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Amplification in a Stochastic Two Dimensional Model
of Eukaryotic Gradient Sensing

Abstract

by

SUPARAT CHUECHOTE

Chemotaxis is the directed migration of cells guided by chemical gradients. Chemo-

taxis combine sseveral biological mechanisms, the first of which is gradient sensing.

The accuracy with which a cell can determine the direction of an external chemical

gradient is limited by fluctuations arising from the discrete nature of second mes-

senger release and diffusion processes within the small volume of a living cell. We

implement a stochastic version a Balanced Inactivation gradient sensing model in-

troduced by (Levine et al. 2006) in a two dimensional geometry. We develop a fixed

timestep approach in which the probabilities of individual molecules making chem-

ical transitions is handled as a system of multinomial random variables. With this

numerical platform we investigate the relationship between the amplification of the

gradient signal, nonlinear saturation at large gradients, and fundamental limits on

the accuracy of the gradient sensing mechanism.
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1 Introduction

1.1 Gradient Sensing and Chemotaxis

Chemotaxis is the directed migration of cells guided by chemical gradients. It is

an essential mechanism in many biological processes. For example, fibroblasts move

toward a platelet derived growth factor (PDGF) during the wound healing process;

cellular organization during embryogenesis occurs by response of cells to chemotac-

tic stimuli; polymorphonuclear neutrophil leukocytes (PMNs) are directed to sites of

inflammation in the immune system; and a Dictyostelium discoideum amoeba uses

chemotaxis to find its food source and aggregate with conspecific cells during periods

of starvation [4, 24, 29]. During chemotaxis, extracellular signals are translated into

complex cellular responses such as changes in morphology and motility. This mecha-

nism is induced by various cellular signaling networks. To understand the chemotaxis

mechanism at a molecular level, it is crucial to obtain detailed information about

the localization and dynamics of signaling processes. According to Iglesias and De-

vreotes, chemotaxis consists of three mechanisms; motility, polarization and gradient

sensing [4, 9, 10]. 1) Motility is the ability of chemotactic cells to move by periodic

extension and retraction of pseudopodia. This process does not require the existence

of chemoattractants. 2) Polarization occurs when cells arrange their cellular com-

ponents to differentiate sensitivities for a chemoattractant. The reorganization of

cellular components leads to well-defined leading and trailing regions. 3) Gradient

sensing occurs when a cell is able to detect and amplify spatial gradients [10]. Un-

derstanding how these three mechanisms couple to cellular morphology and motility

will clarify the biology of cell migration during chemotaxis.

Recent research has highlighted similarities between chemotaxis in mammalian

leukocytes (white blood cells) and in the social amoeba Dictyostelium discoideum [19].

This organism grows in soil that contains bacteria. With sufficient bacteria as their

nutrient, Dictyostelium cells live as individual amoebae. Upon depleting their food

1



supply, they release and respond to adenosine (3’,5’)-cyclic monophosphate (cAMP)

as their signal of starvation, which induces the cells to aggregate. The aggregated

cells then transform into a slug and hence a fruiting body. Consequently, spores from

the fruiting body are spread to new livable sites and their life cycle restarts. Chemo-

taxis is essential to Dictyostelium in the process of finding bacteria in the vegetative

stage and to aggregate in starvation where Dictyostelium cells move in response to

a concentration gradient cAMP. In comparison, mammalian leukocytes navigate by

following extracellular gradients of signaling molecules such as fMLP, a peptide re-

leased by bacterial pathogens, or interleukin-8, a distress signal released by damaged

host tissue. These chemoattractants play a role for leukocytes analogous to the role

of cAMP in Dictyostelium aggregation. Both types of cells exploit the G-protein

signaling pathways to mediate directional migration [19]. Therefore, Dictyostelium is

widely used as a model organism for the study of chemotaxis because it has a complete

genome profile and biochemical accessibility. The investigation of signaling pathways

of Dictyostelium can lead to the discoveries of features of pathways in mammalian

systems [19].

This study focuses on the gradient sensing mechanism in the aggregation pro-

cess of Dictyostelium. This process necessarily involves the spatial structure of the

cell (making zero-dimensional or point models uninteresting for this system). At

the unicellular level, the cAMP molecules bind to cAMP receptors (cARs) on the

plasma membrane of a Dictyostelium cell. The cAMP-bound receptors interact with

heterotrimeric guanosine triphosphate (G-proteins) located on the inner face of the

plasma membrane. The heterotrimeric G-protein has three subunits, Gα, Gβ and Gγ.

Upon cAMP binding, the receptor rapidly dissociates its subunits into Gα and Gβγ

components which are free to interact with downstream effectors and hence generate

cellular signals [13, 19].

Many downstream effectors influence the formation of the leading and trailing

edges of a chemotactic cell, including guanylyl cyclase (GC), phosphoinositide 3-

2



kinase (PI3K) and PI 3-phosphatase (PTEN) [11]. Soluble GC (sGC) plays a role

in generating cGMP (guanosine (3’,5’)-cyclic monophosphate) of the cells. Since the

cGMP is responsible for myosin filament formation at the rear of the cell and sup-

pression of pseudopod formation at the lateral edges and back of the cell, cells lacking

sGC tend to have low chemotactic activity and aggregate slowly [2]. Furthermore,

the PI3K and PTEN are the two effectors that control leading edge activity of a

chemotactic cell. They act oppositely to one another. While G-protein influences

the activation of PI3K and PTEN, PI3K increases local levels of phosphatidylinosi-

tol triphosphate, PI(3,3,5)P3, at the plasma membrane, while PTEN is responsible

for PI(3,4,5)P3 degradation. The local levels of PI(3,4,5)P3 at inner cell membrane

regulate actin polymerization at the leading edge of the cell by recruiting pleckstrin

homology (PH) domain-containing proteins [2, 23]. Therefore, extracellular gradients

directly influence the localization of PI(3,4,5)P3-bound PH domain at the leading

edge of the cells and localization of PTEN at the trailing edge.

1.2 Variability in Chemotactic Behavior

The ability of cells to detect extracellular gradients involves multiple catalytic reac-

tions, such as cAMP-receptors binding, interaction of PI(3,4,5)P3 to PH domain, and

binding of PTEN to the plasma membrane. Because interactions among individual

molecules fluctuate due to a cell’s environment and thermal fluctuation, signaling

processes in gradient sensing can become noisy and hence lead to inaccurate gradient

detection. In addition, diffusion of second-messenger molecules involved in gradient

sensing, such as PTEN and cGMP, causes signal dispersion and spatial gradient infor-

mation is not fully rendered. The possible reason can be the variation in diffusion rates

of the second-messenger molecules due to their size and location [24]. The dynamics

of PTEN molecules has been observed by means of internal reflection microscopy,

which showed that individual PTEN molecules bind to plasma membrane for only

about 300 ms [6, 21]. Furthermore, Miyanaga et al. [21] identified the stochastic signal
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transduction processes of chemotaxis. They visualized the localization of PI(3,4,5)P3

on the membrane by fluorenscently tagging PH domain-containing protein, Crac, that

binds specifically to PI(3,4,5)P3. The Crac-GFP served as a reporter for the cellu-

lar response to chemoattractants since the localization of Crac-GFP took place at

a high concentration of cAMP and in the direction of pseudopod formation. The

result also showed that Crac-GFP localization on the membrane is maintained by the

rapid exchange of individual molecules. This result confirmed that the chemotactic

signaling process is stable but the underlying reaction is stochastic [21]. Therefore,

stochastic noise should be taken into account in order to simulate the gradient sensing

mechanism of the eukaryotic cells.

1.3 Amplification in Gradient Sensing Pathways

Eukaryotic cells such as Dictyostelium and human neutrophils have a remarkable abil-

ity to sense the direction of weak extracellular chemical gradients. Gradients as small

as an ≈ 1% difference in receptor occupancy between front and back can produce re-

liable chemotaxis [31]. This fascinating navigational ability compels us to investigate

the transduction mechanism to understand how weakly localized signals convert to

strongly localized responses. Postma and Van Haastert [24] have proposed a model for

signal amplification with downstream cytosolic effector translocation. Their model

describes a positive feedback mechanism involving phospholipid second messenger

molecules. After application of an external gradient, the membrane receptors are

activated and the production of phospholipid second-messenger molecules takes place

at the front of the cell or at parts of the cell close to the external gradient source. The

increase in the phospholipid second-messenger molecules makes the cytosolic effector

molecules translocate from cytosol to the membrane at the front. Since there are

more localized effector molecules near the front, the activated receptors on the outer

membrane have more capability to induce the production of phospholipid second-

messenger molecules. As an overall consequence, a positive feedback mechanism has
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occurred in the phospholipid second-messenger molecules. The number of phospho-

lipid second-messenger molecules will increase at the front and decrease at the back

[24]. Gradient amplification in this case is defined to be the process of increasing

differentiation between the front and the back of the cell.

