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Abstract

Dimension reduction for stochastic oscillators:

Investigating competing generalizations of phase and isochrons

Abstract

by

Alexander Cao

A stable, finite-period limit cycle in a deterministic system has a set of Poincaré

sections with two properties: all trajectories with initial conditions on a given

leaf (i) converge to a common trajectory on the limit cycle and (ii) pass

through the same leaf after an interval equalling one period. The leaves are

the isochrons, and the timing of their movement defines the asymptotic phase

of points converging to the limit cycle. In a Markovian stochastic setting, two

generalizations of the asymptotic phase and the isochron foliation have been

proposed. One is based on the spectral decomposition of the Kolmogorov

Backward operator and the other on foliations defined by a uniform mean

first-passage time property. We extend the latter generalization by reformu-

lating the established numerical procedure for calculating the leaves in terms

of a partial differential equation. We also discuss the (non)equivalence of these

two phase generalizations for noisy oscillators.
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1 Introduction

Oscillations, or rhythmic phenomena, are found throughout the natural world.

Examples include swallowing [4], breathing [5, 6], neuronal motor control cir-

cuits [7], and other fundamental biological processes. Important aspects of

oscillatory behavior include synchronization, and entrainment [8, 9, 10]. Neu-

ral disorders such as epilepsy and Parkinson’s disease, for instance, are thought

to result from an excess of synchronous neural activity; destabilizing these os-

cillations has been proposed as a treatment for pathological neuronal activity

[11, 12]. A mathematical framework, particularly phase reduction, has proven

to be an effective way to understand these aspects of oscillatory dynamics.

In the deterministic setting, we consider continuous-time, smooth dynamical

systems. For stable limit cycles, Guckenheimer defines isochrons, level sets

of the phase variable, in two equivalent manners. The first is the asymptotic

approach considering long-term behavior: An isochron is defined as the set

of the initial conditions in the basin of attraction for which trajectories will

asymptotically converge to the same common trajectory on the limit cycle

[13]. The second is the short-term approach considering time lapses of length

equalling the period of the limit cycle: Isochrons are Poincaré sections for

which the first-return time is a constant interpreted as the period [13].

It is desirable to extend this notion of phase to stochastic oscillators, as noise is

ubiquitous in both natural and engineered systems. Two alternative definitions
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of asymptotic phase for stochastic oscillators have been introduced in recent

literature [1, 2]. In [2], Thomas and Lindner introduced a new spectral phase

definition derived from the slowest decaying eigenfunction of the Kolmogorov

backward operator. This definition is taken in the limit of arbitrarily long time,

which parallels Guckenheimer’s asymptotic approach. Previously, Schwabedal

and Pikovsky introduced average isophases, which are sections in state space

with constant mean first-return times, as another method of phase description

for stochastic oscillators [1]. Average isophases mirror Guckenheimer’s short-

term approach, considering only one orbit and generalizing first-return times.

In §2 I review background material on mean first-passage time problems.

A third phase description, applicable to one-dimensional stochastic oscillators,

is the current model in [14]. It is a dynamical description defined by the invari-

ant probability density. The current model obeys the deterministic equation

θ̇ = H(θ) where H = Jss/ρss(θ) is the stationary flux divided by the stationary

density. Using this approach, the current model phase description exhibits the

correct frequency and invariant distribution density of the original stochastic

oscillator. I do not consider this version of “phase” further in this thesis.

Schwabedal and Pikovsky calculated average isophases using a simulation

based numerical optimization scheme [1]. In that direction, we extend their

definition of the “mean isophase” function by clarifying its mathematical foun-

dations and reformulating it as the solution of a partial differential equation

(PDE) with a particular boundary condition. I didactically introduce this
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PDE reformulation for one-dimensional systems in §3 and for planar systems

in §4.

Although the short-term and long-term notions of phase are equivalent in the

deterministic setting, it is not obvious whether they should remain equivalent

for stochastic systems. In §5 I will present results on the (non)equivalence of

the two alternative definitions of asymptotic phase for stochastic oscillators.

1.1 Average Isophase [1]

Schwabedal and Pikovsky introduced a “phase description for stochastic os-

cillators” in [1]. Average isophases, a generalization of deterministic isophases

[15], are sections in state space with constant mean first-return time. We

aim here to provide a precise mathematical interpretation of Schwabedal and

Pikovsky’s notion of average isophase. Therefore we begin by restating their

description as it appears in [1].

We start by reminding the reader the standard definition of isophases

in deterministic systems with a stable periodic orbit x0(t) = x0(t+T ) of

period T . For these, isophases are also isochrones. First, one defines the

phase on the orbit ϕ(x0). When being observed stroboscopically with

time interval T , all the points x that converge to a particular point on

the orbit x0 have the phase ϕ(x0). These points form a Poincaré surface

of section J(ϕ(x0)) for the trajectories of the dynamical system, with
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the special property that the return time to this surface equals T for all

points on it. Thus, finding an isophase surface is equivalent to finding

a Poincaré surface of section with the constant return time T .

For a noisy system we define the isophase surface J as a Poincaré

surface of section, for which the mean first return time J → J , after

performing one full oscillation, is a constant T , which can be interpreted

as the average oscillation period. In order for isophases to be well

defined, oscillations have to be well defined as well: for example in polar

coordinates, the radius variable must never become zero, so that one

can reliably recognize each “oscillation.” Random processes for which

this is not the case should be treated with care.

Analytical calculations of the mean first return time (MFRT) are

a complex problem in dimensions larger than one; therefore, below we

apply a simple numerical algorithm for construction of the isophases:

an initial Poincaré section is iteratively altered until all mean return

times are approximately equal. In two-dimensional systems for which

isophases are lines, we represent Poincaré sections by a linear interpo-

lation in between a set of knots. For each knot xj , the average return

time Tj is computed via the Monte Carlo simulation. According to the

mismatch of Tj and the mean period 〈T 〉, the knot xj is advanced or

retarded. The procedure is repeated with all knots, until it converges

and all return times Tj are nearly equal to 〈T 〉. [emphasis added]

The paper [1] provides examples of average isophase computations for a wide
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variety of systems. The paper does not address the convergence or stability

of the numerical algorithm in detail. In this thesis I reformulate the average

isophase construction as the solution T (x) of a partial differential equation

derived from a mean first passage time problem, thus overcoming (at least for

two-dimensional systems) the analytical complexities alluded to in the third

paragraph quoted above. The “average isophase” isochrons will correspond

to level sets of the function T (x), taken mod 〈T 〉. Moreover, I provide an

interpretation of the sample path condition “after performing one full oscilla-

tion” in the second paragraph, and attempt to put it on a firm mathematical

foundation. Given our PDE and the appropriate boundary conditions, if there

exists a solution then the solution’s level curves yield both the geometry and

timing of the isophases. Moreover, any solution to the isophase problem ob-

tained from Schwabedal and Pikovsky’s numerical method must satisfy our

PDE.

As a point of notation, we will write T to represent the mean period 〈T 〉 under

the stationary distribution of the stochastic oscillator.

2 Mean First-Passage Time Problem

The MFPT problem asks for the average time needed for a particle, governed

by a stochastic process, to escape a region, through a particular boundary of

that region. Given that this particle follows the general SDE given by (all
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SDEs written in the Itô interpretation unless otherwise stated)

d~x

dt
= A(~x) +B(~x)~ξ(t) (1)

where ~ξ(t) is independently, identically distributed delta-correlated white Gaus-

sian noise with unit variance, that is, 〈ξi(t)ξj(t′)〉 = δi,jδ(t − t′). The MFPT

function T (~x), as a function of location, satisfies the Kolmogorov backward

operator L† equal to an inhomogeneity term of −1 and the following boundary

conditions [16]:

L†[T ] ≡
∑
i

Ai(~x)∂iT +
1

2

∑
i,j

(BBᵀ)ij(~x)∂i∂jT = −1 (2)

T (~x) = 0 along escape/absorbing boundaries

∇T · ~n = 0 along reflecting boundaries

(3)

2.1 One-Dimensional and Planar Diffusion

For example, let’s consider diffusion on the unit interval [0, 1] where there are

absorbing boundaries at x = 0 and x = 1. The SDE for this process is

ẋ =
√

2Dξ(t) (4)

where each component ξi(t) is unit-variance delta correlated Gaussian white

noise satisfying 〈ξi(s), ξj(t)〉 = δijδ(t− s) and D is the diffusion constant.
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The MFPT function T (x) satisfies

D
d2

dx2
T = −1

T (0) = T (1) = 0

(5)

We can solve the above MFPT differential equation by simple integration.

T (x) = − 1

2D
x(x− 1) (6)

In Figure 1, I plot 1D diffusion realizations and the corresponding MFPT

function.
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Figure 1: For one-dimensional diffusion given by (4) with D = 0.01 we have:
(Left) 5 realizations with X(0) = 0.5. Note that all stochastic simulations
are generated using the XPP platform [17] using the Euler-Maruyama method
except as noted. (Right) MFPT function T matching (6).

