadth of real-world experiences
 - Encourage understanding of data through industry-specific lens
 - Develop both types of people: right and left brain
 - Those who can ask the questions
 - Those who can crunch data
Health Care:

The Health Care group focused on characteristics of current hires, unaddressed workforce needs, and suggestions for future workforce development strategies.

Characteristics of current hires:

- Graduates of Tier I R&D Universities
- Enabled w/ Data Science Skills
 - Hacking/programming/Big Data experience
 - Visualization (undergrad)
- Hired from other companies (looking for well-rounded/domain expertise)
- Often, seasoned employees
 - Good w/ tools already used in industry
 - Project management experience

Existing Skills Gap Not Being Addressed:

- Need soft skills – Communication
- Need the ability to talk about data-enabled decision-making process
- Need for better presentation skills
- Need “enabled” graduates w/ experience using data tools, not just project management experience

Suggestions:

- Pair undergrads with more experience workforce
- Need an increase in work experience (co-ops, internships)
- Need to focus on real-world applications: Is there a new way to adapt the curriculum to address real-world needs?
- Focus on team-based learning
- Increase industry collaboration and academic partnerships
- Remember: Data scientists don’t need to be SME’s, but they need to know a little and need to be able to learn/acquire more
Energy/Manufacturing

The Energy/Manufacturing group focused on characteristics of current hires, the existing skill gap, and the ideal future candidate.

Characteristics of current hires:

- Both mid-career and recent graduates from grad and undergrad (MS/BS) programs
- Background in engineering
 - Computer Science, IT, EE, Power Engineers, Software Engineers
- Background in business/finance

Existing Skills Gap Not Being Addressed:

- Lack understanding of Business Case
- Often lack domain expertise – consumer behavior, integrated operations, business processes
- Need more hands-on application experience
- Increase communication skills – listen, talk, write

Suggestions:

- Create both “expert” and “enabled”
- Build understanding of business side - Economics/Finance
- Need “core” skill set
 - Information security
 - Ethics
 - Broad tool kit
 - Advanced statistics
 - Basing engineering knowledge
 - Communication skills
Project Statement:

New Undergraduate Degree Program in Data Science

"Leaders in business, education and government must take action to foster a new generation of talent with the technical expertise and unique ideas to make the most of this tsunami of Big Data."

~Richard Rodts, Manager of Global Academic Programs, IBM

The volume of data acquired or generated by corporations continues to increase at unprecedented rates. The need to efficiently interpret data into information useful for strategic decisions is paramount. For example, information within these large data sets can lead to better assessment of customers’ needs, business decisions could be made with more confidence, and opportunities for greater operational efficiencies, cost reductions and reduced risk could be identified. All of these aspects have become increasingly important in today’s global business community. The potential impact of data analytics on the way industry does business is akin to the way the internet has shifted paradigms for commerce.

While the development of analytics skills for today’s professionals has become a necessity, there exists a tremendous gap in the growing number of jobs that require data-driven skills, and the available pool of job candidates who can fulfill these roles. In fact, according to a recent IBM Tech Trends Survey, “only one in ten businesses have the required skills to use state-of-the-art technology in the field of Big Data and analytics.”

The Program

Case Western Reserve is launching a distinctive undergraduate degree program in data science in the fall of 2014.

Rooted in a core curriculum of data-science fundamentals, our program will prepare graduates to meet industry needs through cutting-edge instruction, exciting areas of concentration and an extensive capstone experience.

Students pursuing this curriculum will receive a strong foundation in topics fundamental to data science (such as mathematics, statistics, and computing algorithms), breadth in allied technical areas (such as biology, physics, or engineering), and a focus on a specific domain area: health, energy, and manufacturing and production. As the program matures, other concentrations such as finance may be added.
All of our data science programs will include a strong experiential learning component. A minimum of two internships in data science (one in the summer between sophomore and junior year, the second in the summer between junior and senior year) or one seven-month, full-time co-op assignment will be expected. In addition, all students must complete a two-semester senior capstone project in data science.

Students completing our data science programs will be well prepared to fill entry-level workforce needs for data scientists in a variety of industries. We also expect to launch a post-baccalaureate certificate program for industry personnel interested in retraining.

Corporate partners

Case Western Reserve is forming partnerships with businesses to:

- Help build curriculum in data science and analytics
- Provide new infrastructure to support a pipeline of students – both undergraduates and post graduate employees – studying in this critical area.
- Provide students with critical scholarship funding
- Provide students with an internship or co-op with a premiere industry partner

The Need

Numerous studies underscore the need for workers capable of using the methodologies of data science.

- McKinsey Global Institute predicts a **nationwide shortage of 140,000 to 190,000 workers** with “deep analytical skills,” and a **deficit of 1.5 million managers** capable of using big data analytics for actionable insights in their decision-making.

- McKinsey predicts a **40 percent annual growth in global data** and **$300 billion in potential value-add** of data analytics to the nation’s health care industry alone.

- Gartner Inc. indicates that by 2015, **4.4 million information technology jobs** globally will be created to support data science and analytics, generating **1.9 million IT jobs** in the United States.

- The U.S. government anticipates a **shortage of about 50,000 qualified workers** in health IT.

About Case Western Reserve

Case Western Reserve University is one of the country’s leading private research institutions. Located in Cleveland, the university offers a unique combination of forward-thinking educational opportunities in an inspiring cultural setting. The renowned faculty engages in teaching and research in a collaborative, hands-on environment. Case Western’s nationally recognized programs include arts and sciences, dental medicine, engineering, law, management, medicine, nursing and social work. About 4,200 undergraduate and 5,600 graduate students comprise the student body.
Introduction

BHEF’s National Higher Education and Workforce Initiative has served as a powerful platform for launching innovation in regional workforce projects through strategic collaboration between business and higher education. The success of the Initiative since its launch provides a foundation for expanding its focus into an additional emerging field: data science. During BHEF’s winter meeting, Case Western Reserve University (CWRU), in collaboration with corporate partners, will announce the launch of a distinctive undergraduate degree program in data science.

The following describes the emergence of data science as an essential tool for decision making and innovation in a wide range of organizations, outlines the demand for data science experts and data analytics-enabled graduates, reports on analysis of existing data science programs at sampled colleges and universities, and highlights work underway on BHEF academic members’ campuses to meet the growing workforce needs of business, government, scientific and research organizations, and cultural institutions.

Emerging Workforce Needs in Data Science

The application of data science is pervasive in both the public and private sectors. Companies of all sizes rely on data science and analytics as key transformational components to their core operations. A 2011 report by the McKinsey Global Institute, *Big Data: The Next Frontier for Innovation, Competition, and Productivity*, noted that “big data” is growing at a rate of 40 percent each year and has the potential to add $300 billion of value to the nation’s health care industry alone, with broad application in virtually every sector, as well as scientific organizations and cultural institutions. Projections by Gartner, Inc., indicate that in less than 12 months, 4.4 million information technology (IT) jobs to support big data will be created globally. About 1.9 million of those jobs will be within the United States, and big data has the potential to create three times that number of jobs outside of IT. Despite this demand, the U.S. faces a significant shortfall in the number of data scientists and “data-enabled” professionals. According to the McKinsey report, the United States will need an additional 140,000 to 190,000 data science experts with “deep analytical skills,” plus 1.5 million managers capable of using data analytics in decision making.
Data science provides new sources of actionable insights that will improve decision making and stoke innovation. While business is able to collect and store vast amounts of data, most struggle to harness these data for decision making. Data becomes business intelligence—and valuable to decision makers—when data science experts have domain-specific expertise to access, unlock, and interpret the data available to them.

Data analytics-enabled individuals—those who understand the processes and tools of data science—with domain-specific expertise can turn data into information, and they are critical to the ability of businesses to implement data-driven decision-making throughout organizations. While there is considerable need nationally for data scientists, there is an even greater workforce need for the analytics-enabled professional who can marry a deep background in a particular field (e.g., engineering, economics, or business) with a strong understanding of the application of analytics and visualization tools.

In addition, the data science “footprint” has expanded from core IT/computer science functions to each business unit and the many functions within these units, including operations, marketing, and communications. Businesses that are able to successfully integrate data analytics-enabled professionals into these functions have gained significant competitive advantages. Yet, this expansion in demand results in a talent gap in data analytics skills in the current and future workforce.

The Challenge

While higher education is responding to the demand from businesses for more data science professionals, this demand quickly outstrips the supply. Today, most higher education data science programs are located within the school of engineering and/or the department of computer science. These programs serve as post-baccalaureate training for individuals who already have a strong grasp of analytical thinking, applied mathematics, and competency in computer programming, largely limiting access to graduates from other STEM fields. Consequently, these graduate programs prepare data science experts who will lack the domain-specific knowledge in health, transportation, economics, business, and public policy that companies need.

To date, very few programs have been developed to offer undergraduates training in data science. Even at higher education institutions with numerous course offerings in data science, undergraduates have limited access to these courses before the final two years of college, and these students will largely be STEM majors. But as a result of high attrition among STEM undergraduates in the first two years, few STEM graduates will actually be exposed to data science. Even fewer non-STEM majors will be exposed to data analytics because data science and analytics courses are not integrated into most undergraduate programs.

To ensure a robust and diverse data science and analytics-enabled workforce, learning opportunities in data science must be integrated into courses across the undergraduate curricula, beginning in the first year.
Strategic Business Engagement Offers a Solution to Undergraduate Pathways in Data Science

Together, business and higher education can address our nation’s potential data science workforce deficit. Through deep collaboration with businesses in a variety of industry sectors, higher education can respond to clearly articulated corporate needs, creating curricula and learning opportunities that will build robust undergraduate pathways and produce both data science experts and analytics-enabled graduates across all sectors. Furthermore, collaborations in data science between business and higher education have the potential to create new majors as well as integrate learning opportunities in data science and analytics into the broader higher education curriculum (e.g., the social sciences and humanities) through minors and certificates. Such strategic partnerships could result in a significantly more diverse talent pool entering the data science and analytics-enabled workforce.

BHEF’s Initiative provides a platform to develop strategic partnerships and form a network of regional projects led by business and academic members which will create new undergraduate pathways in data science and analytics. BHEF’s winter meeting represents a unique opportunity to launch BHEF’s inaugural project in data science. To address this need for undergraduates to be prepared with data science skills and knowledge, CWRU will launch a distinctive undergraduate degree program in data science in the fall of 2014. Based on a core curriculum of data-science fundamentals, the CWRU program will prepare graduates to meet business needs through cutting-edge instruction; exciting areas of concentration in health, energy, and manufacturing and production; and an extensive capstone experience. Students completing the data science programs will be well prepared to fill entry-level workforce needs for data scientists in a variety of industries. CWRU will continue its focus on data science in the future through the development of a post-baccalaureate certificate program for business personnel interested in retraining.

Business is partnering with universities to develop opportunities for students to obtain data science skills. The Humana Foundation provided Bellarmine University in Louisville, Kentucky, a multi-year, $1 million grant to support a new program, the Institute for Advanced Analytics. Opening next fall, the institute will offer new informatics and technology degrees at the undergraduate, graduate, and continuing education levels and will develop interdisciplinary data analysis programs in nursing and health sciences, communication, education, business, and environmental studies.

In addition, strategic engagement between business and higher education can support the development of freshman introductory courses to expose students to data science and analytics. Introductory courses could include information that would explain to students how data science may impact their majors and courses of study. Equipped at the very beginning of their undergraduate experience with this knowledge and with business support—to include mentors, internships, and other resources—these students may persist and thus significantly boost the data science pipeline.

Current introductory course redesign efforts across the country can serve as examples for new approaches to expose students from many disciplines to data science and analytics. CWRU’s freshman coursework in engineering and materials science, developed as one of BHEF’s first regional
projects, is one successful example. Through a series of courses, CWRU first-year students interested in these fields are directly exposed to processes and projects at a diverse array of local medical, aerospace, electric, and advanced-materials technology businesses. Internships and other on-site opportunities supplement project-based teamwork on real-world problems, with students ultimately producing real parts, components, or devices. From the onset of their undergraduate studies, materials science and engineering students are engaged with real-world examples in their chosen field.

For example, as part of the Association of American Universities (AAU) STEM education initiative, the University of Arizona is redesigning introductory STEM courses to improve information and quantitative literacy by incorporating the use of real-life applications in problem-solving. It is also expanding its use of hands-on demonstrations and experiments in introductory courses to further develop conceptual understandings of central theories in biology and engineering. As part of that same AAU initiative, the University of Pennsylvania seeks to improve STEM education for its students by creating blended introductory courses in math, chemistry, physics, and engineering. These are two of several evidence-based approaches that integrate data science into introductory undergraduate courses.

This type of strategic engagement between business and higher education is an excellent strategy to apply to data science, which requires the application of theoretical knowledge to real-world problems for truly relevant learning opportunities for both data science experts and analytics-enabled graduates.

