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A Nonlinear Response Model for Single Nucleotide Polymorphism Detection Assays

Abstract

by

DREW PHILIP KOURI

Malaria is a significant cause of mortality in the tropical regions of the world, such

to Papua New Guinea (PNG). Efforts to combat malaria are impeded by the develop-

ment of drug resistant mutants. We generated a model describing the chemical and

molecular properties of the ligase detection reaction (LDR) fluorescent microsphere

assay (FMA) for single nucleotide polymorphism (SNP) detection and employed nu-

merical optimization techniques to determine the parameters of this model. First, we

implemented the Levenberg-Marquardt Nonlinear Least Squares (NLLS) algorithm

and estimated the model parameters from simulated data representing a control di-

lution/mixing experiment. Second, we used these parameters as well as parameters

estimated from experimental data to generate possible distributions of parasite con-

centration. These distributions can, in principle, inform us of how drug resistance is

distributed in a given sample and throughout PNG communities in general. Further-

more, they allow us to evaluate a drug’s effectiveness in that community.
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1 Introduction

Malaria is an ever-increasing problem in the tropical regions of the world. A total of

41% of the world’s population lives in malaria endemic regions. The malaria parasite

is responsible for about a million of deaths and up to 500 million infections each

year, according to the Center for Disease Control (www.cdc.org). With the increase

in the use of anti-malarial drugs, the malaria parasite genome is constantly mutat-

ing in order to survive. A mutation at a single nucleotide position in the malarial

genome can confer drug resistance. In the dihydrofolate reductase (dhfr) gene, there

are four such point mutations. Carnevale et al have developed a three part molec-

ular assay for the detection of these drug resistant single nucleotide polymorphisms

(SNP). The first step is polymerase chain reaction (PCR), in which the desired gene

is amplified following a sequence of steps repeated 35 times. The second part is ligase

detection reaction (LDR), in which allele-specific and common primers bind to the

PCR product. The final part is fluorescent microsphere assay (FMA). In this pro-

cedure, fluorescent microspheres are bound to allele specific oligonucleotide tags and

the relative abundance of fluorescence is measured by flow cytometry.

This measurement suffers several limitations. The assay’s fluorescent output yields

no information about the starting concentration of each allele. Thus, the assay only

permits a qualitative (presence/abscence) rather than quantitative analysis of the

data. We can determine whether a sample is infected with the wild type (WT) or

drug resistant (DR) strain, has a mixed infection, or has no infection, but we cannot

determine the relative abundance of each parasite. Also, as with any measurement
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process, there is an error associated with the output data. In fact, performing the

assay on negative controls (i.e. samples with no malarial DNA) yields a nonzero

fluorescence measurement, typically about 100 median fluorescence intensity (MFI)

units. Furthermore, this background noise has a specific structure. We observe that

if only one allele is present in a sample, as the fluorescence for that allele rises, the

background signal also rises. This background affects the analysis of the data and

complicates determination of infection types.

There have been multiple techniques proposed to analyze a given data set and to

understand the background noise. The classic technique is to find the mean and stan-

dard deviation of the negative controls and use the mean plus two or three standard

deviations to generate two thresholds. These thresholds separate the single strain

infections. Carnevale et al proposed a second technique, a heuristic method that

uses a fitness function to determine the optimal horizontal and vertical thresholds.

Neither of these two methods takes the rising background signal into account. Since

the thresholds used in both methods are parallel to the axes, there is the possibility

of misdiagnosing single strain infections as mixed infections. We proposed a third

method of analyzing this data. Our histogram-based method involves a polar trans-

formation of the data and determines three thresholds: two angular thresholds and a

magnitude threshold ([38]). This method, detailed in the Appendix, accounts for the

structure of the data and yields a better analysis.

Although our histogram-based method improves the accuracy in the identification

of the type of infection in a given sample, it has several limitations. First, it is a

strictly phenomenal model, exploiting the structure of naturally occurring clustering
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in the empirical population field data to make inferences about individual infections.

Second, it does not give any insight into the distribution of parasitemias within the

infected population. Parasitemia is known to vary by many orders of magnitude

during the course of an infection, ranging from levels too low to be reliably detected

to levels high enough to cause mortality ([83]).

In order to move beyond a purely phenomenological, data-driven approach, we

propose a quantitative model for the molecular assay, which integrates three models

describing the three steps of the assay (PCR, LDR and FMA) and has eight param-

eters that must be estimated. Given estimates of the parameters, we can employ

Bayes’ Theorem to produce estimates for the parasite concentration distributions of

a given sample’s fluorescence measurement. The model we propose and the sequence

of steps leading to quantitative estimates of individual and population parasitemias

are intended to provide a practical tool for improving assessment of drug resistance

in the malaria and human populations wherever malaria is found.

Estimating the model parameters requires a two-stage process. First one performs

a dilution/mixing experiment starting from laboratory samples of malarial DNA. Two

control strains, each known to have either the DR or the WT allele present at locus

59 in dhfr, are used to prepare several different dilutions. Then we mix each dilution

in the series, generating every combination of dilutions and mixtures. Applying the

assay to this control dilution/mixing series, gives us input data (DNA concentrations)

and output data (fluorescence intensity measurements) for which to fit our model.

To illustrate this procedure we employed simulated data generated by an instance

of the model with nominal parameter values. The second stage of the procedure
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requires numerical estimation of the model parameters from either a real (if available)

or simulated data set. We used the Levenberg-Marquardt nonlinear least squares

algorithm to estimate the parameters and applied this method to our simulated data

set. Given the parameter estimates for the molecular assay model, we apply Bayes’

theorem to generate distributions of the likelihoods of different parasitemias given

individual fluorescence measurements. These parasitemia distributions in turn allow

us to characterize the distribution of parasitemias within the sampled population.

2 Laboratory Methods

Obtained from the Malaria Research and Reference Reagent Resource (MR4, ATCC

Manassas, Virginia), the control Pf strains used in this study were 3D7 (MRA-102G)

and Dd2 (MRA-150G). These strains were grown in vitro as previously described in

McNamara et al. Parasitemia for both the 3D7 (1.98% parasitemia) and Dd2 (2.84%

parasitemia) controls was determined using light microscopy (that is, total number

of infected red blood sell per microliter divided by the total number of red blood

cells per microliter). The concentration of DNA in both controls was also determined

via optical density (concentration of DNA in 3D7 was 25.025 g/ml and concentration

of DNA in Dd2 was 18.209 g/ml). Seven ten-fold dilutions were performed on the

controls. These dilutions are of the form one part control DNA to 10k parts dH20,

where k=0,1,2,3,4,5,6. Each dilution of 3D7 was mixed with each dilution from Dd2

to form every possible combination of DNA mixtures.

For the PCR amplication of these mixtures, all reactions (25 µl) were performed
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in a buffer containing 3 pmoles of the dhfr upstream and downstream primers, 67 mM

Tris-HCl, pH 8.8, 6.7 mM MgSO4, 16.6 mM (NH4)2SO4, 10 mM 2-mercaptoethanol,

100 µM dATP, dGTP, dCTP, and dTTP, and 2.5 units of thermostable DNA poly-

merase. The samples were then amplified in a Peltier Thermal Cycler, PTC-225 (MJ

Research, Watertown, MA). The specific primers and thermocycling conditions used

to amplify the Pf dhfr target sequence were described in Carnevale et al.

The following is a brief description of the post-PCR LDR-FMA process, for a

complete description (i.e. specific LDR primers/probes or reaction solutions) see [9].

Following PCR amplification, products were combined into a multiplex LDR where

allele-specific upstream primers ligate to conserved sequence downstream primers.

Upstream, allele-specific primers include 5’ extensions of unique “TAG” sequences.

Downstream, conserved sequence primers are modified by 5’ phosphorylation and 3’

biotinylation. The 5’ ends of the LDR products receive “classification” labeling in

a second multiplex reaction where hybridization occurs between the TAG sequences

added to the allele-specific primers and anti-TAG (complementary sequence) oligonu-

cleotide probes bound to fluorescent microspheres. Following this hybridization re-

action, products are incubated in a solution containing streptavidin-R-phycoerythrin

(SA-PE) to allow “reporter” labeling through binding to the 3’-biotin on the conserved

sequence primers. Detection of doubly-labeled ligation products occurs through dual

fluorescence flow cytometry in the Bio-Plex array reader (Bio-Rad Laboratories, Her-

cules, CA) and leads to collection of “reporter” signal in unique allele-specific bins

(see Figure 1).
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3 The Model

The molecular typing assay described above was created to determine whether or not

the double-stranded DNA (dsDNA) in a sample provides evidence for infection by a

drug resistant (DR) or wild type (WT) strain of Pf. Here “or” is used inclusively,

giving four possible infection states WT±/DR±. This section of the thesis develops

a mathematical model of the molecular reactions occurring during the assay, in order

to facilitate more accurate analysis of data from samples collected in the field.

3.1 Polmerase Chain Reaction (PCR)

During PCR, the dsDNA is denatured to form two single stand DNA molecules (ss-

DNA). Let us denote one ssDNA as s1 and its complimentary ssDNA as s2. Then

the upstream PCR primer binds to s1, while the downstream primer binds to s2.

After the primers anneal, the free nucleotides bind to the open nucleotide positions

on s1 and s2, elongating the two ssDNA/primer complexes to two complete dsDNA

molecules. Thus, one dsDNA molecule produces two new dsDNA molecules after

each cycle. Repeating this process for 35 cycles, one dsDNA molecule will produce

235 dsDNA copies of the target sequence. Therefore, the theoretical yield of a 35 cycle

PCR is C0235, where C0 is the initial number of dsDNA. Since the quantity of each

reagent is finite, there is a possibility of depleting one or multiple reagents during the

35 cycles. This depletion creates a saturating nonlinearity. We also notice that as

the cycles increase, the total number of dsDNA increases, but the quantity of each

reagent decreases, thus the probability of an ssDNA molecule binding to its com-
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plement increases, while the probability of an ssDNA molecule binding to a primer

decreases. This effect could cause the PCR not to double at each cycle and thus

reduce the yield. We could represent this process with the following piecewise linear

function:

f(x) =


xα35 if x < Cθ

CMAX if x ≥ Cθ

(3.1.1)

where α ∈ (1, 2] is the replication factor, CMAX is the maximum output of the PCR,

and Cθ is the threshold for which PCR attains CMAX . From this model, we have three

parameters, but we notice that Cθ depends on both α and CMAX in the following

relation

Cθ =
CMAX

α35
. (3.1.2)

However, this piecewise defined function is an upper bound for the PCR output. As

we described above, the probability of creating a new dsDNA molecule decreases as

the cycles progress or if the initial concentration is large, thus the PCR curve is lies

below (3.1.1). Therefore, we chose to adopt the following Hill function to model the

PCR step:

f(x) =
CMAXx

x+ Cθ
, (3.1.3)

where Cθ defines the point in which f(x) attains half of its maximum. This model

will initially grow at a rate of α35 just as equation (3.1.1), then will saturate at

f(x) = CMAX , as desired.
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3.2 Ligase Detection Reaction (LDR)

The LDR phase is much simpler then the PCR phase. As described in the above

section, given one dsDNA molecule of the target sequence, the dsDNA denatures

forming two ssDNA molecules. The LDR process concerns itself with one ssDNA

molecule and not its compliment, thus the common and the allele-specific primers

bind to only one ssDNA molecule. After one cycle, one dsDNA molecule forms one

LDR product, hence after 32 cycles, one dsDNA theoretically yields 32 LDR products.

In practice, this does not always occur. Since we are looking at diallelic SNPs, each

the dsDNA molecule only varies at one nucleotide position. Thus, there is a nonzero

probability of an allele-specific primer binding to the incorrect ssDNA. With these

mismatches occurring, we generate a background “crosstalk” signal (that is, if no

dsDNA of one allele is present initially, after the LDR phase, there could nevertheless

be LDR product present identified with that allele present). To model this situation,

suppose that the probability of any ssDNA molecule binding to a primer is 1, p1 is

the probability of perfect match binding for the drug sensitive allele, and p2 is the

probability of perfect match binding for the drug resistant allele. These probabilities

completely define the LDR phase. That is, given PCR product ~x = [x1, x2]T , the

resulting LDR product is merely a linear combination of these probabilities and the

vector ~x:

g(~x) = 32

 p1 (1− p2)

(1− p1) p2

 ~x. (3.2.1)
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3.3 Fluorescent Microsphere Assay (FMA)

In the final step of the assay, fluorescent microspheres hybridize to the allele-specific

primers. Each microsphere has multiple binding sites, thus multiple LDR products

can bind to one microsphere. The fluorescence is then measured via flow cytome-

try. If we assume that the microspheres hybridize correctly, we only need to model

the measurement process of the flow cytometry. Each LDR product hybridized to a

microsphere has a common fluorescence as well as an allele-specific fluorescence. In

order to measure the fluorescence, the Bio-plex separates out the allele-specific fluo-

rescences and then measures the common fluorescence from each microsphere. Each

microsphere has an associated maximum fluorescence, which creates another saturat-

ing nonlinearity. As seen in experimental data, there is a logistic shape to the curve

describing the measurement process, thus we can model the FMA step as:

h(x) =
αxp

xp + βp
. (3.3.1)

In this study, p is taken to be 2. In equation (3.3.1), α is the maximum fluorescence

and β is the point in which h(x) attains half of its maximum. Also, there is some

measurement error associated with the flow cytometry which we model as additive

lognormal noise.

