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Abstract18

How sensory information influences the dynamics of rhythm generation varies across sys-19

tems, and general principles for understanding this aspect of motor control are lacking.20

Determining the origin of respiratory rhythm generation is challenging because the mecha-21

nisms in a central circuit considered in isolation may be different than those in the intact22

organism. We analyze a closed-loop respiratory control model incorporating a central pat-23

tern generator (CPG), the Butera-Rinzel-Smith (BRS) model, together with lung mechanics,24

oxygen handling, and chemosensory components. We show that: (1) Embedding the BRS25

model neuron in a control loop creates a bistable system; (2) Although closed-loop and26

open-loop (isolated) CPG systems both support eupnea-like bursting activity, they do so27

via distinct mechanisms; (3) Chemosensory feedback in the closed loop improves robustness28

to variable metabolic demand; (4) The BRS model conductances provide an autoresuscita-29

tion mechanism for recovery from transient interruption of chemosensory feedback; (5) The30

in vitro brainstem CPG slice responds to hypoxia with transient bursting that is qualita-31

tively similar to in silico autoresuscitation. Bistability of bursting and tonic spiking in the32

closed-loop system corresponds to coexistence of eupnea-like breathing, with normal minute33

ventilation and blood oxygen level, and a tachypnea-like state, with pathologically reduced34

minute ventilation and critically low blood oxygen. Disruption of the normal breathing35

rhythm, either through imposition of hypoxia or interruption of chemosensory feedback,36

can push the system from the eupneic state into the tachypneic state. We use geometric37

singular perturbation theory to analyze the system dynamics at the boundary separating38

eupnea-like and tachypnea-like outcomes.39

40

Keywords: respiratory rhythm, central pattern generator, closed-loop control model, hy-41

poxia, autoresuscitation42

43

New & Noteworthy44

A common challenge facing rhythmic biological processes is the adaptive regulation of central45

pattern generator (CPG) activity in response to sensory feedback. We apply dynamical46

systems tools to understand several properties of a closed-loop respiratory control model,47

including the coexistence of normal and pathological breathing, robustness to changes in48

metabolic demand, spontaneous autoresuscitation in response to hypoxia, and the distinct49
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mechanisms that underlie rhythmogenesis in the intact control circuit versus the isolated,50

open-loop CPG.51

INTRODUCTION52

Sensory feedback is essential to guide the timing of rhythmic motor processes. How53

sensory information influences the dynamics of a central pattern generating circuit varies54

from system to system, and general principles for understanding this aspect of rhythmic55

motor control are lacking. To complicate matters, the mechanism underlying rhythm gener-56

ation in a central circuit when considered in isolation may be different from the mechanism57

underlying rhythmicity in the intact organism.58

Despite decades of investigation there remains little consensus about the mechanisms59

underlying sustained oscillations during respiratory rhythmogenesis in the brainstem. On60

one hand, it has been proposed that oscillations in the preBötzinger complex (pBC) arise61

mainly from synchronized activity of endogenously bursting cells that interact in a highly62

coupled network, and drive a population of amplifying follower cells (Smith et al., 2000). On63

the other hand, it has also been suggested that oscillations arise from network-dependent64

interactions of conditionally bursting cells (Feldman et al., 2013). More elaborate models65

have proposed that interactions between multiple brainstem areas are essential for generating66

and shaping breathing rhythms (Smith et al., 2007; Rybak et al., 2007; Lindsey et al.,67

2012). Without presuming to adjudicate between these alternatives, here we investigate an68

alternative hypothesis, namely that respiratory rhythms arise from the interplay of central69

rhythm generation circuits, biomechanics, and feedback from peripheral signaling pathways.70

Our understanding of respiratory rhythmogenesis derives in large part from the pioneer-71

ing work of Smith, Feldman, Ramirez and others who demonstrated that the pBC can72

autonomously sustain respiratory-like oscillations in isolated brainstem slice preparations73

(Smith et al., 1991; Ramirez et al., 1997). However, it has long been observed that the74

mechanisms underlying oscillations in a central pattern generator (CPG) may differ fun-75

damentally in the intact organism versus a deafferented, isolated central circuit (Bässler,76

1986; Koshiya and Smith, 1999). Here we investigate rhythmogenesis in a simple model of77

closed-loop respiratory control, incorporating biomechanics, oxygen handling, metabolism,78

and chemosensation. We show that eupnea-like oscillations arise from a distinct mechanism79
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in the intact (closed-loop) versus isolated (open-loop) systems. Specifically:80

• During eupneic oscillations in the closed-loop model, the time-varying excitatory drive81

to the CPG (the control parameter gtonic) remains entirely in a domain that corre-82

sponds to quiescent behavior in the open-loop model with constant gtonic.83

• The frequency of respiratory oscillations in the isolated central pattern generator sys-84

tem is controlled by the time constant for a persistent sodium current (τh); whereas85

the frequency of eupneic oscillations in the intact system is relatively insensitive to86

changes in τh.87

• In contrast, the frequency of breathing in the closed-loop model can be controlled88

by manipulating the frequency content of the time-varying excitatory drive feedback89

signal.90

The paper is organized as follows: we develop the model and analyze its behavior using91

averaging and open-loop/closed-loop control analysis; we demonstrate bistable states cor-92

responding to coexistence of eupnea and tachypnea; and we show that imposed bouts of93

hypoxia, or sustained interruption of the chemosensory pathway monitoring arterial blood94

oxygen levels, can precipitate a dramatic transition from eupnea to tachypnea. However, for95

moderate bouts of hypoxia, or brief interruptions of chemosensory feedback, the endogenous96

properties of the ionic conductances in a standard CPG model (Butera Jr. et al., 1999a)97

can lead to spontaneous autoresuscitation.98

A preliminary version of the model was presented at the 34th Annual International Con-99

ference of the IEEE EMBS (Diekman et al., 2012).100

METHODS101

Model equations102

Central Pattern Generator (CPG): We adopt the Butera-Rinzel-Smith (BRS) model

(“model 1” in (Butera Jr. et al., 1999a)) of bursting pacemaker neurons in the preBötzinger

complex as our central pattern generator. We represent the CPG with a single BRS unit

described by the membrane potential V and dynamical gating variables n (delayed rectifying
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potassium (IK) activation) and h (persistent sodium (INaP) inactivation). Two “instanta-

neous” gating variables p∞ (INaP activation) and m∞ (fast sodium (INa) activation) are set

equal to their voltage-dependent asymptotic values; the INa inactivation gate is set equal to

(1−n). In addition, the model includes leak (IL) and tonic excitatory (Itonic) currents. The

governing equations for the CPG are:

C
dV

dt
= −IK − INaP − INa − IL − Itonic (1)

dn

dt
=

n∞(V )− n

τn(V )
(2)

dh

dt
=

h∞(V )− h

τh(V )
(3)

IK = gKn
4(V − EK) (4)

INaP = gNaPp∞(V )h(V − ENa) (5)

INa = gNam
3
∞(V )(1− n)(V − ENa) (6)

IL = gL(V − EL) (7)

Itonic = gtonic(V − Etonic) (8)

x∞(V ) =
1

1 + exp[(V − θx)/σx]
(9)

τx =
τ̄x

cosh[(V − θx)/2σx]
(10)

where C = 21 pF, gK = 11.2 nS, gNaP = 2.8 nS, gNa = 28 nS, gL = 2.8 nS, EK = −85 mV,103

ENa = 50 mV, EL = −65 mV, Etonic = 0 mV, θn = −29 mV, σn = −4 mV, θp = −40 mV,104

σp = −6 mV, θh = −48 mV, σh = 6 mV, θm = −34 mV, σm = −5 mV, τ̄n = 10 ms, and105

τ̄h = 10, 000 ms.106

107

Motor pool activity: The membrane potential (V ) of the CPG is an input to the

respiratory musculature through synaptic activation of a motor unit (α):

dα

dt
= ra[T ](1− α)− rdα (11)

[T ] =
Tmax

(1 + exp(−(V − VT)/Kp))
(12)

where ra = rd = 0.001 mM−1 ms−1 sets the rise and decay rate of the synaptic conductance,108

and [T ] is the neurotransmitter concentration with Tmax = 1 mM, VT = 2 mV, and Kp = 5109

mV (Ermentrout and Terman, 2010).110

111
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Lung volume: The motor unit drives changes in lung volume (volL):

d

dt
(volL) = E1α− E2(volL − vol0) (13)

where vol0 = 2 L is the unloaded lung volume, and E1 = 0.4 L and E2 = 0.0025 ms−1 were112

chosen to give physiologically reasonable lung expansions (West, 2008). The respiratory113

musculature acts as a low-pass filter: low-frequency bursting of the CPG drives discrete114

fluctuations in lung volume, but tonic spiking does not. This behavior is analogous to115

tetanic muscle contraction in response to high frequency nerve stimulation (Kandel et al.,116

1991).117

118

Lung oxygen: External air at standard atmospheric pressure (760 mmHg) with 21%

oxygen content will have a partial pressure of oxygen PextO2 = 149.7 mmHg. When the lungs

expand
(

d
dt [volL] > 0

)
, external air is inhaled and we assume this fresh air mixes instanta-

neously with the air already in the lungs. The partial pressure of oxygen in the lung alveoli

(PAO2) will increase at a rate determined by the lung volume and the pressure difference

between external and internal air. When the lungs are not expanding
(

d
dt [volL] ≤ 0

)
, there

is no mixing of air. During both lung expansion and contraction, oxygen is being transferred

to the blood at a rate determined by the time constant τLB = 500 ms and the difference

between PAO2 and the partial pressure of oxygen in the arterial blood (PaO2). Thus, the

change in PaO2 is given by:

d

dt
(PAO2) =

PextO2 − PAO2

volL

[
d

dt
(volL)

]

+

− PAO2 − PaO2

τLB
(14)

where [x]+ denotes max(x, 0).119

120

Blood oxygen: Our model for blood oxygenation is given by:

d

dt
(PaO2) =

JLB − JBT

ζ
(
βO2 + η ∂SaO2

∂PaO2

) , (15)

where the fluxes of oxygen from the lungs to the blood (JLB) and from the blood to the tissues

(JLB) have units of moles of O2 per millisecond, and the denominator converts changes in

the number of moles of O2 in the blood to changes in PaO2. JLB depends on the difference

in oxygen partial pressure between the lungs and the blood:

JLB =

(
PAO2 − PaO2

τLB

)(
volL
RT

)
(16)
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and is calculated using the ideal gas law PV = nRT , where n is the number of moles of O2,121

R = 62.364 L mmHg K−1 mol−1 is the universal gas constant, and T = 310 K is temperature.122

JBT accounts for both dissolved and bound oxygen in the blood:

JBT = Mζ (βO2 PaO2 + η SaO2) . (17)

The concentration of dissolved oxygen in the blood is directly proportional to PaO2 (known

as Henry’s law), where the constant of proportionality is the blood solubility coefficient

βO2 = 0.03 ml O2 × L blood−1 mmHg−1 for blood at 37 degrees C. At physiological partial

pressures (PaO2 from approximately 80 to 110 mmHg), the amount of dissolved O2 is far

too small to meet the body’s metabolic demand for oxygen. The vast majority of oxygen

stored in the blood is bound to hemoglobin (Hb). Hemoglobin has four cooperative oxygen

binding sites, leading to the nonlinear (sigmoidal) hemoglobin saturation curve SaO2:

SaO2 =
PaO

c
2

PaO
c
2 +Kc

(18)

∂SaO2

∂PaO2
= cPaO

c−1
2

(
1

PaO
c
2 +Kc

− PaO
c
2

(PaO
c
2 +Kc)2

)
, (19)

where K = 26 mmHg and c = 2.5 are phenomenological parameters taken from (Keener123

and Sneyd, 2009).124

The parameter M in (17) represents the rate of metabolic demand for oxygen from the

tissues, and unless stated otherwise is set at 8× 10−6 ms−1. The conversion factors ζ and η

in (15) and (17) depend on the concentration of hemoglobin, [Hb] = 150 gm L−1, and the

volume of blood, volB = 5 L, respectively. We assume a molar oxygen volume of 22.4 L and

that each fully saturated Hb molecule carries 1.36 ml of O2 per gram:

ζ = volB ×
(

mole O2

22, 400 mL O2

)
(20)

η = [Hb]×
(
1.36 mL O2

gm Hb

)
. (21)

Chemosensation: Peripheral chemoreceptors in the carotid bodies detect reductions in

PaO2 and transmit impulses to the central nervous system through the carotid sinus nerve.