For a planar example, let’s consider diffusion on the unit square Ω = [0, 1] ×

[0, 1] where there are absorbing boundaries on the perimeter of the square
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denoted with Γ. The corresponding SDE is

ẋ =
√

2Dξx(t)

ẏ =
√

2Dξy(t).

(7)

The MFPT function T (x, y) satisfies

D∆T = −1

T (Γ) = 0

(8)

We can solve the above MFPT PDE problem, given by (8), using a finite

difference scheme with the following 5-point mask approximating the Laplacian

operator

∆T ≈ Ti+1,j+1 + Ti+1,j−1 − 4Ti,j + Ti−1,j+1 + Ti−1,j−1

h2
(9)

with h being the discretization size and Ti,j referring to T (xi, yj). In Figure 2,

I plot planar diffusion realizations and the corresponding MFPT function.

3 Extending Average Isophase [1] in One-Dimension

We can use the MFPT problem framework to calculate average isophases.

Identifying the correct boundary conditions is a key element of our analysis.
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Figure 2: For planar diffusion given by (7) with D = 0.01 we have: (Left) 3
realizations with initial condition (X, Y ) = (0.5, 0.5). (Right) MFPT function
T solved using finite difference scheme on a 100× 100 discretization grid.

Before considering the 2D problem, first consider a 1D oscillator, realized as a

stochastic process X on the circle S ≡ [0, 2π) that obeys the SDE (10), with

the coordinate x taken mod 2π.

ẋ = f(x) +
√

2D(x)ξ(t) (10)

In this case the Fokker-Planck forward and backward operators take the form

L[v] = − d

dx
(f(x)v(x)) +

d2

dx2
(D(x)v(x)) (11)

L†[u] = f(x)
d

dx
u(x) +D(x)

d2

dx2
u(x), (12)

where u and v are assumed to be C2 except as noted below. We assume that

f(x) and D(x) are periodic with period 2π.
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3.1 Trivial System

First, consider the trivial stochastic oscillator of uniform drift with constant

diffusion coefficient given by

ẋ = f0 +
√

2Dξ(t), (13)

where f0 and D are constants. In this simple case the forward and backward

operators are L[v] = −f0v
′ + Dv′′, and L†[u] = f0u

′ + Du′′, and the mean

first passage time function must satisfy f0T
′+DT ′′ = −1. It’s clear that from

Schwabedal and Pikovsky’s average isophase definition (described in §1.1) the

MFPT function T (x) from x = 0 to x = 2π should be

T (x) =
1

f0

(2π − x) (14)

where x = 2π is interpreted as an absorbing boundary. This means T (0) is

the average time needed for a trajectory with initial condition x = 0 to reach

x = 2π after completing one full oscillation. We can interpret T (0) as the

mean period T . In Figure 3, I plot example trajectories of this trivial system

along with its true MFPT function.

If we were to solve the MFPT problem on the system’s natural periodic do-

mains given by

T (0) = T (2π) = 0 (15)
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Figure 3: For the one-dimensional trivial stochastic oscillator given by (13)
with f0 = 1 and D = 0.1 we have: (Left) Realization with initial condition
X(0) = 0. (Right) MFPT function T according to Pikovksy’s average isophase
definition.

we would obtain the solution plotted in Figure 4.

x
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Figure 4: For the one-dimensional trivial stochastic oscillator given by (13)
with f0 = 1 and D = 0.1 we have: (Solid black line) MFPT function T solved
with periodic boundary conditions using a finite difference scheme. (Dashed
red line) true MFPT.

Clearly the two curves in Figure 4 don’t match. The MFPT T with periodic
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boundary conditions curves downward near x = 0 instead of remaining linear.

This is because trajectories with initial conditions there can “drift backwards”

into the absorbing boundary at x = 0. So periodic boundaries cannot be

correct for calculating the average isophases. Next, we consider imposing a

reflecting boundary condition at x = 0 while keeping an absorbing boundary

at x = 2π. This forces trajectories to complete a full oscillation, in the positive

direction, before being “counted”. The boundary conditions are now

d

dx
T

∣∣∣∣
x=0

= 0

T (2π) = 0.

(16)

I plot the MFPT T for the left reflecting boundary condition in Figure 5.
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Figure 5: For the one-dimensional trivial stochastic oscillator given by (13)
with f0 = 1 and D = 0.1 we have: (Left) (Solid black line) MFPT function T
solved with left reflecting boundary conditions using a finite difference scheme.
(Dashed red line) ideal MFPT (Right) Zoom in of left figure near x = 0.

While the two functions nearly match, there is a discrepancy near x = 0. This
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is because we have imposed a reflecting boundary there and the derivative is

zero. This means trajectories that drift “backwards” through x = 0 because

of the noise and then continue in the positive direction to x = 2π will not be

possible. This lowers the MFPT near x = 0 as seen above.

However, we could in fact extend the domain several periods backwards so that

now we solve the MFPT problem on [−2πn, 2π) for n ≥ 1 where x = −2πn

is a reflecting boundary and x = 2π remains an absorbing boundary. In this

way, trajectories with initial conditions in [0, 2π) are unlikely to be affected

by the reflecting boundary at x = −2πn, given that n is sufficiently large. For

practical purposes, it is enough to take n = 2 as the probability of a trajectory

traveling backwards 2 periods to be affected by the reflecting boundary is

nearly zero. To do this, we must have the assumption that f(x) and D(x) are

periodic with period 2π. Below we solve the MFPT problem for the trivial

system on [−4π, 2π), see Figure 6.

While we still get the same discrepancy near the reflecting boundary at x =

−4π, we get the correct MFPT function T on the domain of interest [0, 2π).

Now suppose we repeat this procedure on larger and larger domains, i.e. we

take the limit as n → ∞. The MFPT function T (x) on each “copy” of the

domain [2πk, 2π(k+1)) ∀k converges, mod T . That is, for all fixed integer k >

0, and for x ∈ [0, 2π), T (x) converges to T (x)−kT for x ∈ [(−k)2π, (1−k)2π),

in the limit as n→∞.

Thus, in a 1D scenario, following the argument above, computationally im-
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Figure 6: For one-dimensional trivial stochastic oscillator given by (13) with
f0 = 1 and D = 0.1 we have: (Left) (Solid black line) MFPT function T
solved with left reflecting boundary conditions using a finite difference scheme
on extended domain [−4π, 2π) (Dashed red line) ideal MFPT near x = −4π.
(Right) Same function on left except over actual domain of interest [0, 2π).

posing the “full oscillation” condition from Pikovsky’s definition is a straight-

forward procedure. We have the boundary condition,

T (0) = T (2π) + T . (17)

Although from this boundary condition there is an arbitrary vertical trans-

lation, we are only interested in the level sets, which give us the average

isophases. Again T is the mean period, which can be calculated by averaging

over an ensemble of Monte Carlo simulations. (See also §6.3 for an analytic

approach to calculating the mean period T , given the stationary flux.) Since

there is an arbitrary vertical translation of the MFPT function T (x), to avoid

a singular system of equations (when solving Ax = b in the finite difference
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scheme) we can impose the following boundary condition instead:

T (2π) = 0 absorbing at right end

T (0) = T full oscillation condition at left end

(18)

Figure 7 illustrates this “jump” boundary condition for the trivial 1D system.

x
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Figure 7: For one-dimensional trivial stochastic oscillator given by (13) with
f0 = 1 and D = 0.1 we have: (Solid black line) MFPT function T solved with
“jump” boundary conditions using a finite difference scheme (Dashed red line)
true MFPT. The point-wise error is on the order of 1e− 14.

3.2 Tilted Periodic Potential

Next we demonstrate the equivalence of the extended domain approach and

the “jump” condition for a nontrivial system: the tilted periodic potential
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given by

ẋ = 1 + a cos(x) +
√

2Dξ(t). (19)

Without noise and for a = 1, the system has a fixed point at x = π. Figure 8

plots an example realization.
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Figure 8: Realization of the tilted periodic potential given by (19) with a = 1
and D = 0.01.

For this system the forward and backward Fokker-Planck operators are L[v] =

−((1 + a cos(x))v)′ + Dv′′, and L†[u] = (1 + a cos(x))u′ + Du′′. Figure 9

compares the MFPT T (x) from the “jump” condition and the extended domain

approach, demonstrating close agreement in this nontrivial case also.

3.3 Solvability Condition for the PDE Problem

To prove this “jump condition” with the MFPT PDE is a well-posed problem,

we use the Fredholm Alternative. The linear operator version of this theorem

16
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Figure 9: Tilted periodic potential given by (19) with a = 1 and D = 0.01:
(Black line) MFPT with “jump” condition and (Dashed red line) MFPT with
extended left reflecting boundary at x = −4π but plotted over [0, 2π). Point-
wise error is on the order of 1e− 8.

states (notation changed for our particular problem): Provided b(x) is in the

range of L†, then L†[T (x)] = b(x) has a solution, i.e. the MFPT problem is

well-posed, if and only if b(x) is in the orthogonal complement of the nullspace

of L (the operator adjoint to L† with respect to the standard inner product

space defined by 〈u|v〉 =
∫
dx u∗(x)v(x)). That is, for every U(x) in ker(L),

U(x) and b(x) are perpendicular.