Next Steps: Building the Foundation for a National Data Science Network

Working at the nexus of business and higher education, BHEF is taking a lead role in mapping and executing a robust strategy to help the nation meet its needs for a skilled data science workforce. Intentionally moving beyond engagements that are merely transactional, BHEF plans to engage companies, higher education institutions, government agencies, philanthropies, cultural institutions, and other key stakeholders in coordinated, long-term, action-oriented partnerships. In data science, a discipline that did not exist even a decade ago, BHEF will play a pivotal role in the definition, design, and delivery of powerful new pathways for preparing and educating the data science workforce, including both professionals and enabled employees, particularly at the undergraduate level.

Based on the successful example of the National Cybersecurity Network, launched in 2012 at the Alfred P. Sloan Foundation, BHEF continues to convene top leaders from business, higher education, and state and federal government agencies, with the most recent meeting being held in November 2013 at the IBM-Almaden Research Center in San José, California. The BHEF National Data Science Network will be a forum through which business, higher education, and government share ideas, collaborate to strengthen and diversify the data science workforce, and align undergraduate education in data science with regional workforce requirements. This can be achieved by focusing on the earliest years of the undergraduate experience and increasing the persistence of students to degree completion in this high-demand field.
Data Science for Corporate Decision-Making: Preparing Undergraduates to Unleash the Power of Data

The volume of data acquired or generated by corporations continues to increase at unprecedented rates, and businesses increasingly are working to interpret this data for strategic decision-making. What can data reveal about customer preferences? Production flow? Opportunities for cost savings? The potential impact of data analytics on the way industry does business is akin to the way the internet has shifted paradigms for commerce.

Case Western Reserve University (CWRU) is launching a distinctive undergraduate degree program to fill this workforce need.

Rooted in a core curriculum of data-science fundamentals, the program will prepare graduates to meet industry needs through cutting-edge instruction, exciting areas of concentration, and an extensive capstone experience. Students will receive a strong foundation in topics fundamental to data science (such as mathematics, statistics, and computing algorithms), breadth in allied technical areas (such as biology, physics, or engineering), and a focus on a specific domain area: health, energy, and manufacturing and production. As the program matures, other concentrations such as finance may be added.

All of the data science programs will include a strong experiential learning component. Students are also expected to complete a minimum of two internships in data science (one in the summer between sophomore and junior year, the second in the summer between junior and senior year) or one seven-month, full-time, co-op assignment. In addition, all students must complete a two-semester senior capstone project in data science.

Students completing the data science programs will be well prepared to fill entry-level workforce needs for data scientists in a variety of industries. CWRU also will launch a post-baccalaureate certificate program for industry personnel interested in retraining.

These new programs grew from a data science industry roundtable hosted by CWRU last fall. Business leaders discussed their workforce needs in data science skills, their eagerness to hire both recent and mid-career graduates, and the importance for these graduates to come with real-world experience. CWRU’s new data science program will reflect their feedback and thrive with their engagement and support.
<table>
<thead>
<tr>
<th>Field</th>
<th>Data Science Application</th>
<th>Resulting Outcome</th>
</tr>
</thead>
</table>
| Agronomy | Sensors were added to John Deere equipment to help farmers manage their fleets’ usage. The information is combined with historical and real-time data regarding weather prediction, soil conditions, and crop features. | Farmers maximized return on crops by implementing recommended crop selection, location, and timing, as well as plowing technique, methodology, and location.
| Archeology | A team of doctors and archeologists analyzed data from whole-body CT scans of 137 mummies spanning 4,000 years. | The team demonstrated that humans have been affected by atherosclerosis since preindustrial times, proving it is not a modern-day disease.
| Astronomy | Four years of data from NASA’s orbiting Kepler telescope were analyzed to compute how many planets lie in their solar systems’ “Goldilocks zone,” where surface temperatures support liquid water. | Astronomers calculated 11 billion potentially habitable planets in our galaxy. One in five sun-like stars harbors a roughly Earth-size planet in the habitable zone, with the nearest possibly close enough for communication.
| Biology | ENCYclopedia OfDNA Elements (ENCOD) is an open research consortium aiming to rigorously analyze the human genome sequence and identify all functional elements, complementing the completed Human Genome Project.
| Climatology | Weather reports, tidal phases, satellite images, and deforestation maps were analyzed to improve siting of wind turbines by Vestas, a global energy company. | These efforts increased turbine productivity by reducing response time to implement wind forecasting information by 97%.
<table>
<thead>
<tr>
<th>Field</th>
<th>Data Science Application</th>
<th>Resulting Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Criminology</td>
<td>Social network analysis was used on a data set of 60 active gangs and 600 factions by the Chicago Police Department to determine social and geographic factors that connect and divide gang members.</td>
<td>Police reduced, by 20%, city-wide homicides by using analysis results to predict future potential victims of gang-related violence and monitoring those areas.6</td>
</tr>
<tr>
<td>Economics</td>
<td>Housing-related Google search queries were analyzed to determine alternate methods of real-estate forecasting.</td>
<td>Trends of increasing or decreasing volumes of Google queries were more accurate predictors of future house sales than expert forecasts by real estate economists.7</td>
</tr>
<tr>
<td>Education Policy</td>
<td>Test scores, attendance records, tax returns, and demographic information on 2.5 million New York City schoolchildren were analyzed and correlated with their adult earnings to study the long-term effects of teaching quality, as determined by analysis of administrative performance records.</td>
<td>The study revealed that a student’s lifetime earnings increased by one-quarter of a million dollars in present value terms by replacing a poorly rated teacher with an average-rated teacher.8</td>
</tr>
<tr>
<td>Engineering</td>
<td>During missile production, data such as the number of turns on a screw in assembly operations are continuously collected and evaluated by Raytheon.</td>
<td>Error messages report anomalies in missile assembly, halting production and reducing defects in real-time, ultimately reducing production costs.9</td>
</tr>
<tr>
<td></td>
<td>To determine equipment at risk for failure, predictive analysis is applied to temperature, acoustic, and visual data collected from Union Pacific rail cars, including noises from wheel vibrations and ultrasound wheel visuals.</td>
<td>Spending reduced by millions as a result of a 75% reduction in bearing-related derailments.10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Field</th>
<th>Data Science Application</th>
<th>Resulting Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Finance</td>
<td>Pioneer West Virginia Credit Union applied data analytics to its loan and deposits portfolios, with a focus on loan delinquencies.</td>
<td>Daily delinquency reports replaced monthly delinquency reports, allowing for early intervention, which decreased the loan delinquency rate by 110 basis points within 5 months.</td>
</tr>
<tr>
<td>Literary History</td>
<td>Key words, phrases, and linguistic patterns from 3,592 literary works published from 1780 to 1900 were computationally analyzed.</td>
<td>Analysis revealed Jane Austen and Sir Walter Scott had the greatest influence on authors’ writing style and themes.</td>
</tr>
<tr>
<td>Literature</td>
<td>A Google database of 15 million scanned books spanning several centuries was analyzed for fluctuations in word choice.</td>
<td>Year-to-year fluctuations in the use of particular words allowed the researchers to examine the evolution of the novel in the United States and changes in American society and values.</td>
</tr>
<tr>
<td>Political Science</td>
<td>Barack Obama’s 2012 re-election campaign staff built predictive models of voter behavior using demographic information such as age, sex, race, neighborhood, voting records, and consumer data.</td>
<td>Using their analyses, the Obama campaign raised more than $1 billion by increasing the efficacy of traditional fundraising strategies, such as phone calls, direct mailings, and social media, and increased Obama voter turnout by more efficiently placing TV ads to target swing-state voters.</td>
</tr>
<tr>
<td>Psychology</td>
<td>Demographic and linguistic data from Facebook were combined with responses from personality questionnaires by University of Pennsylvania researchers.</td>
<td>Novel insights into the relationship between personal traits and language were recognized, such as a correlation between emotional stability and sports references.</td>
</tr>
</tbody>
</table>

WINTER MEMBER MEETING
February 6-7, 2014

Hotel Monaco Gallup
Headquarters
Washington, D.C.
Key Word Glossary: Data Science & Analytics

Data Sources ⇔ Informatics ⇔ Analytics ⇔ Actionable Intelligence

Analytics – the discovery of insights in data

Data Science – builds on techniques and theories from many fields, including mathematics, statistics, and computer science related topics such as data engineering, metadata and terminology systems, pattern recognition and machine learning, data mining, advanced algorithms, user interfaces and visualization, privacy and security, uncertainty modeling, data storage and management, and high performance computing with the goal of extracting meaning from data and creating data products.

Data source – a collection or a stream of data such as a Twitter feed or weblog

Exploratory data analysis (EDA) – finding patterns within data before applying a standard or new analytics tool. It is a means of exploring the data and to find the main characteristics.

Cloud computing – a framework such as Hadoop that is built to enable the process and storage of big data across a distributed file system

Internet of Things – ordinary devices that are connected to the internet at any time any via sensors

Open Access Science – a US OSTP policy to make the published results of federally funded research freely available

Project Open Data – A US OSTP initiative. Project Open Data is an online, public repository

Statistics – is the study of the collection, organization, analysis, interpretation and presentation of data.
Full Glossary: Data Science & Analytics

Data Sources ↔ Informatics ↔ Analytics ↔ Actionable Intelligence

A
Aggregation – a process of searching, gathering and presenting data
Algorithms – a mathematical formula that can perform certain analyses on data
Analytics – the discovery of insights in data
Anomaly detection – the search for data items in a dataset that do not match a projected pattern or expected behavior. Anomalies are also called outliers, exceptions, surprises or contaminants and they often provide critical and actionable information.
Anonymization – making data anonymous; removing all data points that could lead to identify a person

B
Big Data Scientist – someone who is able to develop the algorithms to make sense out of big data
Business Intelligence – the theories, methodologies and processes to make data understandable

C
Classification analysis – a systematic process for obtaining important and relevant information about data, also met data called; data about data.
Cloud computing – a distributed computing system over a network used for storing data off-premises
Clustering analysis – the process of identifying objects that are similar to each other and cluster them in order to understand the differences as well as the similarities within the data.
Comparative analysis – it ensures a step-by-step procedure of comparisons and calculations to detect patterns within very large data sets.
Complex structured data – data that are composed of two or more complex, complicated, and interrelated parts that cannot be easily interpreted by structured query languages and tools.
Correlation analysis – the analysis of data to determine a relationship between variables and whether that relationship is negative (-1.00) or positive (+1.00).

D
Data aggregation tools - the process of transforming scattered data from numerous sources into a single new one.
Data analyst – someone analyzing, modeling, cleaning or processing data
Data Analysis – Analysis of data is a process of inspecting, cleaning, transforming, and modeling data with the goal of discovering useful information, suggesting conclusions, and supporting decision making.
Database – a digital collection of data stored via a certain technique
Database-as-a-Service – a database hosted in the cloud on a pay per use basis, for example Amazon Web Services
Database Management System – collecting, storing and providing access of data
Data cleaning – the process of reviewing and revising data in order to delete duplicates, correct errors and provide consistency
Data ethical guidelines – guidelines that help organizations being transparent with their data, ensuring simplicity, security and privacy
Data source – a stream of data such as a Twitter feed or RSS
Data mining – the process of finding certain patterns or information from data sets
Data modeling – the analysis of data objects using data modeling techniques to create insights from the data
Data set – a collection of data
De-identification – same as anonymization; ensuring a person cannot be identified through the data

E
Exploratory data analysis (EDA) – finding patterns within data without standard procedures or methods. It is a means of discovering the data and to find the data sets main characteristics.
Extract, Transform and Load (ETL) – a process in a database and data warehousing meaning extracting the data from various sources, transforming it to fit operational needs and loading it into the database
Gamification – using game elements in a non-game context; very useful to create data therefore coined as the friendly scout of big data

Graph Analysis – viewing relationships among the nodes in terms of the network or graph theory, meaning analyzing connections between nodes in a network and the strength of the ties.

Graph Databases – they use graph structures (a finite set of ordered pairs or certain entities), with edges, properties and nodes for data storage. It provides index-free adjacency, meaning that every element is directly linked to its neighbor element.

Hadoop – an open-source framework that is built to enable the process and storage of big data across a distributed file system

HBase – an open source, non-relational, distributed database running in conjunction with Hadoop

HDFS – Hadoop Distributed File System; a distributed file system designed to run on commodity hardware

High-Performance-Computing (HPC) – using supercomputers to solve highly complex and advanced computing problems

Internet of Things – ordinary devices that are connected to the internet at any time any via sensors

Juridical data compliance – relevant when you use cloud solutions and where the data is stored in a different country or continent. Be aware that data stored in a different country has to oblige to the law in that country.

KeyValue Databases – they store data with a primary key, a uniquely identifiable record, which makes easy and fast to look up. The data stored in a KeyValue is normally some kind of primitive of the programming language.