Composing the three models described above we generate the molecular model

describing the entire assay. We have to take some care in combining these models

because when we run these experiments in the laboratory, we only use a portion of

the PCR product for the LDR phase, and a portion of the LDR product for the

FMA phase. For the LDR phase, we only require 1 microliter of PCR product from
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a 25 microliter reaction volume, thus we must divide f(x) by 25. Similarly, for the

FMA phase, we only require 1 microliter of LDR product from a 15 microliter reaction

volume, thus we must divide g(x) by 15. This yields the following complete molecular

model:

M(x) = h
(
g (f (x|α,CMAX) /25|p1, p2) /15| ~β1, ~β2

)
+ ~η (3.3.2)

where ~η ∼ LogN(~µ, ~σ) is the additive noise (see figure 3).

4 Simulated Data Generation

As a model varification technique, we generate simulated data from the above model

using a first principals parasite concentration distribution. The concentration vectors

are drawn from a two dimensional, multimodal distribution. This distribution has

four modes, one for each infection state. To select n vectors from this distribution,

first generate a list of n uniformly distributed random numbers between 0 and 1.

Each infection state has a certain likelihood of occurring. That is, if the probability

of being infected by strain 1 is ρ1 and the probability of being infected by strain 2 is

ρ2, then the probability of having a single strain infection is ρi(1− ρj) for i 6= j, the

probability of having a mixed infection is ρ1ρ2, and the probability of being uninfected

is (1 − ρ1)(1 − ρ2). Now, if a sample is in the uninfected state, set its parasite

concentration to zero. If a sample is in either of the two single strain infection states,

the infected component of the parasite concentration vector is drawn from a uniform

distribution on the interval (0, α] for some α, while the uninfected component is set

to zero. Finally, if a sample is the mixed state, both vector components, x1 and x2,
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are drawn from a uniform distribution on the interval (0, α] subject to the constraint,

x1 + x2 ≤ α. This constraint on the mixed samples is due to the carrying capacity of

parasite in the human body. For example, if the average malaria patient dies when

parasite concentration reaches 100 infected red blood cells (iRBCs) per microliter

(µL), then there can be no mixed infections that cause the parasite concentration to

rise above 100 iRBCs per µL. This scheme gives the following probabilities of being

in each state:

Pr(~x = [x1, x2]T ) =



(1−ρ1)(1−ρ2) if ~x = ~0

ρ1(1−ρ2)
α

if x2 = 0 and x1 ∈ (0, α]

ρ2(1−ρ1)
α

if x1 = 0 and x2 ∈ (0, α]

2ρ1ρ2
α2 if x1, x2 ∈ (0, α] and x1 + x2 ≤ α.

(4.0.3)

These probabilities give rise to the following parasite concentration probability density

function:

π(~x) = δ(x1)δ(x2)(1− ρ1)(1− ρ2)

+ χ(0,α](x1)δ(x2)
ρ1(1− ρ2)

α

+ δ(x1)χ(0,α](x2)
(1− ρ1)ρ2

α

+ χ{~x∈(0,α]2:‖~x‖1≤α}(~x)
2ρ1ρ2

α2

(4.0.4)

(see figure 2). To generate the simulated data, the random parasite concentration

vector is then input into the above molecular model. It should be noted that a

similar density function can be employed to generate parasitemia vectors rather than

the parasite concentration vectors, but the model does not input parasitemia. In

order to use the parasitemia vectors with the molecular model, the parasitemia must
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be transformed to concentration. That is, parasitemia is defined as the percent of

parasite per microliter of blood. On average, there are about 5,000,000 red blood

cells per microliter of blood in the human body, thus given a parasitemia β ∈ [0, 1],

the resulting concentration is about 5, 000, 000β.

5 Parameter Estimation

Parameter estimation is an interesting and challenging problem for any model. Hav-

ing well choosen parameters can shed light on certain physical aspects of the modeled

system as well as help generate more realistic results. The first step in parameter

estimation is determining the best optimization framework for a given model, then

adapting that framework to best fit the model. Once the optimization framework has

been chosen, the next step is to decide how to make a globally convergent numerical

routine. The parameters to be estimated in the molecular model include the PCR

replication factor, the max PCR output, the LDR binding probabilities, the midpoint

of the FMA, and the max flourescence signal. In this thesis, the optimization frame-

work used in the first phase of parameter estimation was the Levenberg-Marquardt

nonlinear least squares (NLLS) algorithm. This technique is a modification of the

quasi-Newton method for nonlinear least squares and is easily adapted to determine

parameters for the molecular model. Another possible optimization technique for the

first phase is to adapt the NLLS framework to accommodate natural constraints on

the parameters.

The typical nonlinear least squares problem is analogous to the minimization of an
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objective function of the form f : Rn → [0,∞) defined as f(x) = 1
2
R(x)TR(x) for the

vector R(x) = [ri(x)−yi] where ri is the model evaluated at ti, yi is the observed data,

and x is the parameter vector. In the two dimensional SNP situation, the previously

described objective function formulation is not valid because R(x) is a matrix, not a

vector. Therefore, the nonlinear response model requires an adaptation of the classical

NLLS scheme. To reformulate the objective function, we define the f(x) = 1
2
‖R(x)‖2

F .

Using the Frobenius norm is equivalent to stacking both allele n-vectors into one

combined 2n-vector where the first alleles’ response function corresponds to the first

n elements and the second alleles’ response function corresponds to the second n

elements, then minimizing the Euclidean norm squared of this 2n-vector.

5.1 Nonlinear Least Squares

This section follows from “Numerical Methods for Unconstrained Optimization and

Nonlinear Equations” by John Dennis Jr. and Robert Schnabel [16].

Suppose M is the nonlinear response model and (ti, yi) is the experimental data

to which the model needs to be fitted. The main goal is to minimize the distance

between M(ti) and yi. Defining this distance to be R(ti) = M(ti)− yi, then the best

fit parameter vector is the solution to the minimization problem:

min
x
f(x) = min

x

1

2
R(x)TR(x). (5.1.1)

Here x represents the vector of unknown parameters to be fit using the data. For

a simple solution to this minimization problem, one can employ the Gauss-Newton

method. The Gauss-Newton method makes use of an affine model approximation of
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R. The approximate solution to (5.1.1) is then the solution to the following equation:

mc(x) = R(xc) + J(xc)(x− xc) = 0 (5.1.2)

where J is the Jacobian of R and xc is the current step. Linear least squares techniques

are employed to solve this equation, yielding the solution:

x+ = xc − (J(xc)
TJ(xc))

−1J(xc)
TR(xc)

= xc − (J(xc)
TJ(xc))

−1∇f(xc).

(5.1.3)

5.1.1 The Levenberg-Marquardt Method

The above method converges rather quickly if the initial parameter guess is close

to the actual parameter values, but in general will not converge globally. A simple

extension of the Gauss-Newton method is the Levenberg-Marquardt method, which

is the Gauss-Newton method modified as a trust region problem (see [53, 82, 23]).

The Levenberg-Marquardt nonlinear least squares problem may be reformulated as:

min
x

1

2
‖J(xc)(xc − x) +R(xc)‖ , subject to ‖xc − x‖ ≤ ∆c. (5.1.4)

By lemma 6.4.1 in [16], this minimization problem is solved by finding λc such that

(J(xc)
TJ(xc)− λcI)(xc − x) = −J(xc)

TR(xc). (5.1.5)

and ∥∥−(J(xc)
TJ(xc)− λcI)−1J(xc)

TR(xc)
∥∥ = ∆c. (5.1.6)

Equation (5.1.5) is simply a linear system and thus can be solved using standard

linear least squares. The solution to (5.1.4) is the best choice for the trust region step

and is updated each iteration. Also, the Levenberg-Marquardt parameter, λ, and the
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bound on the step size, ∆, are updated each iteration using either a locally optimal

hook step or a double dogleg step.

5.1.2 Stopping Criterion

The NLLS algorithm for the molecular model incorporates six stopping tests similar

to those presented in [13]: absolute function convergence, relative function conver-

gence, relative gradient convergence, relative step convergence, maximum iteration,

and false convergence. The first stopping test simply tells us if the objective function

f is minimized, i.e. f(x+) < εf . The relative gradient stopping occurs when the gra-

dient of the objective function is about zero, or we have reached a stationary point.

This stopping implies that the algorithm has reached an extreme point. In order to

determine this, we use the following formula:

max
1≤i≤n

∣∣∣∣∇f(x)i max {|xi| , typxi}
max {|f(x)| , typf}

∣∣∣∣ ≤ εrg (5.1.7)

where typx is the typical size of x and typf is the typical size of the function f.

Maximum iteration stopping occurs when our algorithm has iterated a maximum

number of iterations. The final three convergences are related. Relative function

convergence is when the difference between the current function value and the previous

function value is small. That is,

f(xc)− qc(xc −H−1
c ∇f(xc))

f(xc)
≤ εrf , (5.1.8)

where H−1
c is the inverse of the current Hessian matrix. A very important convergence

test is relative step size test. This criterion tests the size of each step and stops the
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algorithm if the step size has become significantly small. Formally, a step that satisfies

the following expression is considered to be “small enough:”

maxi |(x+ − xc)i|
maxj(|(xc)j|+ |(x+)j|)

≤ εrx. (5.1.9)

As in [13], we only perform stopping criterion (5.1.7), (5.1.8), (5.1.9) when the

current function values satisfy:

f(xc)− f(x+) ≤ 2 [f(xc)− qc(x+)] , (5.1.10)

where qc is the current quadratic model of the residual function. This tests whether

or not the new step yields at most two times the predicted function decrease. Also,

we employ a final stopping criterion that test for false convergence test. This test

refers to relative function convergence and is only applied if condition (5.1.10) does

not hold. In this situation, the algorithm has a possibility to converge to a noncritical

point. To prevent this from happening, we set a lower bound, εF , for both relative

function and relative step size convergence. This yields:

εF ≤
f(xc)− qc(xc −H−1

c ∇f(xc))

f(xc)
≤ εrf . (5.1.11)

If this test results in a value less than εF , the algorithm will not terminate. In

our algorithm, we set the tolerances to εf = εrg = εrf = εrx = (εmachine)
1/3 and

εF = (εmachine)
2/3.

5.1.3 Scaling

In our nonlinear response model, the typical parameter values range over 12 orders of

magnitude, thus it is necessary to scale the parameters during each iteration. If the
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parameters are not scaled, the algorithm may ignore the smaller parameters. This is

a simple addition to the Levenberg-Marquardt method, only changing the problem

slightly. Let x̃ = Dx where D is a positive diagonal scaling matrix with the reciprocal

of the typical parameter sizes on the diagonal, then we reformulate our problem as:

min
x

1

2
‖J(x̃c)(x̃c − x̃) +R(x̃c)‖ , subject to ‖(x̃c − x̃)‖ ≤ ∆c. (5.1.12)

This minimization problem leads to the following normal equation formulation:

(J(x̃c)
TJ(x̃c)− λcD2)(x̃c − x̃) = −∇f(x̃c). (5.1.13)

This modification merely transforms our trust region from circular to elliptical. The

addition of the diagonal scaling matrix also may affect the stopping conditions. The

two main stopping conditions that are affected are absolute residual convergence and

relative step size convergence. Given the magnitude of the output of the molecular

model (at most ≈ 22000), the residual function may be quite large. Large residu-

als make absolute residual convergence nearly impossible, thus the absolute residual

criterion is adjusted to:

f(x+)

typf
< εf . (5.1.14)

In addition, the parameter estimates must be scaled in the relative step size criterion

so that no value is overlooked; i.e.

maxi |Di(x+ − xc)i|
maxj(Dj |(xc)j|+ |(x+)j|)

≤ εrx (5.1.15)

where Di denotes the ith component of the diagonal of the scaling matrix.
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5.2 Global Convergence

In order to obtain appropriate parameters for the molecular model, the optimization

algorithm is required to find a global minimum of the residual function. To do this,

the algorithm combines two global convergence strategies: a line search and a trust

region method. The reason for the combination is that the line search is quick, but

less accurate, while the trust region method is not as quick, but more accurate. A

routine method for combining these two algorithms is to first perform line search for

a set number of iterates (≈ 20), then move to the trust region method. The combined

scheme used in the is thesis was presented in [57]. This method first attempts a trust

region step. If the trust region step does not reduce the local model of the residual

function, the step is rejected and the algorithm performs a line search to determine

the new step. The algorithm used in this study has the option of either using a hook

step trust region method or a double dog leg trust region method.