Applying the Fredholm condition to our problem, we conclude that L†[T ] =

−1 has a solution if and only if for every function U such that L[U ] = 0,

〈−1, U〉 = 0 or
∫ 2π

0
dx U = 0. This is what we will prove next. From (2), (10),

17



and (18) we have

L†[T ] ≡ f(x)
d

dx
T +D(x)

d2

dx2
T = −1

T (0) = T

T (2π) = 0.

(20)

The adjoint operator L is defined such that 〈L†[T ], U〉 = 〈T,L[U ]〉. The

adjoint of the Kolmogorov backward operator is the forward Kolmogorov op-

erator, also known as the Fokker-Planck operator. It is the operator appearing

in the Fokker-Planck equation, which describes how the density of a stochastic

process evolves in time and, for systems of the form (10), is given by

L[U ] ≡ − d

dx
(f(x)U) +

d2

dx2
(D(x)U). (21)

While we know the PDE portion of the adjoint operator, the Fokker-Planck

equation above, we must calculate the corresponding boundary conditions for

U from the adjoint definition itself. Once we obtain the operator L, com-

plete with the boundary conditions for U , we verify the Fredholm condition is

satisfied. We apply integration by parts twice.

〈L†[T ], U〉 ≡
∫ 2π

0

dx f(x)
d

dx
(T )U +D(x)

d2

dx2
(T )U

= fUT

∣∣∣∣2π
0

−
∫ 2π

0

dx T
d

dx
(fU) +D(x)

d

dx
(T )U

∣∣∣∣2π
0

−
∫ 2π

0

dx
d

dx
(T )

d

dx
(DU)

(22)
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= fUT

∣∣∣∣2π
0

−
∫ 2π

0

dx T
d

dx
(fU) +D(x)

d

dx
(T )U

∣∣∣∣2π
0

−T d

dx
(DU)

∣∣∣∣2π
0

+

∫ 2π

0

dx T
d2

dx2
(DU)

= 〈T,L[U ]〉+ fUT

∣∣∣∣2π
0

+D(x)
d

dx
(T )U

∣∣∣∣2π
0

− T d

dx
(DU)

∣∣∣∣2π
0

This means that in order for L and L† to be adjoint operators, the following

must be true

fUT

∣∣∣∣2π
0

+D(x)
d

dx
(T )U

∣∣∣∣2π
0

− T d

dx
(DU)

∣∣∣∣2π
0

= 0. (23)

This expression also gives us the boundary conditions for U .

Note, that d
dx
T will be periodic 2π because f,D were assumed to be 2π-

periodic. Furthermore, since we assume that we are seeking a solution of the

form T (x + 2π) = T (x) − T then dT/dx must be periodic. Plugging in the

boundary conditions from (20) and taking into account the periodic functions

we have

−f(0)TU(0) +D(0)T ′(0)[U(2π)− U(0)] + T [D′(0)U(0) + U ′(0)D(0)] = 0

(24)

Because T ′(0) can be any arbitrary (negative) value, we must have that U(2π) =

U(0) so that the second term above is always zero. Similarly it must be the

case that U(0) = 0 from the first term since f(0) can also be any arbitrary
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value and finally U ′(0) = 0 from the last term. In other words, the only

boundary condition that makes the above equation true for all systems is

U(0) = U(2π) = 0

U ′(0) = 0

(25)

So ker(L) coincides with the set of functions satisfying:

L[U ] ≡ − d

dx
(f(x)U) +

d2

dx2
(D(x)U) = 0

U(0) = U(2π) = 0

U ′(0) = 0

(26)

The last boundary condition U ′(0) = 0 is redundant since the boundary con-

ditions U(0) = U(2π) = 0 are sufficient to solve the second-order differential

equation L[U ] ≡ 0. This redundancy is just a consequence of satisfying the

adjoint operator definition. However, we notice that any such function U is

equivalent to the steady state density of a stochastic oscillator on the circle

S ≡ [0, 2π) that obeys the SDE (10), with the coordinate x taken mod 2π.

The boundary condition U(0) = U(2π) = 0 is equivalent to having an absorb-

ing boundary there where particles are removed from the system (and can be

placed in a separate “bin” to conserve probabilities). So the solution is clearly

U ≡ 0. This satisfies the condition of the Fredholm Alternative previously

stated and so this “jump condition” is indeed a well-posed problem in which

at least one solution exists.
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To establish uniqueness of the solution, suppose that T1 and T2 are distinct

MFPT functions satisfying (20). Then

L†[T1 − T2] = 0. (27)

To establish uniqueness, we must prove that ker(L†) ≡ 0. Let ∆(x) =

T1(x)−T2(x), and define u(x) = d∆/dx. Clearly ∆ and u satisfy the boundary

conditions ∆(0) = ∆(2π) = u(0) = u(2π) = 0. Moreover, ∆ satisfies

0 = f(x)
d∆

dx
+D(x)

d2∆

dx2
= f(x)u(x) +D(x)

du

dx
. (28)

Solving this differential equation yields

∆(x′) = k

∫ x′

x=0

exp

[
−
∫ x

y=0

f(y)

D(y)
dy

]
dx, (29)

for some constant k ∈ R. From the boundary conditions it is clear that k ≡ 0,

hence uniqueness is established.
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4 Extending Average Isophase [1] in Planar

Systems

4.1 Noisy, Heteroclinic Oscillator [2]

We didactically introduce how we extend the average isophase definition in [1]

by reformulating it in terms of the MFPT PDE with a similar“jump” condition

for planar stochastic oscillators by closely following the arguments made for

one-dimensional systems. To specifically demonstrate our approach, we use a

noisy, heteroclinic oscillator also used in [2, 18]. Below we specify the system,

ẋ = f(x, y) +
√

2Dξ1(t)

ẏ = g(x, y) +
√

2Dξ2(t)

f(x, y) = cos(x) sin(y) + α sin(2x)

g(x, y) = − sin(x) cos(y) + α sin(2y)

(30)

with reflecting boundary conditions on −π/2 ≤ {x, y} ≤ π/2 and independent

white noise sources 〈 ξi(t)ξj(t′)〉 = δ(t− t′)δi,j. Figure 10 displays an example

trajectory, generated using the XPP platform [17].
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Figure 10: Trajectory with initial condition at (0, 0), α = 0.1, and D =
0.01125. The trajectory moves clockwise. In the absence of noise, the system
has a stable heteroclinic orbit with infinite period. With noise (D > 0), the
small perturbations eventually knock the trajectory out of the corners to form
a stochastic oscillator with finite mean period.

The forward and backward equations for this system are thus

L[v] = −(∂x(fv) + ∂y(gv)) +D(∂2
xx + ∂2

yy)v (31)

L†[u] = f∂xu+ g∂yu+D(∂2
xx + ∂2

yy)u. (32)

To reformulate the isophase calculation in terms of the MFPT PDE, we will

follow a similar procedure as we did with the one-dimensional systems. In

parallel with Figure (6), we can “unwrap” the oscillator so that the domain

now includes multiple “periods”, which I will refer to as leaves. Similarly,

the leaf, or period, of interest will contain the absorbing boundary and the

“furthest backwards” leaf at the other end will contain a reflecting boundary.

Figure 11 illustrates the construction.
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Figure 11: For the heteroclinic oscillator on an “unwrapped” domain, we
consider three-quarters of the domain for each leaf for simplicity. Straight
line Poincaré sections Si are used to “connect” the leaves of this “unwrapped”
oscillator. On the first leaf (left), which is the period “furthest back”, the black
line Sref is a reflecting boundary and we show an example trajectory originating
on it. The blue line S1 on the first leaf has a “continuity” condition with
the horizontal blue line S2 on the second leaf (middle). That is, trajectories
traveling on the first leaf and through the blue section S1 will begin on the same
location on the matched blue line on the second leaf. The reverse direction is
possible too and the same boundaries hold for the vertical blue line sections
S3 and S4 on the second to third leaf (right). The red line Sabs on the third
leaf is an absorbing boundary.

More formally, we begin with a bounded, planar, simply connected domain Ω,

such as the square region in Figure 10. We assume there is a natural “center” to

the domain, a point xcent at which the stationary flux vector field J(xcent) = 0.

We define the stationary flux in terms of the stationary probability density

ρ(x) as

J(x) = F(x)ρ(x)−D∇xρ(x), (33)

where F = (f, g)ᵀ and x = (x, y)ᵀ are the velocity and position vectors, respec-

tively. We remove a small neighborhood of xcent from the domain (cf. Figure

13) and take a surface of section from the outer wall to the boundary of the

inner neighborhood (Figure 13, vertical blue line). We assume it is possible
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to chose the section so that the stationary flux vector is transverse to it at

every point along the section. Now we introduce an infinite sequence of such

domains Ω0,Ω1,Ω2, . . . and assemble a single extended domain by identifying

points along one side of the cut with corresponding points along the other

side of the cut lying on the next subdomain in the sequence. Thus, a point in

domain Ωk approaching the cut from the left (that is, moving in the clockwise

direction) upon crossing the cut moves into domain Ωk−1. This is the typical

direction of motion, but because of noise, movement in the reverse direction

is also possible. In this case, if a trajectory moves across the cut from right

to left (that is, counterclockwise), it passes from domain Ωk to Ωk+1. The

final cut at the “bottom” of domain Ω0 is absorbing. We may compare this

construction with a commercial water slide (Figure 12, right panel) as follows:

most children playing on the slide move downwards, although some may (with

low probability) move upwards. However, once one exits from the bottom of

the last turn, there is no going back. Alternatively, one may compare the

spiral surface with Winfree’s “time crystal” construction [15].

