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About this Roadmap
Digital manufacturing technologies are critical in accelerating product 
development and commercialization, enhancing sustainability and 
optimization of manufacturing processes, enabling new products and 
revenue streams, and boosting economic productivity and national 
output. Significant advancements in the development and deployment of 
distributed sensing, imaging, closed-loop controls, and Edge Computing 
are now driving the motivation to combine artificial intelligence/machine 
learning (AI/ML) with physical domain knowledge to integrate multiscale, 
multimodal data streams over the entire product lifecycle. This will result in 
improvements to energy and materials efficiencies of manufacturing and 
enhancements in the performance and lifetime of products from design to 
service to end-of-life management.

Case Western Reserve University (CWRU) 
received one of seven (7) awards from the 
National Institute of Standards and Technology 
(NIST) to develop a manufacturing technology 
roadmap to strengthen U.S. innovation and 
productivity across entire industry sectors. 
The CWRU-led roadmap is specifically focused 
on a comprehensive approach to future 
manufacturing and advanced materials by 
integrating sensing, data analytics, and AI/ML 
tools with traditional materials science and 
manufacturing process domain knowledge 
over the entire product lifecycle. The 
integration of these tools with human domain 
knowledge holds the potential to dramatically 
improve full product lifecycle performance 
including but not limited to shorter time-
to-market implementation; greater product 
recyclability and circularity; improved 

sustainability and lower environmental 
impact of products and processes; greater 
resource efficiency, higher product yield, and 
reduced pressure on critical materials and 
natural resource markets; longer product 
lifespans; higher product quality; optimized 
manufacturing processes and streamlined 
operations; and better supply chain visibility of 
product data.

The roadmap’s development is led by 
CWRU’s Institute for Smart, Secure and 
Connected Systems (ISSACS) which serves 
as the connector for regional and national 
collaborators and partners across the 
university’s schools, particularly in engineering, 
science, and management. ISSACS will 
leverage the combined strengths of sensing, 
edge processing, AI/ML, networking and 
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communications, augmented reality, metal and polymer materials science and 
engineering, and mechanical evaluation and material forensic capabilities at 
CWRU in pursuing the opportunities outlined in this technology roadmap.

The roadmap draws upon a diverse pool of expertise in sensing, materials 
science, artificial intelligence and advanced data analytics, process control and 
automation, and other areas related to digital manufacturing and improving 
the lifecycle performance of materials and products. The technical experts who 
contributed to this roadmap identified the challenges to the development of 
manufacturing capabilities through applications of AI-enhanced multimodal 
sensing, data harmonization, and closed-loop process control, and proposed a 
series of research and development activities that aim to help manufacturers 
apply these tools and technologies to enhance the performance of products 
across all stages of lifecycle: from design through end-of-life management. 
ISSACS and the primary contributors in this effort recognize that several of the 
research and development activities proposed in this roadmap are beyond 
the scope, funding level, and capabilities of any single organization, and will 
likely require the coordinated efforts of a multistakeholder consortium to 
deliver new manufacturing capabilities in multimodal sensing and AI/ML-
driven closed-loop control. Further, this roadmap represents a momentary 
snapshot of the most critical implementation challenges and opportunities 
for AI-enhanced multimodal sensing and closed-loop control capabilities; it 
must be continually updated based on the changing requirements of the U.S. 
manufacturing sector.

This roadmap was developed under the direction of Nicholas Barendt, 
Executive Director of ISSACS, and other Case School of Engineering faculty 
members at CWRU including Robert Gao, John Lewandowski, and Kenneth 
Loparo. The digital manufacturing experts who made essential contributions 
through interviews and workshop attendance are also identified in Appendix C 
of this report. Nexight Group supported the overall roadmapping process and 
helped to prepare the content in this document.

This work was performed under financial assistance award #70NANB22H049 
from U.S. Department of Commerce, National Institute of Standards and 
Technology.

Iv FOR AI-ENHANCED MULTIMODAL SENSING OF MATERIALS AND PROCESSES FOR COMPLETE PRODUCT LIFECYCLE PERFORMANCE

MANUFACTURING TECHNOLOGY ROADMAP AbouT This RoAdMAp



Contents
About this Roadmap ............................................................. iii

Executive summary.................................................................7
Summary of High-Impact R&D Implementation Plans ...............................................11

Roadmap strategy ................................................................ 12
Vision Statement ....................................................................................................................12

Roadmap Goal and Objectives ...........................................................................................12

Core Focus Areas ....................................................................................................................14

Challenges ................................................................................. 15
Overarching Challenges .......................................................................................................15

Sensing, Data Acquisition, & Data Management ..........................................................16

Applications of AI, ML, & Data Analytics ..........................................................................17

Comprehensive Integration of Data and Insights ........................................................18

opportunities .......................................................................... 20
Tools & Equipment ................................................................................................................22

Standards & Techniques ......................................................................................................24

Training & Educational Resources ....................................................................................27

Next steps ................................................................................. 30

Appendices ............................................................................... 31

Appendix A: Glossary of Key Terms ............................. 32

Appendix b: implementation plans .............................. 34
Tools & Equipment ................................................................................................................35

Standards & Techniques ......................................................................................................41

Training & Educational Resources ....................................................................................52

Appendix C: List of Roadmap Contributors .............. 59

5FOR AI-ENHANCED MULTIMODAL SENSING OF MATERIALS AND PROCESSES FOR COMPLETE PRODUCT LIFECYCLE PERFORMANCE

MANUFACTURING TECHNOLOGY ROADMAP CoNTENTs





Executive 
Summary



These capabilities offer numerous pathways for 
users to pursue manufacturing sustainability 
and circularity goals and have the capacity to 
bring products to market faster with greater 
reliability. For example, the ability to better track the 
lifecycle of products and their constituent materials 
would help recyclers produce cleaner feedstocks. 
However, the ability to use data insights from AI/ML 
to drive improvements across product lifecycles is 
hindered by limitations in accessing and accurately 
and appropriately curating large datasets across 
manufacturing processes and supply chains, modeling 
and simulating complex physics and materials 
behavior, and interpreting or trusting the results of AI/
ML and data analytics.

The Materials Genome Initiative (MGI)1, launched in 
2011, has significantly accelerated the development 
and deployment of new materials. AI-driven materials 
R&D was not initially a key component of MGI but has 
since become an essential pillar in its most recent 
Strategic Plan. Despite significant advances made 
through the support of the MGI, more efforts 
are needed to address the challenges limiting 
the use of Ai-enhanced multimodal sensing, 
data harmonization, and closed-loop process 
control to enhance complete product lifecycle 
performance.

1 Materials Genome Initiative. 2023. Accessed October 20, 2023. https://www.mgi.gov/.

Artificial intelligence and machine learning (AI/ML) are playing an 
ever-increasing role in the development of technology strategies 
that support a comprehensive vision of future manufacturing in 
which data, automation, and materials science and manufacturing domain 
expertise are blended to ensure highly efficient production of world-class 
quality products for United States manufacturers. Combining AI/ML with 
physical domain knowledge can enable the integration of multiscale, 
multimodal data streams over the entire product lifecycle, resulting in 
substantial improvements in manufacturing efficiencies and product 
performance: from design to service to end-of-life management.

Case Western Reserve University (CWRU) sought 
funding from the National Institute of Standards 
and Technology (NIST) to develop this roadmap 
under the direction of the Institute for Smart, 
Secure and Connected Systems (ISSACS) which is 
focused on developing AI-enhanced multimodal 
sensing and closed-loop control capabilities for 
improving product performance, but with the 
specific imperative of driving these performance 
improvements across the product lifecycle. The 
roadmap offers an array of recommended 
high-impact, cross-cutting research and 
development priorities—or implementation 
Plans—to enable new AI-driven capabilities 
for u.s. manufacturers by providing pre-
competitively developed software tools and 
equipment, standards and techniques, and 
training and educational resources.

The opportunities outlined in this roadmap 
are designed to help interested parties of 
the u.s. manufacturing sector unify data 
streams across stages of product development 
lifecycles, use AI- and data-driven methods 
to uncover insights around products and 
manufacturing domains, and employ feedback 
strategies for improving specific aspects related 
to the design, synthesis, processing, service use, 
and end-of-life management of materials and 
products. The ISSACS roadmap is intended to 
be a dynamic document that requires periodic 
updates to reflects evolving business needs and 
requirements of the U.S. manufacturing sector.
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Exemplar products, use cases, and pilot programs are 
needed to drive R&d progress and demonstrate value. 
Exemplar products, use cases, and pilot programs are crucial mechanisms for 
driving collaborative R&D activities and demonstrating the value of adopting tools 
for improving performance across the product lifecycle.

These mechanisms can support R&D progress in various ways. For 
example, they can be useful educational tools that show how to integrate lifecycle 
management and improvement methods into manufacturing operations to 
support decision-making, predictive design and maintenance, and sustainable 
product development. Additionally, exemplar products, which can be based on 
retired components, could help offer invaluable lessons on successfully applying 
multimodal sensing, AI/ML, and process control and automation to a unique 
manufacturing product, process, or operation. The business community can also 
provide unique insights and experiences for defining business cases, driving the 
choices of exemplars, and proposing strategies for setting and meeting specific 
roadmapping goals across different time horizons.

Workforce development initiatives to build skillsets 
in multimodal sensing and Ai-driven process control 
techniques must maintain pace with the rapid 
development of core technologies.
Multimodal sensing and AI-driven process control techniques are relatively nascent 
but rapidly evolving; to maintain the pace of technological innovation, R&D activities 
must be pursued in a manner that supports developing a robust talent pipeline 
through education and training.

To achieve this, it will be important to increase opportunities to train 
educators who can then train the incumbent workforce with the skills 
needed for the adoption of these technologies and methods. Academic 
curricula should be updated to help prepare engineers and managers to utilize data 
in ways that improve the flexibility, agility, and resilience of their organizations. In 
addition, the ecosystem must develop worker training programs on the use of AI/
ML-driven software/tools to facilitate a shift from traditional experimental methods
to high-throughput computational-experimental methods for developing new
materials and products faster and more efficiently.

In addition to the opportunities, challenges, and recommended 
implementation plans, four overall conclusions resulted from 
the roadmap development effort: 
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To avoid redundancies or duplicative efforts with ongoing R&D efforts, the roadmap 
should build on the successes of previous manufacturing initiatives and leverage 
existing investments and capabilities including facilities, talent, and equipment. 
Specifically, the ISSACS roadmap is not intended to provide a comprehensive 
overview of numerous industry-driven initiatives that are actively developing novel 
advanced materials, manufacturing technologies, software tools, best practices and 
standards, and educational resources in analogous topic areas.

An advisory council or board, composed of industry leaders and Federal agency 
representatives from across the fields of AI/ML, data science, and product lifecycle 
management, should be established to advise on matters related to R&d 
activities, workforce development, and policy. This includes aligning with the 
U.S. National and Federal Agency AI Strategic Goals set by the National Artificial 
Intelligence Initiative Office (NAIIO) to ensure the Manufacturing USA Institutes 
and related manufacturing innovation ecosystem initiatives (e.g., National Science 
Foundation [NSF] Engines and Engineering Research Centers [ERCs], Economic 
Development Administration [EDA] Regional Technology and Innovation Hubs [Tech 
Hubs], etc.) are working in close coordination to prioritize where and how AI should 
be applied to maximize economic and national security.

The advisory council’s functions should also include: carefully examining 
the landscape of ongoing manufacturing-related initiatives by industry sector, 
processing equipment, and materials types; building on the successes of existing 
workforce skills development initiatives that provide learning management systems 
and manufacturing certifications; and harmonize the general requirements across 
manufacturing sectors in the use of multimodal sensing and AI/ML-driven process 
controls to improve performance across the product lifecycle.

Consortium-based R&d provides long-term funding 
needed to convene industry around pre-competitive 
research challenges across manufacturing sectors 
and disciplines.
R&D programs require continuous support and long-term funding without 
interruptions, as funding gaps that halt progress in technology development can 
be detrimental to product development timelines as well the recruitment and 
production of an educated workforce. Consortium-based solutions can address this 
need by providing continuous, long-term funding commitments.

Consortia can also help to address pre-competitive research challenges by fostering 
a culture of sharing data and lessons learned while protecting the intellectual 
property interests of the manufacturing community. In addition, consortia help to 
improve overall cooperation and harmonization within the broader community by 
unifying the requirements for general standards and practices across disparate 
manufacturing sectors and coordinating interdisciplinary teams that represent 
the complete value chain of product development. Consortia-based activities and 
technical sponsorships must also gauge the needs of the business community to 
define the business drivers necessary to attract and secure funding commitments.

A public-private advisory council is needed to 
establish an overarching Ai strategy, align the 
roadmap’s opportunities with ongoing R&D initiatives, 
and leverage existing assets and investments in 
related topic areas.

3

4
10 FOR AI-ENHANCED MULTIMODAL SENSING OF MATERIALS AND PROCESSES FOR COMPLETE PRODUCT LIFECYCLE PERFORMANCE

MANUFACTURING TECHNOLOGY ROADMAP ExECuTivE suMMARy



summary of high-impact R&d implementation plans
Figure 1 outlines high-impact, cross-cutting R&D priorities to enable new AI-driven capabilities 
for U.S. manufacturers through pre-competitively developed software tools and equipment, 
standards and techniques, and training and educational resources.