5.2.1 Finite Differences Jacobian Approximation

In this thesis, we use a finite differences approximation of the Jacobian matrix of the

molecular model. This Jacobian estimate is then used to approximate the Hessian

matrix as J(xc)
TJ(xc) in the Gauss-Newton case and J(xc)

TJ(xc) +λcI in the quasi-

Newton case.

5.2.2 The Line Search

The line search algorithm is merely a reduction of the (possibly n-dimensional) op-

timization problem to the one-dimensional optimization problem of finding the min-
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imum of:

φ(α) = f(xc + αpc). (5.2.1)

To do this, it is logical to first try the full Newton step (αc = 1) and then, if the full

Newton step is unsatisfactory, to backtrack along the Newton step to find an optimal

value for αc. This algorithm requires certain conditions to ensure convergence. There

are two types of conditions that can be considered for a line search algorithm: the

Wolfe conditions and the Goldstein conditions (see [58, 16, 34]). The Wolfe conditions

consist of the Armijo condition which ensures sufficient decrease in the objective

function and the curvature condition which rules out unacceptably short steps. The

Armijo condition is given by the inequality:

f(xc + αcpc) ≤ f(xc) + c1αc∇f(xc)
Tpc (5.2.2)

where c1 = 1 × 10−4. The curvature condition requires αc to satisfy the following

inequality:

∇f(xc + αcpc)
Tpc ≥ c2∇f(xc)

Tpc (5.2.3)

where c2 = 0.9. These conditions are called the weak Wolfe conditions. A slightly

stronger version of these conditions (the strong Wolfe conditions) are as follows

f(xc + αcpc) ≤ f(xc) + c1αc∇f(xc)
Tpc, (5.2.4)

∣∣∇f(xc + αcpc)
Tpc
∣∣ ≥ c2

∣∣∇f(xc)
Tpc
∣∣ . (5.2.5)

The Goldstein conditions also ensures a sufficient decrease in the step length, but, in

addition, requires that the new step is not too short. These conditions are as follows:

f(xc + αcpc) ≤ f(xc) + cαc∇f(xc)
Tpc, (5.2.6)
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f(xc + αcpc) ≥ f(xc) + (1− c)αc∇f(xc)
Tpc (5.2.7)

for c ∈ (0, 1
2
). Equation (5.2.6) ensures that the Newton step is sufficiently decreased;

while equation (5.2.7) ensures that the new step is not too small.

The idea behind the backtracking algorithm mentioned above is to start with

the full Newton step and then “backtrack” along the Newton step until a sufficient

step value is found. In order to do this, the most recent information about φ is

used to model φ and then find αc such that the model is minimized. The initial

information is φ(0) = f(xc) and φ′(0) = ∇f(xc)
Tpc. Also, after computing the next

step, φ(1) = f(xc + pc) and thus, the quadratic model is

mq(α) = [φ(1)− φ(0)− φ′(0)]α2 + φ′(0)α + φ(0). (5.2.8)

To minimize this, first differentiate with respect to α to obtain

m′q(α) = 2[φ(1)− φ(0)− φ′(0)]α + φ′(0) (5.2.9)

and solve for m′c(α) = 0; which has solution

α =
−φ′(0)

2[φ(1)− φ(0)− φ′(0)]
. (5.2.10)

To determine whether or not this solution is a minimum, compute the second deriva-

tive

m′′q(α) = 2[φ(1)− φ(0)− φ′(0)] > 0, (5.2.11)

since φ(1) > φ(0) + φ′(0). In the situation that φ(1) >> φ(0), α can be very small

and thus suggests that our quadratic model is not a good representation of φ. If this

occurs, model φ with a cubic equation and search for a minimizer. This cubic model
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is

mc(α) = aα3 + bα2 + φ′(0)α + φ(0) (5.2.12)

where a and b are estimated by additional information. Given α0 and α1, the previous

two selections of α, determine the cubic and quadratic coefficients as followsa
b

 =
1

α1 − α0

 1
α2

1

−1
α2

0

−α0

α2
1

α1

α2
0


φ(α1)− φ(0)− φ′(0)α1

φ(α0)− φ(0)− φ′(0)α0

 ; (5.2.13)

which gives the minimization solution

α =
−b+

√
b2 − 3aφ′(0)

3a
. (5.2.14)

The α found in this way may lead to a step that is too small or too large. Therefore

in case both quadratic and cubic interpolation fail to yield sufficient values of α, we

impose upper and lower bounds on α. In the implementation in this study, the upper

bound is u=0.5 and the lower bound is l=0.1. These bounds reduce the number of

computations necessary and thus make the algorithm more efficient.

5.2.3 The Hook Step

The locally constrained hook step (see [16]) is exactly the solution to the Levenberg-

Marquardt adaptation of nonlinear least squares. That is, define the function:

s(µ) = −(J(xc)
TJ(xc) + µI)−1∇f(xc). (5.2.15)

The hook step problem is to find a µ such that ‖s(µ)‖ ∼= δc. In other words, the

solution to (5.2.15) is the root of the equation:

Φ(µ) = ‖s(µ)‖ − δc = 0. (5.2.16)
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Consider the local model of (5.2.15)

mc(µ) =
αc

βc + µ
− δc (5.2.17)

with the two parameters α and β. These two parameters are required to satisfy two

conditions:

mc(µ) =
αc

βc + µ
− δc = Φ(µ) = ‖s(µ)‖ − δc (5.2.18)

and

d

dµ
[mc(µ)] = − αc

(βc + µ)2

=
d

dµ
[Φ(µ)]

= −s(µ)T (J(xc)
TJ(xc) + µI)−1s(µ)

‖s(µ)‖
,

(5.2.19)

which leads to the following parameter values:

α = −(Φ(µ) + δ)2

Φ′(µ)
(5.2.20)

and

β = −(Φ(µ) + δ)

Φ′(µ)
− µ. (5.2.21)

As stated above, the root of (5.2.16) is desired. We obtain the solution:

µ+ =
α

δ
− β

= µ− ‖s(µ)‖
δ

[
Φ(µ)

Φ′(µ)

]
.

(5.2.22)

In order to make this algorithm practical and efficient, only approximate solutions

to equations (5.2.16) and (5.2.22) are used. Therefore the algorithm must search for

a range of solutions, i.e. µ+ ∈ [l+, u+] for some lower and upper bounds l+ and u+

updated every iteration, and ‖s(µ)‖ ∈ [3δ
4
, 3δ

2
].
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5.2.4 The Double Dogleg

The double dogleg method (see [16]) is another algorithm for approximating the

solution of the trust region subproblem, similar to the hook step. The basic idea is to

find a point x+ = xc+s(µc) by approximating the “dogleg” curve s(µ) with a piecewise

linear function connecting the minimizer of the local quadratic model and the full

Newton step. The minimizer of the local quadratic model pointing in the steepest

descent direction is called the Cauchy point. The double dogleg algorithm chooses x+

to be the point where the arc of the trust region intersects the line segment connecting

the Cauchy point and some point in the Newton direction; that is, ‖x+ − xc‖ = δ. In

the case that ‖H−1
c ∇f(xc)‖ < δ, the new step, x+, is merely the full Newton step.

The algorithm begins with the computation of the full Newton Step and then the

computation of the Cauchy point. The minimizer of the local quadratic model is

given by:

λ∗ =
‖∇f(xc)‖2

∇f(xc)THc∇f(xc)
. (5.2.23)

Thus, this solution and the steepest descent direction, −∇f(xc) is used to determine

the Cauchy point:

xCP+ = xc − λ∗∇f(xc). (5.2.24)

If the Cauchy point lies outside of the trust region radius, i.e. δ ≤ λ∗ ‖∇f(xc)‖, there

is no intersection between the arc of the trust region and the line connecting the

Cauchy point and the line in the Newton direction. In this case we take the Cauchy

point as a step of length δ in the steepest descent direction. Now, the algorithm must

determine what point on the Newton direction will yield an optimal solution. This
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point is given by

N = xc − ηH−1
c ∇f(xc) (5.2.25)

where γ ≤ η ≤ 1 and γ satisfies ‖sCP‖ ≤ γ ‖sN‖ ≤ ‖sN‖. In the above inequality,

sCP and sN are the Cauchy step and the Newton step respectively. Thus, the dogleg

curve begins at xc, travels along the steepest descent direction until it reaches the

Cauchy point, changes direction and travels towards N, intersecting the trust region

boundary in the process, reaches N and travels along the Newton direction until

it reaches the full Newton step. The next step is thus chosen on the line segment

between the Cauchy point and N, and has the form:

x+ = xc + sCP + λ(ηsN − sCP ). (5.2.26)

5.3 Maximum Likelihood

Another parameter estimation technique utilized in this study is maximum likelihood.

The ML problem is formulated as follows: suppose that Y = yi is a given data set

and that {fθ|θ ∈ Θ} is some family of probability distributions that generates this

data set and Θ ⊆ Rn is the parameter space. The goal of ML is to choose parameters

such that the likelihood function is maximized. That is, we seek a maximum of the

following form:

max
θ

(L(θ)) = max
θ

(fθ(y1, y2, . . .)). (5.3.1)

Assuming that Y are identically and independently distributed, (5.3.1) reduces to

max
θ

(L(θ)) = max
θ

∏
i

fθ(yi) (5.3.2)
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and since the maximum is preserved under monotone transformations, a useful trick

is to define the log-likelihood as:

max
θ

(L∗(θ)) = max
θ

(log(L(θ))) = max
θ

∑
i

log(fθ(yi)). (5.3.3)

and maximize this resulting equation. In order to solve equation (5.3.2), we find the

values of θ for which the derivative of (5.3.3) is equal to zero, then classify these

critical values using the second derivative.

Even though the NLLS scheme looks to minimize the objective function and ML

looks the maximize the objective function, the same code can be used because finding

the maximum of a function f is equivalent to finding the minimum of −f .

6 Analysis and Results

In order to use the molecular model to analyze field data, the NLLS parameters

must be estimated. To do this, a controlled dilution/mixing experiment should be

run using two laboratory adapted strains of Pf of known concentration/parasitemia.

This experiment requires ten serial dilutions plus one blank well for each of the two

different lab adapted strains. Each strain dilution is then mixed with all eleven of

the opposite strain dilutions to generate 121 samples with varying concentrations

of each strain (see figure 4). These parameters, along with the molecular model,

are then utilized to estimate distributions of parasitemia or parasite concentrations

in population data. In order to do this, we employ Bayes’ formula along with the

maximum likelihood techniques described above. Using “π” to represent probability
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distributions functions, Bayes’ formula is:

π(~x|~y) =
π(~x)π(~y|~x)

π(~y)
. (6.0.4)

In terms of our inverse problem (see [8, 71]), we can rewrite this equation as:

π(~x|~y) =
πconc(~x)πnoise(~y − f(~x))

π(~y)
, (6.0.5)

where f is the molecular assay, ~y is the observed fluorescence data, and ~x is the input

data. The concentration distribution represents the allele concentration distribution

described in the surrogate data section. For this distribution, the probabilities of

having one allele present, p1 and p2, can be estimated from population data using the

histogram method (see Appendix). That is, pi is equal to the number of samples with

the i allele present divided by the total number of samples. The third parameter,

α, is estimated later. The noise distribution from (6.0.5) is the bivariate lognormal

distribution from the FMA stage of the model. The parameters for the noise distribu-

tion can be estimated from control/blank data, by computing the mean and variance

of the log of the data.