For computational purposes, we can think of this configuration on a spiral

three-dimensional object with a finite number of leaves (see Figure 12).

We argue the following: that if we take the limit as the number of leaves

in the three-space “time crystal” structure goes to infinity or at least very

large, then the dynamics of the middle leaves are virtually non-affected by

the reflecting boundary on the top leaf nor the absorbing boundary on the
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Figure 12: Left: If we were to vertically stack the multiple copes of the
domain in Figure 11 and physically append the “connected” blue boundaries,
we could solve the MFPT PDE on this spiraled structure. The inspiration
for this structure is Winfree’s time crystal structure [15]. Right: commercial
water slide (image from
http://www.evermotion.org/shop/show product/archmodels-vol-94/5828).

bottom leaf. Therefore, the middle leaves will be identical and just vertical

translations of each other. In other words, they will be equivalent mod T ,

as in the one-dimensional case. And thus, for the middle leaves, if we take

a Poincaré section, it will be a mean period T vertical translation from the

above and below leaves.

That is we can solve the MFPT PDE for this noisy, heteroclinic oscillator

using a finite difference scheme on the same square domain with reflecting

boundaries with the minor modifications shown in Figure 13.

Again, we use the central difference approximation for the first-order partial

derivatives and the 5-point approximation for the Laplacian operator (given

by (9)). Surface and contour plots of the MFPT T are shown in Figure 14.
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Figure 13: Black dots are nodes on the finite difference mask. Red lines
represent reflecting boundaries. We implement a jump condition in parallel
with (17) along the blue line, whereby subtracting T from the nodes to right
of the blue line would yield a smooth surface. We remove a small square (and
impose reflecting boundaries) from the center to avoid the phase singularity
there. At small noise, trajectories rarely encounter this region. Note, because
there is an arbitrary vertical translation from the “jump” condition of (17),
we specify the value of the northwest corner of the domain to avoid this. For
the solution on the next page, we have that T (−π/2, π/2) = 100.

The Matlab code to calculate the MFPT and average isophases for the hetero-

clinic system is explicitly written in the Appendix A.1. The code reproduces

Figures 13 and 14.

For this system, we do not verify that the mean first-return times of the

calculated isophases is actually constant, as expected, by running Monte Carlo

simulations. We only do this for the last system studied: the noisy Stuart-

Landau Oscillator with y-polarized noise [1] found in §4.3.

Next I apply this method to other examples of stochastic oscillators, for ex-
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Figure 14: MFPT function T solution of finite difference scheme (described
in Figure 13 for D = 0.01125 and side length of smaller, center square of
0.2) plotted as a (left) surface and (right) as a contour plot showing average
isophases. Note that in the surface plot on the left, the colors correspond to
the same boundary conditions described in Figure 13 and that the vertical
blue lines are the same length corresponding to T .

ample a generalization of the Stuart-Landau oscillator introduced in [3]. This

extension of the method will require rewriting the MFPT PDE in cylindrical

polar coordinates, and implementing a finite difference scheme in that coordi-

nate system as well. The geometry then will be an annulus or punctured disk

which is much more natural domain to consider oscillators on.
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4.2 Generalized Stuart-Landau Oscillator [3]

From [3], a generalization of the Stuart-Landau oscillator is given by

ẋ = −ωy + γx(1− ρ2) + cγyQ(ρ) +
√

2Dξx(t)

ẏ = ωx+ γy(1− ρ2)− cγxQ(ρ) +
√

2Dξy(t)

ρ =
√
x2 + y2

(34)

such that Q(1) = 0. The function Q determines rotation away from the deter-

ministic limit cycle. As in their paper, we also assume that the deterministic

limit cycle is strongly attracting so that γ � ω is a large parameter. Note

that

Q1(ρ) = ρ2 − 1 (35)

gives the noisy Stuart-Landau system.

For the generalized Stuart-Landau oscillator, given by (34), the MFPT PDE

is rewritten in cylindrical polar coordinates

L†[T ] ≡
[
g +

D

ρ

]
∂

∂ρ
T+f

∂

∂θ
T +D

(
∂2

∂ρ2
+

1

ρ2

∂2

∂θ2

)
T = −1

f(θ, ρ) = ω − γcQ(ρ)

g(θ, ρ) = −γρ(ρ2 − 1)

(36)

along with the “jump” condition described in Figure 15. The terms containing

D/ρ and 1/ρ2 are a result from the change of coordinates.
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Figure 15: We solve the MFPT PDE on an annulus geometry. Black dots are
nodes on the finite difference mask. Red lines represent reflecting boundaries.
We implement a jump condition in parallel with (17) along the blue line,
whereby adding T from the nodes to right of the blue line would yield a smooth
surface. We remove a small circle (and impose reflecting boundaries) from
the center to avoid the phase singularity there. At small noise, trajectories
rarely encounter this region. Similarly, trajectories rarely travel outside r =
1.5. Note, because there is an arbitrary vertical translation from the “jump”
condition of (17), we can specify the value of the of the domain to avoid this.
So for Figure 17, we have that T (r = 0.5, θ = 0) = 100.

In the deterministic setting, if c = 0 then the system is independent of Q and

reduces to a radial isochronal clock model. That is, θ̇ ≡ constant ω so the

isochrons will have spokes-of-a-wheel geometry. In the stochastic setting, we

expect the average isophases to be the same since the noise is isotropic and of

equal magnitude in both directions. Figure 16 plots an example trajectory of

the isochronal clock model (c = 0).

Figure 17 displays the MFPT results.

From [3], two interesting oscillatory dynamics arise from (34). The first case
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Figure 16: Trajectory of isochronal clock model with initial condition at (0, 0),
ω = 1, γ = 1, and D = 0.01.
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Figure 17: MFPT function T solution of finite difference scheme (described
in Figure 15) for the isochronal clock model with ω = 1, γ = 1, and D =
0.01 plotted as a (left) surface and (right) as a contour plot showing average
isophases. Note that in the surface plot on the left, the colors correspond to
the same boundary conditions described in Figure 15 and that the vertical
blue lines are the same length corresponding to T . As expected, the average
isophases are spokes-of-the-wheel and each “spoke” is constant up to the order
of 1e− 12.

is referred to as counterrotating. Figure 18 shows an example trajectory.

The second case is referred to as antirotating and an example trajectory is
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Figure 18: Trajectory of counterrotating model with initial condition at (0,−1)
for Q = ρ2 − 1, ω = 1, γ = 15, c = 4, and

√
2D = 0.6. The bolded grey circle

is the deterministic limit cycle rotating counterclockwise. The grey arrows are
the deterministic vector field. The vector field outside of ρ∗ =

√
1 + ω/(cγ)

rotates clockwise and rotates counterclockwise inside. Trajectories will ad-
vance around the limit cycle more quickly when inside ρ∗ =

√
1 + ω/(cγ) and

travel in the reverse direction when outside.

plotted in Figure 19.
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Figure 19: Trajectory of antirotating model with initial condition at (1, 0) for
Q = −ω(1 − ρ)2, ω = 1, γ = 15, c = −15, and

√
2D = 0.63. The bolded

grey circle is the deterministic limit cycle rotating counterclockwise. The grey
arrows are the deterministic vector field. The vector field rotates clockwise
both outisde and inside of ρ∗ = 1 ±

√
1/(−cγ) respectively. Trajectories will

travel in the reverse direction as noise knocks them off the limit cycle.
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We apply the same MFPT PDE finite difference approach described in Figure

15 to calculate the average isophases for these two different cases. Note that

Figures 20, 21, and 24 are solved using only the “jump” condition at θ = 0 and

then the min(T ) is subtracted off. When we impose the value at a single point

in the finite difference scheme, the calculated MFPT T surface becomes much

more sensitive to the correct value for T . Small differences in the mean period

create clearly erroneous surfaces with jagged discontinuities. For systems with

larger noise, it becomes more challenging to accurately estimate the mean

period T from an ensemble of Monte Carlo simulations. With just the jump

condition, the surface is less sensitive to the mean period. This makes sense

as we don’t want to over-constrain the system. However, this different scheme

shouldn’t affect the results.
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Figure 20: MFPT function T solution of finite difference scheme (described
in Figure 15) for the counterrotating case with Q = ρ2 − 1, ω = 1, γ = 15,
c = 4, and

√
2D = 0.6 plotted as a (left) surface and (right) as a contour plot

showing average isophases. Note that in the surface plot on the left, the colors
correspond to the same boundary conditions described in Figure 15 and that
the vertical blue lines are the same length corresponding to T .
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Figure 21: MFPT function T solution of finite difference scheme (described
in Figure 15) for the antirotating case with Q = −ω(1 − ρ)2, ω = 1, γ = 15,
c = −15, and

√
2D = 0.63 plotted as a (left) surface and (right) as a contour

plot showing average isophases. Note that in the surface plot on the left, the
colors correspond to the same boundary conditions described in Figure 15 and
that the vertical blue lines are the same length corresponding to T .