Figure 1: Overview of the key opportunities (i.e., Implementation Plans) and the estimated timeframes for which R&D activities 
are estimated to have a significant impact in enabling new AI-driven capabilities for U.S. manufacturers through the provision of 
pre-competitively developed software tools and equipment, standards and techniques, and training and educational resources. See 
detailed Implementation Plans in Appendix B.

NEAR-TERM
0-2 YEARS

Applications of generative AI 
and LLM-based tools

Reconfigurable testbeds and 
facilities

Multimodal data fusion and management governance 
framework

Open data management and curation tools

Multidisciplinary training 
programs

Pilot programs and use 
cases on AI applications

Exemplar products and 
processes for complete 
lifecycle improvement

Workflows for integrating computational models and 
experimental data

Framework for qualifying processes using digital twins

Standard methodologies for 
applying AI across lifecycles

Integrated V&V with UQ 
techniques

End-of-Life Design framework for closing product lifecycle 
loops

Tools & 
Equipment

standards & 
Techniques

Training & 
Educational 
Resources

Mid-TERM
3-5 YEARS

LoNG-TERM
6-10 YEARS
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Roadmap Strategy
With recent advances in artificial intelligence (AI) and machine learning (ML) 
over the past few years, alongside improvements in distributed sensing, 
Internet of Things (IoT), and Edge Computing, there is a tremendous 
opportunity to combine AI/ML with physical domain knowledge (materials, 
processes, etc.) for manufacturing. This integration would make it possible 
to leverage the multi-scale, multimodal data streams from across a 
product’s service life to achieve significant improvements at each stage 
in its lifecycle, from materials synthesis and selection, to product design, 
manufacturing, deployment, and eventual retirement and/or recycling.

This roadmap sets out a vision for this desired future state, identifies major challenges 
and opportunities related to achieving the vision, and provides a set of implementation 
plans for overcoming the challenges and realizing the benefits of AI-enhanced multimodal 
sensing of materials and processes for complete product lifecycle performance.

Roadmap Goal and Objectives

This roadmap establishes a plan to develop multimodal sensing and AI/ML-driven closed-
loop control capabilities and data insights to help manufacturers improve full product 
lifecycle performance. There are four key objectives to enable this goal:

1. Integrate Multimodal Data Over Multiple Timescales (throughout the product lifecycle)

2. Capture Domain Insights from Materials Science and Manufacturing to guide Core
Technology Developments

3. Develop Feedback Strategies over Multiple Timescales that impact Materials Synthesis
and Selection, Product and Process Design, Process Control, Product Service Life, and
Retirement

4. Develop Core Technologies necessary to achieve the vision (AI/ML, Multimodal Sensing
and Imaging, Process Control and Automation, Physics-based Computational Models)

Vision Statement

Data harmonization methods will establish causal relationships 
in product lifecycle data and allow manufacturers to interpret 
meaningful insights for robust decision-making and enhanced 
performance throughout all stages of a product’s lifecycle.

Figure 2 presents the goals of the roadmap and its connection to the core 
focus areas and impact on the key aspects of the product lifecycle.
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Figure 2: Overview of the Roadmap Strategy including benefits of increased capabilities in AI-enhanced multimodal 
sensing of materials and processes for complete product lifecycle performance.

Roadmap Overview Diagram

CORE FOCUS AREAS

Integrate multimodal data 
over multiple timescales1

Capture domain insights from 
materials science and manufacturing2

Develop feedback strategies 
over multiple timescales3

Develop core technologies4

ROADMAP GOALS

PRODUCT LIFECYCLE

CORE FOCUS AREAS BOOST 
PRODUCT LIFECYCLE

Quality 
Inspection

Service 
Life

Product 
Design

Material 
Selection

Manufacturing 
Process

Workforce 
Development

ROADMAP GOALS BOOST 
CORE FOCUS AREAS

Lifecycle benefits from integrating 
AI-enhanced multimodal sensing 
and process control:

• Improved product quality
• Faster time-to-market
• Streamlined operations
• Optimized processes
• Better resource e�iciency and yield
• Greater sustainability, recyclability, 

circularity
• Higher data integrity and 

confidence

Comprehensive Integration of Data and AI/ML 
Insights Across Product Lifecycles:
Techniques and activities for integrating in-field and 
end-of-life product usage data and other insights 
acquired over a product’s total lifecycle into a desired 
stage of product development (i.e., design, synthesis, 
processing, use-phase, end-of-life) to improve 
performance and/or manufacturing e�iciencies from 
cradle-to-cradle

Applications of AI/ML & Data Analytics Across 
Product Lifecycles:
The use of physics-based AI, modeling & simulation, 
digital twins, and other data-driven techniques to 
process data and uncover actionable insights about 
materials and products over their lifespan

AI

Sensing, Data Acquisition & Data Management 
Across Product Lifecycles:
Sensing methods and technologies for the generation, 
acquisition, engineering, curation, and management 
of data for subsequent use in the AI and data analytics 
application space

SENSING

PROCESS
CONTROL
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Focus Area Subtopics/Scope
sensing, data Acquisition & data 
Management Across the product 
Lifecycle:

Sensing methods and 
technologies for the 
generation, acquisition, 
engineering, curation, and 
management of data for 
subsequent use in the AI and 
data analytics application 
space

• Deployment of sensing/imaging methods and
technologies across the stages of the product
lifecycle including materials synthesis, materials
experimentation, materials selection, manufacturing
processes, in-field use, and end-of-life management

• Interoperability standards for data curation,
engineering, management, tagging, and
contextualization (e.g., conditions/settings for data
collection) across the stages of a product’s lifecycle

• Fusion of multimodal, multi-temporal, multi-fidelity
datasets

• Building training datasets to improve AI robustness

• Data acquisition from high-throughput experiments

Applications of AI/ML & Data Analytics 
Across the product Lifecycle:

The use of physics-based 
AI, modeling & simulation, 
digital twins, and other data-
driven techniques to process 
data and uncover actionable 
insights about materials and 
products over their lifespan

• Using data analysis techniques including AI/ML,
statistical approaches, and physics-based models to
identify patterns and trends in datasets and across
timescales

• Digital twin concepts including modeling and
physics-based understanding of digital twins

• Using reduced-order modeling techniques to
reduce the computational complexity of numerical
simulations

• Classification, image recognition

• Decision-making (e.g., end-of-life management of
materials)

• Predictive design & predictive analytics

Comprehensive integration of data 
and AI/ML Insights Across the Product 
Lifecycle:

Techniques and activities for 
integrating in-field and end-
of-life product usage data and 
other insights acquired over 
a product’s total lifecycle into 
product development (i.e., 
design, synthesis, processing, 
use-phase, end-of-life) to 
improve performance and/
or manufacturing efficiencies 
from cradle-to-cradle

• Using insights to apply changes in design tools,
materials selection processes, QA processes

• Using lifecycle data to design products for
sustainability, end-of-life management, circularity
(e.g., recycling, reuse), etc.

• Interfacing with and automating instrumentation,
process control and automation, and robotics

• Enabling machine/software interoperability

• Real-time process control/parameter tuning

• Applying feedback strategies across timescales

• Robotics

• Automation

• Human-robot interaction

Core Focus Areas
Table 1 contains three core topics that are essential to improving full lifecycle 
performance: sensing, AI, and process control. These foundational elements 
generally correspond with the roadmap’s three distinct focus areas: 

Table 1: Description of the scope and list of relevant subtopics for each of the roadmap’s core Focus Areas.
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Challenges
To achieve the vision of applying data insights from AI/ML to drive 
improvements across the product lifecycle, a set of challenges must 
be addressed. This section provides a summary of these challenges, 
including challenges specific to the roadmap’s three core focus areas as 
well as overarching, foundational challenges.

Overarching Challenges

There are three broad, cross-cutting challenge areas that cut across all of the 
roadmap’s core focus areas and are critical to address in order to achieve the roadmap 
vision. These challenges are described in Table 2.

Table 2: Description of the overarching key challenges limiting the development of 
manufacturing capabilities for improving full product lifecycle performance

Ability to curate 
big data (with respect 
to volume, velocity, 
variety, veracity)

Ability to simulate 
complex physics and 
materials behavior

Ability to interpret 
and trust results

The advent of big data can 
significantly complicate 
the data curation process 
to ensure quality in data 
analysis, given the high 
volume, streaming velocity, 
broad variety, and often low 
veracity that is sometimes 
characteristic of big data

Increased complexity of 
manufacturing processes 
demand better sensing 
technologies and methods 
to provide access to 
measurements that 
comprehensively reveal the 
underlying physics

The data-driven nature of 
AI/ML techniques, while 
competent in analyzing 
complex manufacturing 
systems and products 
throughout their lifecycle, 
are generally difficult to 
interpret from a physical point 
of view, thereby raising an 
issue of trustworthiness for 
widespread acceptance
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Sensing, Data Acquisition, & Data Management

Challenges specific to sensing and data include the proper organization and labeling 
of large volumes of measured data, gaps in organizations’ understanding of data, 
and willingness to share their data to achieve broader industry goals.

Users lack a framework to determine which data are most valuable for ML 
and Ai.
Users do not have standard methods or frameworks to prioritize datasets most needed for 
training ML and AI algorithms. It is often difficult for a non-expert to discern or predict which 
data may be most valuable for a specific end-use application.

data engineering, preparing, and querying data can be time-consuming and 
costly.
Solving problems of interest may take significant time and effort due to factors such as the 
volume and disparate nature of the data. This is particularly the case for manufacturing data, 
which may have a low signal-to-noise ratio as well as duplicative and extraneous information. 
Technological improvements are needed to provide more effective ways to query/question 
data in manufacturing environments.

organizations are resistant or unable to share data.
Data sharing has many benefits, including helping to improve the accuracy of AI/ML models, 
asset optimization, tracking/tracing products and product data through the product lifecycle, 
and exchanging product information for process automation and digital twin development. 
Shared data can also play a vital role in validating computational modeling results, generating 
new insights, or being applied by other researchers in innovative or unanticipated ways—
all of which can lead to improved R&D outcomes. However, organizations and research 
institutions are often unwilling or unable to share data due to concerns with privacy, potential 
losses of competitive advantage, and other issues such as missing context or metadata, and 
nonamenable file sharing formats. Many industries are also collecting data from production 
environments rather than research-based environments which often results in data that lacks 
the appropriate context or metadata to make it useful and valuable. These barriers to sharing 
data vary by industry; data sharing is particularly challenging for some industries such as 
semiconductor and defense manufacturing. 

Source data are often heterogenous and inconsistent, leading to difficulty 
with feature identification and extraction.
Traditional data sources are not type-safe, are semantically inconsistent, and are ontologically 
indeterminate. As a result, feature identification is difficult and cannot be uniformly applied 
across even similar manufacturers or manufacturing processes. Feature extraction is often 
accomplished via brute force methods with zero reproducibility.

stakeholders often lack understanding of the appropriate computational 
tool to solve different types of problems.
While data analytics and algorithmic problem solving are important and powerful problem-
solving methods, many product marketing groups mistake such tools for AI. Different types of 
ML are also often poorly defined to prospective end users. As a result of confusion about AI/
ML definitions and concepts, sensing and data collection efforts are often scoped incorrectly 
based on applying the wrong tool. 

Computing infrastructure is not keeping pace with the increasing volume of 
sensor data.
The increased volume of data enabled by the widespread deployment of advanced sensors 
leads to problems with storing, managing, and querying large amounts of collected data, 
particularly for organizations that have not made the transition to digital manufacturing. 
Addressing this challenge may require approaches such as on-the-fly data reduction, which 
could intersect with the work being done on related problems such as edge computing. 
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Applications of AI, ML, & Data Analytics

Challenges in AI, ML, and data analytics applications include technical hurdles 
such as a lack of standards for raw data collection and conversion, as well 
as organizational challenges including distrust of AI, lack of interdisciplinary 
expertise, and uneven access to resources for advancing AI, ML, and data analytics 
technologies.

Many stakeholders are skeptical about the near-term usefulness of Ai 
technologies.
Stakeholders lack confidence in the ability of AI- and ML-based approaches to reliably identify 
manufacturing defects. This issue may be compounded by potential public backlash toward 
ChatGPT and other related large language model (LLM) deployments that can provide 
inaccurate results when acting beyond the realm of the training dataset, on faulty data, or 
even on intentionally malicious data. It is currently unclear which entity will be responsible for 
declaring that a new manufacturing technology is acceptable—especially if AI plays a role in 
decision-making.

AI/ML technologies are often difficult to generalize. 
Most AI/ML techniques require a significant variety and volume of labeled data for training; 
in practice, it is difficult to collect enough data to train a generalizable AI/ML model. Transfer 
learning entails adapting pre-trained models to solve new but similar issues and with less 
burdensome data collection requirements. In either case, a trained model may work well in a 
lab setting but not outside a controlled lab environment. Data science teams need to be more 
integrated with process control engineering teams, and the model development lifecycle 
should be more integrated with plant-scale data to prevent issues such as overfitting and lack 
of generalization.

There is a lack of experts with knowledge of both manufacturing and AI/ML.
More experts are needed with expertise in both AI/ML and diverse manufacturing topics such 
as industrial or mechanical engineering in order to adequately address the issues that arise in 
combining these disciplines. Multidisciplinary curriculum development at the undergraduate 
level offers a potential approach in helping to bridge the gap, though this comes with its own 
challenges (e.g., rigid course requirements required for program accreditation). 