To estimate α, we employ ML with respect to the noise distribution. In the one

dimensional space, the log normal distribution is given by:

ρ(z) =
1

zσ
√

2π
exp

[
−(ln(z)− µ)2

2σ2

]
. (6.0.6)

We want to optimize ρ for x and, in order to do so, we will investigate the log likelihood

of ρ:

L(z) = ln(ρ(z)) = − ln(zσ
√

(2π))− (ln(z)− µ)2

2σ2
. (6.0.7)
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To maximize this function, we must find where the derivative of φ is zero, i.e.

L′(z) = −1

z
− ln(z)− µ

zσ2
= 0. (6.0.8)

This equation has solutions at z = exp(µ − σ2) and z = ∞, but if z = ∞, then

L(z) = 0 and thus not a maximum. Hence, the most likely value for z is the mode,

z = exp(µ−σ2). For our noise distribution, we have ~z = ~y− f(~x) and thus, the most

likely solution for the input data is ~x = f−1(~y − exp(~µ− ~σ2). With these most likely

values of ~x, we can compute the third concentration distribution parameter as the

maximum of the sum of the elements of ~xi for each i:

α = max
i
‖~xi‖1 (6.0.9)

by analogy with the maximum likelihood estimator for the univariate uniform distri-

bution.

Now we have two of the three components of the conditional probability distribu-

tion, π(~x|~y). To compute π(~y), we notice that

1 =

∫ α

0

πconc(~x)πnoise(~y − f(~x))

π(~y)
d~x

=
1

π(~y)

∫ α

0

πconc(~x)πnoise(~y − f(~x))d~x

(6.0.10)

and π(~y) is merely the normalization constant for any given ~y. Thus,

π(~y) =

∫ α

0

πconc(~x)πnoise(~y − f(~x)). (6.0.11)

With this distribution, the conditional probability distribution is complete and may

be utilized to determine the distribution of possible parasitemias associated with any

observed fluorescence data ~yi.
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6.1 Nonlinear Least Squares Parameter Estimates

We simulated the proposed dilution/mixing experiment by generating a 121 by 2

matrix of concentrations as described above. Suppose that the control DNA, before

dilution, has a concentration of 1,000,000 infected red blood cells (iRBCs) per mi-

croliter (µL). Then the dilution series of this controlled DNA consists of 10−i times

1,000,000 iRBCs per µL, where i = 0, 1, ..., 9. To generate a more realistic dilution ex-

periment each element of the concentration vector has a stochastic term added. This

stochastic term is a uniform random number with magnitude one order of magnitude

less than the dilution sample. We input this surrogate dilution/mixing experiment

into the model using predetermined “reasonable” parameters to generate surrogate

fluorescence data. These parameters were chosen by visually fitting the model param-

eters to locus 59 in the dhfr gene from RVL field data from PNG. Using the NLLS

algorithm, we fit parameters to the model output fluorescence. The NLLS algorithm

terminated after 13 iterations returning a relative residual (i.e. residual/typf) of

0.08. The total run time to fit these parameters was 3.93 seconds.

6.2 Conditional Probability Distribution Analysis

Using the techniques described in the surrogate data section, we generated n = 264

fluorescence samples based on locus 59 in the dhfr gene from RVL field data from

PNG. To determine parasitemia distribution parameters, we analyzed the locus 59

RVL field data with the histogram SNP analysis algorithm (see appendix) to deter-

mine the number of samples in each infection state. This analysis yielded the fol-
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lowing parameters: p1 = 0.3144 and p2 = 0.2273. Also, we estimated the lognormal

distribution parameters using the fluorescence output of 70 uninfected samples (no

malarial DNA). The maximum likelihood lognormal parameters were µ1 = 4.4153,

σ1 = 0.4185, µ2 = 4.6019, and σ2 = 0.3543. See Figure 5. Given the surrogate fluo-

rescence data, along with the NLLS parameters and the log normal parameters, we

estimated the third parasite concentration distribution parameter as α = 110.4945.

Finally, to generate the conditional probability distribution for any given ~y, we ap-

proximate the π(~y) distribution by approximating the integral equation (6.0.10). Fig-

ure 6 shows typical conditional probability parasite concentration distributions.

7 Discussion

The overall goal of the project is to provide a framework for improved diagnosis at

the individual and population level for drug-resistant malaria mutants.

Double serial dilution control experiments described in Laboratory Methods were

carried out by J. DaRe. Unfortunately, technical difficulties developing the stain for

prepared gels made it impossible to incorporate empirically determined PCR product

measurements. This situation forced us to use surrogate data in place of empirical

data in order to give a complete description of the overall data analysis framework.
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8 Conclusions

The molecular model described in this paper should prove useful to the biomedical

community, particularly to those focused on single nucleotide polymorphism (SNP)

detection using the LDR-FMA platform or any microarray SNP platform. With well

chosen parameters, community fluorescence data can be analyzed quickly via the

inverse of the molecular model, yielding parasitemia distributions for each allele in

the drug resistance conferring SNPs. The knowledge of how these SNPs are dispersed

throughout a community has great significance in the field of public health and policy.

Being able to chart the changes in drug resistance will allow policy makers to change

drug treatment plans for that region before the drug becomes obsolete. Also, being

able to determine the relative abundance of these drug resistance strains will help

to map the evolutionary spread of these point mutations or even determine the rate

of mutation. Future directions for this study are to implement a bound constrained

optimization algorithm for the NLLS problem. Another direction is obtaining the

proposed dilution/mixing experiment data to estimate the biological and chemical

parameters of the molecular model. Advancing technology is rapidly introducing

many new molecular and laboratory techniques. Providing a framework for inter-

preting the data sets now becoming available is one of the ongoing challenges at the

intersection of applied mathematical and biomedical research today. First principles

models and analytic techniques such as those proposed in this paper will potentially

have a significant impact on the scientific community and the world population in

general.
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9 Appendix

9.1 Histogram SNP Analysis Algorithm

The topic of this section has appeared as partial requirement of Biology 388 (advisory

Peter J. Thomas) and will be appearing in a scientific journal soon.

There are four infection states at any given diallelic SNP, i.e. uninfected for both

alleles, infected with a single allele, or infected with both alleles (00, 01, 10, 11).

Given LDR-FMA output data, we would like to generate a principled partition of the

data into these four infection states. Previous methods by Carnevale Et. Al. have

generated two thresholds using a heuristic technique. These thresholds have been

verticle and horizontal lines. Upon inspection of the output data, we notice that

that these thresholds do not take into account the intrinsic structure of the data. As

signal for one allele increases, the background signal for the other allele also increases.

Thus, we see the single strain infections pulling away form the axes. We propose a

more robust three threshold technique in which we exploit this intrinsic structure of

the data. This technique generates a quarter circle threshold seperating uninfected

from infected and two rays that seperate single infection from mixed infection.

The technique consists of six parts: data transformation to polar coordinates,

generate histograms, find minima, data tranformation back to Cartesian coordinates,

bootstrapping confidence intervals, and estimating total confidence in the thresholds.

The first step is transforming the LDR-FMA data into its angle and magnitude com-

ponents. Let X and Y represent the two alleles, then the magnitude and angle are
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given by:

r =
√
X2 + Y 2 (9.1.1)

θ = arctan

(
Y

X

)
. (9.1.2)

We next generate histograms of both the magnitude and angle. To do so, we find

the minimum and the maximum magnitudes and angles, r− = min(r), r+ = max(r),

θ− = min(θ), and θ+ = max(θ). We then generate 100 equally spaced bins for the

magnitude and 64 equally spaced bins for the angle. The spacing is given by:

rspacing =

⌈
r+ − r−

100

⌉
(9.1.3)

θspacing =

⌈
θ+ − θ−

64

⌉
. (9.1.4)

Now, we employ a simple search algorithm to determine the first minimum after the

initial maximum of the magnitude vector, and to determine the first mimimum after

the initial maximum and the final minimum before the final maximum of the angle

vector. This follows from inspection of the LDR-FMA data. We notice that a majority

of the samples are uninfected and thus have small magnitude. This means that there is

a relatively large density of samples near about 200 MFI in the magnitude histogram.

Similarly, if someone is infected with the allele that lies near the horizontal axis, the

angle between the sample and the horizontal axis will be near 0 radians, while if

someone is infected with the allele that lies near the verticle axis, the angle between

the sample and the verticle axis will be near π
2

radians. This method generates three

numbers. The first is the threshold between infected and uninfected and the second

and third are the angles of the rays that separate the single strain infections from the
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mixed infections. To transform these numbers into thresholds, we have:

yr(x) =
√
r̃2 − x2 (9.1.5)

yθi(x) = x tan(θ̃i) (9.1.6)

where r̃ and θ̃i are the thresholds determined above.

In order to generate confidence intervals for this method, we employ a statistical

bootstrapping method in which we resample the LDR-FMA data allowing for replace-

ment and run the histrogram threshold detection algorithm on the resampled data.

We repeat this process 1000 to 10000 times and store the threshold estimates from

each run. If (1− α) is our desired confidence interval, then we use the α and (1− α)

quantiles from each list of parameter estimates as the confidence intervals. With

these confidence estimates on the thresholds, we can determine our total confidence

in algorithm. Suppose ρ(r, θ) is the density of infection and f(r, θ) is the confidence

as a function of position, then the probability of misclassification is:

Pr = 1−
∫ ∞

0

∫ π
2

0

ρ(r, θ)f(r, θ)rdrdθ. (9.1.7)

From this, we can approximate the total confidence (TC ) by descritising for each

sample in the LDR-FMA data. That is,

TC = 1− PR ≈ 1

N

N∑
i=1

αiρ(ri, θi) (9.1.8)

where αi is the confidence interval in which the ith sample lies and N is the number

of samples. In analyzing population, we determined total confidence of about 98 to

99% in our method.
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9.2 Thermodynamic Analysis

One source of background in the SNP detection assay is due to mismatched binding

of the allele specific LDR primers. For each locus, there are two primers (since we are

investigating diallelic SNPs) and these primers only differ at one nucleotide. Thus,

suppose that the primer is n nucleotides in length, then n−1 of the nucleotides are the

same in each primer. This allows for an increased probability of mismatched binding.

In order to investigate these mismatches, one can investigate the thermodynamic

properties of Watson-Crick and non Watson-Crick basepairing. This method is a

rather simple method based on properties of Gibbs equation:

∆G(T )◦ = −RT ln

(
C

K

)
(9.2.1)

where T is the temperature, R is the Boltzmann constant, C is the concentration,

and K is the equilibrium constant. By rearranging this equation and solving for C,

we can determine the probability of binding. Therefore,

C = K exp

[
−∆G◦

RT

]
(9.2.2)

gives the probability of a single nucleotide binding to another. In the two dimensional

locii case, there are two probabilities of binding (excluding the case in which neither

primer binds). These two cases are perfect match (PM) and mismatch (MM). In the

PM situation, the correct primer binds to the PCR product, in the MM situation

the incorrect primer binds to the PCR product. Using the above equations, we can

calculate the probabilities of binding for both the MM and the PM case. There

have been numerous nucleic acids research papers written on the Gibbs free energy,
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∆G(T )◦, associated with Watson-Crick and non Watson-Crick basepairing [1, 3]. One

can use values for the Gibbs free energy as determined in these papers to determine

these probabilities. By taking the ratios of the probabilities of PM and MM, one

determines the probability of the difference of the two situations. That is, if CPM is

the probability of PM and CMM is the probability of MM, then:

CPM
CMM

=
exp

[
−∆G◦

PM

RT

]
exp

[
−∆G◦

MM

RT

] = exp

[
−(∆G◦PM −∆G◦MM)

RT

]
. (9.2.3)

Relating this value with the SNP detection assay, for a two dimensional locus, Cv
PM/C

v
MM

(where Cv
i is the probability of binding for i = MM,PM along the vertical axis) is

an approximation of the slope of the fluorescence of the allele along the vertical axis;

while, Ch
MM/C

h
PM (where Ch

i is the probability of binding for i = MM,PM along

the horizontal axis) is an approximation of the slope of the fluorescence of the allele

along the horizontal axis.
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9.3 Optimization Matlab Code

9.3.1 Levenberg-Marquardt Driver

% LEVENBERG-MARQUARDT IMPLEMENTATION OF NONLINEAR LEAST SQUARES

% DREW KOURI

% INPUT: function, parameter guess, trust region parameters, and tolerance

% parameters

%

% OUTPUT: best fit parameters, best fit residual, termination code, and

% time

%

% DESCRIPTION: Employ both linesearch and trust region techniques to

% optimize the objective function defined as follows:

%

% m(xi|t) = model

% t = parameters

% (xi,yi) = data

% R(t) = m(xi|t)-yi residual function

% f(t) = 1/2 R(t)*R(t) objective function

%

% J = Jacobian Matrix

% g = -J*R(t) Gradient Vector

% H = J*J Hessian Matrix

%

% Find x+ such that (H - L D^2) x+ = -g, where D is scaling matrix, and L

% L is the Levenberg-Marquardt Parameter

% -------------------------------------------------------------------------

% -------------------------------------------------------------------------

% SECTION 1: INITIALIZE SYSTEM AND INTRODUCTORY DISPLAY

clear all % Clear all saved data

close all % Close all open windows

clc % Clear the home screen
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format long g % Output format

macheps = MACHINEPS(); % Compute Machine Epsilon

% Introduction Display

disp(’Nonlinear Least Squares Parameter Fitting’)

disp(’Levenberg-Marquardt Algorithm’)

disp(’Drew Kouri’)

disp(’...’)