Linked Data – Linked Data describes a method of publishing structured data so that it can be interlinked and become more useful. It builds upon standard Web technologies such as HTTP, RDF and URIs

Load balancing – distributing workload across multiple computers or servers in order to achieve optimal results and utilization of the system

Location data – GPS data describing a geographical location

Machine learning – part of artificial intelligence where machines learn from what they are doing and become better over time

MapReduce – a software framework for processing vast amounts of data

Massive Data Analysis – A 2013 National Research Council report on how data mining of massive data sets is transformative. Massive datasets are potential sources of discovery and knowledge, requiring sophisticated analysis techniques aiming to find relational and semantic interpretations of the phenomena underlying the data.

Massively Parallel Processing (MPP) – using many different processors (or computers) to perform certain computational tasks at the same time

Metadata – data about data; gives information about what the data is about.

MongoDB – an open-source NoSQL database

Multi-Dimensional Databases – a database optimized for data online analytical processing (OLAP) applications and for data warehousing.

MultiValue Databases – they are a type of NoSQL and multidimensional databases that understand 3 dimensional data directly. They are primarily giant strings that are perfect for manipulating HTML and XML strings directly
Natural Language Processing – a field of computer science involved with interactions between computers and human languages.

Network analysis – viewing relationships among the nodes in terms of the network or graph theory, meaning analyzing connections between nodes in a network and the strength of the ties.

NewSQL – an elegant, well-defined database system that is easier to learn and better than SQL. It is even newer than NoSQL.

NoSQL – sometimes referred to as ‘Not only SQL’ as it is a database that doesn’t adhere to traditional relational database structures. It is more consistent and can achieve higher availability and horizontal scaling.

Object Databases – they store data in the form of objects, as used by object-oriented programming. They are different from relational or graph databases and most of them offer a query language that allows object to be found with a declarative programming approach.

Object-based Image Analysis – analyzing digital images can be performed with data from individual pixels, whereas object-based image analysis uses data from a selection of related pixels, called objects or image objects.

Open Access Science – a US OSTP policy to make the published results of federally funded research freely available to the public within one year of publication and requiring researchers to better account for and manage the digital data resulting from federally funded scientific research. http://www.whitehouse.gov/blog/2013/02/22/expanding-public-access-results-federally-funded-research

Open Data Charter – a policy of the G8 nations, singed in 2013. The Open Data Charter sets out 5 strategic principles including an expectation that all government data will be published openly by default, alongside principles to increase the quality, quantity and re-use of the data that is released. G8 members have also identified 14 high-value areas – from education to transport, and from health to crime and justice – from which they will release data. https://www.gov.uk/government/publications/open-data-charter

Openness – the rise of the Internet and the digitization of information are increasing the "openness" of information, processes, and institutions. http://www.ced.org/reports/single/harnessing-openness-to-improve-research-teaching-and-learning-in-higher-edu

Open Source – a development model to promote universal access via free license to a product's design or blueprint, and universal redistribution of that design or blueprint, including subsequent improvements to it by anyone.

Open Source Software – computer software with its source code made available and licensed with a license in which the copyright holder provides the rights to study, change and distribute the software to anyone and for any purpose.

Optimization analysis - the process of optimization during the design cycle of products done by algorithms. It allows companies to virtually design many different variations of a product and to test that product against pre-set variables.

Ontology – ontology represents knowledge as a set of concepts within a domain and the relationships between those concepts.

Outlier detection – an outlier is an object that deviates significantly from the general average within a dataset or a combination of data. It is numerically distant from the rest of the data and therefore, the outlier indicates that something is going on and generally therefore requires additional analysis.

Pattern Recognition – identifying patterns in data via algorithms to make predictions of new data coming from the same source.

Predictive analysis/analytics – the most valuable analysis/analytics within big data as they help predict what someone is likely to buy, visit, do or how someone will behave in the (near) future. It uses a variety of different data sets such as historical, transactional, social or customer profile data to identify risks and opportunities.

Privacy – to seclude certain data / information about oneself that is deemed personal.

Project Open Data – A US OSTP initiative. Project Open Data is an online, public repository intended to foster collaboration and promote the continual improvement of the Open Data Policy. http://www.whitehouse.gov/blog/2013/05/16/introducing-project-open-data Project Open Data is hosted on GitHub http://project-open-data.github.io/

Public data – public information or data sets that were created with public funding.
Q
Query – asking for information to answer a certain question

R
Real-time data – data that is created, processed, stored, analyzed and visualized within milliseconds
Recommendation engine – an algorithm that suggests certain products based on previous buying behavior or buying behavior of others
Re-identification – combining several data sets to find a certain person within anonym zed data
Regression analysis – to define the dependency between variables. It assumes a one-way causal effect from one variable to the response of another variable.
RFID – Radio Frequency Identification; a type of sensor using wireless non-contact radio-frequency electromagnetic fields to transfer data
Reproducible Science – An effort of the US NSF to advance the idea that the ultimate product of academic research is the paper along with the full computational environment used to produce the results in the paper such as the code, data, etc. that can be used to reproduce the results and create new work based on the research. http://www.reproduciblescience.org/index.php/Main_Page
Resource Description Framework (RDF) – a metadata data model which is part of the semantic web effort. In the form of subject-predicate-object expressions. These expressions are known as triples in RDF terminology

S
Semantic Web – a project of W3C, which "provides a common framework that allows data to be shared and reused across application, enterprise, and community boundaries
Semi-structured data - a form a structured data that does not have a formal structure like structured data. It does however have tags or other markers to enforce hierarchy of records.
Signal analysis – it refers to the analysis of measurement of time varying or spatially varying physical quantities to analyze the performance of a product. Especially used with sensor data.
Simulation analysis – a simulation is the imitation of the operation of a real-world process or system. A simulation analysis helps to ensure optimal product performance taking into account many different variables.
Smart grid – refers to using sensors within an energy grid to monitor what is going on in real-time helping to increase efficiency
Software-as-a-Service – a software tool that is used of the web via a browser
Spatial analysis – refers to analyzing spatial data such geographic data or topological data to identify and understand patterns and regularities within data distributed in geographic space.
Statistics – is the study of the collection, organization, analysis, interpretation and presentation of data. It deals with all aspects of data, including the planning of data collection in terms of the design of surveys and experiments.
SQL – a programming language for retrieving data from a relational database
Structured data – data that is identifiable as it is organized in structure like rows and columns. The data resides in fixed fields within a record or file or the data is tagged correctly and can be accurately identified.

T
Time series analysis - analyzing well-defined data obtained through repeated measurements of time. The data has to be well defined and measured at successive points in time spaced at identical time intervals.
Topological Data Analysis – focusing on the shape of complex data and identifying clusters and any statistical significance that is present within that data.
Transactional data – dynamic data that changes over time
Transparency – consumers want to know what happens with their data and organizations have to be transparent about that

U
Un-structured data - unstructured data is regarded as data that is in general text heavy, but may also contain dates, numbers and facts.

V
Value – all that available data will create a lot of value for organizations, societies and consumers. Big data means big business and every industry will reap the benefits from big data.

Variability – it means that the meaning of the data can change (rapidly). In (almost) the same tweets for example a word can have a totally different meaning.

Variety – data today comes in many different formats: structured data, semi-structured data, unstructured data and even complex structured data.

Velocity – the speed at which the data is created, stored, analyzed and visualized.

Veracity – organizations need to ensure that the data is correct as well as the analyses performed on the data are correct. Veracity refers to the correctness of the data.

Visualization – with the right visualizations, raw data can be put to use. Visualizations of course do not mean ordinary graphs or pie-charts. They mean complex graphs that can include many variables of data while still remaining understandable and readable.

Volume – the amount of data, ranging from megabytes to brontobytes.

W

Weather data – an important open public data source that can provide organizations with a lot of insights if combined with other sources.

X

XML – Extensible Markup Language (XML) is a markup language that defines a set of rules for encoding documents in a format that is both human-readable and machine-readable.

Course Objectives

In recent years, there has been an explosion in generation of biological data that provide genome-scale information on cellular processes. These data include genomic sequences, gene expression, protein expression, protein-protein interactions, protein-DNA interactions, metabolite concentrations, and metabolic fluxes, among others. Such data are often analyzed within the framework of biological network models, which provide a large-scale view of the functional relationships among multiple molecules in the cell.

This course provides a detailed review of computational approaches that are developed to analyze these novel sources of biological data. Topics include prediction of protein-protein interactions, genetic regulatory network inference, analysis of network topology, network motifs, network alignment, network-based functional annotation, gene set enrichment analysis, metabolic flux analysis and network-based analysis of genomic, functional genomic, and proteomic data with applications to the systems biology of complex diseases. It is expected that, upon completion of this course, the students will achieve the following objectives:

• Become familiar with existing tools and resources for computational analysis of “omic” datasets.

• Develop an awareness of the computational problems that arise in the modeling and analysis of cellular systems.

• Understand fundamental abstractions and computational approaches used to formulate and address these problems.

• Be able to use, manipulate, and extend existing computational infrastructure for analyzing systems biology data.

Class Meeting

MW 1:45-3:00 PM, Sears 354.

Instructor

• Mehmet Koyutürk
 Office: Olin 512
 Phone: 368-2963
 e-mail: mxk331@case.edu
 Office hours: MW 11:00 AM - 12: 00PM and by appointment.
Course Work & Grading

Assignments: (30%) There are three practical assignments. In each assignment, one or more datasets will be provided, and the students will be asked to analyze the data to answer specific questions, possibly using publicly available computational resources and public data.

Paper Discussion: (Leading 20%, Contribution 10%) We will discuss several research papers on topics that are covered in the class. In each discussion session, we will discuss one paper. Each Monday, one student will present a recent research paper and lead the discussion on this paper. Each student in the class will review one of the papers and submit their review of the research papers to the corresponding presenter by 5 PM on Friday. During the class, the presenters will summarize the paper (key ideas, main contributions, experimental results, conclusions) and provide a discussion of the reviews submitted by all students. Based on this content, the presenters will arbitrate a discussion on the intellectual merit and potential impact of these papers, their limitations, and ideas for building on their results.

Project: (15% Proposal, 25% Final Presentation and Report) The students will develop and conduct research projects that make use of omic data. The projects will be conducted in teams of two and the teams are required to be interdisciplinary. The projects are expected to be (i) innovative, (ii) involve implementation or in-depth use of a computational method, and (iii) provide solid results. The development of projects comprises the following phases:

1. Topic selection. Students will form teams and select their topic by Wednesday, February 12.

2. Project proposal. The teams will review the literature and develop ideas for their project. Based on these ideas, they will present a proposal for their project on Monday/Wednesday, March 17/19. Other students and the instructor will provide feedback on these ideas, critically evaluating the plan to execute these ideas. The presentation will not be graded. Based on this feedback, the students will submit a 5-page research proposal by Wednesday, March 26. The proposal will outline the motivation and the proposed idea and clearly argue for the significance and the intellectual merit of the proposed research. It should also clearly explain the research plan. The proposal will be expected to address the feedback provided during the presentations and will be graded.

3. Project presentation and report. On the final week of the semester, each team will present their project. Each team will also submit an 8-page project report by Wednesday, April 30. The presentations and reports will be graded.

Calendar

The class meetings are organized as follows: Every week (a Wednesday followed by a Monday) a different topic will be discussed. On Wednesday, the instructor will provide background on the topic. Prior to Wednesday’s class meeting, review articles or book chapters on the topic will be posted on Blackboard. On the following Monday, a research paper will be discussed, and the discussion will be facilitated by a student. The topics scheduled for discussion are the following:
<table>
<thead>
<tr>
<th>Date</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jan 13</td>
<td>Introduction to “omics”</td>
</tr>
<tr>
<td>Jan 15–22</td>
<td>Data on biological function and relationship among biomolecules: Signaling, pathways, protein-protein interactions, functional annotation, data and knowledge bases</td>
</tr>
<tr>
<td>Jan 29</td>
<td>Network analysis, graph theoretical concepts, topological properties of biological networks</td>
</tr>
<tr>
<td>Feb 3</td>
<td>Paper Discussion #2: Heo et al., Topology of protein interaction network shapes protein abundances and strengths of their functional and nonspecific interactions, PNAS, 2011.</td>
</tr>
<tr>
<td>Feb 5</td>
<td>Network motifs, module identification, network alignment, network evolution</td>
</tr>
<tr>
<td>Feb 12</td>
<td>Centrality, network based functional annotation, genome-wide linkage and association, disease gene prioritization</td>
</tr>
<tr>
<td>Feb 19</td>
<td>Gene expression: clustering, classification, regulatory network inference</td>
</tr>
<tr>
<td>Feb 26 – Mar 3</td>
<td>Cancer: Driver mutations, methylation, mRNA-level dysregulation, proteomics, The Cancer Genome Atlas (TCGA), prediction of patient outcome</td>
</tr>
<tr>
<td>Mar 17–19</td>
<td>Proposal Presentations</td>
</tr>
<tr>
<td>Mar 24</td>
<td>Information theory and its applications in biology</td>
</tr>
<tr>
<td>Mar 26</td>
<td>Active pathways, dysregulated pathways, Gene-set enrichment analysis,</td>
</tr>
<tr>
<td>Mar 31</td>
<td>Paper Discussion #7: Weng et al. SNP-based pathway enrichment analysis for genome-wide association studies, BMC Bioinformatics, 2011.</td>
</tr>
<tr>
<td>Apr 2</td>
<td>Dysregulated subnetworks, composite gene features for classification</td>
</tr>
<tr>
<td>Apr 9</td>
<td>Metabolomics, metabolic networks, flux-balance analysis, metabolic pathway databases</td>
</tr>
<tr>
<td>Apr 21–23–29</td>
<td>Project Presentations</td>
</tr>
</tbody>
</table>
Plagiarism Policy

All of the materials submitted by the students must be the students’ own work. Zero-tolerance policy on plagiarism will be enforced. Following the departmental plagiarism policy, cheating on homeworks or tests will result in an F grade for the whole course and appropriate disciplinary action, independently of the extent of plagiarism. In case of doubt, the students are responsible for checking with the instructor on what is allowed and what is not.
AGTR 306/406 – Astronomical Techniques

This course will focus on research techniques in astronomy, including the acquisition, reduction, and analysis of data from ground- and space-based telescopes, as well as data-mining from online multi-wavelength datasets. We will also emphasize the variety of writing that astronomers do, such as observing proposals, journal articles, technical reviews, and funding proposals. ASTR 306 is an approved SAGES departmental seminar.