There are no standard methods to convert raw data from sensors to a 
format suitable for AI/ML tools.
Data captured in manufacturing environments, especially with small-to-medium 
manufacturers, is often gathered by third-party companies with different data collection, 
storage, and management approaches. The work required to acquire the correct data, and 
the data engineering that is required to properly format, label, integrate, pre-process, and 
prepare the data so that it can be readily used for the appropriate AI/ML tools is significant. 
There is currently no standard way to convert raw data to an ML/AI-friendly format, and 
no standards to determine which data is useful for which AI/ML methods. Typically, these 
activities rely on human judgements and efforts that are difficult to replicate at scale. Other 
institutions, such as the NSF-funded Engineering Research Visioning Alliance (ERVA), also 
recognize the need for “common, effective, and affordable standards for data collection, 
analysis, and communication” to enable more efficient and secure ways to collect, storage, 
analyze, and collect data while addressing proprietorship and privacy concerns.2 

Capabilities for enhancing full lifecycle performance (e.g., resources, 
manpower, expertise) often differ across the supply chain. 
Differences across the supply chain (e.g., company size and sector type), affect what might be 
realistic for various organizations regarding AI/ML investments (talent, process, equipment, 
etc.), timeframes, and complexity. In addition, smaller manufacturers are often required to 

2 Engineering Research Visioning Alliance. 2023. Engineering the Future of Distributed Manufacturing: A Visioning 
Report. Columbia, SC: SSRN. dx.doi.org/10.2139/ssrn.4512398.
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adopt processes and technologies as part of a larger supply chain, which may be burdensome 
with their often limited technical and financial resources.

There is a lack of modeling standards or frameworks for determining the 
required level of granularity in physics-based process models.
It is difficult to capture the real-world complexities and materials behavior in physics-based 
models. This challenge arises primarily from the difficulties in formulating the non-linear 
and/or non-stationary dynamics of the equipment and materials as well as the associated 
uncertainties when applied in real-world settings. It can be further rooted in a lack of 
communication between modelers developing computational models and digital twins 
and process engineers dealing with the full complexity of the manufacturing process. The 
information must be effectively communicated throughout the entire system to properly 
develop computational models and digital twins, including the raw materials, the process, 
the product, the factory or factories producing the product, and the factory equipment. 
Additionally, there is a digital thread that enables the manufacturers to centralize their data 
into one standardized hub, providing all manufacturing elements with access to the same 
data, so that the digital twin can then use this data to create a virtual copy of the desired 
products, environments, and processes.

Comprehensive Integration of Data and Insights

Challenges related to integration of data and insights are varied and include a need 
for standard approaches to improve lifecycle performance and validate results, 
incompatibility between advanced manufacturing techniques and traditional post-
processing manufacturing methods, and a need for more pre-competitive data, 
among other issues.

Standardized approaches are needed for performing verification and 
validation (V&V) with uncertainty quantification (UQ).
Standardized approaches will be needed to enable UQ for AI and ML-driven models. However, 
the development of standards is challenging due to the complexity and computational 
intensity of UQ compounded with the novelty and lack of integration of AI/ML models into the 
broad manufacturing sector, as well as the need to create standard UQ approaches that can 
be applied to multiple sectors/applications, lifecycle metrics, and levels of rigor. Industry-wide 
benchmarks and the participation of key standards development organizations (SDOs) could 
potentially address this issue by offering a common framework for evaluating and comparing 
the performance of different AI/ML models across industry sectors and applications.

There is low predictability of behavior of AI/ML systems and products over 
the whole lifecycle. 
It is difficult to predict real-world performance based on how a tool behaves during the 
development phase, and there is currently no standard that can be applied to aid in 
estimating how performance during the development and operational phases of a product 
will differ. In addition, performance characterization ontologies for AI/ML-based tools do not 
yet exist. These issues are especially prevalent for systems that continuously update their 
models based on current data. There is a need to generate robust and trustworthy high-
performance models and develop reduced-order models (ROMs) that are less expensive and 
time-consuming. 

Traditional post-processing manufacturing techniques are often 
incompatible with advanced manufacturing methods.
Post-processing techniques that are used as a means of tweaking processes for traditionally 
manufactured components may not work for advanced manufacturing methods (e.g., heat 
treating of additive manufactured components may not respond similarly to conventionally 
processed components/materials). Data and sensing required for 3D printing also differ from 
the data/testing/sensing methods that is traditionally done with manufactured components. 
Understanding of the unique needs for novel processes must be built into new models and 
tools in this space.
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There is a need for standardized methods to improve lifecycle performance.
Standards, which are important for legal purposes and manufacturers’ liability, are 
currently not set up to ensure confidence in terms of the ability to improve product lifecycle 
performance.

There is a lack of non-sensitive, pre-competitive exemplars for the 
exploration of AI/ML techniques.
Industry sectors may have different lifecycle needs (e.g., recycling or recertifying versus 
retirement), and the effectiveness of models and validation data is not often shared across 
different stakeholders. As a result, it is unclear how best to access existing data from industry 
or generate new data that are broadly applicable. The development of low-priority exemplars 
that are shared and agreed upon by stakeholders within an industry sector would support the 
development, commercialization, and standardization of AI/ML techniques in this space.

Environmental interactions with products in the field are an important 
consideration that can be challenging to assess. 
The environmental impacts on components throughout their lifecycles are essential 
to understand, particularly to enable continued updates of digital twins. While upfront 
characterization is common, it often lacks follow-through to capture such environmental 
changes. In addition, failures are not typically published, which prevents learnings from being 
shared and built into models and tools. There is a need for retrieval studies and surveillance 
samples to be extended from current applications such as oil and gas to other components.
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Activity Area Key Opportunities / Implementation Plans

Timeframe (years)

NEAR
0-2

MID
3-5

LONG
6-10

Tools & 
Equipment

open data management and curation tools—Develop 
data management tools that leverage open data standards 
to enable efficient queries and curation of datasets across 
product lifecycles

0-5

Multimodal data fusion and management governance 
framework—Establish a data governance framework that sets 
standards/practices for fusing, harmonizing, and managing 
multimodal data, and for evaluating data utility to support 
future data reuse

0-5

Reconfigurable testbeds and facilities—Establish a 
series of reconfigurable testbed facilities and/or “Centers 
of Excellence” to support the data capture across product 
lifecycles and the development and application of relevant AI/
ML tools

3-5

Opportunities
This section describes opportunities that, if pursued, could address 
the challenges to achieving the roadmap’s vision. Table 3 lists 
detailed descriptions of the key opportunities including potential 
benefits, estimated timeframe of impact, and relevant Activity Area 
(i.e., Tools & Equipment, Standards & Techniques, and Training & 
Educational Resources). The highest priority opportunities also include 
corresponding Implementation Plans that outline key tasks, detailed 
requirements and considerations, and milestones; these plans are 
described in detail in Appendix B.

Table 3: List of the Key Opportunities and estimated timeframes of impact for each Activity Area.
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Activity Area Key Opportunities / Implementation Plans

Timeframe (years)

NEAR
0-2

MID
3-5

LONG
6-10

standards & 
Techniques

Applications of generative Ai and LLM-based tools—
Demonstrate applications of generative AI systems (e.g., 
large language model [LLM]-based tools) to enable rapid 
development of interoperable systems and APIs for low-labor-
intensity data curation and interrogation

0-2

Workflows for integrating computational models and 
experimental data—Create a standardized workflow for 
combining computational models and experimental data to 
feed data-driven methods for accurately determining the 
physics-based behavior of materials, processing equipment, 
and systems

0-5

Framework for qualifying processes using digital twins—
Develop a framework and/or methodology for using AI-driven 
computational models/digital twins to qualify manufacturing 
processes

0-5

standard methodologies for applying Ai across 
lifecycles—Establish standardized methods for using AI and 
data analytics (e.g., to query unstructured data; to improve 
lifecycle performance)

3-5

Integrated verification and validation (V&V) with 
uncertainty quantification (UQ) techniques—Establish 
standards for the development of models for complete lifecycle 
improvement with integrated V&V and UQ techniques

3-5

End-of-Life Design framework for closing product 
lifecycle loops—Create a framework for designing products 
with end-of-life considerations (e.g., recycling, circularity/Re-X) 
to facilitate planned product obsolescence or closing of product 
lifecycle loops

3-10

Training & 
Educational 
Resources

Multidisciplinary training programs—Support 
multidisciplinary educational and workforce training programs 
to help prepare the workforce on software and tools that 
support AI/ML-based analytical methods

0-2

pilot programs and use cases on Ai applications—Develop 
specific use cases and pilot programs that demonstrate real-
world applications of AI-driven data analytics

0-2

Exemplar products and processes for complete lifecycle 
improvement—Identify a suite of exemplar products/
processes to demonstrate the value and benefits of adopting 
AI-driven sensing and process control methods for improving 
full lifecycle performance

0-2
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TOOLS & EQUIPMENT
Delivering new manufacturing capabilities in AI-enhanced sensing and process 
control requires the deployment of tools, equipment, and other digital 
manufacturing enabling technologies that play a role in combining AI/ML with 
domain knowledge to integrate data streams over entire product lifecycles. 
This includes physical equipment like shared instrumentation, testbeds, and 
experimental facilities as well as software tools for processing multimodal 
sensor streams, acquiring and querying data, using AI and data analytics to 
generate insights, and applying feedback strategies to improve performance 
across product lifecycles. R&D opportunities can help facilitate strategies for 
automating data extraction and ingestion, incorporate user-friendly software/
hardware interfaces, enhance interoperability across tools and platforms, and 
provide intuitive workflow strategies.

KEY OPPORTUNITY

develop data management 
tools that leverage open data 
standards to enable efficient 
queries and curation of datasets 
across product lifecycles

Estimate Timeframe of Impact:
NEAR- TO MID-TERM (0-5 YRS.)

• Development of data management
tools would help manufacturers
improve the efficiency of data
curation and query activities
throughout their product lifecycles.

• In the age of Big Data, these
tools are becoming increasingly
important as more manufacturing
environments embrace data-
driven methods and digitalization
of operations and product
development processes.

• Ensuring these tools are open-
source through a consortium-
based approach would not
only increase collaboration and
accelerate innovation among
stakeholder groups but would also
provide significant flexibility and
customization to accommodate
different product lifecycles and
manufacturers’ interests.

KEY OPPORTUNITY

Establish a data governance framework that sets 
standards/practices for fusing, harmonizing, and 
managing multimodal data, and for evaluating 
data utility to support future data reuse

Estimate Timeframe of Impact:
NEAR- TO MID-TERM (0-5 YRS.)

• A data governance framework would manufacturers
manage and fuse multimodal data across disparate
information sources. Guidance on the different data fusion
approaches and methods would allow manufacturing
communities to survey the solution space more effectively
to determine the appropriate technique given their data,
assumptions, and requirements.

• Such a framework would address challenges with
reconciling differences among data sources (e.g., length-
scale, frequency) and varying accuracy and dependability
among sensing devices, helping increase manufacturers’
confidence levels in their data.

• Effective data fusion through this framework would also
help ensure semantic reliability and structural consistency
in manufacturing data and support data reuse to help
improve performance across product lifecycles.

• The framework should provide integrated algorithms and
data analytic methods extracting and fusing multiple data
streams and events into single, actionable information
sources. These algorithms would recommend optimum
pathways for fusing data based on their provenance (e.g.,
short and long time-series, experimental protocols used
for gathering the data).
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KEY OPPORTUNITY

Establish a series of reconfigurable testbed facilities and/or “Centers of Excellence” 
to support the data capture across product lifecycles and the development and 
application of relevant AI/ML tools

Estimate Timeframe of Impact:
MID-TERM (3-5 YRS.)

• Testbed facilities allow for academia, industry,
and other groups to collaborate in digital
manufacturing production environments to test
innovative manufacturing design concepts and
pilot-scale technologies, solve grand challenge
research problems, or generate datasets
needed for decision-making and lifecycle
improvement strategies on pre-competitive
concepts.

• Testbed facilities will be a critical enabler for
complete lifecycle improvement methods.
Complete lifecycle improvement methods—
especially those based on model-based systems
engineering (MBSE)—require robust, complete
datasets to support rapid development of AI/ML

algorithms, which could be produced through 
testbed facilities and made publicly available for 
the broad manufacturing sector.

• Testbeds designed to be re-tooled or
reconfigurable rather than “universal” could
be a valuable educational tool for training
the emerging workforce on AI-enhanced
multimodal sensing and process control
paradigms. These facilities will require a range
of domain-specific instrumentation, capabilities,
human capital, and computational resources.

• It would be valuable to develop a gap analysis
and asset map (including national labs,
government test facilities, technology consortia
or manufacturing institutes, etc.) to support
or leverage existing pilot programs related to
testbed facilities.
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KEY OPPORTUNITY

Demonstrate applications of generative AI systems (e.g., LLM-based tools) to enable 
rapid development of interoperable systems and APIs for low-labor-intensity data 
curation and interrogation

Estimate Timeframe of Impact:
NEAR-TERM (0-2 YRS.)