4.3 Noisy Stuart-Landau Oscillator with y-polarized Noise

[1]

To perform noise-induced oscillations in an excitable system, [1] modifies the

noisy Stuart-Landau oscillator with y-polarized noise:

ṙ = r(1− r2) + σr cos θ ◦ ξ(t)

θ̇ = ω + r cos θ − κr2 + σ sin θ ◦ ξ(t).
(37)
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However, [1] uses the Stratonovich interpretation of SDEs, and so rewriting in

the Itô interpretation, the system is then given by:

ṙ = f + σr cos θξ(t)

θ̇ = g + σ sin θξ(t)

f = r(1− r2) +
rσ2

2

(
cos2 θ − sin2 θ

)
g = ω + r cos θ − κr2 +

σ2

2
cos θ sin θ.

(38)

Without noise, the system has a stable steady state so deterministic isophases

do not exist. Figure 22 shows an example trajectory of this system.
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Figure 22: Example trajectory for the noisy Stuart-Landau oscillator with y-
polarized noise given by (38) with ω = 1.99, κ = 1, and σ = 0.2. Also note
that this oscillator is not rotationally symmetric.

Writing the backward equation in cylindrical polar coordinates for (38) with

the change of variables is cumbersome because of the multiplicative noise.

Therefore, we treat the coordinates θ, r as the cartesian x, y plane, respectively.
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The MFPT PDE with this coordinate system for (38) is given by

L†[T ] ≡ f
∂

∂r
T + g

∂

∂θ
T +

1

2

[
σ2r2 cos2 θ

∂2

∂r2
T

+ 2σ2r cos θ sin θ
∂2

∂r∂θ
T + σ2 sin2 θ

∂2

∂θ2
T

]
= −1

T (r, θ = 0) = T (r, θ = 2π) + T .

(39)

Figure 23, below, depicts the resulting finite difference scheme.
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Figure 23: (Left) We solve the MFPT PDE for the noisy Stuart-Landau os-
cillator with y-polarized noise on the cartesian plane except with r, θ as the
coordinates. Black dots are nodes on the finite difference mask. Red lines
represent reflecting boundaries, corresponding with boundaries of an annulus.
We implement a jump condition in parallel with (17) along the blue lines -
whereby adding T from the nodes on the left blue line would yield a smooth
surface along θ = 0 of the annulus. This geometry corresponds with removing
a small circle (and impose reflecting boundaries) from the center to avoid the
phase singularity there. At small noise, trajectories rarely encounter this re-
gion. Similarly, trajectories rarely travel outside r = 1.5. We solve the system
with the arbitrary jump and then adjust by subtracting the min(T ). (Right)
Phase portrait for the noiseless case depicting the vector field (black arrows)
and nullclines (red curves) for r (horizontal line) and θ (parabolic curve) on
the same θ, r cartesian plane. For the parameters given in Fig. 22 the nullclines
intersect in one stable and one unstable equilibrium point.

Figure 24 displays the MFPT solution.
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Figure 24: MFPT function T solution of finite difference scheme (described in
Figure 23) for the noisy Stuart-Landau oscillator with y-polarized noise with
ω = 1.99, κ = 1, and σ = 0.2 plotted as a (left) surface and (right) as a contour
plot showing average isophases. Note that in the surface plot on the left, the
colors correspond to the same boundary conditions described in Figure 23 and
that the vertical blue lines are the same length corresponding to T .

As a further validation of my method, I ran additional Monte Carlo simulations

to verify the mean first-return times (MFRT) of the calculated isophases are

constant, as expected. In Figure 25, I plot an isophase and another Poincaré

section of constant θ, or “wheel spoke”, overlaying an example trajectory. The

“wheel spoke” is to demonstrate that the MFRT property is not satisfied for

an arbitrary Poincaré section.

Figure 26 shows the mean first-return times for each of the initial conditions.

As you can see, simulations confirm the MFRT property of the isophase and

demonstrate the MFRT property is not satisfied for the arbitrary “spoke”

Poincaré section.
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Figure 25: Example trajectory for the noisy Stuart-Landau oscillator with y-
polarized noise given by (38) with ω = 1.99, κ = 1, and σ = 0.2 in grey. The
black curve is an isophase with five initial conditions marked by the squares.
The red curve is a “spoke” through the middle isophase initial condition with
five initial conditions marked by circles. The right is a zoomed-in version of
the left.

4.4 Solvability Condition for the PDE Problem

Following §3.3, we prove existence of a MFPT solution T solved using our

“jump” condition for planar systems with the Fredholm Alternative again.

We use the following general planar stochastic oscillator in the proof:

ṙ = f(r, θ) +
√

2Dr(r, θ)ξr(t)

θ̇ = g(r, θ) +
√

2Dθ(r, θ)ξθ(t)

(40)
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Figure 26: For each initial condition along the isophase (black curve on pre-
vious figure), Monte Carlo simulations were generated using XPP and the
first-return times to the isophase, after completing a full oscillation, were cal-
culated and averaged. A first-crossing procedure was used where the isophase
was approximated using polynomial interpolation and the first time in which
the trajectory crossed the polynomial in upward direction, after θ had pro-
gressed at least 3π/2, was calculated. For each isophase initial condition,
about 1 million trajectories are averaged for the MFRT. The first-return time
for the “spoke” initial conditions was calculated by when the θ variable had
advanced 2π. For each “spoke” initial condition, about 800,000 trajectories
are averaged. The horizontal dashed black line is the mean period T calculated
from Monte Carlo simulations and used in the MFPT T surface calculation.
The error bars are the standard error in the mean measure. We used the
CWRU High Performance Cluster to perform the high volume of simulations
and calculations.

on an annulus domain Ω with the boundary Γ. The boundary Γ has the

following reflecting and jump conditions

∇T (router) · ~n = 0

∇T (rinner) · ~n = 0

T (θ = 0) = T (θ = 2π) + T .

(41)
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This setup coincides with the finite difference scheme of Figure 23. Again, we

need to prove that
∫∫

Ω
dΩ U = 0 where U = ker(L). We repeat the calculation

in Section 3.3 to determine the boundary conditions for U with the L operator.

First, the backward operator L† and forward operator L are given by

L†[T ] ≡ f
∂

∂r
T + g

∂

∂θ
T +Dr

∂2

∂r2
T +Dθ

∂2

∂θ2
T

L[T ] ≡ − ∂

∂r
(fT )− ∂

∂θ
(gT ) +

∂2

∂r2
(DrT ) +

∂2

∂θ2
(DθT ).

(42)
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Again, we apply integration by parts twice. For shorthand, ~A = (f, g)ᵀ.

〈L†[T ], U〉 ≡
∫∫

Ω

dΩ U( ~A · ∇T ) +

∫∫
Ω

dΩ UDr
∂2

∂r2
T + UDθ

∂2

∂θ2
T

=

∫
Γ

dΓ TU( ~A · ~n)−
∫∫

Ω

dΩ T∇ · U ~A

+

∫
Γ

dΓ
∂

∂r
(T )UDrn̂r −

∫∫
Ω

dΩ
∂

∂r
(T )

∂

∂r
(UDr)

+

∫
Γ

dΓ
∂

∂θ
(T )UDθn̂θ −

∫∫
Ω

dΩ
∂

∂θ
(T )

∂

∂θ
(UDθ)

=

∫
Γ

dΓ TU( ~A · ~n)−
∫∫

Ω

dΩ T∇ · U ~A

+

∫
Γ

dΓ
∂

∂r
(T )UDrn̂r −

∫
Γ

dΓ T
∂

∂r
(UDr)n̂r

+

∫∫
Ω

dΩ T
∂2

∂r2
(UDr) +

∫
Γ

dΓ
∂

∂θ
(T )UDθn̂θ

−
∫

Γ

dΓ T
∂

∂θ
(UDθ)n̂θ +

∫∫
Ω

dΩ T
∂2

∂θ2
(UDθ)

= 〈T,L[U ]〉+

∫
Γ

dΓ TU( ~A · ~n)

+

∫
Γ

dΓ
∂

∂r
(T )UDrn̂r −

∫
Γ

dΓ T
∂

∂r
(UDr)n̂r

+

∫
Γ

dΓ
∂

∂θ
(T )UDθn̂θ −

∫
Γ

dΓ T
∂

∂θ
(UDθ)n̂θ

(43)

This means the following terms must be equal to 0.