Janetopoulos et al. [12] measured an amplification ratio of gradient sensing in

Dictyostelium cells as the relationship between the levels of fluorescent intensity of

Cy3-cAMP, a fluorescent cAMP analog that stimulates the cAMP receptors, and a

fluorescently tagged readout protein (PH-GFP). The first one serves as chemoattrac-

tant or the input source and the latter is the measure of PI(3,4,5)P3 recorded on the

membrane. Their amplification ratio is defined as [12]:

Janetoupoulos et al.’s amplification ratio =
normalized [PH-GFP]

normalized [Cy3-cAMP]
(1.3.1)

The normalization in this sense means dividing each signal by its mean. The

ratio is obtained from a least-squares fit. This measurement coincides agrees with

Shibata and Fujimoto’s characterization of signal amplification ratio [26], which is

more generalized. They describe the amplification in terms of the gain g of the

signal, defined by the ratio between the fractional change in the output signal X and

the fractional change in the input signal Y .

g =
∆X/X̄

∆Y/Ȳ
. (1.3.2)

Janetopoulos et al. measured the amplification ratio based on the concentration

of normalized PH-domain/GFP fluorescence signal versus normalized stimulus con-

centration. The resulting plot is shown in Figure 1, reproduced from [12]. In Section

2.7 we develop an alternative quantification of gradient signal amplification defined

by the ratio of the dispersion of the output signal and the input signal.
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Figure 1: The amplification of the gradient signal interpreted as the ratio between the
output (normalized [PH-GFP]) and input (normalized [cy3-cAMP]) signals. Nor-
malization is multiplicative, so the plotted data have unit mean in along each
direction. Reproduced from [12].

1.4 Models of Gradient Sensing Pathways

1.4.1 Deterministic Models

Alan Turing initiated the study of pattern formation in biological systems in terms

of interactions of activation and inhibition mechanisms on different length scales [30].

Application of such reaction-diffusion systems of partial differential equations to pat-

tern formation at the cellular level was spurred further by the work of Gierer and

Meinhardt [7]. More recently, Levchenko and Iglesias derived a version of such a

model based on a detailed molecular mechanism similar to that described in Section

1.3, namely activation of G-protein mediating both a locally acting activator (PI3K)

and a globally acting inhibitor (PTEN) [17]. It is known as a local excitation, global

inhibition (LEGI) principle. The scheme is implemented upon the assumption that

a signal S triggers an activator A and an inhibitor B. The activator A catalyzes the

conversion of a non-activated response factor R to an activated form R∗, whereas the

6
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A B

R* BmA

S
B

LEGI model A balanced inactivation model

Figure 2: [left] A LEGI (local-excitation and global inhibition) model, which describes that
the receptor occupancy signal (S) triggers a fast-local excitation signal (A) and a
slow global inhibition signal B). Coupling both signals yield the cellular responses
(R∗). [right] A balanced inactivation model, which is a modification of LEGI
incorporating a membrane-bound inhibitor (Bm) [10].

inhibitor I converts R∗ into R [17]. Levchenko and Iglesias proposed chemical realiza-

tion of this model; that S is the G-protein, A is PI3K, I is PTEN, R∗ is PI(3,4,5)P3

and R is phosphoinositide phosphate PI(4,5)P2. The activation ceases when there is

no PI3K. This characteristic of the LEGI model shows sensitivity to signal variation

and changes in ligand concentration. However, the LEGI model does not account

for a switch-like behavior observed in experiments that show the level of PH domain

proteins approaches zero at the rear of the cell. This observation occurs for a wide

range of chemoattractant gradients [12, 18]. Therefore, Levine et al. developed a bal-

anced inactivation model, which is similar to the LEGI model, except it includes an

additional component called a membrane-bound inhibitor acting as an inhibitor to

the response [18]. Figure 2 shows the diagrams of LEGI and the balanced inactivation

models. The difference is component Bm which acts as a membrane-bound inhibitor.

The balanced inactivation model describes the reactions of abstract components of

gradient sensing mechanism [18]. The system of differential equation couples chemical
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reactions happening on the cell membrane and the diffusion process of a cytosolic

inhibitor, B. However, it excludes the external pathway of cAMP molecules binding

to receptors. The system is described as below [18]:

∂A

∂t
= kaS − k−aA− kiABm, (1.4.1)

∂Bm

∂t
= kbB − k−bBm − kiABm, (1.4.2)

∂B

∂t
= D∇2B, (1.4.3)

and dynamic boundary condition for diffusion equation,

D−→n � (
−→5B) = kaS − kbB (1.4.4)

where −→n represents the outward surface normal at each location on the boundary.

In this model, the component S represents the surface concentration of activated

receptors, which is taken to be directly proportional to the concentration of chemoat-

tractants. (This linearizing approximation mainly applies to weak gradients.) The

activated receptors S generate membrane-bound species A and a cytosolic species B

at rate ka. The component A acts as an activator and also the cellular response to

the gradient of the model. The molecule A degrades at rate k−a. The component

B acts as a cytosolic inhibitor. It is diffusible with diffusion coefficient equal to D.

B can also binds to the membrane, producing a membrane-bound inhibitor Bm at

rate kb. Bm is also allowed to degrade at rate k−b. The inhibiting reaction occurs by

Bm reacting with A to form a complex A ·Bm at rate equal to ki. We interpret the

vector sum of the locations of the remaining A molecules as representing the cell’s

inferred gradient direction. Equations (1.4.1) - (1.4.4) may be represented in terms
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of chemical reactions as follows:

S
ka−→ A+B + S (1.4.5)

A
k−a−−→ ∅ (1.4.6)

B
kb−→ Bm (1.4.7)

Bm
k−b−−→ ∅ (1.4.8)

A+Bm
ki−→ A ·Bm (1.4.9)

In equations (1.4.1) - (1.4.4), the quantities S, A andBm are interpreted as the number

of molecules per unit length (numbers per micron) along the membrane. The quantity

B, in contrast, is represented as the number of molecules per unit area (number per

square micron) in the interior of the cell. Consequently the constants ka, k−a and k−b

have units of 1/Time, while the constant ki has units of Length/(Number·Time) and

the constant kb has units of Length/Time. The constants and parameters used are

summarized in Table 1 and Table 2. In equation (1.4.4) the diffusion constant D has

units of Length2/Time and the gradient operator has units of 1/Length. Consequently

the unit normal vector ~n is taken to be dimensionless.

Levine et al. showed that A localizes to the side of a model cell corresponding to

a higher level of receptor occupancy S, while Bm localizes to the opposite side. They

suggested that molecule A could be Gα which plays a role as activator and directs

the pathway at the front, whereas Gβγ could be thought as B molecules and control

the localization at the back.

1.4.2 Stochastic Models

Berg and Purcell pointed out the importance of noisy fluctuations in local chemical

concentrations, and fluctuations in receptor binding states, as providing a fundamen-

tal limit on the ability of cells to measure concentrations and gradients accurately

[1]. They analyzed a model for chemotaxis in bacteria and calculated the statistical

9



noise that arises from variations in the number of receptors bound at any instant,

caused by the random movement of ligand molecules near a single receptor molecule.

They also noted that the accuracy in sensing chemical concentration depends on the

number of receptors. Berg and Purcell’s ideas were subsequently incorporated into

stochastic models of chemotaxis in eukaryotic cells. Small bacterial cells (c. 1 µm in

length) cannot accurately detect gradients by comparing receptor occupancies simul-

taneously at different points along their length, whereas larger amoeboid cells (c. 10

µm in diameter) can use a combination of spatial and temporal sensing. Tranquillo

and Lauffenburger [28] developed a one dimensional model of the receptor population

on the two sides of a lamellipodium (or leading edge). The key concept of Tranquillo’s

model is to evaluate the difference in the concentration associated with receptor bind-

ing, which is characterized as a Markov processes describing binding and unbinding

of ligand with each membrane receptor. At the uniform chemoattractant concentra-

tion, the two sides of the lamellipod have about equal amounts of receptors bound

to ligand. Therefore, the direction that the cell moves is at the middle between two

sides. If the gradient source is placed near the right side, the number of receptors

perceiving ligand concentration is more than the left and hence cell turns toward the

right. The fluctuation in the direction is mainly from the error in the binding ability

of receptors. In order to account for the effects of fluctuations internal to gradient

sensing pathways, we need to account for the random occurrence of events generated

from chemical reactions and the transmission of noise throughout the pathway.

Shibata and Ueda used a simple scheme to elucidate noise propagation and its

effect to the accuracy of chemotaxis in Dictyostelium [27]. As discussed in Section

1.3, the gain represents the cellular response. For the pathway that involves multiple

reactions, the noise propagates through the system. Shibata and Ueda consider the

noise transmitted by other reactions and the noise generated by input signals to

be extrinsic noise, whereas intrinsic noise is the noise of output signal that can be

calculated by the difference between output signal and the output signal at steady

10



state. Shibata and Ueda calculated a signal to noise ratio (SNR) for different ligand

concentration conditions. They found that at the lower ligand concentration, SNR is

mainly affected by extrinsic noise. This implies ligand binding fluctuation determines

the accuracy of gradient sensing. For a higher ligand concentration, the intrinsic

noise contributes dominantly [27]. For the purposes of this thesis we have focused on

implementing representations of noise internal to the signaling pathway, although it

should be straightforward to include noise due to receptor occupancy fluctuations as

well.

2 Methods

2.1 Deterministic point model

When the diffusion coefficient D is large , the number of molecules B inside the cell is

uniformly distributed. As a consistency check, we compare the steady state response

to a uniformly applied signal with simulations of the 2D model for large values of D.