In humans, these chemoreceptors are responsible for the increase in ventilation that occurs

in response to arterial hypoxemia (Hlastala and Berger, 2001). Carotid body afferent fibers

can adjust their firing rate rapidly (even within a respiratory cycle) due to small changes in

blood gases (West, 2008). There is a nonlinear relationship between the activity of carotid
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chemosensory nerve fibers and PaO2, with very little nerve activity until PaO2 is reduced

below 100 mmHg and then steep firing rate increases as PaO2 is reduced further (Hlastala

and Berger, 2001; West, 2008). We modeled this hypoxia chemosensory pathway with a

sigmoidal relationship between PaO2 and the conductance representing external drive to the

CPG (gtonic). Increasing oxygen deficiency increases the respiratory drive:

gtonic = φ

(
1− tanh

(
PaO2 − θg

σg

))
(22)

where φ = 0.3 nS, θg = 85 mmHg, and σg = 30 mmHg. This conductance serves to “close125

the loop” in our respiratory control model, since Itonic = gtonic(V − Etonic) is a term in the126

CPG voltage equation (1).127

The closed-loop model (Fig. 1) has the same overall structure as the model in (Diekman128

et al., 2012). The blood oxygenation component of the model has been substantially revised129

to better reflect the basic physiology of oxygen transport and ensure conservation of mass.130

Computational platform131

Numerical simulations were performed in MATLAB R2016a (MathWorks, Natick, MA)132

using the ode15s solver with absolute tolerance ≤ 10−9 and relative tolerance ≤ 10−6.133

Bifurcation diagrams were constructed using XPPAUT (Ermentrout, 2002). MATLAB code134

used to generate all figures (except Fig. 12) is available in ModelDB at http://senselab.135

med.yale.edu/ModelDB/showModel.cshtml?model=229640, along with XPP code used to136

construct the bifurcation diagrams in Figs. 4 and 10.137

Animal experiments138

We used in vitro experiments to determine if hypoxia exposure of pBC neurons mim-139

icked some of the features observed in our model. We cut rhythmically active slices from140

Sprague-Dawley rat pups (postnatal days 0 to 5) anesthetized with 4% isoflurane in a ven-141

tilated hood. Once the animal reached a surgical plane of anesthesia (no withdrawal to142

tail or toe pinch) the skull and spinal column was exposed via a midline incision and a143

scalpel was used to decerebrate the pup and the thorax/spinal column was transected at144

T1/T2. The spinal column and brainstem were then immersed in ice cold artificial cere-145

brospinal fluid (ACSF) containing the following (in mM): 124 NaCl, 25 NaHCO3, 3 KCl,146
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1.5 CaCl2·2H2O, 1.0 MgSO4·7 H2O, 0.5 NaH2PO4·H2O, 30 d-glucose, bubbled with carbo-147

gen (95/5% O2/CO2). We rapidly performed dorsal and ventral laminectomies to expose148

the neuraxis while preserving the cranial nerve rootlets. Rhythmically active brainstem149

slices were cut from the brainstem using a vibratome (Leica VT1000). We then transferred150

the slices to a low volume chamber mounted on an upright microscope with IR-DIC optics151

and superfused the slice continuously with 95% O2 and 5% CO2 for at least 30 min before152

beginning our experiments. Extracellular potassium concentration was raised to 9 mM to153

generate a breathing rhythm comparable to an awake human (10 to 20 breaths/bursts per154

minute). We used whole-cell patch-clamp recordings to assess the behavior of preBötzinger155

complex neurons and the role that hypoxia/anoxia played in stimulating autoresuscitative156

transitions in these neurons. The in vitro slice preparation and electrophysiological record-157

ings were performed as described previously (Smith et al., 1991; Koizumi et al., 2008).158

Briefly, inspiratory cells were acquired by making a tight seal (≥ 5 GΩ), breaking through159

to whole cell, and then switching to current clamp for hypoxia/NaCN. To test the role that160

hypoxia plays in altering rhythmic drive, we switched the gas used to bubble the perfusate161

to a hypoxic gas mixture (94% N2, 1% O2, 5% CO2) or added sodium cyanide (NaCN, 300162

µM) to the perfusate. Application of either hypoxia or NaCN challenge was for one to three163

minutes. All animal procedures were approved by the Institutional Animal Care and Use164

Committee (Case Western Reserve University).165

RESULTS166

Distinct mechanisms underlie bursting in isolated CPG and closed-loop167

systems168

The closed-loop model described in the Methods section produces a stable eupnea-like169

breathing rhythm of approximately 10 breaths per minute (Fig. 2A). The central pattern170

generator components of the model comprise a three-dimensional subsystem (voltage, fast171

potassium activation gate n, and persistent sodium inactivation gate h) corresponding to172

the Butera-Rinzel-Smith INaP pacemaker model. The isolated pacemaker can also produce173

a eupnea-like fictive breathing rhythm for a range of (fixed) excitatory conductances, with174

roughly 10 bursts per minute when gtonic = 0.3 nS (Fig. 2B). But despite similar timing175
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of bursting in the intact and isolated systems, we find that distinct mechanisms underly176

rhythmogenesis in these two scenarios. To establish this result, we177

• Compare the range of gtonic supporting bursting in the isolated (open-loop) model,178

versus the values of gtonic attained during eupneic bursting in the intact model. We179

find that during eupneic bursting for the intact system, the values of gtonic remain180

within the “quiescent” range for the isolated BRS model.181

• Study the dynamics of bursting superimposed on the bifurcation structure of the182

(v, n, h)-subsystem. Both the intact and isolated systems exhibit a fixed point near183

a saddle-node bifurcation, however in the isolated system the fixed point is unstable184

(allowing spontaneous bursting) and in the intact system it is stable (requiring phasic185

chemosensory drive to support bursting).186

• Compare the effect of accelerating or retarding the dynamics of the h-gate, in the iso-187

lated versus the intact model. We find that rescaling τ̄h causes proportionate changes188

in burst period in the isolated model, but has little effect in the intact model. More-189

over, the intact model supports eupneic bursting even when τ̄h is infinitely large (h is190

held fixed as a constant).191

• Study the sensitivity of burst timing to sensory input by rescaling the time course192

of gtonic. We find that rescaling the time course of gtonic proportionately changes the193

burst period.194

Closed-loop bursting with “quiescent” gtonic195

Our model of closed-loop respiratory control includes neural, mechanical, and chemosen-196

sory components and is capable of producing a stable oscillatory solution that represents197

normal eupneic breathing. The operation of the closed-loop model is illustrated in Fig. 1.198

Bursts of action potential firing (V ) of preBötzinger complex (pBC) neurons in the brainstem199

CPG activate a pool of motor neurons (α) that contract the diaphragm, causing the lungs200

to expand in volume (volL) and intake air. Inhaled oxygen increases the partial pressure201

of oxygen in the lung (PAO2) and enters the bloodstream through gas exchange between202

alveoli and capillaries.203
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Peripheral chemoreceptors in the carotid body detect changes in the partial pressure of204

oxygen in the blood (PaO2) and convey this information to the central nervous system by reg-205

ulating the amount of excitatory input drive gtonic to the brainstem CPG. This chemosensory206

feedback closes the respiratory control loop and maintains PaO2 levels around 100 mmHg.207