∫
Γ

dΓ TU( ~A · ~n) +

∫
Γ

dΓ
∂

∂r
(T )UDrn̂r −

∫
Γ

dΓ T
∂

∂r
(UDr)n̂r

+

∫
Γ

dΓ
∂

∂θ
(T )UDθn̂θ −

∫
Γ

dΓ T
∂

∂θ
(UDθ)n̂θ = 0

(44)

Substituting in the reflecting boundary conditions from (41), the second term
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cancels out and we are left with:

∫
Γ

dΓ TU( ~A · ~n)−
∫

Γ

dΓ T
∂

∂r
(UDr)n̂r +

∫
Γ

dΓ
∂

∂θ
(T )UDθn̂θ

−
∫

Γ

dΓ T
∂

∂θ
(UDθ)n̂θ = 0

(45)

The third term,
∫

Γ
dΓ ∂

∂θ
(T )UDθn̂θ, reduces to the left and right θ = 0, 2π

boundaries since n̂θ is 0 along the horizontal r = router, rinner boundaries. Be-

cause ∂
∂θ

(T ) can be any value, it must be the case that U(r, θ = 0, 2π) = 0.

Similarly, in the first term, ~A can be any arbitrary values on Γ and so U(r =

router, rinner, θ) = 0. This leaves the other two terms to be equal to 0, and will

only be true for all solutions T if there are reflecting boundary conditions. So

we finally have that L and the adjoint operator are given by

L[U ] = 0

U(Γ) = 0

∇U(Γ) · ~n = 0

(46)

As with the 1D proof, the last boundary condition ∇U(Γ) ·~n = 0 is redundant

since the boundary conditions U(Γ) = 0 are sufficient to solve the PDE L[U ] ≡

0. This redundancy is just a consequence of satisfying the adjoint operator

definition. Again, this is the steady state for a system where the boundaries

are absorbing and so the only solution is U ≡ 0 and the Fredholm Alternative

is satisfied. The “jump” condition is well-defined for planar systems as well.
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5 (Non)Equivalence of Average Isophase [1]

and Spectral Phase [2]

5.1 Spectral Phase [2]

In [2], the spectral asymptotic phase is derived from the spectral decomposition

of the forward and backward Kolmogorov operators. Consider the conditional

density ρ(~y, t|~x, s) for times t > s, evolving according to the forward and

backward equations given by:

∂

∂t
ρ(~y, t|~x, s) = L~y[ρ], − ∂

∂s
ρ(~y, t|~x, s) = L†~x[ρ]. (47)

Note that L~y and L†~x are adjoint operators, with respect to a natural inner

product. For a smooth function f(~x), where ~x(t) is given by the following

stochastic differential equation (SDE), using the Itô interpretation:

d~x

dt
= A(~x) +B(~x)~ξ(t). (48)

The operator L†~x[f(~x)] is:

L†~x[f(~x)] =
∑
i

Ai(~x)∂if +
1

2

∑
i,j

(BBᵀ)ij(~x)∂i∂jf. (49)
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We assume throughout that the conditional density can be written as the

following sum:

ρ(~y, t|~x, s) = P0(~y) +
∑
λ

exp(λ(t− s))Pλ(~y)Q∗λ(~x) (50)

where the eigentriples (λ, P,Q∗) satisfy:

L[Pλ] = λPλ

L†[Q∗λ] = λQ∗λ

〈Qλ|Pλ′〉 =

∫
Q∗λ(~x)Pλ′(~x)d~x = δλ,λ′ .

(51)

P0 is the stationary distribution corresponding to λ = 0. We assume that for

all other eigenvalues λ, that Re[λ] < 0. This means that ρ(~y, t|~x, s) → P0 as

(t− s)→∞. If for the slowest decaying eigenvalue λ1 = µ+ iω, the following

three conditions hold:

(i) ω > 0

(ii) |ω/µ| � 1

(iii) for all other eigenvalues λ′, Re[λ′] ≤ 2µ,

(52)

then the system is referred to as robustly oscillating. This means that if we

write the slowest decaying eigenfunctions in polar form, such that Pλ1 =

v exp(−iφ) and Q∗λ1 = u exp(iψ) with u, v ≥ 0 and φ, ψ ∈ [0, 2π), then for
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long times ((t− s)� 1) we obtain:

ρ(~y, t|~x, s)− P0(~y)

2u(~x)v(~y)
' exp(µ(t− s)) cos[ω(t− s) + ψ(~x)− φ(~y)] (53)

As [2] argues, ψ(~x), the complex polar angle from the backward eigenfunction,

provides a natural generalization of the asymptotic phase well known from the

theory of deterministic oscillators. Consider two distinct densities approaching

the steady state P0. As these two densities approach the steady state, they

will show transient oscillations with period 2π/ω. The oscillations observed

will be offset by the difference in their spectral phase ψ(~x).

In addition to developing a new procedure for calculating the average isophase

surface, I address the question of equivalence (or non-equivalence) of the

isophase reduction and the spectral phase reduction. In this section, I present

preliminary results that suggest the two types of “phase” are not equivalent,

except in some special cases.

5.2 (Non)Equivalence in One-Dimension

First, consider one-dimensional stochastic oscillators given in the form of (10).

In this case, we have obtained a lemma stating, in effect, that the two phases

coincide only in the trivial case of uniform drift with constant diffusion coef-

ficient. To check equivalence, we insert the polar form of the eigenfunction,
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Q(x) = u(x) exp {−iψ(x)}, and eigenvalue λ = µ− iω into the backward oper-

ator eigenvalue equation (51). Note, we impose all the same assumptions for

the spectral phase definition laid out explicitly in [2].

L†[Q] ≡ f(x)
d

dx
Q+D(x)

d2

dx2
Q = λQ

f(x)
d

dx
u exp {−iψ}+D(x)

d2

dx2
u exp {−iψ} = (µ− iω)u exp {−iψ}

(54)

Computing the derivatives, dividing both sides by Q = u exp {−iψ} (assuming

u 6= 0) and separating real and imaginary parts gives

µ = f(x)
u′

u
+D(x)

[
u′′

u
− (ψ′)2

]
ω = f(x)ψ′ +D(x)

[
ψ′′ + 2

u′ψ′

u

]
.

(55)

The second equation of (55) can be rewritten as

−1 = L†[− 1

ω
ψ]− 2D(x)

ω

u′ψ′

u
. (56)

If D(x)u′ψ′ = 0, then −1 = L†[−ψ/ω], which means that T (x) = −ψ/ω satis-

fies the mean first-passage time PDE, and thus the spectral phase is equivalent

to the average isophase in this case. More generally, we may write the mean-

first passage time T (x) as

T = − T

2π
(ψ(x)− ψ0), (57)
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since the mean period T = 2π/ω. The reference phase ψ0 is a particular

isochron that may be chosen arbitrarily. We conclude that for one-dimensional

stochastic oscillators (i.e. given by (10)), the spectral phase and average isophase

are equivalent if and only if

D(x)u′ψ′ = 0. (58)

If we assume that D(x) is an analytic function (infinitely differentiable, and

thus representable by a convergent Taylor series), then D(x) must either have

a countable collection of isolated zeroes, or else be identically equal to zero.

Finally, we observe that ψ′ cannot be equal to 0 on any open interval in

[0, 2π). If this were true then by (55), we would have ω ≡ 0, contradicting the

assumption of a “robustly oscillating” system [2]. This means that for (58) to

hold, and thus the two phase definitions to be equivalent, u′ must be equal to

0 - meaning that u is constant.

Thus we have established:

Lemma 1 For one-dimensional stochastic oscillators (given by (10)) with ad-

ditive white noise, D(x) ≡ D, the spectral phase and average isophase are

equivalent if and only if f(x) is constant.

Proof : First we show that f(x) = f0 (constant) implies equivalence. Write
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the slowest decaying eigenfunction and eigenvalue as

Q(x) = exp {−ix} (59)

λ = −D − if0 (60)

Since u ≡ 1, the two phases are equivalent.

Next we prove that phase equivalence implies f(x) = f0 (constant). Since the

phases are equivalent, we know that u′ = 0, so (55) reduce to

f(x) = ω/ψ′ = ω/

√
−µ
D
. (61)

Therefore, f(x) equals a constant. Moreover, since we know that µ = −D,

this constant is ω = f0. This completes the proof.

Thus, we are able to show that in one dimension, for a broad class of stochastic

oscillators, the two phase definitions never coincide except in the trivial case.

5.3 (Non)Equivalence in Planar Systems

For planar stochastic oscillators, following the same steps as §5.2, we establish

a similar result. In parallel with (58), we can assert that the spectral phase
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and average isophase are equivalent if and only if

∑
ij

(BBᵀ)ij (∂i log u)(∂jψ) = 0, (62)

where BBᵀ is from (49). This sum is zero if the gradient of the phase ψ and

the gradient of the “potential” U = log(u) are orthogonal with respect to

the inner product defined by 〈f, g〉 =
∑

i,j (BBᵀ)ij figj. Because (BBᵀ)ij is

symmetric with nonnegative entries, we have a well defined inner product. It

is a curious observation that if a planar system has isotropic noise (that is, the

noise in the x and y directions is independently and identically distributed with

state-independent magnitude) then the above condition is satisfied if Q, and

therefore logQ, is a complex analytic function of z = x+ iy. This condition is

equivalent to requiring that the real and imaginary parts of the eigenfunction

Q satisfy the Cauchy-Riemann equations.