% -------------------------------------------------------------------------

% -------------------------------------------------------------------------

% SECTION 2: USER DEFINED INPUTS

% Input Initial Parameter Guess

x0 = [2;2e12;1;1;1e4;1e4;1e10;1e10;4;4];

% dataSize = 2*121;

ds = 264;

dataSize = 2*ds;

% Input Function to be Optimized

[M,f,R,y,t,M1] = assayFunc(.4,.3,100,ds);

% Choose Global Step Type

% Hook Step = 1

% Double Dogleg = 2

% Line Search = 3 only if scheme = 2

steptype = 1;

% Choose Global Scheme

% Combined = 1

% Single = 2

scheme = 1;
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% Choose Problem Type

% General Optimization = 1

% Least Squares = 2

probtype = 2;

% Choose Cholesky Factorization Method

% Revised Perturbed Cholesky Factorization = 1

% Standard Perturbed Cholesky Factorization = 2

choltype = 1;

% Tolerance Parameters

maxiter = 400; % Number of Iterations

residtol = macheps^(1/3); % Residual Tolerance

relresidtol = macheps^(1/3); % Residual Tolerance

gradtol = macheps^(1/3); % Gradient Tolerance

steptol = macheps^(1/3); % Stepsize Tolerance

falsetol = macheps^(2/3); % False Convergence Tolerance

typx = [1;1e12;1;1;1e4;1e4;1e10;1e10;1;1];

typf = 1e8; % Typical f(x) size

% Trust Region Parameters

del = -1; % Initial Trust Region Radius

lam = 0; % Initial Levenberg-Marquardt Parameter

delprev = 0; % Initial Previous TR Radius

phi = 0; % Initial Phi Estimate

phipr = 0; % Initial Phi’ Estimate

% -------------------------------------------------------------------------

% -------------------------------------------------------------------------

%SECTION 3: MINIMIZATION

tic

[x,termcode,m,i,ls]=minDriver(f,x0,scheme,steptype,probtype,...

choltype,maxiter,residtol,relresidtol,...

gradtol,steptol,falsetol,typx,typf,del,...
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lam,delprev,phi,phipr,R,M);

toc

% -------------------------------------------------------------------------

% -------------------------------------------------------------------------

% SECTION 4: DISPLAY OUTPUT

% Display Termination Code

disp(strcat(’Total # of Iterations--’,num2str(i)))

disp(strcat(’Total # of Line Search Iterations--’,num2str(ls)))

disp(strcat(’NLLS Fit Residual=’,num2str(m)))

disp(strcat(’NLLS Fit Relative Residual=’,num2str(m/typf)))

switch termcode

case 1

disp(strcat(’termination code #’,num2str(termcode),...

’: residual less than residtol’));

case 2

disp(strcat(’termination code #’,num2str(termcode),...

’: relative residual less than relresidtol’));

case 3

disp(strcat(’termination code #’,num2str(termcode),...

’: norm scaled gradient less than gradtol’));

case 4

disp(strcat(’termination code #’,num2str(termcode),...

’: scaled distance between last two steps less than steptol’));

case 5

disp(strcat(’termination code #’,num2str(termcode),...

’: iteration limit exceeded’));

case 6

disp(strcat(’termination code #’,num2str(termcode),...

’: algorithm converging to a noncritical point’));

end

disp(’...’)

39



% Display Parameters

P = [’Rep Factor: ’

’Max PCR: ’

’Binding Prob 1: ’

’Binding Prob 2: ’

’Max FMA 1: ’

’Max FMA 2: ’

’Midpoint FMA 1: ’

’Midpoint FMA 2: ’

’FMA Noise 1: ’

’FMA Noise 2: ’];

disp(’ Best Fit Values’)

disp([P num2str(x,5)])

% -------------------------------------------------------------------------

% -------------------------------------------------------------------------

% SECTION 5: PLOTTING

xlog = x;

xlog(9) = log(xlog(9))+.8106^2/2;

xlog(10) = log(xlog(10))+.5696^2/2;

y1 = M1(xlog);

figure

scatter(y(1:dataSize/2),y(dataSize/2+1:dataSize),’bo’)

hold on

scatter(y1(1:dataSize/2),y1(dataSize/2+1:dataSize),’r.’)

xlabel(’ALLELE 1’)

ylabel(’ALLELE 2’)

legend(’Experimental Data’,’Surrogate Data’)

% -------------------------------------------------------------------------
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9.3.2 Minimization Function

function [x,termcode,m,i,ls]=minDriver(f,x0,scheme,steptype,probtype,...

choltype,maxiter,residtol,relresidtol,gradtol,steptol,falsetol,...

typx,typf,del,lam,delprev,phi,phipr,R,M)

% Minimization Driver

% Drew Kouri

% minDriver runs a combined trust region/linesearch algorithm to fine the

% minimum of a nonlinear equation.

% -------------------------------------------------------------------------

% Required Input:

% f = Objective Function

% R = Residual Function

% -------------------------------------------------------------------------

% Optional Input:

% scheme = Global Scheme: 1=Combined; 2=Single

% steptype = Global Step Type: 1=Hook Step; 2=Double Dogleg; 3=Linesearch

% probtype = Problem Type: 1=General Minimization; 2=Least Squares

% choltype = Cholesky Factorization Type: 1=New Method; 2=Standard Method

% maxiter = Iteration Limit

% residtol = Residual Tolerance

% relresidtol = Relative Residual Tolerance

% gradtol = Gradient Tolerance

% steptol = Step Size Tolerance

% falsetol = False Convergence Tolerance

% typx = Typical x Size

% typf = Typical f Size

% del = Trust Region Parameter

% lam = Levenberg-Marquardt Parameter

% delprev = Previous Trust Region Parameter

% phi = estimate of phi

% phipr = estimate of phi’

% M = Model

% x0 = Initial Parameter Guess

% -------------------------------------------------------------------------
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% Output:

% x = Solution to Mimization Problem

% termcode = Termination Code

% m = Objective Function Value

% i = Iteration Count

% ls = linesearch iteration count

% -------------------------------------------------------------------------

numParam = length(x0); % Compute Number of Parameters

macheps = MACHINEPS(); % Compute Machine Epsilon

% Check Input Parameters

if(nargin<20), probtype = 1; end

if(nargin<19), phipr = 0; end

if(nargin<18), phi = 0; end

if(nargin<17), delprev = 0; end

if(nargin<16), lam = 0; end

if(nargin<15), del = -1; end

if(nargin<14), typf = 1; end

if(nargin<13), typx = ones(numParam,1); end

if(nargin<12), falsetol = macheps^(2/3); end

if(nargin<11), steptol = macheps^(1/3); end

if(nargin<10), gradtol = macheps^(1/3); end

if(nargin<9), relresidtol = macheps^(1/3); end

if(nargin<8), residtol = macheps^(1/3); end

if(nargin<7), maxiter = 400; end

if(nargin<6), choltype = 2; end

if(nargin<5), probtype = 1; end

if(nargin<4), steptype = 1; end

if(nargin<3), scheme = 1; end

% Cannot Use combined method with line search

if(scheme == 1 && steptype == 3)

scheme = 2;
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end

% For NLLS problems

if(probtype==2)

dataSize = length(R(x0)); % Compute Length of Data Vector

% Quadratic Model of f - Objective Function

mq = @(x1,x2,J) f(x1)+(x2-x1)’*J’*R(x1)+1/2*(x2-x1)’*J’*J*(x2-x1);

end

m = f(x0); % Compute Initial Residual

D = diag(1./typx); % Scaling Matrix

maxstep = 1e3*max(norm(D*x0),norm(1./typx));% Max Step Tolerance

% Initial Iteration Counts

i = 0; % Initialize Iteration Number

ls = 0; % Total Line Search Iterations

retcode = 0; % Initialize Return Code for Global Optimizers

% Compute Initial Gradiant via Finite Differences

g = finiteDifferenceGradient(numParam,x0,f(x0),f,typx,1e-7);

x = x0; % Set Optimization Variable to Initial Guess

% Decide Whether or Not to Stop Algorithm

termcode = UMSTOP0(x0,f(x0),g,diag(D),typf,gradtol);

% -------------------------------------------------------------------------

while(termcode == 0)

i = i+1; % Update Iteration Count

% Either Compute Finite Difference Gradiant/Hessian

% or Compute the NLLS Gradiant/Hessian

if(probtype == 2) % Compute Gradient/Hessian via Jacobian Approximation

J = finiteDifferenceJacobian(dataSize,numParam,x,M(x),M,typx,1e-7);

g = J’*R(x); % Compute Gradiant Vector Approximation
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H = J’*J; % Compute Hessian Matrix Approximation

else % Compute Gradient/Hessian via Finite Differences

g = finiteDifferenceGradient(numParam,x,f(x),f,typx,1e-7);

H = finiteDifferenceHessian(numParam,x,f(x),f,typx,1e-7);

end

% Compute Cholesky Decomposition of H+D

L = choleskyDecomp(H,choltype,0);

d = cholsolve(L,g); % Determine Full Newton Step

xp = x; % Store Previous Step

% Compute Best Step

if(scheme == 1) % Use Combined Trust Region/Line Search Method

[x,del,lam,delprev,phi,phipr,ls] = globaldriver(d,x,m,f,H,L,...

g,D,del,lam,i,numParam,delprev,phi,phipr,maxstep,ls,...

steptype);

else % Use Single Global Method

if(steptype == 1)

% Use Trust Region Hooke Step Algorithm

[x,del,lam,delprev,phi,phipr] = hookdriver(d,x,m,f,H,L,g,D,...

del,lam,i,numParam,delprev,phi,phipr,maxstep);

elseif(steptype == 2)

% Use Trust Region Double Dogleg Algorithm

[x,m,retcode,maxtaken,del] = dogdriver(numParam,x,f(x),f,g,...

L,H,d,D,maxstep,del);

else

% Use Linesearch Backtracking Algorithm

x = linesearch(x,g,d,f,typx);

end

end

% Compute New Residual

m = f(x);
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% Decide Whether or Not to Stop Algorithm

if(probtype == 2) % For NLLS

termcode = UMSTOPNLLS(x,xp,m,M,f,mq,g,J,i,D,typf,typx,residtol,...

maxiter,relresidtol,falsetol,gradtol,steptol);

else % For General Optimization

termcode = UMSTOP(x,xp,f(xp),g,typx,typf,retcode,gradtol,steptol,...

i,maxiter);

end

end
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9.3.3 Assay Function

function [M,f,R,y,t,M1] = assayFunc(p11,p12,p21,z)

% -------------------------------------------------------------------------

% DESCRIPTION: Generate surrogate data from molecular model.