Instructor: Chris Mihos (Sears 557, mihos@case.edu)

Textbooks: While there are no required textbooks, readings will come from a variety of sources available online and in the astronomy library, including:

- **BGO**: *Observational Astronomy*, by Birney, Gonzales, and Oesper
- **Chromey**: *To Measure the Sky*, by Chromey
- **Howell**: *Handbook of CCD Astronomy*, by Howell

Computational Requirements: High level computational data analysis will be required. The specific language or software you use for this analysis is your own choice — depending on the scope of the problem, any of Python, C/C++, Matlab, IRAF, or Supermongo may be appropriate. If you do not have an account on the departmental Linux workstations, please see Charley Knox to get set up ASAP.

Individual Assignments: Every few weeks there will be a homework set geared towards the development of technical skills. Typical assignments could include conducting a photometric analysis of astronomical image data, or downloading and analyzing appropriate astronomical datasets off of the web. In addition, there will be several individual writing assignments throughout the semester, which might include

- an observing proposal
- a grant proposal for research using an on-line database
- referee reports of the group projects

Group Projects: Several larger research projects will be done in small groups. For each project, the group must submit a final project report written in the form of an *Astrophysical Journal* paper. The first of these reports will be peer-reviewed by the other groups in the class, after which revisions will need to be made.

ASTR 406 Requirements: Graduate students enrolled in ASTR 406 will have additional problems on the individual assignments that explore topics in more detail. ASTR 406 students will also complete individually the group projects assigned for ASTR 306. There will also be an observing trip for ASTR 406 students to Kitt Peak, Arizona to obtain data for an additional data analysis project.
Grading Structure:

<table>
<thead>
<tr>
<th></th>
<th>ASTR 306</th>
<th>ASTR 406</th>
</tr>
</thead>
<tbody>
<tr>
<td>Individual Assignments</td>
<td>70%</td>
<td>55%</td>
</tr>
<tr>
<td>Projects</td>
<td>30%</td>
<td>30%</td>
</tr>
<tr>
<td>Observing Project</td>
<td>-</td>
<td>15%</td>
</tr>
</tbody>
</table>

Course Topics:

I. Astronomical Data
 a. Coordinate systems
 b. Magnitudes and filter systems
 c. Extended objects: shape and structure parameters
 d. Spectroscopic data: spectra and spectral indices

II. Astronomical Instrumentation
 a. Telescopes
 b. Detectors and imaging
 c. Spectrographs

III. Data Reduction and Analysis
 a. Photometry
 b. Spectroscopy
 c. Statistical methods

IV. Multiwavelength Instrumentation and Datasets
 a. Infrared
 b. Radio
 c. Ultraviolet
 d. X-ray

V. Data-Mining in Astronomy
 a. Data products: raw data versus value-added catalogs
 b. Simulation datasets
 c. Online datasets: SDSS, MAST, NED, etc
 d. Data slicing and cross-matching
 e. Data visualization

VI. Case Studies in Astronomical Data Mining
 a. Active galaxies in clusters
 b. Star streams in galaxies
 c. Hunting for exoplanets
 d. Galaxies in the early universe
Instructor: Jagdip Singh Office Hours: After class, Tuesday, or by appt.
Course Assistant: Hector Martinez (ham48)
Co-Instructors (listed alphabetically): Chris Linderwell & Elisabeth Smith
(All from Rosetta; email: First name.Last name@rosetta.com)
Contact: jagdip.singh@case.edu, PBL 221

Course & Learning Objectives

Develop skills for analyzing marketing data for making intelligent decisions about marketing investments that create value and build competitive advantage. In short, this course will build capabilities for marketing ai—a**nalytics** for **i**nsights.

You might be asking, “If I am going to be a marketing professional, do I need hard analytical skills?” The answer: “Absolutely, yes.” The divide between soft and hard areas of marketing is a myth. In a digital age, marketing professionals have to be good at both to be taken seriously.

“Do you have to be a math or statistics wiz to be good at marketing analytics?” Answer: “No.” Analytics do involve knowledge of basic statistics, math and commercial software (EXCEL & SPSS). These basic skills are a necessary tool-kit for marketing professionals. Being a wiz can help, but is not necessary. At its core, analytics rely on your powers of understanding marketing problems, matching problems to appropriate analytical procedures, and extracting insights from the obtained.

This course should get you in the habit of asking, “What is the underlying problem responsible for visible symptoms in this situation?,” “What data do I need to uncover novel solutions to the problem?” and “What are the appropriate analyses for these data to draw insights?” The course will build skills for answering these questions.

In building these skills, the course will use different materials and deliverables with three common learning objectives:

1. **Analytics Application (AA)**, applying covered analytical skills to analyze managerial problems with marketing data.
2. **Evaluation and Plotting (EP)**, evaluating the results from analytics and plotting those that are useful for problem solving.
3. **Integration and Interpretation (II)**, integrating the useful results obtained and developing an interpretation to guide managerial action.
ROSETTA PARTNERSHIP

This course will be delivered in partnership with Rosetta (http://www.rosetta.com/), an interactive consulting company committed to transforming marketing for the connected world. The purpose of this partnership is to:

- Enrich student learning by connecting analytical theory with real-world problem solving.
- Build skills for analytics driven insights that are relevant for tomorrow’s marketplace.

To achieve these purposes, the course content and assignments are designed to (a) enable student learning by building ai skills using real-world problems and data, and (b) emphasize analytical tools and software that build students’ ai competence giving them a competitive advantage for a range of marketing jobs.

COURSE FORMAT:

Before Each Class

- Read/Review assigned materials. Be prepared to ask questions and get clarifications.
- Review feedback on your assignment. See where you did well, and where you can improve. Bring your questions to class.
- If you have been asked by the instructor to make a class presentation, take the time to develop and sharpen your presentation skills. Present professionally.
- Be prepared for a class quiz.

Beginning of & During Each Class

- Be on time for class. Miss class only in extreme circumstances. Inform instructor in advance. Never miss submitting or doing your assigned work as required per class schedule.
- Be ready to show you are prepared. Ask questions. Pay attention.
- Assignments due that week will be discussed. It is your responsibility to note deadlines and obtain clarifications for completing the assignment.
- Be engaged. Think how you can use the concepts and tools for real life problems.

After Each Class

- Review material covered in class. Note questions, concepts or steps you don’t get. Clarify in the next class.
- Re-Review analytics tutorial slides. Attempt at reproducing the results. Start working on the assigned homework and/or extra practice assignment.
- Plan for timely submission of assignment.
Text, Software, Cases and Readings

EXCEL: No textbook is assigned. Instead, links to readings and videos are provided for each session. All are free.

Required Software: SPSS 20 & Excel. You are **required** to download & install from Case Software Center the latest version of SPSS on your own personal computer. Also, you are expected to have the latest version of EXCEL installed on your personal computer. Both are **essential** for the course.

IBM© SPSS Analytics Certification (ACE)

This course prepares you toward sitting in a SPSS certification exam sponsored by IBM. This certification is not a course requirement, but is recommended for students seeking jobs with some analytical component. By itself, this course is not sufficient preparation for this certification exam. Students are advised to take one or more SPSS-based courses that build their skills before sitting for the certification exam. Discuss options with the instructor. See http://www-03.ibm.com/certify/certs/47100101.shtml for more details. The IBM student portal link is https://www.ibm.com/developerworks/community/groups/service/html/communityview?communityUid=ab443019-1134-4fbb-bc75-ecce1186b261

Pre-requisites and Prepping for the Course

Understanding of basic statistics (as usually covered in the core statistics course) is a pre-requisite. A good work ethic, and a positive learning attitude are keys to strong course performance.

Some prepping suggestions:

1. Review material you covered in the undergraduate statistics course. Online materials are available, usually free, for this purpose (e.g., http://davidmlane.com/hyperstat/: http://onlinestatbook.com/2/index.html).
2. Familiarize yourself with the SPSS statistical software. SPSS has a useful tutorial (under the “Help” tab in the main data screen). Many online resources are available (http://www.hmdc.harvard.edu/projects/SPSS_Tutorial/spsstut.shtml, http://www.ats.ucla.edu/stat/spss/modules/default.htm), and you can download a free “guidebook” by visiting http://www.spsstools.net/ (use the link under “purposes”).

Course Structure and Expectations

Attendance and Conduct Policy: You are responsible for attending all sessions. In case you have to miss a class for unavoidable reasons, inform the instructor in advance. Absence is excused only under extreme circumstances. No more than 2 excused absences will be permitted. Even for excused absences, the student will be responsible for submitting timely assignments and making up for absences. There will be no make-ups for quizzes. Each student is responsible for proper conduct. Student behavior deemed to be discreditable as determined by the instructor may result in a reduction of grade for the assignment/s involved or for the course as a whole or both.

In short: *Do your work with diligence.*
Academic Responsibility. All students in this course are expected to adhere to university standards of academic integrity. Cheating, plagiarism, and other forms of academic dishonesty will not be tolerated. This includes, but is not limited to: consulting with another person during an exam, turning in written work that was prepared by someone other than you, and making minor modifications to the work of someone else and turning it in as your own. *Unless properly referenced or quoted, submitted work is assumed to be original contribution of the student.* Ignorance will not be permitted as an excuse. If you are not sure whether something you plan to submit would be considered either cheating or plagiarism, it is your responsibility to ask for clarification. When your name appears on an assignment, you are responsible for the integrity of the work, even if you did not personally write the offending material. Information on citations and plagiarism can be found on the following web sites: http://library.case.edu/ksl/researchtools/citation/index.html and http://www.indiana.edu/~wts/pamphlets/plagiarism.shtml. The Weatherhead Academic Integrity policy can be found at http://bulletin.case.edu/weatherheadschoolofmanagement/policies/#academicintegritypolicytext.

Evaluation, Grading and Conduct

<table>
<thead>
<tr>
<th>Component</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homework Exercises (9 in all)</td>
<td></td>
</tr>
<tr>
<td>Team exercise (Ex#1)</td>
<td>2%</td>
</tr>
<tr>
<td>Team exercises (Ex#2-Ex#3)</td>
<td>8%</td>
</tr>
<tr>
<td>Individual Exercises (Ex#4 to Ex#9)</td>
<td>25%</td>
</tr>
<tr>
<td>Exams (3 in all; differentially weighted as noted below)</td>
<td>45%</td>
</tr>
<tr>
<td>Exam I: 15%</td>
<td></td>
</tr>
<tr>
<td>Exam II: 30%</td>
<td></td>
</tr>
<tr>
<td>Exam III: 55%</td>
<td></td>
</tr>
<tr>
<td>In Class Quizzes</td>
<td>10%</td>
</tr>
<tr>
<td>Class Participation & Attendance</td>
<td>10%</td>
</tr>
<tr>
<td>Total</td>
<td>100%</td>
</tr>
</tbody>
</table>

Bonus points for Presentation

10%

Grading Notes:

Class Participation and Attendance. The following aspects will be considered in evaluating student’s grade:

a. Preparedness and Attendance. Regular attendance and diligent preparation for the class is indicative of student commitment to participate in a learning environment. See attendance policy above.

b. Active Engagement. Active participation in the class with thoughtful questions, sharing alternative perspectives, and responding critically to class discussion, especially during case study discussions.