To find the steady state to a uniform signal given a concentration of chemoattrac-

tants equal to S0, we set the right hand sides of equations (1.4.1)-(1.4.4) equal to zero

and solve to obtain B, Bm and A at steady state [18].

Setting (1.4.4) equal to zero yields B at steady state, B0.

B0 =
kaS0

kb
. (2.1.1)

Then, solving (1.4.1) and (1.4.2) with B = B0 gives A0 and Bm,0.

Bm,0 =
kbB0

kiA0 + k−b
(2.1.2)

A0 =
−k−ak−b +

√
(k−ak−b)2 + 4kakik−ak−bS0

2kik−a
(2.1.3)

11
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Figure 3: The result of deterministic point model analytically solved with S0 = 4000
molecules per node and the constant parameters as specified in Table 1 and Table
2. Top Left: the number of chemoattractant molecules S at t = 0s. Top Right:
the number of cytosolic B per node (at the membrane) at steady state. Bottom:
the number of membrane bound A (Left) and Bm (Right) at steady state.

Figure 3 illustrates the result when uniformly distributed chemoattractant is ap-

plied. Figure 3A shows the concentration of input (activated receptor molecules) uni-

formly distributed around the cell membrane, 4000 molecules per node (#mol/node).

The 40 nodes on the cell membrane are distributed evenly, with a spacing of (10π/40)µm ≈
0.785µm, as in the cell geometry depicted in Figure 5. At steady state, the cytosolic

molecules B present at the membrane nodes is also uniformly distributed as shown in

Figure 3B. Consequently, the induced products A and Bm are uniformly distributed

on the cell membrane. Section 3 shows the result of stochastic simulation with the

same parameters assigned. The stochastic simulation converges to a distribution close

to that predicted by the deterministic point model.
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2.2 Multinomial Representation of Chemical Reactions

2.2.1 Chemical reactions and spatial transitions represented via discrete

time, discrete space stochastic processes

The LEGI and Balanced Inactivation Models were originally formulated as partial

different equations models in which a reaction-diffusion system in the cell interior

is coupled to a system of nonlinear differential equations localized to each point of

the boundary. The model variables located on the cell membrane boundary are also

coupled to the external reaction-diffusion system representing the external signal. We

call this type of system a boundary-coupled reaction diffusion PDE system, because

the interior and exterior of the model cell are coupled only through the boundary

variables. The standard modeling approach through boundary coupled PDEs does

lend itself to studying the variability in cellular response. A model cell with uniform

initial conditions placed in a linear gradient will, by virtue of reflectional symmetry,

always have an extremum of the internal signaling components along the axis parallel

to the gradient direction. However, real cells performing chemotaxis show a distri-

bution of movement directions relative to the stimulus direction [28]. Fluctuations

in the signaling pathways due to molecular counting noise have been proposed as an

important source of behavioral and phenotypic variability in chemotaxis [25, 29], as

well as genetic regulatory and other systems [5].

As Shibata has pointed out [27] the same processes that amplify an extracellular

gradient signal will also amplify the fluctuating component (noise) inherent in the

pathway upstream of the amplification process. Moreover the reactions responsible

for amplification may contribute additional noise. In order to account for the discrete

and stochastic nature of the gradient sensing system, we adopt a chemical master

equation (CME) approach.

Gradient sensing mechanism is susceptible to noise amplification [26, 27]. There-

fore, we should account for the discrete and stochastic nature of the system. The
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chemical master equation (CME) is used to capture the variation in chemical species

as a parabolic partial differential equation with the prerequisite that the system can

be regarded as a Markov process and its content is well-mixed. However, the size

of the state space grows exponentially with the number of reactant species in the

model. Direct (“exact”) solution methods can be cumbersome even with few chem-

ical species involved. The most common strategy for handling a large state space is

the stochastic simulation algorithm (SSA) [8]. The SSA simulates the chemical evo-

lution by randomly applying the reactions of the system and recording the resulting

states. The simulated data is then used to estimate a probability density function. To

accelerate simulation speed, Gillespie proposed a scheme called a τ -leaping method

[8], where the exponential waiting time, τ , for the next reaction to occur is improved.

The reactions likely to occur are drawn from a longer time step, τ , from either a

Poisson or Binomial distribution. However, for a balanced inactivation model, the

well-mixedness assumption does not apply since the probability of reacting molecules

also depends on their locations on cell’s boundary. The multinomial simulation algo-

rithm (MSA) was introduced to account for spatial inhomogeneity [16]. The system

is divided into subvolumes each of which is assumed to be well mixed. We use the

idea of MSA to apply to the balanced inactivation model.

The probability distribution governing the occurrence of reactions in a chemical

master equation formulation depends on the type of each reaction. Therefore we

categorized the chemical reactions (1.4.5)-( 1.4.9) into zeroth order, first order, and

second order reactions.

The only zeroth order reaction is the reaction (1.4.5). In a time interval dt, NS

molecules of S independently induce reaction (1.4.5) with intensity NSkadt. It is

similar to a birth process which obeys a Poisson distribution. We assume that the

S molecules, which also represent the chemoattractant molecules, are distributed

14



In a time interval dt, NS molecules of S independently induces reaction (1.5.5)

with probability NSkadt which obeys Poisson distribution. We assume that the S

molecules serves as activated receptors, which also represent the chemoattractant

molecules, are dispersed as linear gradient following the formula:

S = S0 − εcos(θ −Θ), (2.2.1)

where θ is a directional variable of the cell in circular shape, 0 ≤ θ ≤ 2π, Θ is

a parameter of the true direction where the gradient source is placed, S0 is the

median of concentrations of S molecules around the cell membrane and ε is a

relative gradient constant.

Therefore, we can draw a random number for this reaction to occur based on

poisson distribution.

∆NA(dt)S→A+B+S = ∆NB(dt)S→A+B+S ∼ Poiss(NSkadt) (2.2.2)

[WHERE DOES S COME FROM? “In our implementation as in the Balanced

Inactivation model, the receptor activity level S(θ) is fixed to be [give the formula

in terms of mean and amplitude that will be referred to later]. Thus in this thesis

we only study the noise in the amplification pathway itself. Incorporating the

effects of noise arising from receptor occupancy fluctuations and from fluctuations

in the extracellular perimembrane concentration is conceptually straightforward

but will be reserved for future work.”]

The only zero-th order reaction (1.5.5) is a birth process. In a time interval dt,

NS molecules of S independently induces reaction (1.5.5) with probability NSkadt

which obeys Poisson distribution. Therefore, we can draw a random number for

this reaction to occur based on poisson distribution.
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Figure 4: [left] The concentration of activated receptors in linear gradient with various
gradient constant, ε, S0 = 4000 molecules, and Θ = π

following a linear gradient according to the formula:

S(θ) = S0(1 + ε cos(θ −Θ)), (2.2.1)

where θ is a directional variable of the cell in circular shape, 0 ≤ θ ≤ 2π, Θ is a

parameter of the true direction where the gradient source is placed, S0 is the median

concentrations of S molecules around the cell membrane and 0 ≤ ε ≤ 1 is the relative

or fractional gradient parameter. In Figure 4, the relative gradient constant (ε) shapes

the steepness of gradient in chemoattractants. Therefore, we can draw a random

number for the reaction (1.4.5) to occur following the Poisson distribution:

∆NA(dt)S→A+B+S = ∆NB(dt)S→A+B+S ∼ Poiss(NSkadt) (2.2.2)

Because the source S is taken to be constant in time, this expression is valid for

arbitrarily long time intervals dt.

The first order reactions are the reactions (1.4.6), (1.4.7) and (1.4.8). Each

molecule on the membrane has two choices; to react or stay calm. Each molecule

A, B and Bm has a chance to participate in the reactions with probabilities equal
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to k−adt, kbdt and k−bdt respectively. In order words, provided the numbers of each

molecule remains fixed in a given (short) time interval dt, the number of instances of

each reaction occurring within dt obeys the binomial distribution:

∆NA(dt)A→φ ∼ Binom(NA, k−adt) (2.2.3)

∆NB(dt)B→Bm ∼ Binom(NB, kbdt) (2.2.4)

∆NBm(dt)B→φ ∼ Binom(NBm, k−bdt). (2.2.5)

For the bimolecular reaction (1.4.9), the probability of the reaction occurring n

times in an interval dt cannot be drawn directly from a Binomial or Poisson distribu-

tion due to the depletion of both reactants A and Bm. Let pn(t) be the probability

that as of time t exactly n reactions have occurred. Suppose NA0 and NBm0 are the

initial numbers of molecules A and Bm. Then the probability that no bimolecular

reactions have occurred in time t decays exponentially at rate NA0NBm0ki:

p0(t) = exp(−NA0NBm0kit). (2.2.6)

For the probability of exactly 0 < n ≤ min(NA0, NBm0) reactions to have occurred in

time t, we have the recurrence relation

dpn(t)

dt
= (−Q(n)pn(t) +Q(n− 1)pn−1(t)) ki, (2.2.7)

where we define the quadratic factor Q(n) as

Q(n) = (NA0 − n)(NBm0 − n). (2.2.8)

However, with higher n, we encounter difficulty in solving for the general case of

differential equation (2.2.7). Instead we invoke Kurtz’s theorem, which guarantees the

convergence of the mean of the master equation solution to the deterministic system
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in the limit of large numbers of (well mixed) reacting molecules. The deterministic

rate for the bimolecular reaction is

dNA

dt
=
dNBm

dt
= −dNA·Bm

dt
= kiNA(t)NBm(t) = −kiQ(NA·Bm). (2.2.9)

where we temporarily abuse notation, e.g. using NA to refer to the expected value of

NA, for sufficiently large NA and NBm . For this equation we assume an initial value

of NA·Bm(0) ≡ 0.