% -------------------------------------------------------------------------

% INPUT:

% p11 = probability of being uninfected

% p12 = probability of being infected by allele 1

% p21 = probability of being infected by allele 2

% z = number of samples

% -------------------------------------------------------------------------

% OUTPUT:

% M = stochastic model function

% f = objective function

% R = residual function

% y = surrogate fluorescence data

% t = surrogate parasitemia data

% M1 = mean value model function

% -------------------------------------------------------------------------

% -------------------------------------------------------------------------

% Dilution/Mixing Experiment

% z=121;

% d = 1e6.*10.^(-(1:10)+1);

% d(11)=0;

% d=d’;

% d = flipud(d);

% for i = 1:11

% t1((i-1)*11+1:i*11)=d(i);

% end

% t2 = [d;d;d;d;d;d;d;d;d;d;d];

% t = [t1’,t2];

%

% for i = 1:121
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% for j = 1:2

% t(i,j)=t(i,j)+1e-1*t(i,j)*rand();

% end

% end

% -------------------------------------------------------------------------

% Parasitemia Distribution

t1 = zeros(z,1);

t2 = zeros(z,1);

r = rand(z,1);

for j = 1:z

if(r(j)<p11)

t1(j) = 0;

t2(j) = 0;

elseif(r(j)>p11 && r(j)<p12+p11)

t1(j) = 100*rand;

t2(j) = 0;

elseif(r(j)>p12+p11 && r(j)<p21+p12+p11)

t1(j) = 0;

t2(j) = 100*rand;

else

s = rand;

t1(j) = s*100*rand;

t2(j) = (1-s)*100*rand;

% t1(j) = 100*rand;

% t2(j) = 100*rand;

end

end

t = [t1,t2];

% -------------------------------------------------------------------------

% Generate Assay Model

% PCR

PCR = @(x,b) b(2)*x./(x+b(2)/b(1)^35);
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% LDR

LDR = @(x,p) (32*[p(1),(1-p(2));(1-p(1)),p(2)]*x’)’;

% FMA for stochastic model

FMA = @(x,b) [b(1)*x(:,1).^2./(x(:,1).^2+(b(3))^2),...

b(2)*x(:,2).^2./(x(:,2).^2+(b(4))^2)];

% FMA for mean value model

FMA2 = @(x,b) [b(1)*x(:,1).^2./(x(:,1).^2+(b(3))^2);

b(2)*x(:,2).^2./(x(:,2).^2+(b(4))^2)];

% Stochastic model

Assay = @(x,b) FMA(LDR(PCR(x,[b(1);b(2)])/25,[b(3);b(4)])/15,...

[b(5);b(6);b(7);b(8)])+[lognrnd(b(9),.8106,z,1),lognrnd(b(10),...

.5696,z,1)];

% Mean value model

mAssay = @(x,b) FMA2(LDR(PCR(x,[b(1);b(2)])/25,[b(3);b(4)])/15,...

[b(5);b(6);b(7);b(8)])+[repmat(exp(b(9)+.8106^2/2),z,1);...

repmat(exp(b(10)+.5696^2/2),z,1)];

% Important functions

M1 = @(b) Assay(t,b); % Stochastic model with input initial data

M = @(b) mAssay(t,b); % Mean value model with input initial data

% Parameter definitions

repfactor = 1.95;

maxPCR = 1.806e12;

bindProb1 = .94;

bindProb2 = .92;

maxFMA1 = 9000;

maxFMA2 = 11000;

midFMA1 = 2.3e10;

midFMA2 = 2.5e10;

FMAnoise1 = 4.3158;

48



FMAnoise2 = 4.7504;

param = [repfactor

maxPCR

bindProb1

bindProb2

maxFMA1

maxFMA2

midFMA1

midFMA2

FMAnoise1

FMAnoise2];

% Stack allele vectors

y1 = M1(param);

y = [y1(:,1);y1(:,2)];

% -------------------------------------------------------------------------

% Output functions

R = @(b) M(b) - y; % Residual function

f = @(x) 1/2*R(x)’*R(x); % Objective function

49



9.3.4 Initial Stopping Conditions

function termcode = UMSTOP0(x0,f0,g,D,typf,gradtol)

if(max(g.*max(x0,1./D)/max(abs(f0),typf))<=1e-3*gradtol)

termcode = 3;

else

termcode = 0;

end
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9.3.5 General Stopping Conditions

function termcode = UMSTOP(xc,x,f,g,typx,typf,retcode,gradtol,steptol,...

icount,maxiter)

termcode = 0;

if(retcode==1)

termcode = 3;

elseif(max(abs(g).*max(abs(x),1./typx)/max(abs(f),typf))<=gradtol)

termcode = 1;

elseif(max(abs(x-xc)./max(abs(x),1./typx))<=steptol)

termcode = 2;

elseif(icount>=maxiter)

termcode = 4;

end
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9.3.6 NLLS Stopping Conditions

function termcode = UMSTOPNLLS(x,xp,m,M,f,mq,g,J,i,D,typf,typx,residtol,...

maxiter,relresidtol,falsetol,gradtol,steptol)

termcode = 0;

% Stopping Criterion

if(1/typf*m<residtol)

termcode = 1; % Absolute Residual

elseif(i>=maxiter)

termcode = 5; % Maximum Iterations

elseif(f(xp)-f(x)<=2*(f(xp)-mq(xp,x,J)))

H = pinv(J’*J);

if((f(xp)-mq(xp,xp-H*g,J))/f(xp)<relresidtol)

if((f(xp)-mq(xp,xp-H*g,J))/f(xp)>falsetol)

termcode = 2; % Relative Residual

end

end

if(max(abs(g)*max(max(abs(x),typx))/max(max(abs(M(x)),typf)))<gradtol)

termcode = 3; % Norm Scaled Gradient

end

if(max(abs(D*(x-xp)))/max(D*(abs(x)+abs(xp)))<steptol)

termcode = 4; % Relative Step Size

end

else

if(max(abs(D*(x-xp)))/max(D*(abs(x)+abs(xp)))<falsetol)

termcode = 6; % False Convergence

end

end
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9.3.7 Global Step Driver

function [xp,del,lam,delprev,phi,phipr,ls] = ...

globaldriver(sN,xc,fc,f,H,L,g,D,del,lam,i,n,delprev,phi,phipr,maxstep,ls,steptype)

function [xp,del,lam,delprev,phi,phipr,ls] = globaldriver(sN,xc,fc,f,H,...

L,g,D,del,lam,i,n,delprev,phi,phipr,maxstep,ls,steptype)

% Determine New Step, trust region radius, and Levenberg-Marquardt

% Parameter

% -------------------------------------------------------------------------

% Input:

% sN = Newton Step

% xc = current x

% fc = f(xc)

% f = objective function

% H = Hessian Matrix

% L = lower triangular Cholesky Decomposition of H

% g = gradient

% D = scaling matrix

% del = trust region radius

% lam = Levenberg-Marquardt Parameter

% i = iteration

% n = length of x

% delprev = previous trust region radius

% phi = estimate of phi

% phipr = estimate of phi’

% ls = linesearch iteration count

% steptype = 1 if Hook Step, 2 if Double Dog Leg

% -------------------------------------------------------------------------

% Output:

% xp = new step

% del = new trust region radius

% lam = new Levenberg-Marquardt Parameter

% delprev = previous trust region radius

% phi = new estimate of phi

% phipr = new estimate of phi’
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% ls = linesearch iteration count

% -------------------------------------------------------------------------

xpprev = xc; % Define xpprev

fpprev = fc; % Define fpprev

Dvec = diag(D);% Store scaling matrix diagonal

retcode = 4; % Initialize Return Code

Newtlen = norm(D*sN); % Determine Newton Length

if(steptype == 1)

phiprinit = 0; % Initial Phi’ Estimate

firsthook = 1; % First Hook Step

% Determine Initial trust region radius

if(i == 1 || del == -1)

lam = 0;

if(del == -1)

alpha = norm(1./Dvec.*g)^2;

beta = 0;

for j = 1:n

temp = sum(L(j:n,j).*g(j:n)./(Dvec(j:n).^2));

beta = beta + temp*temp;

end

del = alpha*alpha^(1/2)/beta;

if(del>maxstep)

del = maxstep;

end

end

end

else

firstdog = 1;

end

% Compute new step, trust region radius, and Levenberg-Marquardt Parameter

while(retcode>=2)
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if(steptype == 1)

% Use Hook Step

[s,del,lam,phi,phipr,firsthook,phiprinit,Newttaken] = hookstep(...

n,g,L,H,sN,D,Newtlen,delprev,del,lam,phi,phipr,firsthook,...

phiprinit);

else

% Use Double Dog Leg

if(firstdog == 1)

ssD = zeros(n,1);

v = zeros(n,1);

Cauchylen = 0;

eta = 0;

end

[del,firstdog,Cauchylen,eta,ssD,v,s,Newttaken] = dogstep(n,g,L,...

sN,D,Newtlen,maxstep,del,firstdog,ssD,v,eta,Cauchylen);

end

% Decide whether to use Line Search and Update trust region radius

if(f(xc+s)>=f(xc))

xp = linesearch(xc,g,s,f,1./Dvec); % Use Linesearch Backtracking Algorithm

del = max(norm(xp-xc),0.75*del);

ls = ls+1;

retcode = 1;

else

delprev = del;

[xp,fp,maxtaken,del,retcode,xpprev,fpprev] = trustregup(n,xc,fc,...

f,g,s,D,Newttaken,maxstep,H,L,del,retcode,xpprev,fpprev,...

steptype);

end

end
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9.3.8 Line Search Code

function xp = linesearch(xc,dfc,pc,f,typx)

% Line Search Algorithm

% xc = current step

% dfc = current gradient value

% pc = Quasi-Newton step

% f = objective function

% Tolerance Parameters

maxstep = 1e3*max(norm(xc),1); % Max Step Size

steptol = eps^(2/3); % Step tolerance

alpha = 1e-4;

n = length(xc);

% Find Current Values

fc = f(xc); % Current function value

Newtlen = norm(pc); % Newton Step Length

initslope = dfc’*pc; % Initial Slope

rellength = max(abs(pc)./max(abs(xc),1)); % Relative Step Length

minlambda = steptol/rellength; % Minimum Line Search Value

% Update Newton Length based on Maximum Step Length

if(Newtlen>maxstep)

pc = pc*(maxstep/Newtlen);

Newtlen = maxstep;

end

lambda = 1; % Initial Line Search Value

retcode = 0; % Stopping Condition

while(retcode == 0)

xp = xc+lambda*pc; % Determine New Step

fp = f(xp); % Determine New Objective Function Value

% Line Search Using Directional Derivative

if(fp <= fc+alpha*lambda*initslope)
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dfp = finiteDifferenceGradient(n,xp,f(xp),f,typx,1e-7);

beta = 0.9;

newslope = dfp’*pc; % Determine New Slope

if(newslope < beta*initslope)

if(lambda == 1 && Newtlen < maxstep)

maxlambda = maxstep/Newtlen; % Update Max Lambda

stopcode = 0;

while(stopcode == 0)

lprev = lambda;

fpprev = fp;

lambda = min(2*lambda,maxlambda);

xp = xc+lambda*pc; % Update Step

fp = f(xp); % Updata Function Value

if(fp <= fc+alpha*lambda*initslope)

dfp = finiteDifferenceGradient(n,xp,f(xp),f,typx,1e-7);

newslope = dfp’*pc; % Update Slope

end

% Exit Loop Conditions

if(fp <= fc+alpha*lambda*initslope)

stopcode = 1;

elseif(newslope < beta*initslope)

stopcode = 2;

elseif(lambda < maxlambda)

stopcode = 3;

end

end

end

if((lambda < 1) || (lambda>1 && fp > fc+alpha*lambda*initslope))

llo = min(lambda,lprev); % Lower Estimate of Lambda

ldiff = abs(lprev-lambda); % Change in Lambda

if(lambda < lprev)

flo = fp; % Lower Estimate of Objective Function

fhi = fpprev; % Upper Estimate of Objective Function

else
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flo = fpprev; % Lower Estimate of Objective Function

fhi = fp; % Upper Estimate of Objective Function

end

while(newslope < beta*initslope && ldiff > minlambda)

% Increment Lambda

lincr = (-newslope*ldiff^2)/(2*(fhi-(flo+newslope*ldiff)));

if(lincr < 0.2*ldiff)

lincr = 0.2*ldiff; % Update Lambda Increment

end

lambda = llo+lincr; % Update Lambda

xp = xc+lambda*pc; % Update Step

fp = f(xp); % Update Objective Function

if(fp > fc+alpha*lambda*initslope)

ldiff = lincr; % Change in Lambda

fhi = fp; % Upper Estimate of Objective Function

else

dfp = finiteDifferenceGradient(n,xp,f(xp),f,typx,1e-7);

newslope = dfp’*pc; % Update Slope

if(newslope < beta*initslope)

llo = lambda; % Lower Estimate of Lambda

ldiff = ldiff-lincr; % Change in Lambda

flo = fp; % Lower Estimate of Objective Function

end

end

end

if(newslope < beta*initslope)

fp = flo; % Update Objective Function

xp = xc+llo*pc; % Update Step

end

end

end

retcode = 1; % Satisfactory Step Found

elseif(lambda < minlambda)

xp = xc; % Update Step
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retcode = 2; % No Satisfactory Step Found

else

if(lambda == 1)

% Quadratic Interpolation

ltemp = -initslope/(2*(fp-fc-initslope));

else

% Cubic Interpolation

A = 1/(lambda-lprev)*[1/lambda^2 -1/lprev^2;...