If the connection between PaO2 and the CPG is interrupted, then gtonic takes a fixed208

value and the isolated CPG corresponds to the canonical Butera, Rinzel, and Smith (BRS)209

model of pBC neurons in a well-studied regime (Butera Jr. et al., 1999a,b; Best et al.,210

2005; Dunmyre et al., 2011). We refer to this as the “open-loop” system. For a range211

of gtonic values, bursting arises through fast activation and slow inactivation of a persistent212

sodium current INaP. The timescale of bursting is controlled by the inactivation variable h,213

which must de-inactivate sufficiently after a burst before the next burst can begin. With214

a maximal time constant τ̄h of 10 s, both the closed-loop model and the open-loop model215

(with gtonic = 0.3 nS) exhibit burst periods of approximately 6 s (Fig. 2A and 2B).216

In the open-loop system, the dynamics of h are essential for bursting: if h were held217

constant then the model can exhibit quiescence or repetitive spiking, but is not capable218

of bursting. For example, with h held constant at 0.6, the isolated BRS model exhibits219

hyperpolarized quiescence for gtonic < 0.31, tonic spiking for 0.31 < gtonic < 1.64, bistability220

of tonic spiking and depolarized quiescence for 1.64 < gtonic < 2.57, and depolarized quies-221

cence for gtonic > 2.57. In contrast, the dynamics of h are not essential for bursting in the222

closed-loop system, since fluctuation of gtonic in response to changes in PaO2 also operates223

on the time scale of eupneic breathing. A reduced version of the closed-loop model where h224

is held constant at 0.6 produces bursting with a period of approximately 7 s (Fig. 2C). Thus,225

closed-loop bursting does not require the dynamical mechanism responsible for bursting in226

the isolated CPG.227

Additional evidence that distinct mechanisms underlie bursting in the open and closed-228

loop models comes from the surprising observation that the closed-loop limit cycle exists229

entirely within the quiescent regime of the isolated CPG system. To compare the operation230

of the circuit in these different configurations, we conducted a series of simulations of the231

open-loop (static gtonic, dynamic h) model over a range of gtonic values (Fig. 3, blue markings),232

and the reduced closed-loop (dynamic gtonic, static h) model over a range of h values (Fig. 3,233

red markings). The open-loop model exhibits quiescence if gtonic < 0.28 nS, bursting if234

0.28 < gtonic < 0.44 nS, and beating if gtonic > 0.44 nS. The reduced closed-loop model235
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exhibits quiescence if h < 0.3, slow beating if 0.3 < h < 0.45, bursting if 0.45 < h < 0.75,236

and fast beating if h > 0.75. One might näıvely predict that the limit cycle corresponding237

to eupneic bursting in the full closed-loop model (dynamic gtonic, dynamic h) would exist238

in the region corresponding to bursting in both the static gtonic and static h models (i.e.239

the region labeled Bu/Bu in Fig. 3). Instead, we find that the closed-loop trajectory (black240

trace in Fig. 3) exhibits h values in the bursting region of the reduced closed-loop model,241

but gtonic values that lie entirely within the quiescent region of the open-loop model (the242

Q/Bu region in Fig. 3). Thus, we observe a novel form of excitability in the canonical BRS243

model: a time-varying gtonic produces bursting despite the gtonic values remaining within the244

quiescent region (i.e., the maximum gtonic value observed during bursting in the closed-loop245

model is less than the minimum gtonic needed to obtain bursting in the open-loop model).246

Bifurcation analysis247

In order to understand the distinct mechanisms of closed-loop bursting in more detail,248

Figure 4 walks through the dynamics in a series of projections onto the V − h plane. The249

ability of the closed-loop system to exhibit bursting with a time-varying gtonic that is always250

less than the value of static gtonic required for bursting can be understood by considering251

the bifurcation structure of the BRS equations. Bursting consists of oscillations on two252

timescales: a slow alternation between silent and active phases, and rapid spiking oscillations253

during the active phase. Models of bursting can be decomposed into a fast subsystem254

responsible for generating spikes, and a slow subsystem that modulates spikes and the resting255

membrane potential (Ermentrout and Terman, 2010). In the BRS model, h evolves on a256

slower timescale than V and n. Thus equations (1)–(2) form the fast subsystem, which we257

denote as (V̇ , ṅ), and equation (3) is the slow subsystem, which we denote ḣ. Different258

classes of bursting can be identified based on the types of bifurcations that occur in the fast259

subsystem to cause transitions between the silent and active phases when the slow variable260

is treated as a bifurcation parameter (Rinzel, 1987; Bertram et al., 1995).261

The BRS model is an example of “fold/homoclinic” bursting, where spiking initiates at262

a fold bifurcation and terminates at a homoclinic bifurcation (Izhikevich, 2007). This type263

of bursting has also been called “square-wave” bursting since the shape of the membrane264

potential profile resembles a square wave (Fig. 2A). The steady states of the fast subsystem,265
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i.e. points satisfying (V̇ = 0, ṅ = 0), form an S-shaped curve in the V − h plane that we266

denote S. The lower branch of S is stable, and meets the middle branch of unstable fixed267

points at the lower knee (h = 0.61, V = −51.4), where a fold bifurcation occurs as shown268

in Fig. 4A. Another fold bifurcation, which is not shown in the figure, occurs at the upper269

knee (h = −1.56, V = −29.7), where the middle and upper branches of S meet. The upper270

branch becomes stable through a subcritical Hopf bifurcation at (h = 0.92, V = −22.8).271

The branch of unstable periodic orbits that are born at this Hopf bifurcation coalesce with272

a branch of stable periodic orbits at the saddle-node of periodic orbits bifurcation located273

at h = 1.17 (not shown). The stable branch of periodic orbits ends at the homoclinic274

bifurcation on the middle branch of S at h = 0.57. During the silent phase of bursting, the275

trajectory is along the lower branch of S at a stable fixed point of the fast subsystem. The276

hyperpolarized membrane potential causes the persistent sodium channel to de-inactivate277

and h to increase. As h increases, the trajectory moves slowly to the right until the stable278

fixed point is destroyed at the fold bifurcation. At this point, the trajectory jumps up to the279

stable branch of periodic solutions and spiking begins. The depolarized membrane potential280

during spiking causes the persistent sodium channel to inactivate and h to decrease. As h281

decreases, the period of the limit cycle—and therefore the time between spikes—increases282

until spiking ends when the limit cycle merges with the invariant manifold of a saddle point283

at the homoclinic bifurcation. At this point, the trajectory jumps down to the stable branch284

of S, ending the active phase of that burst and beginning the silent phase of the next burst.285