Converting equation (2.2.9) to a logistic growth equation gives

du

dt
= ru(1− u

K
), (2.2.10)

where

u(t) = max(NA0, NBm0)−NA·Bm(t); (2.2.11)

r = ki|NA0 −NBm0|; (2.2.12)

K = |NA0 −NBm0|. (2.2.13)

Solving equation (2.2.10) yields an expression for the change in NA·Bm , which

corresponds to the mean number of reactions,

NA·Bm = NA0 −NA(t) = NBm0 −NB(t). (2.2.14)

NA·Bm =


NBm0

(
1− NBm0−NA0

NBm0−NA0 exp(−(NBm0−NA0)kit)

)
, NBm0 > NA0

NA0

(
1− NA0−NBm0

NA0−NBm0 exp(−(NA0−NBm0)kit)

)
, NA0 > NBm0

NA0

(
1− 1

1+NA0kit

)
, NA0 = NBm0.

(2.2.15)

This expression gives an approximation for the number of times the bimolecu-

lar reaction (1.4.9) occurs in a time interval of length t, given the initial number of

molecules of A and Bm. Therefore, we draw the number of molecules A and Bm

that will be depleted due to reaction (1.4.9) from a binomial distribution represent-
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ing nmax = min(NA0, NBm0) independent samples each with probability given by

NA·Bm/nmax, where NA·Bm is calculated from 2.2.15 with time interval dt.

∆NA(dt)A+Bm→A·Bm = (2.2.16)

NBm(dt)A+Bm→A·Bm ∼ Binom

(
min(NA0, NBm0),

NA·Bm

min(NA0, NBm0)

)

At this point, we know how to estimate the increments and decrements of molecules

A, B and Bm that participate in reactions (1.4.5) - (1.4.9) for each time step on the

membrane, for each reaction type (zeroth order, first order, second order) taken singly.

In practice, we interleave each reaction type rather than execute each simultaneously

(see Section 2.4 for details of the simulation algorithm). It remains to address the

spatial distribution of the cytosolic diffusible molecule B. The next section will in-

troduce how to solve for the number of molecules B at each internal node. Coupling

both membrane reactions and diffusion process will make the simulation in 2D of

reactions (1.4.5) - (1.4.9) complete.

2.2.2 Representation of Diffusion via Finite Elements

Using a finite element method provides geometrical flexibility and allows us to ma-

nipulate the internal nodes directly. In order to implement the balanced inactivation

model with a finite element method, we need to generate a triangular mesh for the

two dimensional disk-shaped cell. Using COMSOL, we generated an irregular trian-

gular mesh comprising 216 vertices, 40 of which are on the circular domain boundary,

and 390 triangles (see Figure 5). Following triangulation, the model was implemented

using two 40-component vectors to represent the number of molecules of A and Bm at

each node of the boundary, respectively, and a vector of 216 components to represent

the number of cytosolic (not membrane bound) molecules of B at each node. The

finite element method allows us to present the diffusion of B with a flux boundary

condition, according to equations (1.4.3)-(1.4.4), using the Galerkin finite element
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method (GFEM) [15].

Figure 5: Two dimensional simulation geometry. The simulated cell is taken to be a disk
of radius five microns centered at coordinates (0, 0). The triangulation of the cell
shape, generated by the COMSOL finite element package, contains 40 boundary
nodes and 390 triangles.

For this diffusion problem, the diffusion equation in terms of the Cartesian coor-

dinate system is

D

(
∂2B

∂x2
+
∂2B

∂y2

)
=
∂B

∂t
. (2.2.17)

The boundary condition is dynamic since the variables S and B may change in time:

D−→n � (
−→5B) = kaS − kbB (2.2.18)

where −→n is the dimensionless outward normal unit vector, see Section 1.4.1.

The goal of GFEM is to find an approximate solution, B̃, such that the integration

of the weighted residual, I, over the domain, Ω, vanishes.

I =

∫
Ω

[
wD

(
∂2B

∂x2
+
∂2B

∂y2

)
− ∂B

∂t

]
dΩ−

∫
Γ

wD~n · ~∇B dΓ, (2.2.19)
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where Γ is the boundary of the domain Ω and w is the Galerkin’s weighted function.

More specifically, we approximate B via linear interpolation within each element:

B ≈ B̃ = a1 + a2x+ a3y, (2.2.20)

or

B̃ ≈
(

1 x y
)

a1

a2

a3

 . (2.2.21)

Therefore, the linear interpolation for each triangular element (see Figure 5) is rep-

resented by 
B̃1

B̃2

B̃3

 =


1 x1 y1

1 x2 y2

1 x3 y3



a1

a2

a3

 . (2.2.22)

Solving for the unknown coefficients ai gives


a1

a2

a3

 =
1

2Λ


x2y3 − x3y2 x3y1 − x1y3 x1y2 − x2y1

y2 − y3 y3 − y1 y1 − y2

x3 − x2 x1 − x3 x2 − x1



B̃1

B̃2

B̃3

 (2.2.23)

where

Λ =
1

2
det


1 x1 y1

1 x2 y2

1 x3 y3

 . (2.2.24)

Substituting (2.2.7) into (2.2.5) yields

B̃ = w̃1(x, y)B̃1 + w̃2(x, y)B̃2 + w̃3(x, y)B̃3 (2.2.25)

where
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w̃ =


w̃1(x, y)

w̃2(x, y)

w̃3(x, y)

 =


1

2Λ
[(x2y3 − x3y2) + (y2 − y3)x+ (x3 − x2)y]

1
2Λ

[(x3y1 − x1y3) + (y3 − y1)x+ (x1 − x3)y]

1
2Λ

[(x1y2 − x2y1) + (y1 − y2)x+ (x2 − x1)y]

 . (2.2.26)

Therefore, the weighted function for Galerkin’s method, wi = ∂B̃
∂ai

, is

w = w̃. (2.2.27)

Substituting w into equation (2.2.19) and solving for B, we should obtain an approx-

imate solution of the diffusion problem.

2.3 Markov representation of chemical reactions and spatial

transitions

2.3.1 Diffusion represented as a Markov process on a graph

In order to further the long range goal of realizing a fully stochastic representation

of an intracellular signaling pathway, we set out to implement a stochastic model of

diffusion compatible with a finite element representation. Viewing the 216 vertices of

the triangulation as the nodes of a graph, we can think of molecules of B “diffusing”

by performing a random walk from node to node along the edges of the triangles. If

we let the vector p(t) ∈ R216 represent the probability of finding a random walker at

each node (so we require 0 ≤ pi(t) and
∑216

i=1 pi(t) ≡ 1 for all t) then the evolution of

diffusion represented as a Markov process on the graph obeys a linear equation

dp/dt = Qp. (2.3.1)

The Markov transition matrix Q satisfies Qij > 0, i 6= j, and
∑

iQij = 0. Given

N random walkers moving independently with identical probability distributions p
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on the graph, the expected number of walkers present at node i at time t is just

n̄(t) = Npi(t). Hence the expected number n̄(t) obeys the same linear differential

equation

dn̄/dt = Qn̄.

Can we obtain an appropriate matrix Q by considering the corresponding finite

element solution to the diffusion problem? The finite element representation of pure

diffusion with zero flux boundary conditions leads to a linear differential equation of

the form

Mu̇ = Ku

where u ∈ R216 represents the (time varying) concentration at each node. If we

define the jth shape function φj(x, y) to be piecewise linear on each triangle with

φi(xj, yj) ≡ δij then we can define the mass and stiffness matrices respectively as

Mij =

∫
Ω

φiφj dx dy

Kij =

∫
Ω

∇(φi) · ∇(φj) dx dy.

In the finite element formulation the entries of u represent the linearly interpolated

concentration of a quantity at each point. To convert between concentrations and

numbers requires knowing the volume associated with each node. In the linear in-

terpolating finite element case this is straightforward. The piecewise linear shape

functions form a partition of unity,
∑

i φi(x, y) ≡ 1 for all (x, y) ∈ Ω. Hence the total

two dimensional “volume” (i.e. the area) of the domain Ω is

V ≡
∫

Ω

1 dx dy =
216∑
i=1

∫
Ω

φi(x, y) dx dy.

It is natural to denote the integrals
∫

Ω
φi(x, y) as the area associated with each node.

It is straightforward to show that this quantity is equal to one third the sum of the
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areas of the triangles that include node i as one vertex.

Define the 216×216 diagonal matrix V such that vii is the area vi associated with

the ith element. Then the expected number of random walkers at each node is related

to the concentration as ui = n̄i/vi, or

u(t) = V −1n̄(t).

Differentiating in time, we find that

dn̄/dt = VM−1KV −1n̄,

which suggests setting Q0 = VM−1KV −1 should be a reasonable choice for a Markov

transition matrix. However, several difficulties arise.