Bonus Points for Presentation. You will earn bonus points for making presentation to the class. Presentations will be graded as per policy for class assignments (see grade computation below). To earn bonus points, the students must earn 85% (B) or higher on their presentation. No bonus points would be earned for a presentation that earns less than a B. Presentation opportunity will be available as follows:
a. Invited Presentation. Students with outstanding submissions for homework exercises will be invited by the instructor to present their work to the class. Take this seriously. Imagine you are making a formal presentation to a client. Highlight your presentation skills.

b. Requested Presentation. Any students can request the instructor to make a presentation based on the class exercise. Such requests must be made at least 1 week in advance of the presentation date.

Exam. Each exam will test for comprehension of concepts and skills developed as part of the course, and their application to analytical problems.

Grade Computation: Most assignments will be graded using a plus and minus system (e.g., A- and A+ and so on). Conversion of this grading system to numerical scores is provided below. Students are responsible for tracking their own overall performance using the above weighting scheme. The final grade, however, will be a letter grade based on the final numerical score without the plus and minus in accord with University guidelines.

\[
\begin{align*}
A+ &= 98, \ A &= 95, \ A- &= 91 \\
B+ &= 88, \ B &= 85, \ B- &= 81 \\
C+ &= 78, \ C &= 75, \ C- &= 71 \\
D+ &= 68, \ D &= 65, \ D- &= 61 \\
F+ &= 50, \ F &= 30, \ F- &= 0
\end{align*}
\]

Submission Requirements and Guidelines.

All course exercises should be submitted only on the blackboard as per specific instructions to avoid late submission penalty (see below).

Typically, submission-feedback-rework will work as follows:

1. Assignments should be submitted in a powerpoint format, address all requirements of the assigned problem, and generally up to 10 slides of material. Text may be bulleted but must be complete with details to be understood precisely. Be concise. Avoid redundant words. Additional notes may be included in the powerpoint to explain your work.

2. Assignments will be due by Saturday, midnight. No extensions permitted (see Late Submissions below).

3. Feedback will be provided usually by Monday, 12 noon.

4. Based on the quality and creativity of your submission, the instructor may ask you to make a presentation based on your assignment in the Tuesday class with the following guidelines:
 a. 5-7 minute presentation
 b. Focus on points highlighted in the feedback. Revise and sharpen your presentation accordingly.
 c. Polished and professional presentation. Assume you are presenting to a client.

5. Students who want to rework the submission to fix things that they missed or got wrong can submit their revised work by Tuesday, 12 noon (before class).

6. The main objective of the rework is to promote learning of key concepts and skills, and not rake up grade points (see Re-dos below).

7. All rework must be done individually by the student/group, without help, assistance or guidance from other students or course assistant.
Important: Label all your assignment files as instructed below:

All individual assignments should be labeled as your lastname_firstname_exercisename_MKMR 310

Example: singh_jagdip_ex3_MKMR310.pptx

All group assignments should be labeled as: last_names_of_group_members_exercise_number_MKMR310

Example: singh_smith_thomas_payne_chin_Huella_MKMR 310.pptx

All reports should be carefully edited to eliminate redundant materials and keep the material focused. Tightly written papers will be viewed more favorably than long-winded developments.

Late Submissions: Late submission will result in a letter-grade penalty. That penalty is one full letter grade for each day (or part thereof) that the submission is late. For example, an exercise would have earned a B if submitted on its due date of Saturday, will be graded C if submitted by Sunday, D if submitted by Monday, and an F if submitted thereafter. If a submission must be late due to circumstances beyond your control, contact the instructor. At his discretion and based on his assessment of the actual degree of uncontrollability of the situation, he may permit a special arrangement. The most typical special arrangement is for students who must miss class due to extreme circumstances. They are often permitted to submit the assignment *early*. It is extremely rare for the instructor to permit an extension of the due date.

Redos. Students are encouraged to go back to fix problems identified on their graded assignments as this ensures that students complete the learning loop. In some instances, a redo may earn you a portion of the original points, but often it may not. Redos that show student’s effort in addressing the problem on their own, the nature of the problem and timely submission are all factors that go into this decision. Additional points for redos are at the instructor’s discretion. The extra credit will be upto 1 point maximum (10% of grade) and usually lower. Redos are intended to promote learning and not as opportunities for making up the grade.

Changes. The instructor reserves the right to make changes during the semester to any aspect of syllabus that, to his judgment, are needed to achieve the learning objectives of the course.
<table>
<thead>
<tr>
<th>Date</th>
<th>Class</th>
<th>Topic</th>
<th>Required Reading</th>
<th>Web-based Material for Review</th>
<th>Homework Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aug. 27</td>
<td>CLASS 1</td>
<td>Analytics Driven Insights: Basics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>http://www-01.ibm.com/software/info/rte/bdig/bdwa-7-post.html</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>http://thehumanfaceofbigdata.com/</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>http://en.wikipedia.org/wiki/Analytics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Computer Lab: Basic Analysis with XCL (Univariate)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>RR: MLGB: Chap 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>WR: "http://www.case.edu/its/training/lyndaman.html (LYNDA.com)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SUMIFs in Excel: http://www.youtube.com/watch?v=JonS_YuFeMQ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pivot in Excel: http://www.youtube.com/watch?v=7zHLnUCtfUk</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vlookup in Excel: http://www.youtube.com/watch?v=981MeKFA4W8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Basic Statistics in Excel:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>http://www.youtube.com/watch?v=efdRmGqCYBk&playnext=1&list=PL2C53784A0634D33B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Histogram in Excel 2010: http://www.youtube.com/watch?v=RyxPp22x9PU</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>In-Class Activity: MLGB: IQs 1.3, 1.4 & 1.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>HwA: Ex#1: Due Aug. 31</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sept. 3</td>
<td>CLASS 2</td>
<td>Dashboard Analytics with SPSS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>RR: SPSS Resources (PASW):</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>http://www.youtube.com/watch?v=5Z8RagPdmOl&feature=related</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Computer Lab: Descriptive Analytics for Single Variables with EXCEL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>RR: MLGB: Chap 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>WR: "Define Variables and Marketing Terms</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>http://www.case.edu/its/training/lyndaman.html (LYNDA.com)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>http://www.youtube.com/watch?v=ssjuOuMcCB4&feature=mfu_in_order&list=UL, &</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>http://www.youtube.com/watch?v=icgooM1K21U&feature=mfu_in_order&list=UL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>http://www.marketingpower.com/ResourceLibrary/Pages/common-marketing-terms.aspx"</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Frequency Analysis in SPSS:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Selecting Cases in SPSS:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>http://www.youtube.com/watch?v=24Y5w9sAOzI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>http://www.youtube.com/watch?v=ero4VR7h1HU&feature=related</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>In-Class Activity: MLGB: IQs 3.2, 3.3 & 3.4:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Extra SPSS 3.4 & 3.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>HwA: Ex#2: “01.5 Data for Homework Movie_Sport.SPSS.sav” due Sept 7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sept. 10</td>
<td>CLASS 3</td>
<td>Web Analytics & Monetizing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Real-world Problem Solving: Rosetta</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Beginning Analytics: http://www.youtube.com/watch?v=Hdsb_uH2yPU&feature=related</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Computer Lab: Data Mining with XCL (Bivariate)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>WR: http://www.kaushik.net/avinash/google-analytics-is-re-launched-do-these-five-things-first-in-v2/</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
HwA: Ex#3 due Sept 14

Sept. 17: CLASS 4
Rosetta Case Study 1: Web Analytics in Practice
Attribution Modeling for Interactive Data
WR: http://www.kaushik.net/avinash/multi-channel-attribution-definitions-models/
http://www.kaushik.net/avinash/consumer-behavior-research-purchase-analysis/
HwA: Ex#4 due Sept 21

Sept. 24: CLASS 5
Rosetta Case Study 2: Attribution Modeling in Practice
Exam Review Session

Oct 1: In Class Exam I (material covered till 09/24)

Oct. 8: CLASS 7
Asking Questions to Gain Deep Insights
Survey design best practices:
HwA: Ex#5 due Oct 12

Oct. 15: CLASS 8
Associational Analytics with SPSS
WR: "http://onlinestatbook.com/2/chi_square/one-way.html"
Real-world Problem Solving: Cleveland Cavs
RR: MLGB: Chapters 5 & 8
WR: http://www.youtube.com/watch?v=p-ZaWgiM_Yg
In-Class Activity: MLGB: IQs 5.1, 5.2, 5.5, & 5.6; 8.2, 8.3, & 8.4
HwA: Ex#6 due Oct 19

Oct. 22: FALL BREAK

Oct. 29: CLASS 9
Predictive Analytics with SPSS
RR: MLGB: Chap 9
WR: http://onlinestatbook.com/2/regression/intro.html
http://www.youtube.com/watch?v=4EFXic4sGdE
http://onlinestatbook.com/2/regression/influential.html"
In-Class Activity: MLGB: IQs 9.2, 9.3, 9.4 & 9.5
Exam Review Session
HwA: Ex#7 due Nov. 03

Nov 5: In Class Exam II (material covered till 10/29)
Nov 12: CLASS 11
Computer Lab: Forecasting with XCL

http://www.kaushik.net/avinash/analytics-tip-calculate-ltv-customer-lifetime-value
http://www.youtube.com/watch?v=BHDblh9Y1-o&feature=related sections on “Simple Exponential Smoothing,” “Choosing the Best Value…,” and “Indices of Lack of Fit.”

HwA: Ex#8 due Nov. 16

Nov. 19: CLASS 13
Rosetta Case Study 3: Forecasting in Practice
A/B and Multivariate Testing

RR: MLGB: Chap 11
WR: "http://www.kaushik.net/avinash/experimentation-and-testing-a-primer/
http://www.kaushik.net/avinash/experiment-die-reasons-awesome-testing-ideas/"
http://onlinestatbook.com/2/analysis_of_variance/multiway.html"
http://www.kaushik.net/avinash/analytics-tip-calculate-ltv-customer-lifetime-value/

In-Class Activity: MLGB: IQs 11.2, 11.4, & 11.5

HwA: Ex#9 due Nov 23

Nov. 26: CLASS 15
Rosetta Case Study 4: A/B Testing in Practice
Exam Review Session

Dec. 03: In Class Exam III (Comprehensive material covered till 11/26)
REQUIRED COURSE MATERIALS:
Text books (available at Case bookstore)

Course Notes
Blackboard would contain some required and suggested readings as well as information related to the course such as announcements, grades, group projects and also other documents. Other relevant and topical material may be distributed in class.

COURSE DESCRIPTION AND OBJECTIVES:
Objectives
This course is aimed at training the next generation of marketing managers who are (1) well versed in data analysis and (2) are thoroughly familiar with metrics that measure marketing performance and are able to calculate as well as convey them to other managers, especially upper management, who are often interested in the financial results and metrics.

Skills
The course will have the following takeaways for the students:
- Familiarity with data management and manipulation as well as basic statistical analyses using IBM SPSS software program. It is expected that you will consider taking the IBM Analytics Certification after taking this class.
- Understanding and greater appreciation of links between marketing actions and financial outcomes.
- Ability to fully understand, calculate and convey a small number of important metrics that measure marketing metrics in various contexts.

Class Format
The class will be largely delivered in the computer lab and therefore, it will be intensely hands on. Note that even though all class meetings are in the computer lab, not all content will require computer work all the time. Many of you might have continued access to SPSS from your previous courses (like MKMR 310), but if you do not, then it is highly recommended that you buy SPSS student access through CWRU software center for your laptop computer. The SPSS part of the class will help you get familiar with (or reinforce your
familiarity with) the software and therefore, it would largely consist of discussions, problem solving and computer activities. The performance metrics part will also be hands on with the help of Excel spreadsheets, but may also have some more discussion on the underlying concepts and latest developments in the form of lectures and guest-lectures.

The tentative course content of the three modules of the class is given below:

(1) **Data Management – with SPSS**
 a. Reading Data from various sources
 b. Transforming and recoding data of various type
 c. Data cleaning – removing duplicates
 d. Aggregating data
 e. Merging files – by adding cases as well as variables
 f. Analyzing Multiple Response Questions
 g. Charts, tables and other outputs with SPSS

(2) **Introductory Statistics – with SPSS**
 a. Levels of Measurement
 b. Descriptive Statistics
 c. From sample to population – inferential statistics
 d. Comparing two groups – t tests and non-parametric tests
 e. Comparing multiple groups – ANOVA
 f. Association between two variables

(3) **Metrics for conveying marketing performance**
 a. Data driven marketing
 b. Essential non-financial metrics
 c. ROI: Profits, NPV, IRR and payback period
 d. Customer focused metrics
 e. Internet marketing metrics

CLASS ASSESSMENT:

Course grading will be done for a total of 500 points. Individual course-grading elements will not be curved and the final letter grade will be based on your absolute performance in all the aspects of the class. The table below summarizes the components you will be evaluated upon and the corresponding percentage distribution.