Throughout both phases of open-loop bursting, all fixed points of the full system (1)–(3) are286

unstable. This is indicated by all intersections of the h-nullcline (defined as ḣ = 0) occurring287

on unstable portions of S (Fig. 4A bottom panel).288

In contrast, during closed-loop bursting the h-nullcline always intersects the stable lower289

branch of S (Figs. 4B–D bottom panels). These stable fixed points of the full CPG subsystem290

(V̇ , ṅ, ḣ) correspond to gtonic taking values that would lead to stable quiescence in the isolated291

BRS model. However, in the closed-loop model, when the CPG is quiescent (as in Fig. 4B)292

then PaO2 starts to fall, which causes gtonic to increase. Slowly increasing gtonic gradually293

shifts S to the left, allowing the trajectory to jump up at the lower knee fold bifurcation294

and start spiking, even though the CPG fixed point remains stable (Fig. 4C). The spiking295

of the CPG eventually causes PaO2 to increase, which in turn causes gtonic to decrease and296

shifts S to the right, leading to the homoclinic bifurcation that terminates spiking (Fig. 4D).297

13



Thus, although the same bifurcations occur in the fast subsystem during both open- and298

closed-loop bursting, the time-varying nature of gtonic in the closed-loop system changes the299

way in which the bifurcations are approached in comparison to the open-loop system.300

Sensitivity of burst timing to sensory input and internal dynamics301

We find that the timing of bursts in the closed-loop system is governed by chemosensory302

feedback, rather than the intrinisic bursting mechanism of the isolated CPG (slow inactiva-303

tion of INaP through the h-gate). To assess the influence of h dynamics in controlling burst304

properties, we simulated the open-loop and closed-loop models with τ̄h ranging from 8 to305

45 s (Fig. 5). The interburst interval (IBI), burst duration, and the number of spikes per306

burst all varied linearly as a function of τ̄h in the open-loop model, whereas in the closed-307

loop model these burst properties were much less sensitive to changes in τ̄h. To assess the308

influence of the timescale for chemosensory input τPaO2 in controlling burst properties, we309

recorded the gtonic values observed during closed-loop eupneic bursting with τ̄h = 10 s, and310

then played back compressed (γ < 1) or elongated (γ > 1) versions of this gtonic waveform311

as a forcing signal to the BRS model (with τ̄h = 10 s). For γ = 1, the forced BRS exhibited312

identical burst properties to the closed-loop model, as one would expect. For γ = 0.8, the313

system entrained 1:1 to the forcing and exhibited smaller IBIs, burst durations, and number314

of spikes per burst. For γ < 0.8, the system could not keep up with the forcing and lost315

1:1 entrainment, instead only bursting once for every two peaks of the gtonic waveform. For316

γ > 1, IBI increased linearly with γ, whereas burst duration and number of spikes per burst317

increased up to γ = 2 before leveling off or even decreasing. These simulations highlight318

the differential roles of h dynamics and gtonic fluctuations in the closed-loop system, with319

gtonic controlling the overall period of bursting (dominated by IBI) and h controlling spiking320

during the burst. Thus, it is the timescale of chemosensory input that determines burst321

timing in the closed-loop system, and not the timescale of the internal CPG dynamics.322

Bistability of eupnea and tachypnea in the closed-loop model323

In the closed-loop model, the stable bursting rhythm that represents eupneic breath-324

ing coexists with a stable beating rhythm that represents pathologically rapid and shallow325
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“tachypneic” breathing. This bistability is evident in Fig. 6, which shows two simulations326

of the closed-loop model with identical parameter values but different initial conditions. In327

Fig. 6A, spikes during the active phase of CPG bursting drive lung expansions that bring328

in new air, causing an increase in PaO2. During the silent phase of the burst, the lungs329

relax as air is exhaled and PaO2 decreases. The oscillation in PaO2 between 90 and 110330

mmHg produces an oscillation in gtonic between 0.12 and 0.22 nS, which in turn leads to331

CPG bursting that maintains eupnea. In contrast, Fig. 6B shows that tonic spiking of the332

CPG fails to drive lung expansions large enough to support effective gas exchange, resulting333

in a PaO2 level well below the desired range. The low PaO2 produces a high gtonic, which334

reinforces tonic spiking, trapping the system in a pathological state.335

To better understand the nature of the bistability between normal and reduced PaO2 levels336

observed in the closed-loop model, we analyzed a reduced version of the open-loop model337

obtained by approximating the dynamics of the control variable PaO2 using the method338

of averaging (Sanders et al., 2007). If the dynamics of the control variable PaO2 evolve on339

a slow time scale, then our analysis is formally equivalent to an averaging analysis of the340

closed-loop model decomposed into fast and slow variables. We find that during eupneic341

bursting, the intrinsic slowness of the variables (measured as the maximum rate of change342

divided by the range of the variable) span multiple temporal scales, with PaO2, volL, and343

PAO2 being an order of magnitude slower than h and α, which in turn are an order of344

magnitude slower than v and n (Appendix Table I). Since PaO2 is both a slow variable and345

the control variable, we reduce the closed-loop system to this single component and obtain346

a reduced model of the form:347

dy

dt
≈ ḡ(y), (23)

where y = PaO2, and ḡ is defined by averaging the expression for the PaO2 flux, given a348

fixed PaO2 value (see (27)-(28) in the Appendix). This one-dimensional model facilitates349

understanding the dynamics of the control variable. In particular, PaO2 decreases when350

ḡ < 0, increases when ḡ > 0, and remains constant when ḡ = 0. PaO2 values for which351

ḡ = 0 are fixed points of our reduced (one-dimensional) slow subsystem. In Figure 7A we352

show ḡ for three different values of the metabolic demand M . With M = 0.4 × 10−5 ms−1
353

(green curve), the system has a stable fixed point at PaO2 = 90 corresponding to eupnea, a354

stable fixed point at PaO2 = 40 mmHg corresponding to tachypnea, and an unstable fixed355

point at PaO2 = 80 mmHg that acts as a boundary between the two stable states. With356
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M = 0.8× 10−5 ms−1 (cyan curve), the same three fixed points exist but the unstable fixed357

point and the stable eupneic fixed point are now closer to each other. With M = 1.6× 10−5
358

ms−1 (magenta curve), only one fixed point exists and it is the stable tachypneic fixed point.359

Figure 7B shows the location of the fixed points as a function of M . As M is increased,360

the unstable fixed point and the stable eupneic fixed point moved towards one another361

until they collide and annihilate each other in a saddle-node bifurcation. Thus, the reduced362

model obtained through averaging predicts that, as M is increased, the closed-loop system363

will eventually lose bistability and display tachypneic tonic spiking for all initial conditions.364