1. While Mij and Kij are sparse (713 out of 23220 (i, j) pairs of entries are

nonzero), the matrix Q0 is not sparse – in fact it contains no zero entries.

Hence “diffusion” occurs not just between adjacent nodes but between nodes

arbitrarily far apart, which does not comport well with physical intuition about

diffusion as a continuous process.

2. For a standard linear finite element scheme as shown in Figure 5, roughly half

the entries of Q0 are positive and half are negative. To be interpreted as tran-

sition rates the off diagonal entries of a Markov transition matrix should all be

nonnegative. The mean of Q0 is within machine precision of zero. The entries

of Q0 are distributed around this mean with a standard deviation (including

diagonal terms) of about 600. While most of the negative entries are clustered

near zero, over a thousand are negative by more than one standard deviation.

3. Each column of Q should sum to zero, but due to accumulating numerical error

the columns of Q0 sum to positive or negative quantities on the order of 10−10,

leading to local violation of conservation of mass.
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In order to circumnavigate this problem we explored alternative means of representing

the diffusion process using a Markov transition matrix. In the end, the results were

not satisfactory, and we only included deterministic representations of diffusion (both

the finite-element and Markov transition matrix based) in the simulations.

2.3.2 Calculation of a transition matrix for a diffusion process

We exploit the structure of finite-element numerical models to illustrate our approach

to generate a Markov transition matrix for diffusion problems. In a model of diffusion

without drift and without source or sink terms, the steady state should correspond

to the uniform concentration over the entire domain. The Markov chain on the graph

refers to the probability of a particle residing at each of the nodes. Note that in

the case of generic finite elements, nodes are nonuniform in shape and size. Conse-

quently uniform spatial distribution of concentration and uniform nodal distribution

of probability are different.

Suppose the coefficients of an approximate linear interpolant solution are ci(t)

with the linear approximate solution c̃(x, t) given by

c̃(x, t) =
∑
i

ci(t)φi(x), (2.3.2)

and at the uniform concentration steady state ci(t) = mi/vi where mi is the number

of particles at node i and vi is volume associated with node i. The V stands for the

volume1 of the domain. As discussed above, the volume associated with any given

node is

vi =

∫
x

φi(x) dx (2.3.3)

and the probability of a random walker residing “at” node i is vici(t).

As an example, consider a linear domain x ∈ [0, 1) with periodic boundary condi-

1In 1D “volume” refers to length; in 2D it refers to area; etc.
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tions and nodes at

20xi ∈ {0 ≡ 20, 1, 2, 3, 4, 5, 7, 9, 11, 13, 15, 16, 17, 18, 19}

with linear interpolant finite elements. The element volumes are

vi =


2/40, i = 16, 17, 18, 19, (20 ≡ 0), 1, 2, 3, 4 (9 nodes)

3/40, i = 5, 15 (2 nodes)

4/40, i = 7, 9, 11, 13 (4 nodes)

which sums to unity. These also must be the probabilities of finding a random walker

at any given node once the system has reached its equilibrium distribution.

In general, at steady state the probability of an arbitrary particle being at node i

out of N nodes total should not be 1/N but rather

pi(∞) =
ci(∞)vi
M

=
vi
V

(2.3.4)

i.e. the fraction of the total volume associated with node i. The requirement of

detailed balance at equilibrium dictates that for each pair of nodes (i, j) the following

condition holds:

qjipi(∞) = qijpj(∞) (2.3.5)

where qji is the rate of flow per particle from node i into node j (see Figure 6).

Combining the equations (2.3.4) and (2.3.5) gives

qjivi = qijvj. (2.3.6)

One way to choose a transition matrix, Q, whose entries qij are consistent with a
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qki
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S → A + B +S

B → Bm

Figure 6: Illustration of the transitions representing diffusion. A molecule of cytosolic B
located at boundary node (i) can make a transition to a neighboring internal node
(k), to one of the neighboring boundary nodes (j, l)2 In addition molecules of B
are introduced to the cytosol at the boundary nodes by the source S, and are
removed from the cytosol through the inhibitory reaction B → Bm occurring at
the boundary nodes.

uniform concentration at steady state, is to set

qji =

√
vj
vi
, (i 6= j) (2.3.7)

qii = −
∑
j

qji (2.3.8)

(In practice, we rescale Q so that it has norm 1 before proceeding further. As de-

scribed below, an additional rescaling of Q will allow us to accommodate an arbitrary

value for the physical diffusion constant.) Therefore the matrix Q containing entries

qij for i and j = 1,2,3,...,N serves as a Markov transition matrix. The first order

transitions above are equivalent to having a continuous time Markov process on the

network of nodes. Such a system obeys

dp/dt = Qp
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where p is a probability vector and Q is a Markov transition rate matrix.

However, the matrix Q is a fixed valued matrix. Assume that norm[Q] = 1. For

the purpose of adjusting Q to agree with the diffusion constant, we need to scale Q so

that the growth rate of the variance of particle’s position is a constant, dV[Xt]/dt = λ.

The explanation of why scalingQmakes the markov transition agree with the diffusion

constant is discussed in Section 2.8.

Figure 7 shows the result of using a matrix Q without this corrective scaling to

represent a diffusion process. Assume that at time t = 0 s, 2000 molecules of B are

placed at the center of the domain, i.e. the origin in our geometry. After allowing

the dispersion to go for 0.2 s with diffusion constant D = 10 µm2/s, the growth

of the variance in the model representing the expected Markov transition rates (red

line) is much different to the growth of the variance in finite element model (blue

line) where the given diffusion constant has been accounted for automatically by the

COMSOL software. Therefore we scale matrix Q by the ratio between the growth

rate of the variance in the finite element model and the growth rate of the variance

in Markov model. Figure 8 shows the result after we scaled Q. Both plots of variance

of particle’s position match well. We will use this scaled Q for the Markov transition

matrix in diffusion process with a specified diffusion constant.

2.3.3 Markov approximation of diffusion via a linear interpolating finite

element construction

This section describe how we use the Markov transition matrix calculated by the

previous section to solve for the expected number of particles at each time step. At

each time step, the change in number of molecule A and the number of molecules Bm

located on the membrane have been described in equation (1.4.1) and (1.4.2). More

specifically, at node i at time t, the change in number of molecule A and molecule
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Figure 7: [left] Plots [A] and [B] represent the evolution of mean position in x and y com-
ponents respectively of a random walker begun near (0,0). [right] Plot [C] shows
how B molecules originally placed at the origin disperse when t = 0.2 s. Plot
[D] is the evolution of variance in x-position of both finite element model (blue
line) and the Markov transition model (red line). The discrepancy is addressed
by rescaling the Markov transition matrix Q.

Bm are as described in Figure 6.

dAi(t)/dt = (kaSi − k−aAi − kiAiBmi) (2.3.9)

dBmi(t)/dt = (kbBi − k−bBmi − kiAiBmi). (2.3.10)

Note that Bi in the equation (2.3.10) refers to molecule B located on the cell

membrane. Membrane bound molecules of B occur only on the boundary nodes in

the cell geometry (Figure 5). However the change in molecule B as described in

equation (1.4.3) involves the transition among both interior and exterior nodes. That

makes B transits to the neighbor nodes as it diffuses.

dBi(t)/dt =
∑
j

qijBj −
∑
j

qjiBi + (kaSi − kbBi) (2.3.11)

Solving for variable A, B and Bm for each time step complete the model simulated
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Figure 8: [left] Plots [A] and [B] represent the evolution of mean position in x and y com-
ponents respectively of a random walker began near (0,0). [right] Plot [C] shows
how 2000 molecules of B originally placed at the origin disperse when t = 0.2 s.
Plot [D] is the evolution of variance in x-position of both finite element model
(blue line) and the Markov transition model (red line), using the rescaled transi-
tion matrix.

via Markov transition matrix or the expected model.

2.4 Simulation Algorithm

Integrating the methods for both stochastic and markov-transition processes, we sim-

ulate a balanced inactivation model following the algorithm:

1. Initialize parameters and a geometry domain. The geometry domain is a two-

dimensional disk with radius = 5 µm. We triangulated into 390 triangles for

the purpose of calculation using finite elment method and Markov transition

matrix. The geometry in Figure 5 shows that we have 216 nodes in total with

40 nodes located on cell boundary. The parameters used in this model are

specified in Table and 1 and Table 2. Then, follow the method Section 2.3.2.

to find the scaled transition matrix Q.
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2. Solve for initial conditions based on steady state solution for homogeneous prob-

lem. This implementation of this step follows the formula (2.1.1) - (2.1.3).

3. Main iteration

The main iteration is a loop going one time step until the final time has reached.

In the main iteration, two simulated models. One used the stochastic transitions

(except for diffusion of cytosolic B, which used the Markov transition matrix but

was represented as a deterministic process); and one which used the expected

value for the change due to each reaction at each time step. We call the two

models the “stochastic” and the “expected value” models, respectively. For

each model we recorded the values of A, B and Bm for every node at each time

step.

Initialize vectors
−→
sA,
−→
sB and

−−−→
sBm to store the numbers of molecules A, B

and Bm respectively at every node for the simulation of stochastic model. Also

initialize vectors
−→
nA,

−→
nB and

−−−→
nBm to store the numbers of molecules A, B

and Bm respectively at every node for the expected Markov transition-matrix

model.

for time t = 0 to t = 0.2 sec.