• Generative AI systems, such as LLMs, could
support a broad variety of solutions to
multimodal sensing and process controls
for complete product lifecycle improvement,
including automated dataset reformatting,
identification or labeling of data uncertainties,
multimodal data sensor fusion, and seamless
interoperable communication across
manufacturing systems and facilities.

• As manufacturing operations become
increasingly digital and interconnected, greater
interoperability will be needed to support
the proper exchange of data across software
and hardware systems, including the flow of
information from multimodal sensors to AI/ML

and data analytics to process control strategies. 
Generative AI tools can support these needs by 
enabling the rapid development of application 
program interfaces (APIs), metadata schema 
creation, programming code development, 
and low-labor intensity data curation across 
disparate sources.

• In the long-term timeframe, standards or
frameworks for applying sensor imaging
techniques could enhance generative AI tool
robustness by providing guidance on how to
optimize the installation of sensor networks to
yield robust experimental datasets for training
AI/ML-based models. Standardized data
collection and contextualization methods can
reduce the risk of improper sensor installation
and ensure data are accurate and correctly
measured.

STANDARDS & TECHNIQUES
Manufacturers seeking to incorporate digital manufacturing strategies to improve 
complete lifecycle performance into their operations require the development of 
standardized approaches and common practices, formal processes and procedural 
guidance, and frameworks for design, measurement, analysis, modeling, and decision 
support. R&D opportunities are needed to establish standards and techniques that 
reduce the labor intensity for data curation and management, increase confidence in 
part processing capabilities and prediction results of data-driven models, and facilitate 
the execution of critical steps in the qualification of materials, parts, and manufacturing 
processes.
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KEY OPPORTUNITY

Develop a framework and/or methodology for using AI-driven computational models/
digital twins to qualify and optimize manufacturing processes

Estimate Timeframe of Impact:
NEAR- TO MID-TERM (0-5 YRS.)

• Digital manufacturing approaches are expected
to facilitate the acceptance—or qualification—
of parts and processes to demonstrate that
products will function as designed. Digital
twins could significantly reduce trial and error
validation testing and the duration required for
qualifying end-to-end manufacturing processes.

• It is challenging to demonstrate repeatable
and consistent processes that use multiple
and mutually concurrent process steps—such
as the combination of additive manufacturing
and process heating techniques—when data-
driven methods (e.g., AI and ML techniques) are
used to inform complex tuning or the choice of
process parameters. Digital twins can help to
address this issue.

• Strategies are needed to modularize and
update digital twins by developing high-
throughput prediction and inspection
procedures for each manufacturing operation,
and subsequently chain them together to
form a complete end-to-end digital twin of the
process and product that combines multiple
models.

• Digital twins for process qualification could
also be integrated into a software suite and/or
service bureau created by software developers
in conjunction with manufacturers to reduce
the level of expertise required for using the
software for modeling, design, operations
planning, and real-time control and decision-
making.

KEY OPPORTUNITY

Create a standardized workflow for combining computational models and 
experimental data to feed data-driven methods for accurately determining the 
physics-based behavior of materials, processing equipment, and systems

Estimate Timeframe of Impact:
NEAR- TO MID-TERM (0-5 YRS.)

• Digital manufacturing workflows can
streamline operations, enable factory floor
automation, and increase industrial and
operational efficiencies. Workflows break down
manufacturing processes into a detailed series
of steps and decision points and can inform
data collection considerations such as the
aspects of product development that should be
monitored and the data of interest that should
be captured by sensors, including its temporal
and spatial resolution.

• High-throughput experimentation will become
an increasingly important tool for validating
the accuracy of computational methods as

calculation speed and prediction reliability 
of computational approaches increase. In 
addition to validating computational models 
and quantifying uncertainties associated with 
modeling calculations, experiments provide 
necessary data on the properties of materials, 
processes, and products.

• Combining computational approaches and
experiments can accelerate discovery, design,
and development, and digital manufacturing
workflows are increasingly needed to integrate
multimodal sensing and AI/ML-driven process
control capabilities to enable complete lifecycle
product performance.
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KEY OPPORTUNITY

Establish standards for the development of models for complete lifecycle 
improvement with integrated V&V and UQ techniques

Estimate Timeframe of Impact:
MID-TERM (3-5 YRS.)

• There is a growing need for computational
tools with integrated features that allow
manufacturers to perform verification and
validation (V&V) and uncertainty quantification
(UQ) on their product simulation models—
particularly for AI/ML-driven systems and
products in which both trust and predictability
of their behavior are currently limited.

• The absence of standards for performing V&V
and UQ on AI/ML tools and models makes it
difficult for practitioners to distinguish between
proof-of-concept development of tools and
the actual deployment of tools in real-world
scenarios.

• Few standards currently exist for providing
guidance on how to conduct V&V on
computational models—even fewer exist for
uncertainty quantification; but few-to-no tools
are available for doing V&V and UQ on physics-
based computational models.

• To build manufacturers’ confidence in the
prediction results of data-driven models,
standardized methods for verifying and
validating computational models under
uncertainty should be directly integrated into
computational modeling software packages or
offered as a service by a solution provider.

KEY OPPORTUNITY

3 https://remadeinstitute.org/.

Create a framework for designing products with end-of-life considerations (e.g., 
recycling, circularity/Re-X) to facilitate planned product obsolescence or closing of 
product lifecycle loops

Estimate Timeframe of Impact:
MID-TO-LONG TERM (3-10 YRS.)

• Design for circularity (and other similarly
named methods) allows for manufacturers to
design high-performance products with a lower
negative economic or environmental impact
throughout their complete lifecycles.

• For certain applications or products that are
subject to fixed expiration dates or frequent
regulatory changes (e.g., child car seats),
manufacturers design these products for
“planned obsolescence.”

• These methods for designing products with
consideration toward end-of-life can help
reduce any losses of value embedded within

those products by keeping them in circulation 
(i.e., out of landfills) through reuse, recycling, or 
remanufacturing.

• R&D activities should leverage progress made 
by existing Manufacturing USA Institutes (e.g., 
The REMADE Institute3) to develop frameworks 
that will:

ß Support the evaluation of design trade-offs 
and costs associated with end-of-
life decisions including pathways for 
manufacturability

ß Enable pathways for increasing 
manufacturing automation and labor 
associated with end-of-life disassembly

ß Increase the use of sustainable or recycled 
content in both new and upcycled products
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TRAiNiNG & EduCATioNAL REsouRCEs
Maintaining pace with the rapid development of multimodal sensing and AI-driven 
process control technologies requires curricula modernization, flexible degree pathways, 
collaborative training programs, experiential learning opportunities, exemplar products 
and use cases, and other educational resources to prepare and maintain a skilled, 
high-quality workforce. Training and educational resources must prepare emerging 
and incumbent workers on how to effectively translate domain-specific expertise to 
additional domains, and they must be specifically designed to facilitate a fundamental 
shift from traditional experimental methods to high-throughput computational-
experimental methods for developing new materials and products faster and more 
efficiently.

KEY OPPORTUNITY

4 E.g., Mechatronics, which combines different engineering fields around AI/ML-based software tools.

Support multidisciplinary educational and workforce training programs to help 
prepare the workforce on software and tools that support AI/ML-based analytical 
methods

Estimate Timeframe of Impact:
NEAR-TERM (0-2 YRS.)

• Multidisciplinary educational programs at universities are needed to deliver skills related to the 
interaction of AI/ML methods and materials science.4 There is currently a lack of experts with deep 
knowledge of both manufacturing and AI/ML-based tools and analytical methods. In addition, 
employees often lack hands-on experience due to an emphasis on simulation instead of hardware 
laboratory experiences in most university curricula. Thus, entry-level engineers have a steep learning 
curve on the job site.

• Multidisciplinary workforce training programs will have various benefits, including:

ß Allowing for effective translation of domain-specific expertise to additional domains.

ß Preparing workers to use software and tools that use integrated AI/ML techniques, facilitating a 
shift from traditional/artisan experimental methods to high-throughput data-driven methods that 
can discover meaningful causal relationships.

ß Teaching modelers, engineers, designers, and technicians how to collaboratively develop 
requirements, evaluation criteria, and approaches for using computational modeling to improve 
complete product lifecycle performance through model-based systems engineering (MBSE) 
concepts.

• Training educators in sought-after skills will provide the incoming workforce with the knowledge of 
new technology like AI and ML and prepare them to be able to easily adapt to new technologies.

ß This training will help create avenues for educators and students to receive forward-looking 
technological knowledge despite strict ABET accreditation rules.

ß Workers have been deterred from certain jobs due to the notion that AI will replace them. If the 
future workforce receives training and education in these tools, they will have valuable, in-demand
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KEY OPPORTUNITY

Develop specific use cases and pilot programs that demonstrate real-world 
applications of Ai-driven data analytics

Estimate Timeframe of Impact:
NEAR-TERM (0-2 YRS.)

• Many specific use cases that might otherwise serve as educational examples to prospective adopters
are unavailable or unpublished due to the proprietary or sensitive nature of the data. Development of
publicly available pilot programs that demonstrate different ways to implement AI/ML/analytics can
provide useful educational examples and help build the manufacturing community’s trust in the use of
these tools.

skills to support the business practices of growing companies. Rather than AI and ML eliminating 
jobs, education can help train the workforce for the future to use these technologies to their 
fullest potential, developing new, higher-value jobs.

ß It will be critical to integrate with existing training resources and certification programs so that
in-demand skills related to new technology and methods can be taught to incumbent educators.
Community college programs as well as certifications for incumbent workers are helping to
provide this training.

• Because different use cases of lifecycle enhancement will have different levels of complexities and 
lifecycle performance metrics, the training programs must extend beyond the undergraduate student 
population to include the technician-level manufacturing workforce. Requirements for a successful 
program will vary across the education spectrum:

ß Universities: Universities should enable and encourage interdisciplinary undergraduate and 
graduate degree pathways that allow for students to specialize in areas that leverage data science 
and AI/ML. Curricula should allow for greater flexibility to add course electives focused on the use 
of modern data-driven techniques.

ß Undergraduates: Approaches could include inviting guest speakers with expertise in AI-enhanced 
multimodal sensing for complete product lifecycle performance to academic seminars; organizing 
in-depth demonstration tours at manufacturing facilities; pairing senior undergraduate
teams with manufacturing companies to collaborate on focused research projects; fostering 
cooperative education or mentorship opportunities that provide real-world experiential learning 
opportunities; and creating new introductory courses in university engineering programs on AI/ML 
methodologies—both the theory and the practice. AI/ML tools, like other engineering tools, are not 
one-size-fits-all, hence the importance of understanding the assumptions and limitations of their 
use.

ß Graduate students: Support graduate fellowship and internship opportunities in using AL/ML-
based methods and software tools in manufacturing environments.

ß Technical-level workforce: Leverage existing skills development programs such as Tooling
U,5 which provides learning management systems and manufacturing certifications for the 
manufacturing workforce.

5 Offered by SME (Society of Manufacturing Engineers).
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KEY OPPORTUNITY

Identify a suite of exemplar products/processes to demonstrate the value and 
benefits of adopting AI-driven sensing and process control methods for improving full 
lifecycle performance

Estimate Timeframe of Impact:
NEAR-TERM (0-2 YRS.)

• Exemplar products can educate manufacturers on how next-generation lifecycle improvement
methods can be integrated into manufacturing operations, as well as their potential benefits. This
makes them a valuable tool for establishing a business case for integrating digitalization technologies
into an organization’s manufacturing operations (e.g., for decision-making, predictive design,
predictive maintenance, or sustainability manufacturing).

• Pursuing this opportunity would help drive manufacturing digitalization and Industry 4.0 adoption, as
many manufacturers are not familiar with AI/ML, how it is used in manufacturing, and how it can be
used to improve lifecycle product performance.

• Exemplar products would facilitate sharing lessons learned from the field, which is invaluable for new
product development. Such products take hypothetical issues and ground them in reality, defining the
type of problems that must be solved, establishing best practices and optimal tools for solving them,
and demonstrating the potential ROI of doing so.

• There is a need for more broadly accessible exemplar products. Where exemplars do exist, they are
often sensitive or proprietary. These exemplar products should include:

ß A range of application types to show that approaches for improving lifecycle performance can be
scaled and applied broadly (e.g., short versus long lifespan, mission-critical versus commodity,
automotive sector versus food production sector),

ß All aspects of improving lifecycle management (e.g., installing multimodal sensors and integrating
AI/ML-driven approaches, tracking materials evolution over time, and correlating the impact of the
manufacturing process on part/component performance), and

ß All aspects of the lifecycle data continuum from product design through in-use phase and end-of-
life.

• Use cases on the application of AI-driven data analytics could provide valuable guidance for improving
complete product lifecycle performance such as enabling the predictive design of materials behavior
and part characteristics through advanced part distortion control via prediction of pre-heat treatment
dimensions of parts.

• To successfully foster trust in AI/ML tools, it will be essential to identify and prioritize pilot programs
where specific pre-competitive cases of AI/ML implementation produce results that are semantically
understandable and verifiable against materials and manufacturing domain knowledge.