6 Discussion

6.1 Extending Average Isophase [1]

Going back to the average isophase definition, any oscillatory system satis-

fying Schwabedal and Pikovsky’s criteria will also satisfy our PDE interpre-

tation. Therefore we have an equivalent formulation with the advantage of
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not requiring a technically challenging iterative numerical method. However,

the most important contribution of this method is combining the problem of

calculating the geometry and timing of the average isophases. In [1], the orig-

inal method, while able to calculate the location (or geometry) of individual

average isophase curves, does not provide the timing between each average

isophase. Our method solves both of these problems simultaneously. This

feature is especially important for non-rotationally symmetric stochastic os-

cillators, like the noisy Stuart-Landau oscillator with y-polarized noise. For

these cases, finding the average isophase foliation cannot be solved by simply

finding a single average isophase, greatly expediting the numerical procedure

in [1].

6.2 Limitations of the PDE Approach

Although we are only concerned with white Gaussian noise in the models we

study here, the average isophase definition from [1] is not limited to Markovian

systems. However, our MFPT PDE method can be extended to non-Markovian

systems. For systems driven by colored Gaussian noise, we could embed the

method in higher dimensions. That is, we could impose the T “jump” condi-

tion along a (n−1) dimensional sub-manifold of the system. For non-Gaussian

noise, such as the channel noise in the neural oscillator model in [2], as long as

the forward and backward operator are well-defined and have a biorthogonal
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expansion on the space, our MFPT PDE method should apply again. One sig-

nificant limitation of our PDE approach, compared to the original numerical

procedure in [1], is that it’s not clear how we could calculate average isophases

for time-series data.

6.3 Relation Between Stationary Flux and Mean Period

There remains an open question in our MFPT approach. For the MFPT cal-

culations in §3 and §4, we estimated the mean period for the “jump” condition

by averaging over an ensemble of Monte Carlo simulations. However, we have

not yet systematically investigated how small errors in the mean period T

affect the solution T .

To circumvent this issue, we propose a semi-analytic approach to calculating

the mean period T of a stochastic oscillator through the stationary density flux.

Intuitively, flux is a quantity relating to particles per time and the reciprocal

of which is time per particle, relating to the mean period. For one-dimensional

stochastic oscillators, we can prove the relationship

TJss ≡ 1 (63)

where Jss is the stationary flux. Below we define the setup and prove this

relationship.
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For x ∈ [0, 2π), a 1D ring, suppose ẋ = f(x) +
√

2D(x)ξ(t), with f and

D being 2π-periodic C1 and C2 functions, respectively. The Fokker-Planck

equation for the density ρ(x, t) is

∂ρ

∂t
= − ∂

∂x
(ρ(x, t)f(x)) +

∂2

∂x2
(ρ(x, t)D(x)) = − ∂

∂x
J(x, t) (64)

where we define the probability flux J(x, t) = ρ(x, t)f(x) − ∂
∂x

(ρ(x, t)D(x)).

At steady state we have the density ρss(x) and the stationary flux

Jss = ρss(x)f(x)− ∂

∂x
(ρss(x)D(x)) = constant. (65)

Let T be the mean first-passage time function for arrival at x = 2π from initial

condition x < 2π. We have

L†[T ] ≡ f(x)
dT

dx
(x) +D(x)

d2T

dx2
(x) = −1

T (0) = T

T (2π) = 0

(66)

Lemma 2 For one-dimensional stochastic oscillators (given by (10)), the mean

period T is the reciprocal of the stationary flux Jss or TJss ≡ 1.

Proof : We write Ess for expectation with respect to the steady-state density
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ρss, here written ρ. Evaluate

1 = −Ess[−1]

= −
∫ 2π

0

dx

(
ρ(x)f(x)

dT

dx
+ ρ(x)D(x)

d2T

dx2

)
= −

∫ 2π

0

dx ρ(x)f(x)
dT

dx
+

∫ 2π

0

dx
d(ρ(x)D(x))

dx

dT

dx
−
(
ρ(x)D(x)

dT

dx

)∣∣∣∣2π
0

= −
∫ 2π

0

dx

(
ρ(x)f(x)− d(ρ(x)D(x))

dx

)
dT

dx
− ρ(0)D(0)

(
dT

dx
(2π)− dT

dx
(0)

)
= −

∫ 2π

0

dx

(
Jss
dT

dx

)
= −Jss (T (2π)− T (0)) = −Jss(0− T )

= TJss

(67)

This completes the proof.

The proof relies on two observations. First, that the MFPT from x = 0 to

x = 2π is equivalent to the mean period T . That is, T = T (0). Second,

that derivative of the MFPT function T is 2π-periodic. These observations

are explained in §3.

We are currently working to extend this result to the n-dimensional case. In

that case we have

d~x

dt
= A(~x) +B(~x)~ξ(t) (68)

∂ρ

∂t
= −∇ · (ρA) +∇ · (∇(BBᵀρ)) (69)
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We should consider the steady-state flux vector

~J = ρ(x)A(x)−∇(ρ(x)BBᵀ(x)) (70)

which at steady-state is a constant (in time) vector field.

We also may have to limit ourselves to well-behaved oscillators, leading to

assumptions including a finite domain, vector field ~J is circulating, ~J is not

everywhere zero, ~J has no fixed points on boundary, and ~J is orthogonal to

boundary. Specifically when n = 2 we should be able to show that ~J will have

at least one zero in the interior of the domain. Suppose ~J has exactly one

critical point in the interior of a planar domain. If we construct a section Σ

from the boundary to the critical point and compute

Jtotal =

∫
x∈Σ

dn(x) · ~J(x)

T = 1/Jtotal

(71)

with dn(x) the normal vector. For well-behaved oscillators, another assump-

tion may be that dn · ~J has one sign only. However, this condition should be

satisfied for the planar systems in §4.

This quantity in (71) should be the same for every section connecting the

common center point to the boundary, by conservation of probability. As in
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the 1D calculation above, we have for the MFPT

−1 = f∇T +∇ᵀg∇T = f1∂1T + f2∂2T + g11∂11T + 2g12∂12T + g22∂22T

g = BBᵀ

(72)

since g = gᵀ. If we were to introduce the MFPT isochrons as our sections

(assuming they all meet at the critical point), we may be able to setup the

integral similar to the 1D case.

Unfortunately, a proof for the 2D case still remains but I numerically checked

the relation between stationary flux and mean period for the planar case of the

Heteroclinic oscillator. The mean period T from Equation (71) was calculated,

pictured below in Figure 27, and the result matched the mean period calculated

by averaging an ensemble of Monte Carlo simulations.

6.4 (Non)Equivalence of Average Isophase [1] and Spec-

tral Phase [2]

While we have began to clarify the relationship between the average isophase

and spectral definitions, their equivalence for planar systems still requires fur-

ther investigation. Specifically, we have yet to produce a system in which we
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Figure 27: Stationary distribution of the Heteroclinc oscillator calculated in
COMSOL Multiphysics. The reciprocal of the stationary flux integrated over
the Poincaré section depicted with the red line, from the center of the oscil-
lator to the boundary, matched the mean period calculated by averaging an
ensemble of Monte Carlo simulations. The horizontal Poincaré section was
chosen for simplicity of calculation.

could analytically calculate the backward eigenfunctions. This would allow us

to confirm our derived Cauchy-Riemann condition.

7 Conclusion

In conclusion, we extended Schwabedal and Pikovsky’s average isophase defi-

nition by formulating it in terms of a partial differential equation derived from

the mean first-passage time problem. Given our PDE and the appropriate

boundary conditions, if there exists a solution then the solution’s level curves

yield both the geometry and timing of the isophases. Moreover, any solution
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to the isophase problem obtained from Schwabedal and Pikovsky’s numerical

method must satisfy our PDE. This formulation allows us to clarify the theo-

retical foundation for the average isophases, and their relation to the spectral

phase.

Two alternative definitions of asymptotic phase for stochastic oscillators have

been introduced in recent literature [1, 2]. We have proven that the spectral

phase and average isophase generally do not coincide in one-dimensional sys-

tems. A condition for equivalence for n-dimensional systems has also been

derived, relating to a n-dimensional Cauchy-Riemann sum. While these two

notions of phase share similarities, the question of their equivalence remains

an important open problem.

Developing a clearer understanding of the asymptotic phase for stochastic

oscillators should provide a powerful tool for understanding the mechanisms

of control for biological central pattern generators and other critical biological

processes.

57



A Appendix

A.1 Matlab Code for MFPT Calculation of Heteroclinic

System [2]

clear

%% building geometry

% m must be odd!

m = 101; % don’t change without checking figure #1

epsilon = 0.3; % don’t change without checking figure #1

x = linspace(-pi/2, pi/2, m); % column stacked left to right

y = linspace(pi/2, -pi/2, m);

h = diff(x); % discretization size

h = h(1);

x_all = repmat(x, m, 1); % forming vector of ALL x coordinates in order

x_all = reshape(x_all, m^2, 1);

y_all = diag(y); % forming vector of ALL y coordinates in order

y_all = repmat(y_all, m, m);

y_all = diag(y_all);

% removing center square

remove = find(x_all>-epsilon/2 & x_all<epsilon/2 & y_all>-epsilon/2 ...