Individual Assignments

There will be a total of 5 individual assignments (two from the metrics portion and three from the SPSS portion) and the best 4 of these assignments will count (40 points each). These are individual assignments based on marketing data and examples. You need to complete them using appropriate software and then create single Microsoft Word files for submission through Blackboard’s SafeAssign feature. Discussing the assignment with others is not only allowed, but encouraged. However, the final submission must be demonstrably your own work. Thus, it should not be copy of the same computer output as another student’s submission, and the explanations and descriptions should be completely in your own words.
In-class computer based exercises

There will be in-class exercises almost every week. These will be short exercises of about 15-20 minute duration each. A total of 11 weekly exercises will be given and the best 9 will count (10 points each). These will usually be open-book, open notes, open blackboard material. External websites may be blocked for many of these.

Exams

There will be two in-class examinations (75 points each) in-lieu of mid-term exam for the SPSS part of the class (in weeks 5 and 9) and one final exam on the performance metric part (during exam week) will be given (100 points). The final exam will be non-cumulative. These will also usually be open-book, open notes, open blackboard material. External websites may be blocked for some of these.

<table>
<thead>
<tr>
<th>Component</th>
<th>Percent of the Grade</th>
<th>Important Dates</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Individual Assignments (4)</td>
<td>32%</td>
<td>5 given – due in week 3, 6, 10, 12 and 14.</td>
<td>40 points each X 4 best</td>
</tr>
<tr>
<td>In-class exercises (9)</td>
<td>18%</td>
<td>Almost weekly: except Weeks 4, 9 and 14 - Thursdays.</td>
<td>10 points each X 9 best</td>
</tr>
<tr>
<td>In-Class Exam I</td>
<td>15%</td>
<td>Week 4 - Thursday</td>
<td>75 points</td>
</tr>
<tr>
<td>In-Class Exam II</td>
<td>15%</td>
<td>Week 10 - Tuesday</td>
<td>75 points</td>
</tr>
<tr>
<td>Final examination</td>
<td>20%</td>
<td>Exam week</td>
<td>100 points</td>
</tr>
</tbody>
</table>

Class attendance and participation

Since the classes are expected to be hands-on, fully engaged participation, including regular attendance is necessary. I will, however, not take attendance. There is no make-up test for the in-class exercises, except for documented illnesses and documented school-approved sports or other engagement. Since you can miss two of these without much adverse consequences, request for make-up tests will NOT be entertained except for the two reasons expressed above.

You will have a clear idea about what is to be covered in the class and you should be ready for the topic. There is cold calling in the class so students might be randomly picked as we go through the topics for the day. There will often a graduate assistant present to guide you through the hands-on portion of the SPSS software based instructions.

OTHER IMPORTANT ISSUES:

Teamwork

The class does not have a team-evaluation component. However, you are encouraged to work in teams. You are encouraged to make teams, meet me in teams for problem-solving and work on assignments together – of course, your final submission of the assignments should be strictly your own work and any writing should be in your own words.
Academic Integrity
Members of the class are expected to adhere to the principles of academic integrity that govern students at an institution of higher learning. For all the homework assignments, it is acceptable to have discussions with other classmates but the final submissions must be demonstrably your own work. You need to present the answer in your own words and do not turn in exactly the same computer output, for example. The two in-class examinations and the final examinations will be closed book and no help should be sought / given during these exams.

Special Needs
Please contact me as soon as possible with the required paperwork, if you need and qualify for special accommodations as per the university policy.

Instructor Feedback
Your instructor and the Weatherhead School are committed to continuous improvement in the quality of teaching and learning. Please feel free to speak to me (or email me) at any time about any aspect of this course, including things that you think are going well, or things that need to be improved.

Summary Weekly Schedule

Weeks 1 to 3: Data management and manipulation using IBM SPSS software [1 individual assignment given and 3 in-class exercise, every Thursday]

Week 4: Review and catch-up of Data management (Tuesday) and in-class exam – I (Thursday)

Weeks 5 to 8: Statistical analysis using IBM-SPSS software [2 individual assignment given and 4 in-class exercises, every Thursday]

Week 9: Review and catch-up of Introductory Statistics (Tuesday) and Start of 15 Metrics for Marketing (Thursday)

Week 10 (Tuesday): in-class exam–II {Moved to this week so there is some time after Spring Break}

Weeks 10 (Thursday) to week 14: The 15 metrics everyone in marketing should know [2 individual assignment given and 4 in-class exercises, every Thursday, except week 14] – Last class will be a review for final exam.

Final week: 2.5 hour final exam – May 1st, 12.30 PM to 3 PM.
Case Western Reserve University
The Weatherhead School of Management

Marketing Management

MKMR 301
Course Syllabus
Fall 2012

General Information

Instructor: Casey E. Newmeyer

Contact Information:
Email: cen12@case.edu
Office: 223 PBL
Phone: (216) 368 - 6404

Class Meeting Times: Tuesday and Thursday 1:15 pm – 2:30 pm
Class Location: PBL Room ???
In-class Assignments/Quizzes
During the course of the semester multiple quizzes and/or assignments will be given in class or announced and given in Blackboard. These could include material to be covered that day from the text. The point value for each quiz/assignment will vary based on the requirements of the quiz/assignment. If you are absent from class the day a quiz/assignment is presented you will receive a zero for that particular item. Make-ups are granted at the instructor’s discretion and only for documented excuses.

Case Discussions/Questions
Two cases will be posted in Blackboard, for which you will prepare a typed response to open-ended questions. Remember to use proper MLA in-text citations when preparing your case responses and to use the proper format.

Class Participation and Discussion
Class participation will represent a substantial portion of the grade. Students will be expected to ask relevant questions, provide thoughtful comments and bring appropriate current-events examples of marketing and branding issues to class for discussion. Regular engagement is expected with the professor, fellow students and any guest speakers. The emphasis for grading will be on quality, not quantity.

You are expected to come to class thoroughly familiar with and ready to discuss assigned reading material and cases. Your simply showing up for class is useful for you, but adds little or no value to your colleagues’ learning experiences. All students are expected to contribute to each others’ learning. “Thoroughly familiar” means, not only being ready and able to discuss the main points addressed in the reading materials, but also being ready and able to discuss the nuances of their implications conceptually, for managerial decision making, and marketing performance.

Your class participation grade will also consist of unannounced in-class exercises and assignments.

Video Clip Assignment
This assignment requires the student to recognize course concepts in the mass media. This assignment consists of a brief class presentation and a one page summary presented to the instructor. The ideal assignment will identify one or two marketing principles depicted in a video or audio clip from a movie, TV program or in a radio segment. Students will work in teams of 2 and sign up for one of 4 presentation dates (Groups 1-4 on the course schedule). Further details will be posted on Courseweb.

Exams
Three regular exams and one final exam are scheduled for the semester. The final exam is cumulative. Exams could be a combination of multiple choice, true-false, matching, ordering, fill-in-the-blank, and short-answer.
Grades

- Video Clip Assignment 5%
- Class Participation 15%
- Case Write-ups (2 @ 7.5%) 15%
- Chapter Exams (3@10%) 30%
- Marketing Plan 10%
- Quant Project 10%
- Final Exam 15%
<table>
<thead>
<tr>
<th>Date</th>
<th>Topics</th>
<th>Reading</th>
<th>Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>August 28</td>
<td>Introduction and Syllabus Overview</td>
<td></td>
<td>Details of the deliverables needed will be discussed in-class and posted on blackboard</td>
</tr>
<tr>
<td>August 30</td>
<td>Chapter 1: An Overview of Marketing</td>
<td>Chapter 1</td>
<td></td>
</tr>
<tr>
<td>September 4</td>
<td>Strategic Planning</td>
<td>Chapter 2</td>
<td></td>
</tr>
<tr>
<td>September 6</td>
<td>Ethics and Social Responsibility and the Marketing Environment</td>
<td>Chapter 3 & 4</td>
<td></td>
</tr>
<tr>
<td>September 11</td>
<td>Developing a Global Vision</td>
<td>Chapter 5</td>
<td></td>
</tr>
<tr>
<td>September 13</td>
<td>Case Discussion 1</td>
<td></td>
<td>Case 1 written questions due</td>
</tr>
<tr>
<td>September 18</td>
<td>Consumer Decision Making</td>
<td>Chapter 6</td>
<td></td>
</tr>
<tr>
<td>September 20</td>
<td>Decision Making cont.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>September 25</td>
<td>Segmenting & Targeting Markets & Exam 1 Q&A</td>
<td>Chapter 8</td>
<td></td>
</tr>
<tr>
<td>September 27</td>
<td>EXAM 1 – Chapter 1, 3, 4, 5, 6, 8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>October 2</td>
<td>Decision Support Systems & Marketing Research</td>
<td>Chapter 9</td>
<td>Group 2: Video Clip Assignment</td>
</tr>
<tr>
<td>October 4</td>
<td>Product Concepts</td>
<td>Chapter 10</td>
<td></td>
</tr>
<tr>
<td>October 9</td>
<td>Developing & Managing Products</td>
<td>Chapter 11</td>
<td></td>
</tr>
<tr>
<td>October 11</td>
<td>Products cont. Exam 2 Review</td>
<td></td>
<td>Group 3: Video Clip Assignment</td>
</tr>
<tr>
<td>October 16</td>
<td>Exam 2 – Chapters 9, 2, 10, 11 & 12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>October 18</td>
<td>Marketing Channels & Supply Chain Management</td>
<td>Chapter 13, 14</td>
<td></td>
</tr>
<tr>
<td>October 23</td>
<td>Fall Break</td>
<td></td>
<td></td>
</tr>
<tr>
<td>October 25</td>
<td>Integrated Marketing Communications</td>
<td>Chapter 16</td>
<td></td>
</tr>
<tr>
<td>October 30</td>
<td>Advertising & Public Relations</td>
<td>Chapter 17</td>
<td>Group 4: Video Clip Assignment</td>
</tr>
<tr>
<td>November 1</td>
<td>EXAM 3 Chapters 13, 14, 19, 20, 16, 17 & 18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>November 6</td>
<td>Sales Promotion & Personal Selling</td>
<td>Chapter 18</td>
<td></td>
</tr>
<tr>
<td>November 8</td>
<td>Thanksgiving Break</td>
<td></td>
<td></td>
</tr>
<tr>
<td>November 13</td>
<td>Case 2 Discussion</td>
<td></td>
<td>Case 2 Written Questions Due</td>
</tr>
<tr>
<td>November 15</td>
<td>Pricing Concepts</td>
<td>Chapter 19</td>
<td></td>
</tr>
<tr>
<td>November 20</td>
<td>Setting the Right Price</td>
<td>Chapter 20</td>
<td></td>
</tr>
<tr>
<td>November 22</td>
<td></td>
<td></td>
<td>Quant Project</td>
</tr>
<tr>
<td>November 27</td>
<td>Group Presentations</td>
<td></td>
<td>Marketing Plan Presentations</td>
</tr>
<tr>
<td>November 29</td>
<td>Group Presentations</td>
<td></td>
<td>Marketing Plan Presentations</td>
</tr>
<tr>
<td>December 4</td>
<td>Social Media</td>
<td>Chapter 22</td>
<td></td>
</tr>
<tr>
<td>December 6</td>
<td>Course Wrap-up/Final Review</td>
<td></td>
<td></td>
</tr>
<tr>
<td>December 13, 12:30pm</td>
<td>FINAL EXAM</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CWRU Academic Integrity Policy
All students in this course are expected to adhere to university standards of academic integrity located at: http://studentaffairs.case.edu/groups/aiboard/policy.html. You are responsible for familiarizing yourself with the University Honor Policy. All students in this course are expected to adhere to university standards of academic integrity. Cheating, plagiarism, and other forms of academic dishonesty will not be tolerated in this course. This includes, but is not limited to, consulting with another person during an exam, turning in written work that was prepared by someone other than you, and making minor modifications to the work of someone else and turning it in as your own. Ignorance will not be permitted as an excuse. If you are not sure whether something you plan to submit would be considered either cheating or plagiarism, please do not hesitate to ask me. Any cheating, plagiarism, or other forms of academic dishonesty will result in a grade of “F” for this course, as well as the notification of the appropriate Weatherhead School of Management authority.

Disability
Students at Case Western Reserve University are not required to disclose disability information to anyone. However, in order to use services and appropriate accommodations, students should notify Disability Resources in Educational Services for Students at 216.368.5230 or disability@case.edu. Disability Resources is located in Sears room 470.
Basic Statistics for Engineering and Science
Stat 312 – Spring 2014
Syllabus

Instructor: Danhong Song, Ph.D
Room 375, Yost Hall 216-368-2918 danhong.song@case.edu

Office hours: 2:40 – 4:00 pm, Tuesdays and Thursdays, or by appointments

Class Time: T R 1:15 – 2:30 pm

Location: Room 400, Nord Hall

Prerequisites: MATH 122 or equivalent.