Stochastic Model

(a) Update second order reactions. Generate a random number based on bi-

nomial distribution with parameters specified in the formula (2.2.15) to

approximate change in number of A and Bm. Decrement both sA and

sBm by that number.

(b) Update first order reactions. Generate three random numbers based on

binomial distribution following the formulas (2.2.3), (2.2.4) and (2.2.5)

respectively. Decrement sA by the random number for the degrading of

A reaction . Decrement sB and at the same time increment sBm by the
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random number for the conversion of B to Bm reaction. Lastly, decrement

sBm by the random number for degrading of Bm

(c) Update zeroth order reactions. Generate a random number based on Pois-

son distribution. Increment the number of sA and sB that locate on

boundary.

(d) Update the number of molecule sB at every nodes in the domain via the

finite element method solving the diffusion problem described in Section

2.2.2.

Expected markov-transition model

(a) Update nA following the equation (2.3.9), nA(t+ 1) = nA(t) + dA(t).

(b) Update nBm following the equation (2.3.10), nBm(t+ 1) = nBm(t) + dBm(t).

(c) Update nB following the equation (2.3.11), nB(t+ 1) = nB(t) + dB(t).

4. visualization / output

2.5 Estimating Direction in the Balanced Inactivation Model

The “readout” of the direction physically corresponds to a biochemical/mechanical

process in which the cell generates a pseudopod and advances in a certain direction.

Instead of modeling this process we interpret the output of the simulation (the random

distributions of {Ai, Bmi}) as specifying the direction the cell would next extend a

pseudopod. In Levine et al. [18] the direction of movement is interpreted as the

localization of A around perimeter of the cell. We choose to implement a vector sum

model for the cell’s decision process (mean direction in the sense of circular random

variables [20].)

If θ is the directional variable with n observation, the vector mean direction (θ̄)

as circular mean can be calculated from:
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Ŝ =
n∑
i=1

mi

M
sin θi,

Ĉ =
n∑
i=1

mi

M
cos θi,

θ̄ = arctan(Ŝ/Ĉ). (2.5.1)

The mean resultant length is

R̄ =

√
Ŝ2 + Ĉ2/n. (2.5.2)

The input vector in this case is the vector
−→
A containing the number of molecules

A at each boundary node so that n = 40.

2.6 Circular Variance

Given a way of choosing a direction based on different stages of the cell’s signaling

pathway, we obtain an ensemble of different direction choices for any given set of

stimulus parameters (mean concentration c̄ and relative gradient |∇c|/c̄). By sym-

metry the mean direction of the ensemble is always correct, but what is of interest is

the variability of the directional estimate from trial to trial or from cell to cell. We

quantify the accuracy of the cell’s directional estimate by finding the circular variance

of the distribution of estimates over many trials.

With various directions of gradient sources, the concentrations of cytosolic in-

hibitor B, activator A and inhibitor Bm tend to follow the von Mises distribution,

which is known as the circular normal distribution. The von Mises probability density
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Figure 9: Illustration of von Mises functions, ρ(θ|0, κ) = exp[κ cos(θ)]/ (2πI0(κ)), with var-
ious concentration parameters κ.

function for the angle θ is given by:

ρ(θ|µ, κ) =
exp[κ cos(θ − µ)]

2πI0(κ)
(2.6.1)

where I0 is the modified Bessel function of order 0. The parameter µ can be thought

of mean of the distribution. In our case, µ is assumed to be the angle where gradient

source is placed. The parameter κ is analogous to 1/σ2, or the inverse of the variance

in a normal distribution. Figure 9 shows the various parameter κ of von Mises

distribution.

Assume that the distribution of A (or Bm) defines a preferred direction θ̄ and

preferred resultant length
−→
R . If N(θ) is the number of molecules at θ, the mean

angle θ̄ can be calculated by:
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−→
R =

∑
θ

N(θ)eiθ = R̄eiθ̄ (2.6.2)

Here, we call R the mean resultant length. It is a measure of concentration of a

data set and θ̄ is the mean direction

2.7 Amplification

Amplification is a natural quantity for describing the response of a linear signaling

system. To discuss “amplification” in a gradient sensing pathway requires some kind

of generalization of the usual linear concept.

In the linear setting, imagine we have a random variable x ∼ N (0, σ2
x) which is

the “input” to a signaling system. Suppose the output is y = αx + z, where α is a

positive constant and z ∼ N (0, σ2
z) is the “noise” (independent of x) added to the

signal. The output has variance

σ2
y = α2σ2

x + σ2
z (2.7.1)

The mutual information of x and y, which quantifies how much “information” ob-

serving y gives you about x, involves the famous signal-to-noise ratio [3]

MI(x, y) =
1

2
log

(
α2σ2

x + σ2
z

σ2
x

)
=

1

2
log

(
α2 +

σ2
z

σ2
x

)
. (2.7.2)

For an amplitude modulated signal (in the time domain) the input would be a sum

of sinusoids of different frequencies ν and the output would have different amplifica-

tion for different frequencies, i.e. we would have α(ν). For a variable that is confined

to the circle – such as the estimated gradient direction – there are several distribu-

tions to choose from. The von Mises distribution provides a natural choice, which

interpolates between weak (linear) amplification and strong (nonlinear) concentration

of the response. When the concentration parameter κ� 1, we can interpret κ as the
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amplitude of the first Fourier component of the (weak, linear) response:

eκ cos(θ) ≈ 1 + κ cos(θ) +O(κ2), κ� 1. (2.7.3)

When κ� 1, we can interpret κ as analogous to the reciprocal variance of a similarly

distributed Gaussian near θ ≈ 0:

eκ cos(θ) ≈ exp

[
κ

(
1− θ2

2
+O(θ4)

)]
, κ� θ. (2.7.4)

If the “input” corresponds to a distribution with concentration κin and the “out-

put” corresponds to a distribution with concentration κout, it is natural to define the

amplification as

α =
κout
κin

(2.7.5)

Figure 11 illustrates the von Mises distribution for different values of κ, and Figure

10 illustrates the input/output plot for a system with different amplification ratios,

assuming the input has distribution corresponding to ε or κin in the von Mises dis-

tribution’s sense. Comparing this figure to Figure 1 from Janetopoulos et al [12], we

have a very substantial amplification. The mean slope is about 4.6 which is higher

than the polynomial fit slope (red line). In addition, we have an appropriate scatter

of values in the vertical direction due to stochasticity.

2.8 Variance Growth

Let ϕ(t) = [x(t), y(t)]T be the random variable representing the position of the particle

at time t, given that it started at i at time t = 0. Let ϕi(t) = [xi, yi]
T be the location

of the ith node. The probability pj(t) of being at node j after starting at node i

at time zero is given by the matrix exponential solution of equation 2.3.1, namely

(exp[Qt])ji. Therefore the variance of the location of a particle moving randomly on
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Figure 10: Illustration of amplification ratio of the input activated receptor with ε = 0.5
and S0 = 4000 # mol. Stochastic simulation results.

the graph is (for small times t)

V[ϕ(t)] = E[(x̄(t)− x(t))2 + (ȳ(t)− y(t))2]

=
∑
j

||ϕ̄− ϕj||2
(
eQt
)
ji

=
∑
j

∣∣∣∣∣
∣∣∣∣∣∑
k

(exp[Qt])ki ϕk − ϕj
∣∣∣∣∣
∣∣∣∣∣
2 (
eQt
)
ji

=
∑
j

∣∣∣∣∣
∣∣∣∣∣∑
k

(
δki +Qkit+O(t2)

)
ϕk − ϕj

∣∣∣∣∣
∣∣∣∣∣
2 (
eQt
)
ji

=
∑
j

{
||ϕi − ϕj||2 + 2t

(
(ϕi − ϕj) ·

∑
k

ϕkQki

)
+O(t2)

}(
eQt
)
ji
.

36



Figure 11: Illustration of amplification ratio defined by the ratio between κinput/κoutput with
various values of κ, based on von Mises distribution idealizations.

We can differentiate this expression to obtain the rate of increase of the variance given

a delta function initial condition at node i.

dV[ϕ(t)]/dt =
∑
j

{(
||ϕi − ϕj||2 + 2t

(
(ϕi − ϕj) ·

∑
k

ϕkQki

)) (
QeQt

)
ji

+2

(
(ϕi − ϕj) ·

∑
k

ϕkQki

)(
eQt
)
ji

}
+O(t). (2.8.1)

Evaluating this equation at t = 0 we obtain the initial rate of increase of the variance

from starting node (i), which is

dV[ϕ(t)]

dt
|t=0 =

n∑
j=1

||ϕi − ϕj||2Qji. (2.8.2)

If the rates of growth of the variance are tightly clustered around a given value, that

value can be used to determine the effective diffusion constant associated with Q. By
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rescaling Q we can then implement a diffusion simulation with a diffusion constant

of our choice.