-lprev/lambda^2 lambda/lprev^2]*[fp-fc-lprev*initslope;...

fpprev-fc-lprev*initslope];

disc = A(2)^2-3*A(1)*initslope;

if(A(1) == 0)

ltemp = -initslope/(2*A(2));

else

ltemp = (-A(2)+sqrt(disc))/(3*A(1));

end

if(ltemp > 0.5*lambda)

ltemp = 0.5*lambda;

end

end

lprev = lambda; % Update Previous Lambda

fpprev = fp; % Update Previous Function Values

if(ltemp <= 0.1*lambda)

lambda = 0.1*lambda; % Update Lambda

else

lambda = ltemp; % Update Lamdba

end

end

end
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9.3.9 Hook Step Driver

function [xp,del,lam,delprev,phi,phipr] = hookdriver(sN,xc,fc,f,H,L,g,D,del,lam,i,n,delprev,phi,phipr,maxstep)

% Determine New Step, trust region radius, and Levenberg-Marquardt

% Parameter

% -------------------------------------------------------------------------

% Input:

% sN = Newton Step

% xc = current x

% fc = f(xc)

% f = objective function

% H = Hessian Matrix

% L = lower triangular Cholesky Decomposition of H

% g = gradient

% D = scaling matrix

% del = trust region radius

% lam = Levenberg-Marquardt Parameter

% i = iteration

% n = length of x

% delprev = previous trust region radius

% phi = estimate of phi

% phipr = estimate of phi’

% -------------------------------------------------------------------------

% Output:

% xp = new step

% del = new trust region radius

% lam = new Levenberg-Marquardt Parameter

% delprev = previous trust region radius

% phi = new estimate of phi

% phipr = new estimate of phi’

% -------------------------------------------------------------------------

phiprinit = 0; % Initial Phi’ Estimate

xpprev = xc; % Define xpprev

fpprev = fc; % Define fpprev
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Dvec = diag(D);% Store scaling matrix diagonal

retcode = 4; % Initialize Return Code

firsthook = 1; % First Hook Step

Newtlen = norm(D*sN)^2; % Determine Newton Length

% Determine Initial trust region radius

if(i == 1 || del == -1)

lam = 0;

if(del == -1)

alpha = norm(1./Dvec.*g)^2;

beta = 0;

for i = 1:n

temp = sum(L(i:n,i).*g(i:n)./(Dvec(i:n).^2));

beta = beta + temp*temp;

end

del = alpha*alpha^(1/2)/beta;

if(del>maxstep)

del = maxstep;

end

end

end

% Compute new step, trust region radius, and Levenberg-Marquardt Parameter

while(retcode>=2)

[s,del,lam,phi,phipr,firsthook,phiprinit,Newttaken] = hookstep(n,g,...

L,H,sN,D,Newtlen,delprev,del,lam,phi,phipr,firsthook,phiprinit);

delprev = del;

[xp,fp,maxtaken,del,retcode,xpprev,fpprev] = trustregup(n,xc,fc,f,g,...

s,D,Newttaken,maxstep,H,L,del,retcode,xpprev,fpprev,1);

end
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9.3.10 Hook Step Code

function [s,del,lam,phi,phipr,firsthook,phiprinit,Newttaken] =...

hookstep(n,g,L,H,sN,D,Newtlen,delprev,del,lam,phi,phipr,firsthook,...

phiprinit)

% Determine New Step, trust region radius, and Levenberg-Marquardt

% Parameter

% -------------------------------------------------------------------------

% Input:

% n = length of x

% g = gradient

% L = lower triangular Cholesky Decomposition of H

% H = Hessian Matrix

% sN = Newton Step

% D = scaling matrix

% Newtlen = Newton Step Length

% delprev = previous trust region radius

% del = trust region radius

% lam = Levenberg-Marquardt Parameter

% phi = estimate of phi

% phipr = estimate of phi’

% firsthook = whether or not first hook step

% phiprinit = initial phi’ estimate

% -------------------------------------------------------------------------

% Output:

% s = new step

% del = new trust region radius

% lam = new Levenberg-Marquardt Parameter

% phi = new estimate of phi

% phipr = new estimate of phi’

% firsthook = updated whether or not first hook step

% phiprinit = updated initial phi’ estimate

% Newttaken = whether or not Newton Step has been taken

% -------------------------------------------------------------------------
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hi = 1.5; % upper bound on trust region

lo = 0.75; % Lower bound on trust region

% Decide Whether or not to take full Newton Step

if(Newtlen<=hi*del)

Newttaken = 1;

s = sN;

lam = 0;

del = min(del,Newtlen);

else

Newttaken = 0;

if(lam>0)

lam = lam-((phi+delprev)/del)*(((delprev-del)+phi)/phipr);

end

phi = Newtlen-del;

if(firsthook == 1)

firsthook = 0;

tempvec = D’*D*sN;

tempvec = Lsolve(tempvec,L,0);

phiprinit = -norm(tempvec)^2/Newtlen;

end

lamlo = -phi/phiprinit;

lamup = norm(inv(D)*g)/del;

done = 0;

while(done == 0)

if((lam<lamlo) || (lam>lamup))

lam = max((lamlo*lamup)^(1/2),1e-3*lamup);

end

for i = 1:n

H(i,i) = H(i,i)+lam*D(i,i)*D(i,i);

end

L = choleDecomp(H,0);

s = cholsolve(L,g);

for i = 1:n
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H(i,i) = H(i,i)-lam*D(i,i)*D(i,i);

end

steplen = norm(D*s);

phi = steplen-del;

tempvec = D’*D*s;

tempvec = Lsolve(tempvec,L,0);

phipr = -norm(tempvec)^2/steplen;

if(((steplen>=lo*del) && (steplen<=hi*del)) ||...

((lamup-lamlo)<=eps^(1/3)))

done = 1;

else

lamlo = max(lamlo, lam-(phi/phipr));

if(phi<0)

lamup = lam;

end

lam = lam-(steplen/del)*(phi/phipr);

end

end

end
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9.3.11 Double Dogleg Driver

function [xp,fp,retcode,maxtaken,del] = dogdriver(n,xc,fc,f,g,L,H,sN,D,...

maxstep,del)

retcode = 4;

xpprev = xc;

fpprev = fc;

firstdog = 1;

Newtlen = norm(D*sN);

while(retcode >= 2)

[del,firstdog,Cauchylen,eta,ssD,v,s,Newttaken] = dogstep(n,g,L,sN,D,...

Newtlen,maxstep,del,firstdog);

[xp,fp,maxtaken,del,retcode,xpprev,fpprev] = trustregup(n,xc,fc,f,g,...

s,D,Newttaken,maxstep,H,L,del,retcode,xpprev,fpprev,2);

end
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9.3.12 Double Dogleg Code

function [del,firstdog,Cauchylen,eta,ssD,v,s,Newttaken] = dogstep(n,g,L,...

sN,D,Newtlen,maxstep,del,firstdog,ssD,v,eta,Cauchylen)

% Determine New Step, trust region radius, and Levenberg-Marquardt

% Parameter

% -------------------------------------------------------------------------

% Input:

% n = length of x

% g = gradient

% L = lower triangular Cholesky Decomposition of H

% sN = Newton Step

% D = scaling matrix

% Newtlen = Newton Step Length

% maxstep = maximum step length

% del = trust region radius

% firstdog = whether or not first doubld dog leg step

% ssD = steepest decent direction step

% v = Difference between scaled Newton and Cauchy Steps

% eta <= 1

% Cauchylen = length of the Cauchy step

% -------------------------------------------------------------------------

% Output:

% del = new trust region radius

% firstdog = updated whether or not first dog step

% Cauchylen = length of the Cauchy step

% eta <= 1

% ssD = steepest decent direction step

% s = new step

% Newttaken = whether or not Newton Step has been taken

% -------------------------------------------------------------------------

Dinv = diag(1./diag(D)); % compute inverse of scaling matrix

S = diag(D); % Scaling vector
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if(Newtlen <= del)

% If full Newton step is acceptible, s = sN

Newttaken = 1;

s = sN;

del = Newtlen;

else

Newttaken = 0;

if(firstdog == 1)

% If first double dog leg

firstdog = 0;

% Compute alpha

alpha = norm(Dinv*g)^2;

% Compute beta

beta = 0;

for i = 1:n

temp = sum((L(i:n,i).*g(i:n)./(S(i:n).^2)));

beta = beta+temp^2;

end

% Compute steepest descent direction

ssD = -(alpha/beta)*Dinv*g;

% Compute Cauchy Step Length

Cauchylen = alpha*sqrt(alpha)/beta;

% Determine eta <= 1

eta = 0.2+(0.8*alpha^2/(beta*abs(g’*sN)));

% Determine difference between steepest descent and Newton step in

% scaled metric

v = eta*D*sN-ssD;
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% If first iterate, set trust region radius

if(del == -1)

del = min(Cauchylen,maxstep);

end

end

% Determine new step

if(eta*Newtlen <= del)

% Scaled Newton step is acceptible

s = (del/Newtlen)*sN;

elseif(Cauchylen >= del)

% Cauchy step is acceptible

s = (del/Cauchylen)*(Dinv)*ssD;

else

% Deterime convex combination s = Dinv*(ssD + lambda*v)

temp = v’*ssD;

tempv = v’*v;

lambda = (del^2-Cauchylen^2)/(temp+sqrt(temp^2-tempv*...

(Cauchylen^2-del^2)));

s = (Dinv)*(ssD+lambda*v);

end

end
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9.3.13 Trust Region Update

function [xp,fp,maxtaken,del,retcode,xpprev,fpprev] = trustregup(n,xc,...

fc,f,g,s,D,Newttaken,maxstep,H,L,del,retcode,xpprev,fpprev,steptype)

% Determine whether or not the new step is acceptable and update trust

% region radius

% -------------------------------------------------------------------------

% Input:

% n = length of x

% xc = current x

% fc = f(xc)

% f = objective function

% g = gradient

% s = new step

% D = scaling matrix

% Newttaken = whether or not Newton step has been taken

% maxstep = max step tolerance

% H = Hessian Matrix

% del = trust region radius

% retcode = return code

% xpprev = previous x value

% fpprev = f(xpprev)

% -------------------------------------------------------------------------

% Output:

% xp = new step

% fp = f(xp)

% maxtaken = decide whether max step size has been taken

% del = new trust region radius

% retcode = updated return code

% xpprev = previous x value

% fpprev = f(xpprev)

% -------------------------------------------------------------------------

maxtaken = 0; % Max step has not been taken

steptol = eps^(2/3); % Relative step tolerance
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alpha = 1e-4; % Slope parameter

steplen = norm(D*s); % Determine New Step Length

xp = xc+s; % update step

fp = f(xp); % update f

df = fp-fc; % determine change in f

initslope = g’*s; % determine initial slope of f

% Decide whether step is sufficient and update trust region parameter

if((retcode == 3) && ((fp >= fpprev) || (df > alpha*initslope)))

retcode = 0;

xp = xpprev;

fp = fpprev;

del = del/2;

elseif(df >= alpha*initslope)

rellength = max(abs(s)./max(abs(xp),1./diag(D)));

if(rellength < steptol)

retcode = 1;

xp = xc;

else

retcode = 2;

deltemp = (-initslope*steplen)/(2*(df-initslope));

if(deltemp < 0.1*del)

del = 0.1*del;

elseif(deltemp >0.5*del)

del = 0.5*del;

else

del = deltemp;

end

end

else

dfpred = initslope;

if(steptype==1)

for i = 1:n
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temp = 1/2*H(i,i)*s(i)^2+sum(H(i,i+1:n)’.*s(i).*s(i+1:n));

dfpred = dfpred+temp;

end

else

for i = 1:n

temp = sum(L(i:n,i).*s(i:n));

dfpred = dfpred+temp;

end

end

if((retcode ~= 2) && ((abs(dfpred-df)<=0.1*abs(df)) ||...