Coverage: Chapters 1 – 6 (tentatively):
Ch 1 The Role of Statistics in Engineering
Ch 2 Data Summary and Presentation
Ch 3 Random Variables and Probability Distributions
Ch 4 Decision Making for a Single Sample
Ch 5 Decision Making for Two Samples
Ch 6 Building Empirical Models

Homework: Homework problems will be assigned regularly along with a due date (usually Thursdays). Homework must be turned in, on the due date, in class, before the class starts.

Exams: There will be two in-class exams (75 min.) during the semester and an in-class comprehensive final exam (3 hours) at the end of the semester on the following dates. Students must bring a calculator. However, cell phones are not permitted to be used as calculators for the exams. Make up exams may be given with an advanced notice.

Mid-terms: Tuesdays, Feb. 18 and April 8 (tentatively)
Final Exam: 12:30 - 3:30 pm, Monday, May 5, 2014.

Grading: The final grade will be based on a composite score of all the points coming from the exams and homework. The break up for the final grade will be as follows:

Homework: 20%
Mid-Terms: 45%
Final Exam: 35%

A: 90 -100 B: 80 - 89 C: 70 - 79 D: 60 - 69 F: 59 and below
Website: The course website is http://blackboard.case.edu. To log in you need to use your case ID and password. After logging in, go to the appropriate STAT 312 under “My Courses”.

Help: Hayley Topel (hmt17@case.edu) and Janis Cava (jac256@case.edu) will be my TAs for this course during the semester. They will provide tutoring help and share the responsibilities of grading. For tutoring, both Hayley and Janis will be able to tutor on Mondays in room 374 Yost. Here are their hours:

Hayley: 10:00-11:30 am on Mondays and
Janis: 4:40-5:30 on Mondays

Also, please don’t forget about my office hours. I will be glad to help you.

NOTE: The instructor reserves the right to make any changes she considers academically advisable. It is the student's responsibility to attend classes and keep track of the proceedings.
STAT 201
Spring 2014
TR 1:15-2:30 PM, Wickenden 301

Instructor: Dr. Patricia Pepple Williamson
342 Yost Hall, 368-6013
email: patricia.williamson@case.edu
Office Hours: 1:30-3:30 MW, 12:00-1:00 TR

Grading: Two tests and a comprehensive final exam will be given. Fifteen take home quizzes will be given of which the top 12 will be counted. You are not to work with anyone on the quizzes; each quiz should be your own work. If there is a question on a quiz, consult me.

<table>
<thead>
<tr>
<th>Component</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quizzes</td>
<td>120</td>
</tr>
<tr>
<td>2 Tests</td>
<td>200</td>
</tr>
<tr>
<td>Comprehensive Final</td>
<td>160</td>
</tr>
<tr>
<td>Total</td>
<td>480</td>
</tr>
</tbody>
</table>

Grading Scale:
- 90 - 100% A
- 80 - 89.99% B
- 70 - 79.99% C
- 60 - 69.99% D
- 59.99% and below F

Make-up Policy: No make-up tests or quizzes will be given. Students who know in advance that they must miss a test due to exceptional circumstances may be able to take the test in advance. Please inform me of any problems as soon as possible.

Help: Please feel free to see me about any questions you have during my office hours; other times can possibly be arranged. I will be glad to help you.

Withdrawal: Last day to withdraw with a mark of "W" is March 28, 2014 (April 28 for first year undergraduates).

Student Conduct: Be advised that students are expected to behave appropriately in class. Please turn off cell phones as well.
Attendance: Attendance is important for adequate student comprehension. Also, to have 15 take home quizzes, it is obvious that they are given out frequently so you need to be in class to get the quizzes. If you have to miss a class, it is your responsibility to find out what you missed. Students must be in class to obtain a quiz except at most two quizzes that can be sent via email with acceptable excuses.

Homework: Problems will be assigned regularly throughout the course, but will not be collected or graded. Keeping up with homework assignments is the responsibility of the student and plays an important part in the mastery of course material. Answers to most odd problems are available in the back of the textbook.

Website: The course website is http://blackboard.case.edu. To log in you need to use your caseID and password. After logging in, go to STAT 201 under “My Courses”. I strongly suggest you copy the Power Point slides for each chapter/section (posted under “Course Documents”) and bring the appropriate chapter notes to class.

Calculator Use: Cell phones are not permitted to be used as calculators for tests.

Computer Access: I expect students to have access to a computer where they have Excel, Minitab, and R; R can be downloaded from the internet. The instructions to download R are given below.

To download R:

2. Type in “R”.
3. Click top entry.
4. Click on CRAN mirror.
5. Under USA, click on http://cran.case.edu/
6. Click on Windows for those with windows.
7. Click on base.
8. Click on Download R 3.0.2 for Windows.
9. Continue through process as directed.

You should end up with R on your desktop.

Of course, if you don’t have windows, adapt accordingly.
Course Description

Introduction to computer programming and problem solving with the Java language. Computers, operating systems, and Java applications; software development; conditional statements; loops; methods; arrays; classes and objects; object-oriented design; unit testing; strings and text I/O; inheritance and polymorphism; GUI components; application testing; abstract classes and interfaces; exception handling; files and streams; GUI event handling; generics; collections; threads; comparison of Java to C, C++, and C#.

Course Outline

The course will cover the following topics. The order is subject to change:

• A brief history of programming
• Data, primitive data types, class data types
• Methods
• Computer organization and the Java memory model
• Conditional statements, recursion
• Loops
• Strings and Arrays
• Polymorphism, subclasses, abstract classes, interfaces
• Industrial programming techniques: paired programming, API generation
• Graphical User Interfaces and event-driven programming
• Introduction to computer science: program correctness and runtime analysis
• Industrial programming techniques: testing, debuggers, and JUnit
• File input and output
• Building applications; the main method
• Exception handling
• Abstract data types; generic types; linked lists
• Collections; iterators; comparable types
• Inner and anonymous classes
• Java reflection
• Multi-threaded programming

COURSE INFORMATION

Instructor: Harold Connamacher

• Office: Olin 502
• Office Hours: Monday 4–5pm, Tuesday 9–10am, Wednesday 4–5pm, Thursday 9–10

Timetable:

• Lecture: Monday, Wednesday, Friday, 2:00pm in Millis Schmitt Lecture Hall
• Recitation Lab: Wednesday 3:00 pm –or– Wednesday 4:00 pm –or– Thursday 1:15pm –or– Thursday 2:45p in Olin 803

Because all recitation sections are full, please attend your assigned recitation lab. If you need to change recitation sections, please speak to the course instructor.

Course Textbook:

• **Recommended Book:** Lewis and Lofton, Java Software Solutions, 7th edition, 2012 (with electronic resource access). ISBN 9780132760775

The second book is strongly recommended for any student who does not have prior experience with computer programming.

Prerequisites:

• None

COURSE ASSESSMENT

To help you learn the material, there will be regular assignments and assessments covering different aspects of programming in Java.

Late Work Policy: The late policy for each assessment is listed in the assessment description. The only exceptions are for medical or similar emergencies, and in such situations work will only be accepted with notice from an appropriate university official. If you have to miss class due to a scheduled event such as a sporting event or club performance, you must make arrangements to submit your required work early.

Prelabs: The prelab is a short exercise to be completed each weekend. The prelab is due each Wednesday at 2pm beginning Wednesday, January 22. **No late submissions will be accepted.** The purpose of the prelab is to reinforce certain Java techniques that will be used in the next lab session so that your lab session will be more productive. The prelab is expected to be entirely your own work, and you will receive full credit as long as it is mostly correct.

Quizzes: There will be a short quiz to be completed each week. The quizzes are posted each Friday, starting January 17 and due the following Tuesday. **No late submissions will be accepted.** The quiz will cover material from the previous week lecture. The quiz is expected to be your own work. You will be permitted to take the quiz twice. After the first attempt, you will be told which answers were incorrect and you may look up the correct answers in your notes or the textbook.

Optional MyProgrammingLab: MyProgrammingLab is an on-line Java quiz/program practice that goes with the Lewis textbook. MyProgrammingLab is optional and recommended for students with no prior programming experience. New MyProgrammingLab questions will be posted each week. If you choose to do the MyProgrammingLab, you may replace either your term Prelab or Quiz grade with the term MyProgrammingLab grade

MyProgrammingLab access is included when you purchase the Lewis textbook. **You may purchase MyProgrammingLab separately.** Go to myprogramminglab.com to register.

Labs: There will be a lab/recitation section every week beginning Wednesday, January 15. The lab will consist of an exercise you are to complete in the hour provided. The lab serves two purposes: to give you hands on practice with Java concepts, and to introduce you to the industrial technique
of paired-programming. You are encouraged to have a lab partner. If you have a lab partner, your lab grade will be determined by how well you follow the paired-programming technique and whether you focused on the lab task for the entire hour. If you do not have a lab partner (for example you miss the lab due to illness), you will not be practicing paired-programming and so your grade will be determined only by the correctness of your lab results. **If you are unable to attend the lab session, you can have an automatic extension. The lab must be submitted no later than the Tuesday following the lab section.**

Programming Projects: There will be a programming project assigned every two weeks starting the fourth week of the course. The first project will be assigned Friday, February 7 and will be due Friday, February 21. Each homework will consist of Java programming. In addition, there will be written work to include with the program. All homework is assumed to be your own work. **The late policy for homework is as follows:** –10% if within one hour late. –25% if within 24 hours late. –50% if over 24 hours late. There will be no homework accepted once the grading is done or after a week past the deadline.

Midterm: The midterm exam will consist of short answer, fill in the blank, and free response sections. You may be asked to provide correct Java code or proper English descriptions for the questions asked. The midterm will be in class on Monday, March 3.

Final: The final exam is at the time specified by the registrar: Monday, May 5 at 8:30 am. The exam will be the same format as the midterm exam, and the exam will be cumulative.

Calculators: You are permitted to use calculators on prelabs, labs, homework, and quizzes. No calculators will be permitted on midterms and finals.

Grading Scheme:

<table>
<thead>
<tr>
<th>Component</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prelabs</td>
<td>5%</td>
</tr>
<tr>
<td>Labs</td>
<td>10%</td>
</tr>
<tr>
<td>Quizzes</td>
<td>5%</td>
</tr>
<tr>
<td>Homework</td>
<td>30%</td>
</tr>
<tr>
<td>Midterm</td>
<td>15%</td>
</tr>
<tr>
<td>Final Exam</td>
<td>35%</td>
</tr>
</tbody>
</table>

* You may replace either the 5% quiz grade or the 5% prelabs grade with a 5% MyProgrammingLab grade.

Grade scale:
The class will use the following scale to translate your percentage grade to a final grade.

<table>
<thead>
<tr>
<th>If your percentage grade is at least</th>
<th>Your final grade will be at least</th>
</tr>
</thead>
<tbody>
<tr>
<td>90</td>
<td>A</td>
</tr>
<tr>
<td>80</td>
<td>B</td>
</tr>
<tr>
<td>70</td>
<td>C</td>
</tr>
<tr>
<td>60</td>
<td>D</td>
</tr>
</tbody>
</table>

You must score at least 50% on the final exam to pass the course.

Academic Honesty

Please see the general [University Policy on Academic Integrity](#). The specifics for the course are
Special Considerations

Physical Disabilities or Other Hardships: If you have a physical disability or other hardship that can potentially put you at a disadvantage in this course, please see Educational Student Services. They will make certain you receive the necessary accommodations so that you may perform your best.

Religious Holidays: I strive to schedule all major projects and tests so that they do not conflict with important religious holidays. However, I am not always successful in doing that. If an important religious holiday conflicts with a class test or assignment in a way that makes it so that you can not take the test or complete the assignment as originally assigned, please see me as soon as possible to make necessary arrangements.
ENGR 131: Elementary Computer Programming

Instructor: Dr. Chris Fietkiewicz
Email: Use help addresses listed on the website
Instructor Office Hours: Immediately after lectures and by appointment
Teaching Assistant Office Hours: See the website

Websites

Primary website: http://blackboard.case.edu
Textbook source code: http://www.elsevierdirect.com/9780123850812 (click on link for “Companion Website”)

Getting Help

Email: Use the “help” email address for your lab section (see the website for the list). Email sent to this address goes to several TAs for the fastest reply possible.

Office hours: Supplemental Instruction (SI) sessions will be available on different days throughout the week. Each TA will also hold weekly office hours. See the website for the complete schedule of SI sessions and TA office hours.

Tutoring: Complimentary tutoring is available through ESS Peer Tutoring services. To sign up, go to the ESS web page, http://studentaffairs.case.edu/education/, and click on “TutorTrac”. Tell your tutor to contact Chris if he or she has any questions.

Course Description

The goals of this course are to (1) develop skills in computational thinking through problem solving and (2) learn the practical skill of programming in MATLAB. Topics covered include algorithm design, data structures, operators, control flow, and functions.