Table 1: Table of parameters and variables specified by Levine et al. [18]

symbols parameters values and unites

r the cellular radius 5 µm
D the diffusion constant 10 µm2/s
ka the rate constant for the reaction S → A+B + S 1 s−1

kb the rate constant for B → Bm 3 µm/s
k−a the rate constant for A→ φ 0.2 s−1

k−b the rate constant for Bm → φ 0.2 s−1

Table 2: Table of the remaining parameters and variables used in simulation.

symbols parameters values and units

dt the time step size 0.0002 s
S0 the initial activated receptors 4000 #mol/node
A0 the number of A at steady state 19.99 #mol/node
B0 the number of B at steady state 1333.33 #mol/node
Bm,0 the number of Bm at steady state 19.99 #mol/node

Θ the true gradient direction π
θ the direction that the cell senses 0 < θ < 2π
ε the relative gradient constant varied
ki the reaction rate: A+Bm → (A �Bm) 10 µm/ s � #mol

nvtxext the number of boundary nodes 40 nodes
nvtx the number of nodes 216 nodes
ntri the number of triangles 390 triangles
vi the volume associated with node i varied µm2

V the total volume of the cell 78.2172 µm2

mi the number of molecule at node i varied #mol
ci the concentration of particles at node i varied #mol/m2

M the total number of molecule varied #mol
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3 Results

The main purpose of this simulation is to implement a stochastic version of the

balanced inactivation model due to Levine et al. [18] in a two dimensional geometry

and validate the model by comparing to experimental results. The steady state

response to stimulation with a spatially uniform concentration of molecule S was

calculated by solving the deterministic point model of the system of equations (1.4.1)-

(1.4.4). We used the same input S0 for the stochastic model. As time passed 0.1s,

the stochastic elements A, B and Bm, approached their steady states but fluctuated

around them. The result of comparing the plot between the deterministic point model

and the stochastic model paused at t = 0.2 s is shown in Figure 12. This convergence

was analyzed further for the stochastic models with various input gradients.

The temporal evolution of the total mass (number of molecules) for each com-

ponent is presented in Figures 13, 14 and 15 for stimulation with a uniform signal

(ε = 0). The total number of A (Figure 13) fluctuates between 500 to 700 molecules

for the stochastic simulation (blue line), whereas the deterministic result shows con-

stant mass equal 800 molecules (red line). This mismatch is presumably due to the

noise effect in molecular reactions. Similarly, the total number of Bm in the stochastic

simulation (Figure 15, blue line) is slightly less than the result from the corresponding

determinstic model (same figure, red line). We also note that the total numbers for

both A and Bm at the very beginning of the simulation (t < 0.05s) are dramatically

higher than those for the deterministic simulation. Apparently the spatially uniform

steady state values for the numbers of A and Bm are not terribly precise approxi-

mations of the means of the distributions of the same molecules under the stochastic

simulation. Analysis of the transient from the initial conditions and the approach

to the equilibrium distribution are reserved for future work. Significantly, however,

the total number of B (Figure 14) shows only an approximately 0.3% discrepancy

between the two simulation platforms. This result suggests that the scaled Markov

transition matrix may provide an acceptable substitute for the FEM for solution of
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Figure 12: Simulation of the stochastic model (blue circles) and the deterministic Markov
transition model (red circles) with uniform stimulation (no gradient), S0 = 4000
#mol/node and ε = 0.

the diffusion problem for this system.

Comparing the two models, we also applied the stimulus S with various gradients.

Figure 16 shows the result of using a fractional gradient ε = 0.5. In Figure 16[C] and

16[D], the results of the expected Markov-transition model agree well with the results

of the stochastic model. Figure 16[B] showed a discrepancy (< 10%) between the

red and blue curves representing, respectively, the cytosolic distribution of B in the

deterministic and stochastic models. Presumably this discrepancy occurred due to

differences in implementation of the algorithms representing diffusion. Determining

whether the finite element approach or the Markov transition matrix based approach

gives a more accurate representation of diffusion for this system remains a problem for

future work. However, the discrepancy in B does not appear to affect the distributions

of A and Bm, which are used to define the leading edge of the cell. The B molecules

in the plot are the number of B molecules located at each node on the membrane. The
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Figure 13: The total number of molecules A bound to the membrane during the simulation.
Blue line: stochastic simulation. Red line: determinstic model.

molecules B in the FEM method were dispersed faster than in the expected Markov-

transition method. Hence, the collected data at the boundary node was different.

Considering both red and blue graphs in Figure 16[B], we knew that the stochastic B

element in blue graph tends to have higher diffusion rate than the expected Markov-

transition diffusion. Besides the stochasticity in reactions involving B, this error

could partly be the effect of scaling the matrix Q to match the diffusion constant.

The predicted direction of motion of the cell is obtained by vector averaging as

described above. Figure 16 shows the evolution in time of the inferred gradient

direction vector obtained by vector averaging. The deterministic process (red line)

always indicates the true direction (π radians) exactly, while the stochastic direction

drifts around it. Detailed analysis of this diffusion/drift process on the circle is set

aside for future work. In general, we may observe that the direction inferred by the

model cell in the stochastic simulation converged to the desired value θ̄ = π with only
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Figure 14: The total number of molecules B in the cytosol during the simulation. Blue line:
stochastic simulation. Red line: determinstic model.

a little fluctuation.

Comparing the two models, we also input the S with some gradients. Fig-

ure 16 shows the result of when we used a relative gradient constant ε = 0.5. In

Figure 16[bottom-left] and Figure 16[bottom-right], the results of expected Markov-

transition model agree well with the results of stochastic model. Figure 16[top-right]

showed discrepancy (< 10%) between red and blue curves. Presumably this discrep-

ancy occurred due to differences in implementation of the algorithms representing

diffusion. Determining whether the finite element approach or the Markov transi-

tion matrix based approach gives a more accurate representation of diffusion for this

system remains a problem for future work. However, the discrepancy in B does not

affect the proportion of A and Bm, which are used to define leading edge of the cell.

The B molecules in the plot are the number of B molecules located at each node on

the membrane. The molecules B in the FEM method were dispersed faster than in
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Figure 15: The total number of molecules B bound to the membrane during the simulation.
Blue line: stochastic simulation. Red line: determinstic model.

the expected Markov-transition method. Hence, the collected data at the boundary

node was different. Considering both red and blue graphs in Figure 16[top-right], we

knew that the stochastic B element in blue graph tends to have higher diffusion rate

than the expected Markov-transition diffusion. Besides the stochasticity in reactions

involving B, this error could partly be the effect of scaling the matrix Q to match

the diffusion constant.

We determined the inferred gradient direction in terms of the vector averaged

location angle for the population of A molecules, as described in Methods. Figure

16(blue line) shows the mean angle plot of the stochastic and deterministic models.

After a brief initial transient the deterministic model’s estimated direction was con-

stant at the correct value (θ̄ = π). The stochastic model’s estimate responded to the

large gradient (50% gradient) by converging to approximately the same value, with

little fluctuation. The fluctuation about the mean appears qualitatively to resemble
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Figure 16: Simulation of the stochastic model (blue circles) and the deterministic Markov
transition model (red circles) with stimulation by a large (50%) fractional gra-
dient, S0 = 4000 #mol/node and ε = 0.5. Note that despite the discrepancy
between cytosolic inhibitor levels (top right panel), the activator and membrane-
bound inhibitor distributions show good agreement (lower panels).

an Ornstein-Uhlenbeck process (a correlated Gaussian process with decaying mean)

except on the circle instead of on the line. Analysis of these fluctuations remains for

future work.

In order to verify that our stochastic model gives results consistent with biological

experiments, we performed stochastic simulations for 100 different sets of random

numbers using a binomial and a possion random generator provided by MATLAB

and values of the fractional gradient ε ranging from 0.006 to 1.

Next we calculated amplification ratios using the formula (2.7.5). The results for

the simulation of the expected Markov-transition model and stochastic model are

shown in Figure 18 and Figure 19 respectively. With shallow gradients ( <5 %),

the amplification of activator molecules (A) for stochastic model simulation varies

44



0 0.05 0.1 0.15 0.2

2.6

2.8

3

3.2

3.4

3.6

3.8
mean angle of A

 

 

Stochastic
Markov

Figure 17: The evolution of mean angle from the stochastic model and the Markov transition
model with same given S0 = 4000 #mol/node and fractional gradient constant
ε = 0.5.

between 17 and 24, which is the same range as for the Markov transition model

simulation. However, the amplification of the stochastic model fluctuates greatly at

shallow gradients. As shown in Figures 21 22, the amplification ratios at shallower

gradients for both A and Bm have larger standard deviations. With high gradients (≈
> 50 %), the amplification of A and Bm for stochastic model and Markov transition

model are about the same. From this result, the input signals got amplified at a very

low ≈1 % of gradient across the cell. The amplification ratios imply that at shallow

gradients ( ≈ 1 - 5 %) the output signals get amplified at nearly constant ratios.

However, increasing steepness of the gradient signal input makes the amplification

ratio decrease once the output signal has reached a point at which nonlinear saturation

occurs. For further discussion of this point, please see Section 4.