(df <= initslope)) && (Newttaken == 0) && (del <= 0.99*maxstep))

retcode = 3;

xpprev = xp;

fpprev = fp;

del = min(2*del,maxstep);

else

retcode = 0;

if(steplen > 0.99*maxstep)

maxtaken = 1;

end

if(df >= 0.1*dfpred)

del = del/2;

elseif(df <= 0.75*dfpred)

del = min(2*del,maxstep);

end

end

end
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9.3.14 Perturbed Cholesky Decomposition

function L = choleskyDecomp(H,choltype,maxoffl)

% ------------------------------------------------------------------------

% Cholesky Factorization of H+D

% H = Input Matrix

% choltype = 1 for standard Cholesky; 2 for Modified

% L = Lower Triangle Cholesky Decomposition Matrix

% -------------------------------------------------------------------------

% Revised Modified Cholesky Decompostion Algorithm

% choltype = 2

% By Drew Kouri

% Based on Algorithm presented in SIAM Journal of Optimization

% Volume 9, Issue 4, "H Revised Modified Cholesky Factorization Algorithm"

% RB Schnabel and Elizabeth Eskow

% Goal:

% Given H (symmetrix nxn matrix), find H+E = LL’ for E>=0

% -------------------------------------------------------------------------

% Check Input

if(nargin<3), maxoffl=0; end

if(nargin<2), choltype=2; end

if(choltype==2)

n = length(H); % Determine Size of H

L = zeros(n); % Initialize L

minl = eps^(1/4)*maxoffl; % Determine Threshold for Perturbation

% Determine Threshold

if(maxoffl==0)

maxoffl = sqrt(max(diag(H)));

end

minl2 = eps^(1/2)*maxoffl; % Determine Threshold for Perturbation

maxadd = 0;
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for j = 1:n

% Compute jth Column of L

L(j,j) = H(j,j)-sum(L(j,1:j-1).^2);

minljj = 0;

for i = j+1:n

L(i,j) = H(j,i)-L(i,1:j-1)*L(j,1:j-1)’;

minljj = max(abs(L(i,j)),minljj);

end

% Decide if H requires perturbation

minljj = max(minljj/maxoffl,minl);

if(L(j,j))>minljj^2;

L(j,j) = sqrt(L(j,j));

else

if(minljj<minl2)

minljj = minl2;

end

maxadd = max(maxadd,minljj^2-L(j,j));

L(j,j) = minljj;

end

for i = j+1:n

L(i,j) = L(i,j)/L(j,j);

end

end

else

% Compute Machine Epsilon

macheps = MACHINEPS();

% Tolerance Parameters

tau = macheps^(1/3);

tauBar = macheps^(2/3);

mu = 0.1;

gamma = max(diag(H));
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delprev = 0;

% Initialize Phase and Iteration Count

phaseone = 1;

j = 1;

% Determine matrix size

n = length(H);

% Initialize Output

L = zeros(n,n);

% Initialize Gerschgorin Bounds

g = zeros(n,1);

% Phase One: H is potentially positive definite

while(j<n && phaseone == 1)

[maxAjj,i] = max(diag(H(j:n,j:n)));

minAjj = min(diag(H(j:n,j:n)));

if(maxAjj<tauBar*gamma || minAjj<-mu*maxAjj)

phaseone = 0;

else

% Pivot on maximum diagonal of remaining submatrix

if(i~=j)

irow = H(i,:);

jrow = H(j,:);

icolumn = H(:,i);

jcolumn = H(:,j);

H(i,:) = jrow;

H(j,:) = irow;

H(:,i) = jcolumn;

H(:,j) = icolumn;

end

if(min(diag(H(j+1:n,j+1:n))-H(j+1:n,j).^2./H(j,j))<-mu*gamma)
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phaseone = 0;

else

% Perform jth iteration of factorization

L(j,j) = sqrt(H(j,j));

for i = j+1:n

L(i,j) = H(i,j)/L(j,j);

for k = j+1:i

H(i,k) = H(i,k)-L(i,j)*L(k,j);

end

end

j = j+1;

end

end

end

% Phase Two: H is not positive Definite

if(phaseone == 0 && j == n)

del = -H(n,n)+max(tau*(-H(n,n))/(1-tau),tauBar*gamma);

H(n,n) = H(n,n)+del;

L(n,n) = sqrt(H(n,n));

end

if(phaseone == 0 && j < n)

k = j-1;

% Calculate lower Gerschgorin bounds in phase one

for i = k+1:n

g(i) = H(i,i)-sum(abs(H(i,k+1:i-1)))-sum(abs(H(i+1:n,i)));

end

% Modified Cholesky Decompostion

for j = k+1:n-2

% Pivot on maximum lower Gerschgorin bound estimate

[gmax,i] = max(g(j:n));

if(i~=j)

irow = H(i,:);
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jrow = H(j,:);

icolumn = H(:,i);

jcolumn = H(:,j);

H(i,:) = jrow;

H(j,:) = irow;

H(:,i) = jcolumn;

H(:,j) = icolumn;

end

% Calculate Ejj and add to diagonal

normj = sum(abs(H(j+1:n,j)));

del = max([0,-H(j,j)+max(normj,tauBar*gamma),delprev]);

if(del>0)

H(j,j) = H(j,j)+del;

delprev = del;

end

% Update Gerschgorin bound estimate

if(H(j,j)~=normj)

temp = 1-normj/H(j,j);

for i = j+1:n

g(i) = g(i)+abs(H(i,j))*temp;

end

end

% Perform jth iteration of factorization

L(j,j) = sqrt(H(j,j));

for i = j+1:n

L(i,j) = H(i,j)/L(j,j);

for k = j+1:i

H(i,k) = H(i,k)-L(i,j)*L(k,j);

end

end

% Final 2x2 submatrix

lambda = eigs([H(n-1,n-1) H(n,n-1);H(n,n-1) H(n,n)]);

llo = lambda(2);

lhi = lambda(1);
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del = max([0,-llo+max(tau*(lhi-llo)/(1-tau),tauBar*gamma),delprev]);

if(del>0)

H(n-1,n-1) = H(n-1,n-1)+del;

H(n,n) = H(n,n)+del;

delprev = del;

end

L(n-1,n-1) = sqrt(H(n-1,n-1));

L(n,n-1) = H(n,n-1)/L(n-1,n-1);

L(n,n) = sqrt(H(n,n)-L(n,n-1)^2);

end

end

end
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9.3.15 Cholesky Solver

function x = cholsolve(L,g)

% Solve L*L’*s = -g for s

% L = Cholesky Factorization H = L*L’

% g = Solution Vector

% Solve L*y = g

y = Lsolve(g,L,0);

% Solve L’*s = y

x = Lsolve(y,L,1);

x = -x;
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9.3.16 Triangular Matrix Solver

function y = Lsolve(b,L,state)

function y = Lsolve(b,L,state)

% Solve Ly = b for y

% b = Solution Vector

% L = lower triangular matrix

% state: 0 = lower triangular L

% state: 1 = upper triangular L’

n = length(L);

y = zeros(n,1);

if(state == 0) % Lower Triangular L

y(1) = b(1)/L(1,1);

for i = 2:n

y(i) = (b(i)-sum(L(i,1:i-1)’.*y(1:i-1)))/L(i,i);

end

elseif(state == 1) % Upper Triangular L’

y(n) = b(n)/L(n,n);

for i = n-1:-1:1

y(i) = (b(i)-sum(L(i+1:n,i).*y(i+1:n)))/L(i,i);

end

end
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9.3.17 Finite Difference Jacobian

function J = finiteDifferenceJacobian(l,n,xc,Fc,FVEC,Sx,eta)

% Drew Kouri

% Compute the finite difference Jacobian Matrix

% INPUT PARAMETERS:

% l = size of data

% n = number of parameters

% xc = initial parameter vector

% Fc = model evaluated at xc

% FVEC = model

% Sx = 1/(typical value of FVEC(x))

% eta = 1e-DIGITS, where DIGITS is the number of reliable digits of FVEC(x)

J = zeros(l,n); % Initialize Jacobian Matrix

sqrteta = sqrt(eta);

% Calculate the Jacobian Matrix

for j = 1:n

% Calculate column j of the Jacobian Matrix

stepsizej = sqrteta*max(abs(xc(j)),1/Sx(j))*sign(xc(j));

tempj = xc(j); % Store Initial xc(j)

xc(j) = xc(j) + stepsizej; % Horizontl Difference

stepsizej = xc(j) - tempj; % Reduces Finite Precision Errors

J(:,j) = (FVEC(xc)-Fc)/stepsizej; % Total Difference

xc(j) = tempj; % Reset xc(j)

end
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9.3.18 Finite Difference Gradient

function g = finiteDifferenceGradient(n,x,fc,f,Sx,eta)

% Finite Difference Gradient Approximation

% Drew Kouri

sqrteta = sqrt(eta);

g = zeros(n,1);

for j = 1:n

ss = sqrteta*max(abs(x(j)),1/Sx(j))*sign(x(j));

temp = x(j);

x(j) = x(j)+ss;

ss = x(j)-temp;

fj = f(x);

g(j) = (fj-fc)/ss;

x(j) = temp;

end
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9.3.19 Finite Difference Hessian

function H = finiteDifferenceHessian(n,x,fc,f,Sx,eta)

% Finite Difference Hessian Approximation

% Drew Kouri

cubeta = (eta)^(1/3);

H = zeros(n,n);

ss = zeros(n,1);

fn = zeros(n,1);

for i = 1:n

ss(i) = cubeta*max(abs(x(i)),1/Sx(i))*sign(x(i));

tempi = x(i);

x(i) = x(i)+ss(i);

ss(i) = x(i)-tempi;

fn(i) = f(x);

x(i) = tempi;

end

for i = 1:n

tempi = x(i);

x(i) = x(i)+2*ss(i);

fii = f(x);

H(i,i) = ((fc-fn(i))+(fii-fn(i)))/(ss(i)*ss(i));

x(i) = tempi+ss(i);

for j = (i+1):n

tempj = x(j);

x(j) = x(j)+ss(j);

fij = f(x);

H(i,j) = ((fc-fn(i))+(fij-fn(j)))/(ss(i)*ss(j));

x(j) = tempj;

end

x(i) = tempi;

end
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9.3.20 Compute Machine Epsilon

function macheps = MACHINEPS()

macheps = 1;

while(macheps+1 ~= 1)

macheps = macheps/2;

end

macheps = 2*macheps;
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Tables

Parameter Name Actual NLLS Fit Difference (%)

Replication Factor 1.95 1.9431 0.356

Maximum PCR 1,806,000,000,000 1,767,866,083,613.87 2.112

Binding Probability 1 0.94 0.9447 0.505

Binding Probability 2 0.92 0.9201 7.112× 10−3

Maximum FMA 1 9000 8883.8280 1.291

Maximum FMA 2 11000 10790.5105 1.904

Midpoint FMA 1 23,000,000,000 20,376,474,855.7563 11.407

Midpoint FMA 2 25,000,000,000 22,163,646,347.0478 11.345

Table 1: This table contains the actual parameters used to generate the surrogate

dilution/mixing experiment data and the NLLS fit parameters for the dilution/mixing

experiment.
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Figures

Figure 1: Incorrect binding of the allele specific primers in the LDR stage results in

increased background signal. This schematic shows how, in the ideal case, the LDR

stage of the molecular assay works. First the double stranded DNA denatures, then

allele specific and common primers binding to the single stranded DNA. Finally, the

fluorescent microspheres bind to the allele specific primers.
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Figure 2: The image on the right is the parasitemia probability density function on

a z axis log scale. The image on the left is the scatter plot of 10,000 samples drawn

from the parasitemia PDF.
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Figure 3: Beginning with 264 samples drawn from the parasitemia PDF, the top right

graph is the 264 samples post PCR, the top left graph is the 264 samples post PCR

and LDR, the bottom right graph is the 264 samples post PCR, LDR, and FMA

without the stochastic term, the final graph is the 264 samples post PCR, LDR, and

FMA with the stochastic term.
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Figure 4: We ran a computer simulated dilution/mixing experiment, then applied the

molecular model with a set of reasonable parameters to generate fluorescence data.

Using NLLS, we estimated the parameters for the model and plotted the original and

the estimated flourescence against each other.
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Figure 5: Scatter plot of fluorescence data for locus 59 in the dhfr gene of 70 uninfected

North Americans. This data is used to compute the mean and variance of the bivariate

lognormal distribution.

100



Figure 6: We generated conditional probability distributions using parameters esti-

mated from surrogate controlled experiment data as well as from surrogate field data.

These distributions described the possible input allele concentrations for a given flu-

orescence signal. In the upper left corner the fluorescence was ~y = [344, 8698]T ,

in the upper right corner the fluorescence was ~y = [2620, 121]T , in the lower left

~y = [5990, 7952]T , and in the lower right ~y = [87, 48]T . The colorbars have units of

log density.
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