Indeed, simulations of the full model confirm that for high values of M , the closed-loop365

system no longer exhibits eupneic bursting (Fig. 8).366

Enhanced Robustness of Closed-loop System367

The incorporation of chemosensory feedback leads to the closed-loop system being more368

robust to changes in metabolic demand than the open-loop system. Figure 8 illustrates the369

enhanced robustness of the full closed-loop system in two ways. First, the PaO2 versus M370

curve has a shallower slope near the desired operating point of PaO2 = 100 mmHg, where371

∣∣∂PaO2
∂M

∣∣ is 70% less in the closed loop than in the open loop. Thus, the closed-loop model372

is locally robust to increases in metabolic demand (cf. Robustness and flexibility section373

in Discussion). Second, the range of M values for which PaO2 stays within the acceptable374

range of 80 to 110 mmHg (indicated by the green, shaded band) is larger in the closed loop375

(1×10−7 < M < 1.23×10−5 ms−1) than it is in the open loop (0.49×10−5 < M < 0.91×10−5
376

ms−1). This is a more global, or functional, measure of the robustness.377

As M is increased from 0.2 × 10−5 to 1.5 × 10−5 ms−1, the mean PaO2 levels decrease378

from 102 to 90 mmHg in the closed-loop model (black curve) and from 135 to 62 mmHg379

in the open-loop model (blue curve). The ability of the closed-loop system to maintain380

PaO2 levels within a narrower range reflects increased robustness of the closed-loop system381

to variations in metabolic demand. However if the metabolic demand becomes too great382

(M > 1.2 × 10−5 ms−1), mean PaO2 levels in the closed-loop model drop precipitously as383

the system transitions from eupnea to tachypnea. Our averaging analysis predicts that this384

transition would occur atM = 0.82×10−5 ms−1, since that is the value ofM at which saddle-385

node bifurcation occurs in the reduced system (cf. Fig. 7B). The fact that this transition386
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occurs at a higher value of M than predicted by analysis of the reduced system illustrates387

another type of robustness present in the closed-loop system.388

Autoresuscitation following transient perturbations389

The closed-loop system exhibits surprising resilience to transient perturbations. Due to390

the bistable nature of the closed-loop system, perturbations can take the system out of the391

basin of attraction for eupnea and into the basin of attraction for tachypnea. We find that392

the closed-loop system is able to recover to eupnea following perturbations, even when the393

perturbation creates transient PaO2 levels below 75 mmHg. This “autoresuscitation” phe-394

nomenon arises from properties intrinsic to the BRS conductances (Diekman et al., 2012).395

We demonstrate and analyze autoresuscitation using two different types of perturbations.396

First, we consider perturbations where PaO2 instantaneously drops to an abnormally low397

level. This type of perturbation, which we refer to as an imposed hypoxic event, is rather398

non-physiological but is mathematically convenient. The second type of perturbation we399

consider is more physiologically plausible, and models intermittent disruption of chemosen-400

sory feedback. In this scenario, we temporarily disconnect gtonic from PaO2 and hold gtonic401

at a constant value. All the system variables continue to evolve under this value of gtonic for402

τ seconds, until we reconnect the loop and again make gtonic a function of PaO2.403

Perturbation I: Imposed hypoxic event404

We defined eupneic and tachypneic “ranges” based on the long-term behavior that results405

from different initial conditions. First, we simulated the open-loop model over a range of406

gtonic values corresponding to different PaO2 levels. The gtonic values were chosen using the407

chemosensation sigmoid (22) for a range of PaO2 values with 0.1 mmHg spacing. Each sim-408

ulation was allowed to reach steady-state before “closing the loop” and observing whether409

those initial conditions led to eupnea or tachypnea in the closed-loop system. Closed-loop410

simulations with initial conditions corresponding to PaO2 below 75.6 mmHg resulted in411

tachypnea, and those with initial conditions corresponding to PaO2 above 78.1 mmHg re-412

sulted in eupnea (Fig. 9). These ranges of PaO2 values are henceforth referred to as the413

tachypneic range and the eupneic range, respectively. The dividing line between these two414
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ranges was approximately gtonic = 0.38, which corresponds to PaO2 = 76.85 mmHg (Fig. 9).415

However, the restored closed-loop system could recover from transient perturbations that416

brought PaO2 below this dividing line. For example, at t = 180 s we set PaO2 = 40 mmHg417

and then immediately released the system back to its normal dynamics. We see that the418

trajectory escapes the tachypneic range and returns to eupnea. Then, at t = 360 s, we set419

PaO2 = 30 mmHg and again immediately released the system back to its normal dynamics.420

The trajectory is not able to escape the tachypneic range after this more severe perturbation.421

The system does not recover to eupnea and instead descends into tachypnea.422

When the system is able to recover from transient hypoxic perturbations, it is due to423

the barrage of spiking activity brought on by the reduction in PaO2 levels and ensuing424

sudden increase in gtonic. The relationship between PaO2, gtonic, V , and volL is illustrated in425

Fig. 10A. The active phase of a eupneic burst is 0.39 seconds in duration and consists of 21426

spikes, corresponding to a spiking frequency of 54.5 Hz during the active phase (Fig. 10B,427

top). In contrast, the burst immediately following the hypoxic perturbation is 0.96 seconds in428

duration and consists of 69 spikes, corresponding to a spiking frequency of 72.2 Hz (Fig. 10B,429

bottom). The enhanced spiking during this burst leads to a vigorous expansion of lung430

volume (Fig. 10A, bottom) that brings extra oxygen into the lungs, ultimately raising PaO2431

(Fig. 10A, top) to a level high enough that gtonic decreases (Fig. 10A, second from top)432

before the system becomes trapped in the tachypneic state. The barrage of spiking that433

facilitates autoresuscitation following hypoxic perturbation can be understood in terms of434

the bifurcation structure of the fast subsystem of the BRS model (Fig. 10C). As shown435

in Fig. 4, the curve of fast subsystem fixed points moves as gtonic fluctuates in the closed-436

loop model. During the silent phase of a burst, PaO2 decreases and gtonic increases, which437

shifts the curve leftward until the trajectory jumps up and begins to exhibit limit cycle438

oscillations corresponding to repetitive spiking. During the active phase, h decreases until439

the periodic orbits collide with the middle branch of unstable fixed points and are destroyed440

in a homoclinic bifurcation. Importantly, the period of the orbits increases logarithmically441

as they approach the homoclinic (Gaspard, 1990), thus spiking occurs at a higher frequency442

when the trajectory is further from the bifurcation point. Figure 10C (top) shows the443

trajectory of a typical eupneic burst, and the location of the curve of steady states, at the444

time the trajectory jumps up (green dot). Figure 10C (bottom) shows the trajectory of the445

spiking barrage following hypoxic perturbation. Note that when the trajectory jumps up,446
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the curve of fixed points is located much further to the left in the (V, h) plane due to the447