This observation is consistent with the fact that higher gradients makes stronger

signals and noise has less effect to the overall results. On the other hand, the am-
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Figure 18: Illustration of amplification ratios defined by the ratio between κin/κout for the
Markov-transiton model with various fractional gradients (ε).

plification of B for the stochastic model behaves like the amplification of B for the

determinstic model independently of the size of the input signal gradient. This is

due to the very high diffusion constant (D = 10µm2/s). It makes the B molecules

spread quickly enough so that their angular distribution is approximately linear. The

amplification of B is essentially passive. It reflects the input directly, but is not signif-

icantly enhanced by the nonlinear A : Bm interactions occurring on the membrane.

Consequently, the amplification of B for both models are approximately constant,

and do not exceed unity. In conclusion, the behaviors of both A and Bm are sig-

nificant in terms of cellular response to the extracellular signal. The output signals

A and Bm get amplified at nearly constant ratios at shallow gradient ( ≈ 1 - 5 %).

However, increasing steepness of the input gradient makes the amplification ratios

decrease once the input signal has reached its saturation point.

Finally we compared this simulation result to experimental results shown in Fig-
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Figure 19: Illustration of amplification ratios defined by the ratio between κin/κout for the
stochastic model with various fractional gradients (ε).

ure 20 from Janetopoulos et al. [12]. The simulation result shows that the amplifica-

tion of A is higher than the amplification of Bm. This agrees with the result from

Janetopoulos et al. [12] if molecule A is correlated with PI3K which enhances actin

polymerization process and inversely correlated with PTEN.

4 Discussion and Conclusion

In order to validate the simulation results, we compared them with experimental

results. Although the three major pathway components studied by Janetopoulos et

al., PH-domain protein, PI3K and PTEN, were not measured directly, the investiga-

tors fluorescently tagged the components and measured the intensity of fluorescence

which varies monotonically with the concentration of PH-domain protein, PI3K and

PTEN [12]. We proposed the stochastic simulation platform to quantitatively record

47



Figure 20: Experimental data from Janetopoulos et al. [12] showing the relative degree
of amplification of gradient signaling pathway components PI3K (activator),
PI(3,4,5)P3 (readout signal), and the inverse of PTEN (inhibitor).

the concentration of A, B and Bm spatially and temporally. In the balanced in-

activation model [18], the abstract components, A, B and Bm could correspond to

heterotrimetric G protein subunits [18]. Levine et al. mentioned that Gα could take

the role of activator in the downstream pathway for PH-domain protein localization,

whereas Gβγ may be involved in the pathway that localizes other proteins at the

back of the cell. The comparison between experimental results and simulation results

was considered in qualitative rather than quantitative terms. That is, our abstract

activator A could be correlated to the level of PH-domain protein or PI3K, and the

inhibitor Bm could be correlated to the level of PTEN. The applied signal S corre-

sponds to the extracellular concentration of chemoattractant applied experimentally,

which forms a gradient directed towards the source pipette containing the cAMP

analog. (In this project we neglected the saturation of membrane bound receptors

in the presence of large concentrations of cAMP. While Levine et al. make the same

approximation, it should be straightforward to relax it in future work.) From this

perspective, we concluded that our simulation results were consistent with experi-

mental observations. The amplification of A is slightly higher than the amplification
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Figure 21: Comparison of amplification for molecule A measured as the ratio of von Mises
concentration parameters κA/κS for the deterministic (red) and stochastic (blue)
simulations, as a function of relative gradient ε. Vertical bars denote standard
error.

of Bm. When a relative gradient ≈ 50 % was applied, we obtained amplification

ratio ≈ 5. This amplification ratio matches the amplification result defined by the

ratio between the normalized PH-GFP and the normalized Cy3-cAMP, equal 7.1 ±
3.5 [12]. When the gradient has reached its saturation point, the amplification ratio

would decrease toward some lower bound. In our case, our lower bound was computed

when simulating results with ε = 1. Figure 18 reveals the possibility of finding the

lower bound. Janetopoulos et al. experimentally showed that the latrunculin-treated

cell has less amplification than the motile cell [12]. Since morphology of the cell af-

fects amplification, the very high gradient would increase in the signal amplification

if the cell elongates, making the leading edge contains more receptors, and lowering

the number of receptors of the tail [22]. This phenomenon would tend to enhance

amplification ratio. However, our simulation platform has not been implemented for
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Figure 22: Comparison of amplification for molecule Bm measured as the ratio of von Mises
concentration parameters κBm/κS for the deterministic (red) and stochastic
(blue) simulations, as a function of relative gradient ε. Vertical bars denote
standard error.

temporal change in cell geometry. Our model cell’s circular geometry limits the ab-

solute concentration difference between front and back in a given absolute gradient.

Therefore, the simulation results show decreasing amplification ratio as gradient in-

creases. As we have seen in the simulations, the concentrations of A and Bm at time

0.2s (beyond equilibrium) with gradient equal to 50 % (Figure 16) showed that the

molecules of A and Bm are very concentrated around π. This concentration of A

(resp. Bm) at the leading edge (resp. the rear) of the cell forces the concentration of

A (resp. Bm) close to zero at the opposite side of the cell. Figure 23 shows how dif-

ferent gradients affect the corresponding A and Bm distribution at steady state. This

figure confirms that the system has a saturation effect. As the gradient increases, the

number of molecules A at the trailing edge are close to zero. Because the stochastic

simulation represents the numbers of molecules as integers, most of the nodes at the
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Figure 23: Plots of concentrations of A (left column) and Bm (right column) at time
t = 0.2s for different input gradients, ε = 0.10, 0.50 and 0.70. Blue circles:
stochastic simulation. Red circles: deterministic simulation. Note the satura-
tion of the response for large gradients.

back of the cell contain exactly zero molecules of A, while most nodes at the front

contain exactly zero molecules of Bm. Because the number of A or Bm cannot drop

below zero at any node, it becomes more and more difficult for the cell to sharpen the

internal gradient of A or Bm further in the balanced inactivation model. The con-

centration of A responding to the gradient appears only at the leading edge although

we continue to apply constant concentration of extracellular signals. Whether this

saturation effect obtains in real cells subjected to higher versus lower gradients is an

empirical question that could in principle be tested experimentally. In any case, our

results agree well with extant biological observations on responses to shallow gradi-

ents. For gradient (< 2%), the cell is able to create large internal asymmetry [10].

Performing stochastic simulation for gradient (< 1%), we obtained the cell with high

amplification and well-defined leading edge.
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The advantage of using the finite element method (FEM) for the gradient sensing

model is its flexibility with respect to cell geometry. Cell populations in vivo and in

vitro show a diversity of shapes. Therefore, triangulation is the most suitable method

for partitioning the spatial domain representing the projection of the cell on the plane.

In addition, the expected Markov-transition method, which is deterministic, needs to

be compared with another deterministic method in order to justify its transition

matrix. As described, the diffusion problem of B molecules was solved in a different

way. We employed FEM for stochastic simulation and Markov transition matrix for

the expected Markov-transition simulation. This platform was geared toward our

future plan. In future work, we would like to include the stochastic effects of diffusion

as well as stochastic effects in the chemical reactions. Using a Markov transition

matrix lends itself to putting the diffusive and reactive transitions on a common

footing, which is a basis for a full multinomial description of the system [16]. In

order to resolve the difficulties in reconciling the FEM and Markov descriptions of

the diffusion process we plan to study both descriptions for a regular triangular planar

lattice, and small perturbations of a regular traingular lattice tiling the entire plane.

When a number of particles are placed at the origin and each has six options with

specified probabilities, we can apply the multinomial distribution to the movement of

the particles.

In this thesis, we have explored the consequences of stochastic chemical reactions

for a particular mechanism proposed to account for gradient sensing. In the case of

zeroth and first order chemical reactions, the implementation of stochastic transitions

in a fixed timestep framework is relatively straightforward. In order to handle second

order (biomolecular) reactions we we applied Kurtz’ theorem [14] to approximate

the stochastic reaction under the assumption that the number of NA and NBm were

“sufficiently large”. If NA and NBm are large, the mean number of occurrences of the

stochastic reaction A+Bm→ A·Bm will approach the number given by deterministic

mass action reaction kinetics at each node. Obviously, when the number of A or Bm
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are driven close to zero by the mutually inhibitory interaction (at the back or front of

the cell, respectively), the large number approximation will not apply. It remains to be

investigated, in future work, how well the method employed approximates the number

of bimolecular reactions NA�Bm in practice. Therefore, we would further analyze the

accuracy of this approximation by comparing to direct simulations with Gillespie’s

“exact” stochastic simulation algorithm [8], which generates correct statistics for a

well-mixed biochemical reaction.

We have introduced a semiquantitative treatment of stochastic noise in an in-

tracellular gradient sensing pathway model. Since the chemotactic cell has some

downstream pathways that involve interactions among molecules, the fluctuation may

cause inaccurate gradient sensing. However, the fluctuation in downstream pathway

was attenuated due to the nonlinear amplification of the signal. The signal amplifica-

tion facilitated the chemotactic cell to detect a very shallow chemoattactant gradient.

Further investigations of the effects of noise can be done by incorporating appropri-

ate stochastic effects into the extracellular signal S. Since each extracellular cAMP

molecule has a chance to bind to a membrane receptor, we could take the noise effect

of the cAMP-binding to the receptor as a binomial distribution. This approach also

appears in Van Haastert and Postma [31]. Analysis of noise propagation in detail and

the threshold of noise at which the cell can perceive the true direction of gradient will

be explored as further extensions of this project.
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