• Use cases of applied AI/ML/analytics can also serve as valuable educational resources for
manufacturers by showing a range of workflow types related to data organization, including specific
data storage tools used, data formats and filename hierarchies, and programming tools or modules
applied.
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Effectively leverage digitalization 
technologies to capture a digital data 
thread across product lifecycle stages

Apply data-driven techniques 
to generate helpful domain- 
and product-specific insights

integrate lifecycle data and insights across modes and timescales to 
enhance product performance and manufacturing efficiencies from 
cradle-to-cradle

Next Steps
The integration of artificial intelligence, sensor technologies, and 
data from traditional materials science and manufacturing processes 
can strengthen U.S. manufacturing innovation and industrial 
productivity through significant improvements to the performance, 
energy efficiency, and materials efficiency across the product 
lifecycle.
This roadmap seeks to enable new capabilities in multimodal sensing and AI/ML-driven closed-
loop control for improving manufacturing quality, efficiency, and sustainability through the 
pursuit of high-impact, cross-cutting research and development priorities. These roadmapping 
opportunities are designed to empower the broad research and manufacturing community with 
the necessary tools, methods, and educational resources to:

Extended details about these high-priority 
opportunities are provided in Appendix b, 
implementation plans. These Implementation 
Plans are intended to provide a current snapshot of 
the recommended actionable steps and additional 
supplementary information required to achieve 
the roadmap’s stated objectives successfully; they 
are not intended to be overly comprehensive or 
prescriptive.

The successful implementation of this roadmap 
will require shared, long-term investments in 
R&D and the coordination of multiple interested 
parties to enable U.S. manufacturers to realize the 
value of new digital manufacturing capabilities in 
product lifecycle performance improvement for a 
broad variety of industry sectors and applications. 
Inclusion of the business community is imperative 
to this outcome; their inputs and experiences 

will ensure the broad adoption of these digital 
manufacturing capabilities by identifying the 
business impact of these R&D initiatives and 
sound metrics to understand the potential return 
on investment. ISSACS, which functions as a hub 
for multidisciplinary project collaboration and 
partnership coordination across Case Western 
Reserve University’s schools, intends to use the 
results of the roadmap to propose the formation 
of a research-based consortium to implement 
the roadmap’s key R&D activities around pre-
competitive solutions to cross-cutting challenges 
for its prospective members across industry, 
academic, and federal agencies. Pursuing these 
opportunities will facilitate a transformational 
shift how manufacturers use AI-based tools and 
digital data to augment traditional approaches to 
materials and manufacturing process development 
to enhance full product lifecycle performance.
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Appendices



Appendix A: Glossary of 
Key Terms

Artificial Intelligence (AI): A branch of computer 
science that combines data, algorithms, and 
hardware to replicate the cognitive abilities of the 
human brain to “intelligently” identify patterns, 
generate insights, and inform decision-making.

Circularity/Circular Economy: Economic model 
and/or actions taken to retain the value and quality 
of resources and materials that are destined for 
landfills through extension of useful life, reduction 
of generated waste, reduction in carbon footprint, 
reuse, remanufacturing, and/or recycling.

data Fusion: Combining independent or redundant 
data from multiple and often disparate sources to 
generate inferences that are more comprehensive, 
useful, and accurate than any individual source.

digital Thread: A communication and/or analytical 
framework that enables data exchange between 
physical and simulated worlds to design, evaluate, 
and manage lifecycles.

Digital Twin: virtual representations of one or more 
physical entities that use real-time and historical 
information to simulate the behavior of products and 
processes accurately.

Edge Computing/Processing: An on-site or 
remote computing architecture that is located in 
close proximity to a data source to reduce bandwidth 
and latency requirements.

Event-driven Architecture: A product 
development software paradigm or computer 
program for designing and managing products in 
terms of “events” caused by changes in data.

Exemplar products: A showcase of an existing 
product, material, or process that is used for 
demonstrating its actual or potential benefits 
concerning a specific application; may be used for 
training or educational purposes

Hybrid Manufacturing Approaches (e.g., 

Additive Manufacturing + X): The combination 
of additive manufacturing techniques with traditional 
processing or post-processing techniques including 
heat treatment, milling, forging, casting, etc., to enable 
mass production, improve accuracy, and enable net-
shape fabrication. 

Large Language Model (LLM): A type of artificial 
intelligence algorithm (i.e., deep learning algorithm or 
neural network) trained on large datasets to analyze 
statistical relationships and produce predictions 
based on data queries. 

Lifecycle Extension: An extension of circularity/
circular economy principles focused on actions 
intended to prolong the usable lifetime of materials 
and products.

Machine Learning (ML): A subfield of artificial 
intelligence; a computational model or algorithm that 
analyzes large data sets to identify patterns and infer 
predictions as output.

Model-Based Systems Engineering (MBSE): 
A formal methodology that uses graphical 
computational models to replace traditional 
document-centric approaches to define and design 
systems and products.

Multimodal sensing: The use of multiple sensing 
modalities including visual, audio, temperature, 
stress, radiation, etc., with the intent of combining 
information from multiple devices, sensors, and data 
streams.

Product Certification: Formal processes used by 
a certification authority or organization to ensure 
product designs are compliant with appropriate 
standards and/or specification requirements. 

product Lifecycle: The stages of a product’s 
lifecycle including product design, materials selection, 
manufacturing and production, quality inspection, 
service life, and end-of-life management (i.e., reuse, 
recycling, remanufacturing)
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Qualification (of Materials, Machines, 
Products): Formal evaluation of materials, parts, 
machines, or techniques to verify if a product design 
complies with industrial or application requirements.

Reduced-Order Model (ROM): Modeling 
techniques that reduce the computational complexity 
of high-dimensional systems while preserving the 
product’s critical properties and with sufficient 
reduction accuracy.

Remanufacturing: The process of restoring 
manufactured products to their original state to 
achieve conditions and/or performance levels that 
meet or exceed their intended design.

sustainability: (In the context of manufacturing) 
design and development of products using processes 
that conserve energy and natural resources, reduce 
environmental impacts, improve human safety and 
welfare, and increase economic benefits.

Testbed: Platforms or testing environments for 
conducting experiments on materials, products, tools, 
or technologies.

Uncertainty Quantification (UQ): The process 
of quantifying uncertainties associated with model 
calculations with the overarching objective to account 
for all sources of uncertainty and quantifying the 
contributions of each source to the overall measure 
of uncertainty.

Verification & Validation (V&V): Verification 
processes are used to determine that computational 
models are accurate representations of their 
underlying mathematical models (e.g., the software) 
and its solution; validation processes are used to 
determine the degree to which a model accurately 
represents real-world behavior within the boundaries 
of its intended use.

Workflow Processes: A series of processes and 
steps designed to orchestrate a discrete sequence 
of activities for effectively managing the lifecycle of 
a product; workflows break down manufacturing 
processes into a detailed series of steps and decision 
points and can inform data collection considerations 
such as the aspects of product development that 
should be monitored and the data of interest that 
should be captured by sensors, including its temporal 
and spatial resolution.
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Appendix B: 
Implementation Plans
This roadmap proposes several high-impact, cross-cutting R&D priorities to enable new 
AI-driven capabilities for U.S. manufacturers by providing pre-competitively developed 
software tools and equipment, standards and techniques, and training and 
educational resources. These opportunities are designed to help interested parties of 
the U.S. manufacturing sector unify data streams across stages of product development 
lifecycles, use AI- and data-driven methods to uncover insights around products and 
manufacturing domains, and employ feedback strategies for improving specific aspects 
related to the design, synthesis, processing, service use, and end-of-life management of 
materials and products.

Table 4 summarizes of the Implementation Plans and their estimated timeframes of impact for each 
relevant Activity Area.

ACTIVITY AREA KEY OPPORTUNITIES / IMPLEMENTATION PLANS TIMEFRAME

Tools & 
Equipment

open data management and curation tools 0-5 years
Multimodal data fusion and management governance 
framework

0-5 years

Reconfigurable testbeds and facilities 3-5 years
standards & 
Techniques

Applications of generative Ai and LLM-based tools 0-2 years
Workflows for integrating computational models and 
experimental data

0-5 years

Framework for qualifying processes using digital twins 0-5 years
standard methodologies for applying Ai across lifecycles 3-5 years
Integrated verification and validation (V&V) with 
uncertainty quantification (UQ) techniques

3-5 years

End-of-Life Design framework for closing product 
lifecycle loops

3-10 years

Training & 
Educational 
Resources

Multidisciplinary training programs 0-2 years
pilot programs and use cases on Ai applications 0-2 years
Exemplar products and processes for complete lifecycle 
improvement

0-2 years

Table 4: Description of the scope and list of relevant subtopics for each of the roadmap’s core Activity Areas
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Tools & Equipment

Combining AI/ML with domain knowledge to integrate data streams over entire product lifecycles 
will require R&D activities that support the development of shared instrumentation, testbeds, and 
experimental facilities as well as software tools for processing multimodal sensor streams, acquiring 
and querying data, using AI and data analytics to generate insights, and applying feedback strategies to 
improve performance across product lifecycles. These R&D opportunities can help facilitate strategies 
for automating data extraction and ingestion, incorporate user-friendly software/hardware interfaces, 
enhance interoperability across tools and platforms, and provide intuitive workflow strategies.

open data management and curation needs

ACTION PLAN

A Develop data management tools that leverage open data standards to enable efficient 
queries and curation of datasets across product lifecycles

• Create platforms, tools, networks, and/or interfaces to support efficient data queries

• Develop data management tools that allow for the curation of new datasets and ingestion
of unused or non-digitized legacy data (e.g., PDFs, spreadsheets)

• Apply an “Event Driven Architecture”-type approach to data collection and management and
create event object libraries for equipment, materials, operations workflows (master data
management [MDM], scheduling, reporting, inventory, maintenance, quality, production),
and process workflows

KEY REQUIREMENTS AND CONSIDERATIONS

A Managing data often requires multiple software tools—Some manufacturers require 
multiple data management tools to manage different types of datasets;

• Tools lack convenient interchange formats with respect to the reasoning and data
conclusions they represent

• Different tools are often needed because they are designed to represent disjointed
properties

0-5 YEARS
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open data management and curation needs

KEY REQUIREMENTS AND CONSIDERATIONS (CONT.)

B opportunities for digitizing legacy datasets—Manufacturers require data management 
tools to curate new datasets and ingest unused or non-digitized legacy data

• Tools should be open-source to accommodate future add-ons and new functionalities
within the same tool (versus using multiple tools)

• Need for the ability to search and identify available tools based on the specific use-case

C Tools must support automation and efficient data queries—Need for platforms, tools, 
networks, and/or interfaces to support efficient (cloud-based) data queries

• Upload of data via cloud-based storage may be desired to support subsequent analysis

• Tools could be integrated with standardized methods

• Required data could be integrated into software tools (e.g., for generating tool paths based
on thermomechanical changes)

D Tools must permit ad hoc definitions, associations, uses, and combinations of 
different data types—Open data management and curation tools must be capable of 
managing different types of data (e.g., ML training data, process workflow data, metadata 
annotations of workflow steps)

• Both data representing process workflow and data representing properties of the system at
any step in the process workflow require tools that permit ad hoc definitions, associations,
uses, and combinations of different data types

KEY TASKS

A determine economic drivers for open data standards tool development—Identify and 
support economic incentives to encourage the development of tools based on broad industry 
needs

B Quantify potential ROI—Demonstrate how data curation methods can create immediate 
value or returns on investments made in engineering R&D

C develop open data standards—Develop open data standards that can be integrated into 
the data tools to enable convenient data interchange formats (i.e., to ensure insights obtained 
through the use of one tool are usable by other tools)

D develop a dMp decision matrix—Develop a decision matrix to help users create a data 
management plan (DMP) for each specific use case or demonstration project

0-5 YEARS
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Multimodal data fusion and management governance framework

ACTION PLAN

A Establish a data governance framework that sets standards/practices for fusing, 
harmonizing, and managing multimodal data, and for evaluating data utility to 
support future data reuse

• Establish standards and provide tools for ensuring data availability, semantic reliability, and
structural consistency of manufacturing data

• Establish practices for multimodal data fusion and management including development or
adoption of standardized data formats

KEY REQUIREMENTS AND CONSIDERATIONS

A Event-driven architectures can help parse out desired data structures—Algorithms and 
data analytics are needed to extract and fuse data from both individual and combined data 
sources to create a new and embellished information state that is not contained within a single 
data stream

B data fusion should be conducted early in product development—Data fusion is 
challenging if not performed at earlier product development stages; early-stage data fusion 
otherwise enables the design of event-driven architectures that are highly effective at 
translating disparate data into useful information; Current practice relies on algorithmic 
procedures, but the context in which the fusion occurs is often missing/incomplete (e.g., in the 
absence of standards for describing or managing the data), thereby reducing the usefulness of 
the fused data

open data management and curation needs

MILESTONES

A Measure increases in the number of products supporting open data standards

B integration of dMp decision matrix into open-source data management tools

C develop an understanding of the ecosystem incentive structures for manufacturing, 
industry, vendors, integrators, and other contributors and service providers

0-5 YEARS

0-5 YEARS
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Multimodal data fusion and management governance framework

C data fusion standards can improve data repeatability and consistency—As AI/ML 
are increasingly integrated into manufacturing operations, there is less demand to include 
a “rational” information architecture because users rely on the ML tool to help make such 
decisions, thus creating a repeatability challenge which is otherwise addressed by tracking 
statistical data outcomes and co-locating manufacturing processes; Ensuring repeatability and 
consistency of data within an organization necessitates the creation of standardized name 
spaces within manufacturing information models (versus the creation of “new” approaches that 
lead to inconsistency within and across organizations)