& y_all< epsilon/2);

r = sqrt(length(remove));

x_all(remove) = [];

y_all(remove) = [];

% removing northwest corner

x_all = x_all(2:end);

y_all = y_all(2:end);

z = zeros(length(x_all), 1); % to plot geometry

% geometry plot

figure

plot3(x_all, y_all, z, ’k.’, ’MarkerSize’, 5)

xlabel(’x’)

ylabel(’y’)

% sorting and plotting boundaries

outer_top = find(y_all == pi/2);

hold on
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plot3(x_all(outer_top), y_all(outer_top), z(outer_top), ’r.’,...

’MarkerSize’, 10)

outer_bottom = find(y_all == -pi/2);

hold on

plot3(x_all(outer_bottom), y_all(outer_bottom), z(outer_bottom),...

’r.’, ’MarkerSize’, 10)

outer_right = find(x_all == pi/2);

hold on

plot3(x_all(outer_right), y_all(outer_right), z(outer_right),...

’r.’, ’MarkerSize’, 10)

outer_left = find(x_all == -pi/2);

hold on

plot3(x_all(outer_left), y_all(outer_left), z(outer_left), ’r.’,...

’MarkerSize’, 10)

inner_top = find(x_all>=-epsilon/2 & x_all<=epsilon/2 &...

abs(y_all-epsilon/2) <= h);

hold on

plot3(x_all(inner_top), y_all(inner_top), z(inner_top), ’r.’,...

’MarkerSize’, 10)

inner_bottom = find(x_all>=-epsilon/2 & x_all<=epsilon/2 &...

abs(y_all+epsilon/2) <= h);

hold on

plot3(x_all(inner_bottom), y_all(inner_bottom), z(inner_bottom),...

’r.’, ’MarkerSize’, 10)

inner_right = find(y_all>=-epsilon/2 & y_all<=epsilon/2 &...

abs(x_all-epsilon/2) <= h);

hold on

plot3(x_all(inner_right), y_all(inner_right), z(inner_right),...

’r.’, ’MarkerSize’, 10)

inner_left = find(y_all>=-epsilon/2 & y_all<=epsilon/2 &...

abs(x_all+epsilon/2) <= h);

hold on

plot3(x_all(inner_left), y_all(inner_left), z(inner_left),...

’r.’, ’MarkerSize’, 10)

jump = find(y_all>=epsilon/2 & y_all<=pi/2 & x_all == 0);

hold on

plot3(x_all(jump), y_all(jump), z(jump), ’b.’, ’MarkerSize’, 10)

right_jump = find(y_all>=epsilon/2 & y_all<=pi/2 &...

abs(x_all-h)== min(abs(x_all-h)));

hold on

plot3(x_all(right_jump), y_all(right_jump), z(right_jump),...

’b.’, ’MarkerSize’, 10)

set(gca, ’FontSize’, 20)

axis square
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%% gathering "normal" right and left indices

right_norm = [];

for i = 1:length(y_all)-m

if y_all(i) == y_all(i+m)

right_norm = [right_norm i];

end

end

left_norm = [];

for i = length(y_all):-1:(m+1)

if y_all(i) == y_all(i-m)

left_norm = [left_norm i];

end

end

%% Constructing L-dagger matrix

D = 0.01125; % noise

N = length(x_all);

L_dagger = NaN(N, N);

for i = 1:N

temp = zeros(1, N);

temp(i) = -4 * D / h^2; % current spot

up = i - 1; % up index

down = i + 1; % down index

% find if current spot is on up/down boundary

check_outer_top = find(outer_top == i);

check_inner_bottom = find(inner_bottom == i);

check_outer_bottom = find(outer_bottom == i);

check_inner_top = find(inner_top == i);

% inserting "up" coeffecient

if length(check_outer_top) == 1

nothing = 0;

elseif length(check_inner_bottom) == 1

nothing = 0;

elseif length(check_outer_bottom) == 1

temp(up) = 2 * D / h^2;

elseif length(check_inner_top) == 1

temp(up) = 2 * D / h^2;

elseif i >= 2 % northwest corner doesn’t exist

temp(up) = g_het(x_all(i), y_all(i)) / (2*h) + D/h^2;

end

% inserting "down" coefficient

if length(check_outer_bottom) == 1

nothing = 0;

elseif length(check_inner_top) == 1

nothing = 0;

elseif length(check_outer_top) == 1

temp(down) = 2 * D / h^2;
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elseif length(check_inner_bottom) == 1

temp(down) = 2 * D / h^2;

else

temp(down) = -g_het(x_all(i), y_all(i)) / (2*h) + D/h^2;

end

% checking if it’s in normal right/left index

check_right_norm = find(right_norm == i);

check_left_norm = find(left_norm == i);

if length(check_right_norm) == 1

right = i + m;

else

right = i + (m-r);

end

if length(check_left_norm) == 1

left = i - m;

else

left = i - (m-r);

end

% checking if on left/right boundary

check_outer_left = find(outer_left == i);

check_inner_left = find(inner_left == i);

check_outer_right = find(outer_right == i);

check_inner_right = find(inner_right == i);

% filling in coefficients

% northwest corner doesn’t exist

if length(check_outer_left) == 0 &&...

length(check_inner_right) == 0 && i >= (m+1)

temp(left) = -f_het(x_all(i), y_all(i)) / (2*h) + D/h^2;

end

if length(check_outer_right) == 0 && length(check_inner_left) == 0

temp(right) = f_het(x_all(i), y_all(i)) / (2*h) + D/h^2;

end

if length(check_outer_left) == 1

temp(right) = 2*D/h^2;

elseif length(check_outer_right) == 1

temp(left) = 2*D/h^2;

elseif length(check_inner_left) == 1

temp(left) = 2*D/h^2;

elseif length(check_inner_right) == 1

temp(right) = 2*D/h^2;

end

L_dagger(i, :) = temp;

disp(i/N*100)

end

%% implementing jump condition in b-vector
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b = -ones(N, 1);

T_0 = 100; % specify northwest corner

b(1) = -1 - T_0 * (g_het(x_all(1), y_all(1)) / (2*h) + D/h^2);

b(m) = -1 + T_0 * (f_het(x_all(m), y_all(m)) / (2*h) - D/h^2);

T_bar = 16.225796508539315; % from simulations

b(jump) = -1 + T_bar * (f_het(x_all(jump), y_all(jump))/(2*h) + D/h^2);

b(right_jump) = -1 + T_bar * (f_het(x_all(right_jump),...

y_all(right_jump))/(2*h) - D/h^2);

%% solving system

T = L_dagger \ b;

%% plotting surface

figure

plot3(x_all, y_all, T, ’k.’, ’MarkerSize’, 5)

hold on

plot3(x_all(outer_top), y_all(outer_top), T(outer_top),...

’r.’, ’MarkerSize’, 15)

plot3(x_all(outer_bottom), y_all(outer_bottom), T(outer_bottom),...

’r.’, ’MarkerSize’, 15)

plot3(x_all(outer_right), y_all(outer_right), T(outer_right),...

’r.’, ’MarkerSize’, 15)

plot3(x_all(outer_left), y_all(outer_left), T(outer_left),...

’r.’, ’MarkerSize’, 15)

plot3(x_all(inner_top), y_all(inner_top), T(inner_top),...

’r.’, ’MarkerSize’, 15)

plot3(x_all(inner_bottom), y_all(inner_bottom), T(inner_bottom),...

’r.’, ’MarkerSize’, 15)

plot3(x_all(inner_right), y_all(inner_right), T(inner_right),...

’r.’, ’MarkerSize’, 15)

plot3(x_all(inner_left), y_all(inner_left), T(inner_left),...

’r.’, ’MarkerSize’, 15)

for i = 1:5:length(jump)

plot3([x_all(jump(i)) x_all(right_jump(i))],...

[y_all(jump(i)) y_all(right_jump(i))],...

[T(jump(i)) T(right_jump(i))], ’b.-’, ’LineWidth’, 5)

end

xlabel(’x’)

ylabel(’y’)

zlabel(’T’)

set(gca, ’FontSize’, 20)

axis square

%% plotting contourf

T_contour = zeros(m, m);

T_contour(remove) = NaN;

T = [T_0; T];

k = 1;

for i = 1:m^2
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if T_contour(i) == 0

T_contour(i) = T(k);

k = k +1;

end

end

figure

contourf(x, x, flipud(T_contour), 15)

xlabel(’x’)

ylabel(’y’)

set(gca, ’FontSize’, 20)

axis square

colorbar

...

function val = f_het(x, y)

alpha = 0.1;

val = cos(x) .* sin(y) + alpha * sin(2*x);

end

function val = g_het(x, y)

alpha = 0.1;

val = -sin(x) .* cos(y) + alpha * sin(2*y);

end
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