drastic reduction in PaO2. Since the trajectory is further from the homoclinic bifurcation448

when it begins spiking, the system exhibits spikes for a longer time and at a higher frequency449

than it does during the active phase of a typical burst.450

Response to transient hypoxia in vitro451

Although a sudden drop in PaO2 may seem non-physiological, it can be simulated in vitro452

by adding sodium cyanide (NaCN), a pharmacological analog of hypoxia, to the brainstem453

slice perfusate. Alternatively, hypoxia can be imposed by reducing the amount of O2 in the454

gas used to bubble the perfusate. We find that both of these in vitro hypoxic challenges455

induce a similar barrage of spiking in brainstem slices containing the pBC as occurs in the456

closed-loop model in response to a hypoxic PaO2 clamp perturbation. Figure 11A shows a457

barrage of spikes in an individual pBC cell (top) and increased hypoglossal nerve rootlet458

discharge (bottom) after bath application of 300 µM NaCN. Figure 11B shows summary459

data from nine experiments with increased burst duration and frequency during NaCN or460

hypoxia treatment, followed by a return to baseline bursting activity after the treatment.461

The changes in burst duration and frequency are significant (p < 0.05) across baseline,462

NaCN or Hypoxia, and Recovery. There is a delay between the initiation of the treatment463

and the effect seen in the individual neurons or the network output (XII) due to the “dead464

space” volume of the perfusion system.465

The carotid chemoreceptors and their inputs to the nucleus tractus solitarius (NTS) and466

the rest of the inspiratory rhythm generating circuit are absent in the reduced in vitro467

slice preparation. The cellular mechanisms by which neurons and glia participating in the468

respiratory neural network sense local changes in oxygen is unknown, however, D’Agostino et469

al. (2009) have shown that hemeoxygenase is expressed in neurons in the rostral ventrolateral470

medulla (RVLM) which includes the preBötzinger Complex and other respiratory-related471

neurons and this may serve as a marker for hypoxia-sensitive cells within the pBC. Other472

cellular mechanisms that may serve as hypoxia sensors in pBC include second messengers as473

modifiers of KATP channels (Mironov et al., 1998; Mironov and Richter, 2000), changes in474

mitochondrial NADH (Mironov and Richter, 2001), and L-type calcium channels (Mironov475

and Richter, 1998). Even changes in the excitability of upstream projecting neurons, for476
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example from the NTS to the pBC (Takakura et al., 2007), could impact the behavior of477

our model with changes in oxygen tension.478

Perturbation II: Interruption of chemosensory feedback479

To explore the autoresuscitation phenomenon further, we modeled intermittent failure of480

the chemosensory pathway that transmits information about blood oxygen content to the481

CPG (Fig. 12). Specifically, we simulated the closed-loop system in the eupneic state and482

then transiently disconnected gtonic from PaO2 by setting gtonic to a constant value of 0.1 nS483

for durations ranging from 1 to 60 s. This intervention puts the CPG in the quiescent regime484

and PaO2 gradually declines, reaching values below 50 mmHg for durations greater than 35485

s. We then reconnected the chemosensory feedback, which caused an abrupt increase in486

gtonic and a barrage of spiking that quickly raised PaO2. We observed that if the duration487

of the chemosensory failure was short enough, the system would recover to eupnea (Fig.488

12A,C), but if the duration of the failure was sufficiently long, the system would descend489

into tachypnea (Fig. 12B,D). For chemosensory failure durations near the critical value490

separating these two states, trajectories transiently exhibited an activity pattern consisting491

of bursts with a smaller number of spikes and shorter interburst intervals before transitioning492

to a steady-state of eupenic bursting (as in Fig. 6A) or tachypneic tonic spiking (as in493

Fig. 6B). In the next section, we show that this intermediate bursting pattern corresponds494

to an unstable limit cycle with a stable manifold acting as a boundary between respiratory495

system recovery and failure.496

Boundary between eupnea and tachypnea497

When pushed to the boundary separating eupnea and tachypnea, the failure or survival498

of the system depends on the interplay of biomechanics (e.g. lung expansion and contrac-499

tion) and excitability in central circuits (including h-gate dynamics) and cannot properly be500

understood in terms of the central dynamics in isolation. The model has seven dynamical501

variables, therefore trajectories move in a 7-D space. The two attractors (tachypneic spiking502

and eupneic bursting) are separated by a smooth 6-D separatrix which is the stable manifold503

of a metastable set living on the boundary. Simulations suggest that this set is a saddle504
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limit cycle, with a 6-D stable manifold and a 2-D unstable manifold. The intersection of505

these two sets of points is a 1-D unstable limit cycle. We computed Floquet multipliers, µ,506

for this limit cycle and found one unstable direction (µ > 1), five stable directions (µ < 1),507

and one neutral direction (µ = 1) (see Appendix for details). The components of the eigen-508

vector associated with the unstable direction provide information about the impact of each509

system variable on the fate of trajectories on the boundary. We analyzed the eigenvectors510

at the four locations on the boundary limit cycle indicated by the black arrows in Fig. 13A:511

approximately halfway through the quiescent phase of the burst (arrow b), shortly before512

the first spike of the active phase (arrow c), in between spikes during the active phase (arrow513

d), and shortly after the last spike of the active phase (arrow e). The size of the eigenvector514

components indicate how susceptible the system is to being pushed off of the boundary limit515

cycle by perturbations in each of the system’s variables. We find that the system is most516

sensitive to perturbations in h, PAO2, and PaO2 at all four locations (Fig. 13D–E). Since517

eigenvectors are only defined up to an arbitrary change in sign, we chose the convention518

that the PaO2 component is positive in order to orient the eigenvectors consistently around519

the limit cycle (we ensured this by multiplying the vectors by -1 when necessary). The sign520

of each eigenvector component then indicates whether small increases in that variable push521

the system towards eupnea or tachypnea, with positive components being “pro-eupneic” and522

negative components being “pro-tachypneic”. We find that the h and PAO2 components are523

pro-eupneic at all four locations on the limit cycle, whereas α has a small pro-tachypneic524

effect at all four locations. The effect of perturbations in lung volume (volL) is small and525

varies with location. The system is not sensitive to perturbations in V and n, except during526

the active phase when V is slightly pro-eupneic (Fig. 13D).527

Extent of Autoresuscitation528

To quantify the extent of the autoresuscitation regime, we simulated a range of durations529

for the interruption of chemosensory feedback. Figure 14 shows PaO2 levels 3 minutes after530

reestablishing chemosensory feedback, with dark and bright colors indicating low and high531