D Access to existing standards is fragmented—There are some existing standards for 
disambiguating concepts (via standardized ontologies) but they are fragmented and dependent 
on the specific economic model

E Standards development organizations (SDO) can help offer guidance—May be able to 
leverage partnerships with professional societies until data fusion methods are sufficiently 
mature to engage standards development organizations (SDOs

KEY TASKS

A identify various manufacturing end-to-end use cases—Propose a collection of various 
specific manufacturing use cases (i.e., end-to-end problem use cases) to determine which types 
of fusion algorithms and existing tools are useful and valuable, and to identify where gaps exist 
in the specific data fusion algorithms

B Create standardized terminology for manufacturing-based data fusion methods—
Create standard terminology/language to refer to different data fusion methods that are 
relevant and meaningful to materials- and manufacturing-based product lifecycles

C Identify AI/ML analytics needed for different lifecycle stages—analysis Determine the 
specific stage of the product’s lifecycle for which AI/ML analytics are applied to determine the 
level and form of data management and curation

D Define the required data format of the algorithm(s)—Define the data format required 
by the algorithm(s) for sending and receiving data with considerations for data fidelity 
requirements, ability to assess confidence in data accuracy, and metadata and data pedigree

MILESTONES

A Reference methodologies/language created for existing data fusion methods

B Data management and curation decision tree developed to determine the form of the data 
management plan DM and analytical requirements for a given point in the lifecycle

C Integration of initial standardized/best practices for managing/fusing data (e.g., type of data 
management method; pros and cons of various approaches; potential technical debt tech debt 
incurred for downstream commercial implementation later in the product lifecycle)

0-5 YEARS
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Reconfigurable testbeds and facilities

ACTION PLAN

A Establish a series of reconfigurable testbed facilities and/or “Platform Centers 
of Excellence” to support the data capture across product lifecycles and the 
development and application of relevant AI/ML tools

• Create one or more testbeds or Centers of Excellence (COE) (i.e., physical “plant” plus
sensing, data and computations, and human expertise) to support pilot programs, generate
public datasets, and provide training opportunities for emerging workers

KEY REQUIREMENTS AND CONSIDERATIONS

A Testbeds must have well-defined objectives—Form and goals of the testbeds should be 
refined once anticipated insights are identified

B Need for domain- or materials-specific resources—May need additional domain-specific 
instrumentation equipment and capabilities, human capital, computational resources (e.g., 
clusters, acceleration units to support training opportunities); May be different additive 
manufacturing needs design needs for different industries (e.g., metals, polymers)

C Lifecycle stage of interest may require different capabilities—In addition to domain- 
and materials-specific resources, different types of capabilities will likely be needed to 
accommodate all product lifecycle development stages (i.e., design, in-service use, retrieval/
end-of-life management/recovery and redeployment or recycling of materials and parts)

D Testbed activities should span the full TRL spectrum—Testbed capabilities advance the 
maturity of multimodal sensing and AI-enhanced process control technologies through multiple 
levels of technology readiness

E Testbeds should align with specific pilot programs—Testbed facilities should support R&D 
activities aligned with specific use cases, pilot programs, and technology demonstration efforts 
(i.e., Tasks in the “Pilot Programs and Use Cases” Implementation Plan should inform testbeds)

F Testbed could generate public datasets—Open or public datasets are needed to support 
the rapid development of AI/ML algorithms

G Testbeds should connect with existing assets and related initiatives—Testbeds must 
have a connection to existing assets, testbeds, and Centers of Excellence; Must examine recent 
public testbeds and related initiatives to leverage existing resources and expertise

H Testbeds should aim to be flexible, re-toolable—Designing or setting up testbeds to adapt 
to rapidly evolving technological trends can enhance their long-term viability; testbeds should 
not be designed for “universal” use but could be flexible enough to accommodate a range of 
manufacturing domain-specific needs

3-5 YEARS
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Reconfigurable testbeds and facilities

I Reconfigurable testbeds could provide training opportunities for emerging workers—
Testbeds could be retooled or reconfigured for academia to deliver educational experiences 
for future engineers in “re-solving” real-world problems; Must address proprietary concerns of 
industry

KEY TASKS

A identify use cases—Determine the testbed focus areas based on specific use cases or 
exemplar products identified in the “Pilot Programs and Use Cases” and “Exemplar Products” 
Implementation Plans

B Conduct gap analysis and create asset map—A gap analysis and map of existing assets 
(including national labs, government test facilities, technology consortia or manufacturing 
institutes, etc.) are needed to understand how past or current pilot programs can support R&D 
priorities in multimodal sensing and AI-enhanced process controls

C Define value proposition—Define the value proposition for operating a testbed; identify 
the critical need and interested parties whose progress would significantly benefit national 
technical goals

D Develop and “end-of-life” plan for testbeds—Create a “sunsetting” strategy to ensure 
testbeds have an appropriate EOL/end-use plan

MILESTONES

A Define the mission and required elements of Centers of Excellence (COEs)

B Define stakeholders in key manufacturing sectors and customer base who would use the 
testbed facilities or COEs

C Define leadership skills required for COE principals and leaders of COE divisions

D Identify the location, awardee (university), and funding source(s) for the COE(s)/testbed(s)

E Identify and establish testbeds including potential to re-tool testbed at an existing national lab

F Begin construction of COE(s)/testbed(s)

3-5 YEARS
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Standards & Techniques

The development of standardized approaches and common practices, formal processes and procedural 
guidance, and frameworks for design, measurement, analysis, modeling, and decision support. These 
activities seek to reduce the labor intensity for data curation and management, increase confidence in 
part processing capabilities and prediction results of data-driven models, and facilitate the execution of 
critical steps in the qualification of materials, parts, and manufacturing processes.

Applications of generative Ai and LLM-based tools

ACTION PLAN

A Demonstrate applications of generative AI systems (e.g., LLM-based tools) to enable 
rapid development of interoperable systems and APIs for low-labor-intensity data 
curation and interrogation

• Support development of generative AI systems—such as LLMs—for creating schemas,
writing code, addressing semantic issues, rapid API development (i.e., for various
methodological implementations), and low-labor-intensity data curation

KEY REQUIREMENTS AND CONSIDERATIONS

A Generative AI and LLM tools hold significant potential for a broad range of 
manufacturing applications—Engineers, developers, and designers—all at various product 
lifecycle stages—may benefit from assistive generative AI tools (e.g., cloud-based LLM tools with 
integrated AI, generative pre-trained transformers [GPT])

• Example uses of generative AI uses include synthesis of scientific papers for generating
schema, down-selection of target resources (i.e., of literature), and code development

• data visualization—Generative AI systems (including LLMs) can be used as semantic text-
based tools for generating maps of hidden representations in datasets into visual models

• better data interoperability—Generative AI could be used as a tool to interconnect
hundreds of manufacturing systems (within a typical facility) to boost data interoperability
by contextualizing and converting data into more standardized formats; LLM-based
tools could help support “data uncertainty labeling,” file naming conventions, automatic
reformatting of datasets, etc.

• Rapid Api development—Some existing open-source generative AI tools LLMs may be
able to support rapid API development

0-2 YEARS
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Applications of generative Ai and LLM-based tools

B Use cases can demonstrate the benefits of generative AI systems—Must identify use 
cases (i.e., exemplar demonstration products) in which generative AI tools could provide 
a “digital thread” benefit for manufacturing operations (e.g., better data integration; data 
mapping; multimodal data sensor fusion; contextual summarization of sensor capability 
datasheets)

KEY TASKS

A identify generative Ai use-cases—Define use case(s) for which generative AI systems (e.g., 
LLM-based tools) could improve data interoperability across manufacturing systems (e.g., better 
data integration, data mapping, data uncertainty labeling, file naming conventions, automated 
data reformatting)

B Define problem set and data curation requirements of instrumentation/equipment—
Down-select the generative AI use-cases and define the capabilities and requirements of 
the instrumentation and processing equipment with respect to data curation (e.g., enabling 
technologies such as sensor networks)

C identify data sources for the semantic model—Identify the source documents and 
datasets required for building semantic/ontological models

D Train the generative Ai systems on a new or synthetically generated dataset

MILESTONES

A Conduct pilot development and demonstration of generative AI tools to address a specific gap/
opportunity

Workflows for integrating computational models and experimental data

ACTION PLAN

A Create a standardized workflow for combining computational models and 
experimental data to feed data-driven methods for accurately determining the 
physics-based behavior of materials, processing equipment, and systems

• ● Support the creation of a standardized workflow for combining computational
models and experimental data to feed data-driven methods to support more effective
determinations of physics-based behavior

0-5 YRS

0-2 YEARS
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Workflows for integrating computational models and experimental data

KEY REQUIREMENTS AND CONSIDERATIONS

A Must monitor respective long-term changes to each type of manufacturing 
equipment—Workflows must monitor machines/manufacturing equipment over time 
including their influence on the material(s) 

B Leveraging examples of knowledge engineering—Existing examples of knowledge 
engineering methods may provide insights into creating standardized workflows

C Exemplar products/processes are needed to help define standardized workflows—
Exemplar products will have different levels of criticality and types of collectible data depending 
on the specific component

KEY TASKS

A Identify exemplar use cases to overlay machine/material workflows—Identify a variety 
of exemplar cases to overlay the machine/material workflow that can be combined with 
machine/material workflow needs to combine experiments with computational approaches

• Identify one or more risk-averse applications—Identify a risk-averse application to help
demonstrate the usefulness of standardized workflows for enhancing complete product
lifecycle performance

B Standardize a decision-making workflow for characterizing the retrieval, storage, 
and analysis of machine/material data—Identify the specific manufacturing process(es) to 
develop a decision-tree workflow;

• Identify specific material behavior and processing equipment—Workflows must
monitor the manufacturing process (i.e., materials behavior) and the specific machine/
equipment

• Define specific roles—Workflow should set guidance on the specific roles/steps for:
determining the data/sensor requirements; prioritizing the collected data; acquiring the
data analytics outputs; implementing changes to the materials/equipment; inspecting/
assessing the results of the change

• Incorporate supply chain aspects into the workflow—Workflow should involve data
analysts/scientists, domain experts along the supply chain, and all types of manufacturing
team members, e

ß Machine operators—to implement changes, monitor final product, and verify if data
collection objectives are satisfied

ß Technicians—to calibrate and conduct predictive maintenance based on gathered
data/information

ß process engineers—to interpret data and decide on process-level changes (which
might be indicated by the gathered data/information), and to assess the results of the
implemented changes/improvements

ß Managers—to address monetary implications affected by changes in the project

0-5 YRS
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Workflows for integrating computational models and experimental data

KEY TASKS

C Demonstrate workflows on cross-cutting or common manufacturing processes—
Specific processes to consider in demonstration workflows include additive manufacturing (AM) 
and forging of high-value component(s)

• E.g., Additive manufacturing workflow could address:

ß Feedstock reuse/recycling (e.g., short-term reuse of AM powders; long-term recycling
of the AM components/products at end-of-life)

ß Impurity issues affecting processability/performance (e.g., impurity accumulation
during recycling)

Framework for qualifying processes using digital twins

ACTION PLAN

A Develop a framework and/or methodology for using AI-driven computational models/
digital twins to qualify manufacturing processes

• Design a framework for using AI-driven digital models/twins to qualify manufacturing
processes with multiple concurrent steps (e.g., combining additive manufacturing and heat
treatment methods)

KEY REQUIREMENTS AND CONSIDERATIONS

A Qualification framework must be broadly applicable—Framework needs to be broadly 
useful for all manufacturing sectors (e.g., aerospace, sporting goods, food manufacturing)

B Linking together manufacturing process models (e.g., end-to-end digital twins) 
supports more effective qualification of manufacturing processes—AI/ML-driven digital 
twin models—predominantly end-to-end digital twins that link together multiple process 
models—could help facilitate the acceptance or qualification of parts and processes, and may 
significantly reduce trial and error validation testing as well as the duration to qualify an end-to-
end manufacturing process

• Digital twins are not exclusively AI-based; however, AI would be useful for capturing highly
complex physics behavior (e.g., fluid flow)

C Digital twin/lifecycle models require frequent updates to accurately reflect changing 
material conditions—The digital twin/lifecycle model represents the starting material 
condition and may not reflect how the material (or even the manufacturing process) may evolve 
with time, thereby emphasizing the need to update the digital twin/lifecycle model as new (or 
better) information emerges

0-5 YRS

0-5 YEARS

44 FOR AI-ENHANCED MULTIMODAL SENSING OF MATERIALS AND PROCESSES FOR COMPLETE PRODUCT LIFECYCLE PERFORMANCE

MANUFACTURING TECHNOLOGY ROADMAP iMpLEMENTATioN pLANs



Framework for qualifying processes using digital twins

KEY REQUIREMENTS AND CONSIDERATIONS (CONT.)