Textbook

Website with M-files: see link above

Specific Topics

Ch 1: MATLAB calculations
Ch 2: MATLAB programming
Ch 3: Selection
Ch 4: Repetition
Ch 5: Vectorization
Ch 6: Advanced programming
Ch 7: Strings
Ch 8: Data Structures
Ch 9: File Input/Output
Ch 10: Advanced functions
Ch 11: Advanced plotting
Ch 12: Systems of linear algebraic equations
Ch 13: Statistics and advanced algorithms
Ch 14: Audio and graphics
Ch 15: Advanced mathematics

Labs & Software

All students will have 24-hour access to the Olin 8th floor lab (x4056). The Nord Lab computers can also be used. The Olin lab and all equipment are to be used for coursework only. Any unauthorized use of the lab or equipment may result in failure for the course. MATLAB software is available from https://softwarecenter.case.edu, and students are encouraged to install in on their personal computer.

NOTE: To use MATLAB off campus, you may need to use the AnyConnect software for virtual private networking (VPN) which is available at https://vpnsetup.case.edu.

Attendance

Lab: Lab attendance is required, and students must be present to receive credit for lab assignments. If you have a valid excuse for missing a lab meeting, contact your TA immediately using the “help” email address.

Lecture: Attendance is not required for actual lectures (including lectures after a quiz). However, lecture activities will be collected randomly to check attendance which can improve your course grade (see Borderline Grades below). Students with valid excuses for missing a lecture can request makeup work in order to obtain attendance credit.

Respect: Except for excused absences, it will be assumed that students who are not present during lecture or lab do not need further assistance with the material covered. Please be respectful and use our scheduled time on Tuesdays and Thursdays to seek help. At the end of the semester, grades within 1 point of the next highest letter grade might be raised at the instructor’s discretion for students with perfect attendance and perfect assignment completion.

Grading

The grade cutoffs are 90-80-70-60 percent for A-B-C-D respectively. The following weights will be applied to the average percentage for each category. Items from different categories may have the same total number of points, but they do not have the same contribution to the final grade. For example, an exam and a quiz may each have a maximum of 100 points, but the contribution of each depends on the number of exams, the number of quizzes, and the weight of each category.

(15%) Lab Assignments: Lab assignments are collected every week in lab. Students must be present to receive credit. Assignments cannot be made up except for excused absences.

(5%) Homework: Homework problems will graded for completeness and not correctness.

(20%) Lecture quizzes: Quizzes will occur at the beginning of selected lectures. They will cover material in the homework problems.
Exams: There are three required midterm exams. An unexcused absence will result in a zero for that exam. Students will have the option (not required) to take a comprehensive final exam that will count as a fourth exam. The average of all exams taken (either 3 or 4) is worth 50% of the final grade.

Final Project: A software development project is assigned at the end of the semester. Students must choose a particular design within the guidelines provided. Students are required to work in groups of two or three. Students are not permitted to work independently.

Late submissions: Late submissions for lab assignments and final projects will receive a penalty of –0.07 points for each minute past the due date. Exams and quizzes will not be accepted late except for excused absences (see “Absences” below.

Absences: Non-emergency absences must be approved in advance, including Case-sponsored trips. Makeup exams will be only be provided for excused absences in accordance with university policy. Students with valid excuses for missing a lecture can request makeup work in order to obtain attendance credit.

Borderline grades: At the end of the semester, students who are within 1% of the next highest letter grade may receive the higher letter grade, at the instructor’s discretion, if all of the following conditions are met:

- The student has perfect lecture attendance (based on collected lecture activities).
- The student submitted all assignments, including every lab, homework, quiz, exam, and final project component.
- The student received a score of 80 or higher on the final exam.
- The student has not violated any course policies.

Assignment Philosophy

There are different types of assignments in the course:

- Tutorials (not graded)
- Lab assignments (graded for correctness)
- Homework problems (graded for completeness, not correctness)

These are specifically designed to work together to prepare you for the quizzes and exams. Each one requires an additional level of ability. A homework problem is the most important opportunity for a student to practice with a large problem independently prior to a lecture quiz. Therefore students are encouraged to complete all homework problems independently. Asking for help is fine, but your results will be superior if all work is your own.

Academic Integrity

All homework submitted should be the student’s own work. This includes the design of programs as well as the actual computer code. Students are encouraged to seek assistance from their TA and the instructor to ensure that homework study is approached properly. Students found in violation of the university’s academic integrity policy will be reported to the Dean’s office and will receive either a permanent zero on the assignment in question or failure for the course.

Friendly Advice: The Proactive Student
The truly successful people in life are the ones who know how to get what they want. They also know they are the only ones responsible for making it happen. Many students come to college thinking they can succeed by simply doing what they are told. It is not uncommon to hear the complaint, "You didn't tell us we had to know that!" Success in college, as well as in life, comes from self-discovery, which includes discovering things by oneself as well as discovering things about oneself. One of the instructor's jobs is to show students where to look. It is the students' responsibility to know whether they have found what they needed and to seek out help when they are uncertain. Please be proactive about your education, and do not wait for your instructors to tell you when you don't know something.
According to the Faculty Handbook’s charge to the FSCUE, “The Committee on Undergraduate Education shall review and recommend to the Faculty Senate with respect to ... curricula, contents, and standards for newly-proposed undergraduate degree programs; changes in existing undergraduate curricula and degree programs within a constituent faculty that specifically influence undergraduate degree programs or students enrolled in undergraduate degree programs in other constituent faculties (the provost, or the provost’s designee, in consultation with the chair of the Committee on Undergraduate Education will decide which course action forms require review by the committee);” In addition, “All proposals for undergraduate courses and programs must be submitted for appropriate review through at least one of the four UPF Constituent Faculties.”

In compliance with this charge, the FSCUE Curriculum Subcommittee will review all course and program action forms from non-UPF schools of the University, including requests for one-term approval for new courses. The process shall be:

1. All course and program action forms from non-UPF units, including supporting information, should be sent to the Dean of Undergraduate Studies. The Dean of Undergraduate Studies will review the forms for completeness and request missing information that can be identified in advance of a full review.

2. The Dean of Undergraduate Studies will forward the materials to the appropriate UPF school(s) with a written request for review by and comment from the body designated with the school(s).¹

3. The UPF school(s) will be given six weeks from when the materials are forwarded to it (not including the period between Commencement and the start of fall classes, the period between the end of fall semester exams and the start of the spring semester, or spring break) to respond in writing to the Dean of Undergraduate Studies. Any desired consultations with departments or programs that may be impacted by a new course or program should be part of the review by that (those) UPF school(s) and included in the response provided to the Dean of Undergraduate Studies. A response may include a request for additional time to complete a review, but the approval of that extra time will be a matter for the FSCUE Curriculum Subcommittee. A UPF school may also request to review the proposed action a second time after the non-UPF school has responded to its initial comments (see #5 below). The absence of a response by the designated date will be taken as consent to the proposed course or program action.

4. The comments received from the UPF school(s) will be shared with the unit proposing the course or program action for response and/or modification of the proposal.

¹ NOTE: Course action forms from Biochemistry and Nutrition will go directly to the FSCUE Curriculum Subcommittee for consideration following whatever process exists in the School of Medicine without first being referred to one of the UPF Constituent Faculties because these departments are part of the Undergraduate Program Faculty. However, the College of Arts and Sciences must review program action forms from these departments, as well as from Economics (housed in the Weatherhead School of Management) and from Computer Science (housed in the Case School of Engineering) when relevant to the Bachelor of Arts major because these departments offer majors toward the CAS Bachelor of Arts degree. Similarly, while course actions from Physics will be reviewed in the College of Arts and Sciences, the Case School of Engineering must review program actions for the Engineering Physics major toward the Bachelor of Science in Engineering degree. All course and program action forms from Physical Education will go directly to the FSCUE Curriculum Subcommittee, as this unit is part of the UPF.
5. If the original comments from a UPF school include a request to review the proposal again after response and/or modification, the UPF school will be given a second opportunity to comment on the proposal. Four weeks, as defined above, will be provided for this second round of comments.

6. The course or program action form and supporting documentation, along with written comments received from the UPF school(s), will be shared with the FSCUE Curriculum Subcommittee for review. The FSCUE Curriculum Subcommittee may take action on the proposal, refer it to the FSCUE for action, or send it back to the unit proposing the course or program for additional information or consultation. If additional consultation is requested, the unit proposing the action will be expected to undertake and document that consultation.

7. The UPF school(s) that reviewed the proposal will be informed of the action taken.

8. At any point in the process after the reviews by the UPF school(s) described above, the FSCUE Curriculum Subcommittee may choose to seek additional review and comment from one or more UPF schools, but no more than two rounds of review within a UPF school is guaranteed.

9. When a course action form is approved by the FSCUE Curriculum Subcommittee, the unit proposing the course will be informed by the Dean of Undergraduate Studies that the form has been forwarded to the Registrar’s Office. Similarly, when a program action form for changes to an existing minor is approved by the FSCUE Curriculum Subcommittee, the unit proposing the action will be informed by the Dean of Undergraduate Studies that Undergraduate Studies will record the changes in the Academic Requirements module of SIS.

10. When a program action form for a new minor is approved by the FSCUE Curriculum Subcommittee, the unit proposing the action will be informed that the proposal is being forwarded for subsequent review by FSCUE en route to the Faculty Senate.

11. At any point in the process, the FSCUE Curriculum Subcommittee may choose to refer a course or program action form to the FSCUE should the Subcommittee determine that the proposed action requires more formal review.

The curriculum committees of the UPF Constituent Faculties generally meet once per month from September to May. This drives the timing described in this document, and means that the review process for course or program action forms submitted in the spring semester may not be completed until the following fall semester.
A Resolution in regard to Ohio House Bill 597

Whereas science is a basis of our modern technological society and economy; and

Whereas a scientifically educated citizenry is critical to the future of this State of Ohio and of these United States of America; and

Whereas scientific thinking and scientific processes are at the core of science; and

Whereas those scientific processes revolve around the testing of scientific theories through the comparison of their predictions with data, leading to the rejection or modification of those theories or to increased confidence in and consensus on their correctness; and scientific theories, such as Relativity, or Evolution, or Anthropogenic Climate Change, that have achieved a high level of confidence and consensus among scientists generally continue to be called theories, in contrast with common usage, and in acknowledgement that they may one day confront contradictory data requiring their rejection, modification or extension; and

Whereas theories that cannot be subjected to this process of prediction and comparison with data are generally regarded by scientists as unscientific; and

Whereas neither political nor religious arguments may therefore enter into the scientific formulation or evaluation of scientific theories; and

Whereas science education that omits the teaching of scientific thinking and scientific processes in favor exclusively of scientific facts, or that encourages or allows the misrepresentation of unscientific theories as scientific alternatives, fails to prepare students for higher education in science, for informed engagement in our society, or for active participation in many aspects of the current and future economy; and

Whereas a main sponsor of Ohio House Bill 597 has been quoted as supporting allowing school districts the flexibility to incorporate non-scientific perspectives, including faith-based perspectives, into the teaching of scientific subjects; and

Whereas the Common Core State Standards Initiative academic content standards, previously adopted by the Ohio State Board of Education, were developed through an evidence-based bipartisan multi-state process developed and lead by the nation's governors and education commissioners through their representatives; and

Whereas the state board of education exercises under the acts of the general assembly general supervision of the system of public education in the State of Ohio and should therefore be required and expected to ensure that that system’s students are provided with the highest possible quality of education, including science education;
Therefore be it resolved that the Faculty Senate of Case Western Reserve University:

 a) Strongly opposes the provisions of Ohio House Bill 597 repealing and replacing the Common Core State Standards Initiative academic content standards with standards legislated by fiat or developed through any process that fails to meet the same high standards as the Common Core;

 b) Rejects explicitly the bill’s premise that students should “focus on academic and scientific knowledge rather than scientific processes;”

 c) Rejects the notion that non-scientific perspectives, such as faith-based theories, have a place in the teaching of science;

 d) Calls on Representatives Thompson and Huffman to withdraw HB597, or failing that for the Ohio House and Senate to reject the bill;

 e) Calls on Governor Kasich to speak publicly against the bill and to veto it should it be submitted to him for approval.
Sec. A. Annual Meeting and Report on State of the University

Early in the fall term, the University Faculty shall have an annual meeting and the president shall report to the University Faculty on the state of the university. The president’s report may be made in writing prior to the annual meeting or delivered orally at the annual meeting. Staff may be invited by the president and the chair of the Faculty Senate to attend a report delivered orally and discussion thereon. The report shall be delivered immediately after the meeting is called to order. The annual meeting shall include such additional business as may be introduced by the process of initiative as provided in Article VIII. If the president chooses to provide a written report, he/she shall annually provide some other in-person opportunity for the University Faculty to communicate with the president regarding the state of the University and its academic units.