D Process heating technologies (e.g., heat treatment) are expected to be a useful lever 
in controlling manufacturing processes—Since process heating technologies are common 
across sector-specific applications, the insights generated from controlling heat inputs may be 
transferable to other industries via digital twin modeling tools (e.g., in food manufacturing) and 
are expected to be useful for designing a broad range of product applications

• Digital twin modeling software tools could potentially be used to chain together multiple
process models, are expected to eventually apply to a broad range of product applications

KEY TASKS

A Establish high-throughput prediction and inspection procedures for each 
manufacturing operation—Modularize digital twin modeling and updating strategies by 
developing high-throughput prediction and inspection procedures for each manufacturing 
operation and chaining them together to form a cradle-to-gate digital twin

B Co-create a software service bureau with the manufacturing community—Engage the 
software development community to create a service bureau specifically for manufacturers (i.e., 
software experts with the ability to distinguish different metals/alloys)

• E.g., a small software shop with qualified staff that offers modeling as a service based on
the input/parameters of the manufacturing operations

C Integrate development models into software suites—Distill the development models 
into software suites for purchase and use by OEMs to enabling linking or combining of multiple 
manufacturing process models

• Define inputs/outputs of the digital twin, test software against real data, and ensure each
output informs the next module in the pipeline

D Build a business case for digital twin and AI implementation—Define a clear business 
case for digital twin and AI implementation focused on business metrics (profit, scrap rate, lead 
times, etc.) instead of standard academic metrics (publication count, impact factor, h-index, etc.)

MILESTONES

A Preliminary pipeline established for a selected product that quantifies each manufacturing step, 
including post-printing/casting/machining steps (e.g., heat treatment)

B Future pipeline expansions to include:

• Input materials (i.e., feedstock)

• Service use of the project and its impact on the state of the part (i.e., degradation processes)

• Product dismantlement and dispersion of recovered parts into multiple recycling streams

C Successful implementation of digital twin framework and predictive modeling outside of “heavy 
industry” manufacturing applications, (e.g., food, consumer goods)

0-5 YEARS
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standard methodologies for applying Ai across lifecycles

ACTION PLAN

A Establish standardized methods for using AI and data analytics (e.g., to query 
unstructured data; to improve lifecycle performance)

• Establish standardized methods for using AI to improve lifecycle performance as a function
of manufacturer-specific operational envelopes and performance objectives (i.e., to
establish confidence in part processing capabilities)

• Develop or standardize techniques to intelligently segment and quickly search unstructured
data to build labeled datasets for decision-making purposes

KEY REQUIREMENTS AND CONSIDERATIONS

A Standardized methods are needed to guide the process of applying AI/ML tools—
Existing concerns that standardization of the specific AI techniques could constrain the rapid 
evolution of AI methods; must focus on standardization of work processes (e.g., data structures, 
messaging protocols) to enable more scientific approaches to AI/ML implementation

• Well-defined modeling tasks can help determine best practices for applying AI/ML analytics,
thereby setting a standard that supports effective communication and collaboration

• Must prioritize model-based systems engineering (MBSE) principles and de-emphasize the
traditional “black box” mindset to facilitate trust in the modeling pipeline

B Each application of AI/ML is unique—Applications of AI/ML methods for improving product 
lifecycle performance are based on specific use/business cases including any associated 
enabling technologies and lessons learned

C Need for open ontologies—Ontologies, which describe product models, are necessary for 
establishing a common set of terms across the value chain

D Must include realistic and compressive methods for querying unstructured datasets—
Methods should consist of realistic and compressive methods for unstructured data

E AI/ML tool use must be easy, intuitive—Improving the user-friendliness of AI/ML tools can 
help drive toward more standardized user experiences for both novices and more technically 
focused individuals (i.e., more graphical user interfaces and intuitive workflows; less code and 
command line interfaces)

F Must consider broader techniques beyond AI/ML—Broader analytical techniques (i.e., 
beyond AI) are needed to facilitate performance improvements across product lifecycles

G May be challenging to implement for manufacturers with non-standard capabilities—
May be challenging for manufacturers with non-standard capabilities to select from a set 
of standardized methods—especially for similar roles and dissimilar offerings (e.g., additive 
manufacturing across modalities)

3-5 YEARS
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standard methodologies for applying Ai across lifecycles

KEY TASKS

A Conduct landscape analysis on the use of AI/ML-based techniques—Survey existing 
landscape and use of AI/ML-based methods in lifecycle performance improvement (e.g., sector-
based usage of tools for data queries);

• Identify common tool usage issues—Identify the most common/significant issues faced by
manufacturers who have used or integrated AI/ML-based tools into their operations

• Identify methods to validate unstructured data—Identify methods for validating the
unstructured data to apply an ontological framework to the query

• Identify data management methods for data harmonization—Identify new/existing
techniques to harmonize multiple structured datasets into single master datasets to apply
analytics

B develop requirements to help guide data query processes—Define the requirements or 
specifications to guide data queries (i.e., purpose and expectations of data query methods)

C Create open ontologies—Create open ontologies that represent the interests of the 
ecosystem; when possible/applicable, ontologies should leverage existing standards

D Establish definitions for processes and performance metrics—Define concepts for 
describing existing data (i.e., describing dataset origin, models, services, parameters, side-
effects, and performance characteristics)

E Align tool requirements with data concepts—Based on selected ontologies and data 
definitions: Define guidelines or set best practices to ensure AI/ML tools support unambiguous 
concepts and definitions of data, algorithms, and computational models

F Provide educational or instructional examples of products with long-term lifecycle 
performance changes—Capture key examples of end-of-life products whose properties (e.g., 
microstructure, chemical properties) have changed through service life to provide valuable 
exemplars for training or educational purposes

G Create a decision-making framework for selecting analytical tools—Develop a decision-
making framework to help users identify appropriate analytical tools and techniques suited to 
different technology maturity levels (i.e., to capture the full lifecycle)

• Create a guidebook or decision matrix to help users understand what analytical tools
are required as a function of the available processing equipment and materials analysis
capabilities

H Build shared or public datasets for specific industrial applications—Support the creation 
of shared/public datasets for specific industrial applications

3-5 YEARS
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standard methodologies for applying Ai across lifecycles

MILESTONES

A Completion of technology landscape analysis/survey with an initial focus on unstructured data 
query methods

B Quantification of ROI or evaluation of advanced data query methods

C Prioritize/down-select analytic query methods to be investigated as candidates for 
standardization

D Data queries designed and validated by cross-functional teams including laboratory experts, 
systems engineers, and systems modelers

Integrated V&V with UQ techniques

ACTION PLAN

A Establish standards for the development of models for complete lifecycle 
improvement with integrated V&V and UQ techniques

• Need for modeling standards that deliver the desired lifecycle performance improvement
capabilities; should include verification, validation, and uncertainty quantification

KEY REQUIREMENTS AND CONSIDERATIONS

A Tools must integrate V&V/UQ methods—Standards exist to conduct V&V, but few exist for 
UQ as they tend to be written using basic mechanical models

• Standardized methods for V&V and UQ are critical for establishing confidence (i.e., in a
manufacturer’s ability to process materials or fabricate parts, the accuracy of data, the
validity of prediction results of data-driven models, and overall ability to use AI, sensing, and
process control technologies)

• Standards development activities should include collaborative inputs from regulators and
materials suppliers to enable the future integration of V&V and UQ functionalities into
computational tool certification packages

• “Service bureaus” could offer V&V and UQ services as a packaged service or software suite;
Tools must be available and usable

B Must engage sdos and government regulatory bodies—In collaboration with SDOs: 
must work with government agencies to define the purpose and intended outcomes of future 
modeling standards with integrated VVUQ approaches

3-5 YEARS

3-5 YEARS
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Integrated V&V with UQ techniques

KEY TASKS

A Identify partners willing to integrate UQ methods—Identify 2-3 partners who are willing to 
engage in extending the computational model(s) of their product(s)

• Convene a multi-stakeholder team of experts including key representatives from standards
development organizations (SDOs) and regulatory agencies

C identify key application areas and their relevant modeling requirements—Identify 
high-value or high-impact product application areas to determine the specific modeling and 
application requirements (e.g., polymers AM, metals AM, traditional/subtractive manufacturing)

MILESTONES

A Development and incorporation of a standard for modeling a key manufacturing process 
including an integrated V&V step (i.e., validation to be performed by the customer of a software 
suite) 

B Future modeling standard expansions:

• Inclusion of steps/methods for improving lifecycle performance

• Integration of UQ steps

C Measure the adoption rate by which key federal agencies use modeling standards with 
integrated VVUQ steps

End-of-Life Design framework for closing product lifecycle loops

ACTION PLAN

A Create a framework for designing products with end-of-life considerations (e.g., 
recycling, circularity, Re-X) to facilitate planned product obsolescence or closing of 
product lifecycle loops

• Create a capability that allows manufacturers to close product lifecycle loops or continue
the planned obsolescence of products (i.e., product applications intentionally designed for
obsolescence due to fixed expiration dates or frequent regulatory changes such as child car
seats)

• Develop tools or methods for assessing the costs and risks associated with different end-of-
life product design options

3-5 YEARS

3-10 YEARS
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End-of-Life Design framework for closing product lifecycle loops

KEY REQUIREMENTS AND CONSIDERATIONS

A Circular/end-of-life design helps reduce raw material dependence—The ability to 
design products with consideration for the end-of-life stage of their respective lifecycles allows 
manufacturers to divert more materials from landfills and keep them in circulation through 
reuse, recycling, or remanufacturing, thereby capturing the inherent value of waste materials 
and reducing virgin materials consumption required for new product applications

B success stories are needed to motivate participation in the circular economy—Proof-
of-concept demos or design criteria such as recycling requirements can motivate participation 
in recycling strategies and improve supply chain robustness; Case studies and pilot 
demonstration programs (e.g., for improving product recyclability across lifecycles) could result 
in success stories that motivate recycling efforts for other families of materials or products

C Must complement existing efforts to establish End-of-Life Design methods—Existing 
organizations have made considerable efforts—notably the REMADE Institute—to establish 
“Design for Re-X” (i.e., recycling, reuse, remanufacturing); the ISSACS roadmap must be 
integrated with REMADE progress and maintain focus on the aspects of multimodal sensing and 
AI/ML-driven process control

D Recycling or reclamation considerations must be designed into products—End-of-
life recycling and reclamation of materials currently requires significant downstream human 
resources, and therefore must be considered in the design phase of product development

• Must establish the business case for recycling concurrently with the push toward more
energy-efficient, lower-emissions manufacturing processes

• Design for end-of-life methods would stimulate the need for data on how to refurbish
end-use products, which would be helpful to downstream product recyclers/dismantlers;
Methods for product disassembly could be integrated into product lifecycle design to help
inform downstream dismantlers

• Labeling of products can help recyclers/dismantlers at the product’s end-of-life to direct
materials into the appropriate waste/recycling streams for reuse, upcycling, or downcycling

• Incorporating legacy data on older/retired materials into end-of-life design methods and
tools would provide recyclers/dismantlers with guidance on the allowable levels of recyclate
materials and other trace elements that are permitted to enter waste streams

KEY TASKS

A Coordinate with REMADE on the state of Design for Re-X/Circularity roadmapping 
activities—The ISSACS roadmap should leverage related existing initiatives pursued by the 
REMADE Institute to identify specific opportunities focused on the lifecycle improvement 
aspects related to data, applications of AI/ML and data analytics, and process control

• Leverage REMADE knowledge in metallurgy and metals recycling for a pilot study on closing
the lifecycle loop of a product

3-10 YEARS
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End-of-Life Design framework for closing product lifecycle loops

KEY TASKS (CONT.)

B study circular product design implications on existing supply chains and recycling 
infrastructures—Conduct a study to understand how existing recycling infrastructures and 
supply chains could be affected by Design for Re-X/Circularity methods

C Launch pilot study on exemplar circularity product—Identify a pre-competitive application 
for a pilot study to demonstrate a complete lifecycle design of a circularity-based exemplar 
product such as:

• Second-life applications of electric vehicle-based products including end-of-life disassembly
(e.g., of batteries, bearings)

• End-use/fatigued windmill turbine blades

• Traceability of materials from post-factory distribution through retrieval (i.e., to reduce
waste stream impurities)

MILESTONES

A Benchmarking study completed on the current state of progress of Design for Re-X methods; 
Engage with related initiatives and institutions (e.g., REMADE Institute) and identify unique 
aspects of ISSACS’s capabilities and roadmapping support to address lifecycle-specific roadmap 
gaps related to multimodal sensing and AI/ML-driven closed-loop process control methods

B Demonstration of a closed product lifecycle loop on a material with a historically low recycling 
rate (e.g., generate a success story, proof of concept, or other educational resource)

C Development and/or expansion of recycling infrastructure program(s) for an exemplar product

3-10 YEARS
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Training & Educational Resources

Training and educational resources including modernized curricula, flexible degree pathways, 
collaborative training programs, experiential learning opportunities, and exemplar products and use 
cases are needed to prepare emerging and incumbent workers in using multimodal sensing and AI-driven 
process control for complete lifecycle performance.

Multidisciplinary training programs

ACTION PLAN

A Support multidisciplinary educational and workforce training programs to help 
prepare the workforce on software and tools that support AI/ML-based analytical 
methods

• Develop workforce training programs to help train workers on software and tools that
support AI/ML methods to facilitate a shift from traditional/artisan experimental methods
to high-throughput methods

• Increase the number of trainers who can help teach the incumbent workforce the skills
required for the adoption of technologies and methods for complete lifecycle improvement
(e.g., sensing installation and maintenance; data interpretation; techniques for applying
different AI/ML approaches)

• Provide educational program(s) that combine multiple key disciplines (e.g., educational
mechanical engineering, data science) to encourage students to specialize in data science
and AI/ML following completion of undergraduate or graduate degree programs

• Increase the number of transdisciplinary experts that sufficiently understand how to
translate knowledge and expertise across domains

• Identify best practices for assembling multi-expert project teams that have the required
skills/expertise to implement an AI/ML-based program effectively; can provide a detailed
sample of the workflow and specific roles for an AI/ML digital twin-based R&D project to
inform the skill requirements and elucidate the project timelines for specific tasks

0-2 YEARS
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Multidisciplinary training programs

KEY REQUIREMENTS AND CONSIDERATIONS

A Need for workers skilled on the use of AI/ML tools and methods—Must develop 
workforce training programs to help train workers on software and tools that support AI/ML 
methods to facilitate a shift from traditional/artisan experimental methods to high-throughput 
methods

• Training programs must be expanded to include opportunities for the technical-level 
manufacturing workforce

• Must leverage existing continuing education programs including employer-led programs 
and non-profit-based workforce training opportunities6

• Need for fully pipelined and packaged AI/ML-based software tools with user-friendly 
interfaces and short learning curves (e.g., LLM-based tools for automatically converting 
speech to programming code)

• Training programs could structure cooperative education and mentorship opportunities 
around high-impact technology development or grand challenge problems to deliver real-
world experiences and experiential learning opportunities

• Must explore ways to establish constructive dialogue or collaboration across traditionally 
disparate roles (e.g., technicians/operators and computational modelers) to build 
specification problem-solving skills, goal setting, measurement/metrics, etc.

B Must provide training opportunities for preparing educators—Need to increase the 
number of trainers who can help teach incumbent workforce the skills required for adoption 
of technologies and methods for complete lifecycle improvement (e.g., sensing installation and 
maintenance; data interpretation; techniques for applying different AI/ML approaches)

• Community colleges are developing comprehensive 2-year Industrial Internet of Things
(IIoT) programs which need to be expanded in critical regions and as technologies gain
market adoption

• e.g., Business schools could include courses in understanding cross-domain technologies
for enhancing/improving manufacturing processes

C provide training opportunities on collaborative model-driven engineering and 
manufacturing—Need to train modelers, engineers, designers, and technicians how to 
collaboratively develop modeling requirements, evaluation criteria, and approaches

D Must identify effective team-building strategies to implement AI/ML programs—
Identify best practices for assembling multi-expert project teams that have the required skills/
expertise to effectively implement an AI/ML-based program

• Create a detailed sample of the workflow and specific roles for an AI/ML digital twin-based
R&D project to inform the skill requirements and elucidate the project timelines for specific
tasks

6 E.g., Tooling U-SME is a workforce development organization for the manufacturing sector: https://learn.toolingu.com/.

0-2 YEARS
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Multidisciplinary training programs

E Must bridge disciplines and/or explore new fields—Must explore the possibility of 
establishing a new field(s) at the intersection of AI and materials to establish connections 
across students/workers with different skillsets, education, and backgrounds to enable effective 
communication in production environments

KEY TASKS

A identify course curriculum needs—Identify the curriculum needs and fund the development 
of new courses and labs for university-level engineering programs

• Introduction to AI—Create an academic course that gives students baseline knowledge of
artificial intelligence and machine learning approaches

• Human-robot collaboration—Create an academic course that teaches students about the
future and ongoing developments of human-robot collaboration and its benefits

B Support graduate fellowship programs—Supporting funding opportunities for new 
graduate fellowship opportunities that teach the use of AL/ML-based methods and software 
tools

C Enable interdisciplinary undergraduate and graduate degree pathways—Enable 
and encourage interdisciplinary undergraduate and graduate degree pathways that allow 
for students to specialize in areas that leverage data science and AI/ML and provide greater 
flexibility to add course electives focused on the use of AI/ML-based tools

D Evaluate limitations of incumbent curricula accreditation system—Evaluate the existing/
incumbent system used to accredit curricula and address limitations related to the education 
and training of AI/ML-based approaches to product design

E provide career development resources—Make career development resources available 
(e.g., via an online web portal) for existing/future workers

F Create infrastructure necessary to assess curricula and worker skills—Create 
infrastructure necessary to assess the quality of curricula and job candidate skill levels

MILESTONES

A Identification of target workforce groups

B Forecast future skill requirements to inform the development of a portfolio of pilot programs, 
curricula, etc.

C Creation/inclusion of a 1st- or 2nd-year undergraduate course in AI/ML literacy as part of a 
schoolwide engineering core curriculum

D Technician/associate’s degree program established

E Creation/inclusion of literacy curriculum into an operator training program to teach lightweight 
robotics and AI/ML methods (e.g., Tooling U-SME, community college)

0-2 YEARS
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Multidisciplinary training programs

MILESTONES (CONT.)

F Interdisciplinary undergraduate engineering program that combines AI/ML and data 
sciences with a traditional engineering field (e.g., mechanical engineering with a focus on ML 
approaches) established at an R1 university

G Certificate program developed for AI/ML and other data-driven methods

pilot programs and use cases on Ai applications

ACTION PLAN

A Develop specific use cases and pilot programs that demonstrate real-world 
applications of Ai-driven data analytics

• Develop a suite of pre-competitive use cases and pilots that support data aggregation for
the envisioned AI/ML techniques

KEY REQUIREMENTS AND CONSIDERATIONS

A Must identify successful past applications of readily demonstrable AI/ML use cases—
Define specific use cases across the manufacturing community (i.e., by small, medium, and 
large-sized enterprises) where the benefits of data analytics and AI/ML tools can be readily 
demonstrated

B use cases should map to the industry domain and TRL—Map use cases to the technology 
readiness level (TRL) or manufacturing readiness level (MRL) and the lifecycle stage/level as well 
as industry to ensure use cases represent various processes, equipment, and materials

• Must identify the benefit or value proposition for each use case to help build executive buy-
in for decision-makers seeking to adopt new digital technology capabilities (e.g., engineering
managers)

C prioritize pilot program designs—Identify and prioritize pilot program designs wherein 
implementation of AI/ML/analytics yields results that are semantically understandable and 
verifiable using domain knowledge

• For TRL 3-4: Downstream TRL requirements of pilot programs should be driven by a robust
analysis of the business case, implementation risk, and expected impact/benefits

0-2 YEARS

0-2 YEARS
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pilot programs and use cases on Ai applications

KEY TASKS

A Conduct a landscape analysis of existing testbeds for data-driven analytics in 
manufacturing—Conduct comprehensive analysis to identify ongoing testbed efforts for 
data-driven analytics in manufacturing from which future pilot programs can leverage or link to 
existing resources;

• Focus on areas where AI/ML and data analytics are being applied to new databases, existing
databases, and end-of-life/retrieval studies

• Focus on areas where the data analytics community could most likely leverage data
(including evolving datasets) from existing testbeds to shorten product development
timeframes

• Align topics of use cases/pilots with the “Reconfigurable Testbeds and Facilities”
Implementation Plan

• Each specialized topic area requires a comprehensive staff/team (e.g., robotics use cases
require a full complement of roboticist expertise)

B Research industry-specific use cases—Research AI/ML experts in up to 6 target industries 
from academia, manufacturing companies, software vendors, and equipment vendors for 
specific use cases in which AI/ML and data analytics are being applied to improve lifecycle 
performance of processes, equipment, or materials ranging from early-stage R&D to 
commercially manufactured products

• Research/survey academia, manufacturing companies, software vendors, equipment
vendors, SDOs, and professional societies for ongoing and in-flight AI/ML or advanced
analytics testbed programs and user cases currently underway

• Prioritize use cases based on analysis of working structures, deliverable forms, team/
participation method, business purpose and value, funding, etc.; Apply advanced analytic
maturity model to categorize use cases and interested parties

C document lessons learned from previous data analytics programs—Survey prior data 
analytics programs to ensure future pilot program(s) avoid repeat errors or project hindrances

MILESTONES

A Conducted survey of existing/evolving national efforts where generated datasets of relevant 
manufacturing sectors/component(s) can be made accessible for use by AI/ML and data 
analytics tools in pilot programs

B Documentation of lessons learned and published results from similar use cases to inform the 
design of future testbed/pilot program; Engagement of project leads and participants of high-
priority use-cases participants to solicit lessons learned for high-priority use-cases

C Mechanism or RFP created to initialize data analysis work

0-2 YEARS
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Exemplar products and processes for complete lifecycle improvement

ACTION PLAN

A Identify a suite of exemplar products/processes to demonstrate the value and 
benefits of adopting AI-driven sensing and process control methods for improving full 
lifecycle performance

• Develop several representative exemplar products and processes that demonstrate
the roadmap value proposition, possibly covering different aspects of the lifecycle data
continuum

• Need for access to, or development of, pre-competitive exemplars for component
manufacture, perhaps with model of material system(s)

KEY REQUIREMENTS AND CONSIDERATIONS

A Past successes can benefit future adopters—Sharing lessons learned from the field are 
invaluable for new product development

• Retired (but saved/stored) components/structures represent valuable datasets that reflect
real-world effects on the evolution of in-service materials

B Must represent different product lifecycles of interest—Need for a range of exemplar 
processes and product applications including specific lifecycle aspects to explore;

• Example lifecycle types: mission-critical (e.g., defense-related); long lifespan (e.g., jet engine);
short lifespan (e.g., medical application); low-criticality/commodity (e.g., tire)

• Potential lifecycle aspects to explore with exemplar products: tracking materials evolution
over time; impact of the manufacturing process on component performance

C Examples of exemplar products—Examples of exemplar products or aspects of complete 
lifecycle performance:

• Automotive applications—Recyclable automotive parts/components in existing commercial
applications, such as batteries; investigate other components including drivetrains, seats,
computer systems, etc.

• Embedded medical sensing—Need for the ability to detect the onset of metal ion release
around arthroplastic joint implants or conditions that promote infection or that indicate
infection

KEY TASKS

A Convene industry-centric project teams—Identify 2-3 organizations—particularly those 
with a history of collaboration and data sharing—to partner on a pre-competitive effort; Include 
multiple types of industries 

0-2 YRS
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Exemplar products and processes for complete lifecycle improvement

KEY TASKS (CONT.)

B Identify pre-competitive, high-value, low-TRL parts/components—Keep initial focus on 
high-value parts/components that align with program interests of key funding agencies

• Focus on pre-competitive parts to permit longitudinal analysis across exemplars

C Address data-sharing and protection practices—Establish industry best practices or 
consortium guidelines that protect the privacy, ownership, and intellectual property of all 
parties (individuals, manufacturers, equipment and system providers, researchers, etc.) and 
allow for effective data sharing and integration across supply chains

MILESTONES

A Launch partnerships with 2-3 organizations (via public-private consortium) for each exemplar 
product

B Attain commitments to pursue 2-3 possible exemplars

C Map the lifecycles of candidate exemplars from product design through the in-use phase and 
end-of-life, and define the respective value propositions (and/or problem) of each exemplar

D Successful demonstration of an exemplar product; must holistically examine the complete 
lifecycle of each exemplar which span different lifecycle durations (i.e., years, decades) and 
levels of accessibility

0-2 YRS
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Appendix C: List of 
Roadmap Contributors

paul Ardis General Electric
Mehmet Aydeniz University of Tennessee, Knoxville
Nick barendt* Case Western Reserve University
Bernard Bewlay General Electric
david bourne Carnegie Mellon University
Jackie Bowen* Nexight Group
brad boyce Sandia National Laboratories
Ross brindle* Nexight Group
Jian Cao Northwestern University
Jennifer Carter Case Western Reserve University
vipin Chaudhary Case Western Reserve University
hikmat Chedid Lorain County Community College
Clayton Cooper Case Western Reserve University
brian deCost National Institute of Standards and Technology (NIST)
scott drinkall* Nexight Group
Robert Foy* Nexight Group
Wentao Fu Boeing Additive Manufacturing (BAM) Intelligence Center
Robert Gao* Case Western Reserve University
Joseph Giampapa ARM Institute
Charles Gifford 21st Century Manufacturing Solutions
Michael Grieves Digital Twin Institute
Mike Groeber Ohio State University
Markus heinimann Arconic/Howmet
david icove University of Tennessee, Knoxville
Mahdi Jamshid ASTM International
Reeja Jayan Carnegie Mellon University
xiaodong Jia University of Cincinnati
Jared Kosters* Nexight Group
Dominik Kozjek Northwestern University
John Lewandowski* Case Western Reserve University
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Ken Loparo* Case Western Reserve University
Norbert Majerus Norbert Majerus Consulting LLC
Jim Maloney Timken
Michael McClellan Collaboration Synergies, Inc.
Jack McNulty GOJO
Nikunj Mehta Falkonry AI
KC Morris National Institute of Standards and Technology (NIST)
steve Niezgoda Ohio State University
vincent paquit Oak Ridge National Laboratory
Joseph Powell Akron Steel Treating (AST)
Clare Rimnac Case Western Reserve University
Tony Rollett Carnegie Mellon University
Andrew Saku* Nexight Group
Michael skocik ARM Institute
peng Wang University of Kentucky
Jim Warren National Institute of Standards and Technology (NIST)
Jonathan Wise Clean Energy Smart Manufacturing Innovation Institute (CESMII)
Sarah Wolff Ohio State University
Mike yost* Bennit
Jianjing Zhang Case Western Reserve University

* = internal roadmap development team
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