PaO2 respectively. In the absence of chemosensory feedback, we assume that the drive to532

the CPG no longer fluctuates and set gtonic to constant values between 0 and 0.6 nS when533

disconnected from PaO2. If this value was sufficiently close to 0.3 (the nominal gtonic value534
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used for open-loop simulations as shown in Fig. 2A), the CPG exhibited a bursting pattern535

that kept PaO2 levels sufficiently high, such that the system always maintained eupnea when536

the chemosensory feedback was reconnected. Values of gtonic below this range correspond to537

cases qualitatively similar to the simulations shown in Fig. 12. Values of gtonic above this538

range correspond to gtonic being set to a high value in the absence of chemosensory feedback.539

Here the CPG responds with a barrage of spiking at the beginning, rather than after, the540

perturbation. This initial barrage raises PaO2 and can help the system avoid tachypnea if541

the perturbation is short enough in duration (Fig. 15). The boundary separating eupnea542

and tachypnea in this case is again associated with the unstable limit cycle analyzed in Fig.543

13.544

DISCUSSION545

Modeling rationale546

To understand the generation and stabilization of vital rhythms, such as breathing, one547

must consider both central and peripheral systems working in concert. Thus one confronts548

oscillating, nonlinear, closed–loop control systems, which are notoriously difficult to analyze549

in a general setting (Shimkin, 2009). We chose, therefore, to work with a model that550

does not include all known aspects of respiratory control, but represents enough salient551

aspects of the physiology to capture the principal conundrum of interest—the interaction of552

a stable central pattern generator circuit with phasic sensory feedback provided by peripheral553

chemosensation.554

Because breathing is such a fundamental physiological function, one expects there to be555

multiple interwoven and layered control mechanisms interacting to stabilize and modulate556

breathing rhythms. For instance, chemosensation allows changes in both oxygen and carbon557

dioxide concentrations in the bloodstream to dramatically affect the breathing rhythm. Both558

hypercapnia and hypoxia sensitivity are important, and dysregulation of either—for instance559

in the perinatal period, when the immature network is still developing—can contribute to560

pathological apneas (Martin et al., 2012). In order to formulate our model, we select one561

element from each step in a closed-loop control circuit: sensitivity to blood gasses (hypoxia,562

in our case), central pattern generation, motor output driving gas exchange, metabolic563
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demand, and, as the final “control variable”, the arterial partial pressure of dissolved oxygen.564

Despite its relative poverty when compared with the full complexity of respiratory control,565

our simple model nevertheless exhibits these fundamental features of interest:566

• bistability between a normal “eupneic” state and a pathological “tachypneic” state567

• interaction of intrinsic rhythmicity of central circuitry (BRS model) and global rhyth-568

micity of the closed-loop system569

• spontaneous activity providing a mechanism of “autoresuscitation” following bouts of570

imposed hypoxia or interruption of chemosensory feedback.571

We do not claim to have developed a minimal model for robust breathing, in the sense that572

we do not rule out the possibility of a lower-dimensional closed-loop control model exhibiting573

the same fundamental behaviors. Rather, we think of our model as minimalist, in the sense574

that it incorporates enough physiological realism to shed light on natural respiratory con-575

trol, yet remains simple enough to be amenable to mathematical analysis. Thorough analysis576

of any such system requires a constellation of approaches, including control-theoretic tech-577

niques, dissection of fast and slow timescales, bifurcation analysis, and numerical simulation.578

We apply these tools to better understand the mechanisms of generation and stabilization579

of robust breathing rhythms.580

Alternative bistable states and interpretations581

We interpret the non-bursting, regular spiking or “beating” regime of the CPG in the582

closed-loop model as tachypnea because it produces rapid and shallow fluctuations in lung583

volume that are not sufficient to maintain normoxia (Diekman et al., 2012). These lung584

fluctuations have extremely small amplitude, and in other closed-loop models the beating585

regime has been interpreted as apneusis, or “holding the breath” after inspiration (Ben-Tal586

and Smith, 2008). Altering the shape of the gtonic chemosensation sigmoid, by setting the587

parameters φ = 0.2 nS and θg = 100 mmHg in (22), results in a closed-loop model that has588

bistability between two different bursting regimes of the CPG: one with 20 spikes per burst589

and a period of 5.8 seconds, and the other with only 3 spikes per burst and a period of 1.4590

seconds. These bursting patterns produce lung volume fluctuations of 0.9 and 0.07 liters591
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respectively, with the former maintaining PaO2 around 100 mmHg and the latter around 30592

mmHg. Thus, this version of the closed-loop model again exhibits bistability of eupnea and593

tachypnea, where here the tachypnea regime consists of multi-spike bursts occurring at a594

higher frequency than eupnea. Although this is perhaps a more natural concept of tachypnea595

than the beating regime, we chose to use the beating regime as our model of tachypnea (i.e.596

we set φ = 0.3 nS) for this study in order to make the difference between the coexisting597

physiological and pathological states more pronounced. Raising instead of lowering the598

maximal value of the chemosensation sigmoid, i.e. setting φ = 5 nS (and θg = 50 mmHg),599

results in a closed-loop model with bistable eupneic bursting and a depolarized (-30 mV)600

quiescent state of the CPG. We interpret this quiescent state, for which lung volume is601

constant at 3.1 liters, as apneusis. Finally, we also considered a bell-shaped curve instead602

of a sigmoid for the relationship between gtonic and PaO2, and observed bistability between603

eupneic bursting and a hyperpolarized (-60 mV) quiescent state of the CPG. We interpret604

this quiescent state, for which lung volume is constant at 2.0 liters, as apnea. While we605

have not observed coexistence of more than two stable states in any of these versions of the606

closed-loop model, we cannot rule out the possibility of higher-order multistability.607

Control theory and averaging analysis608

Control theory is a promising framework for studying respiratory control, however it609

requires the part of control theory that involves nonlinear, nonstationary control (i.e. control610

of limit cycle trajectories), and possibly also stochastic control—which means the control611

theoretical framework needed is not yet complete (Cowan et al., 2014; Roth et al., 2014).612

In our closed-loop model, PaO2 is the natural “control variable”: it carries the signal that613

regulates the activity of the CPG (as opposed to PAO2 or lung volume being the feedback614

signals). Although there is no canonical way to partition fast and slow variables in a high-615

dimensional system of ODEs (Clewley et al., 2005), empirical investigation (Fig. 16) suggests616

PaO2 is also a reasonable candidate for consideration as the slow variable. Identification of617

a slow variable suggests analysis via averaging. In this case, averaging gives a qualitative618

insight into the nature of the bistability between eupnea and tachypnea, interpreted along the619

PaO2 “phase line” (Fig. 7). However, the resulting behaviors are not fixed points but limit620

cycles, and the averaging analysis with a single slow variable does not give full quantitative621
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agreement. An averaging analysis considering multiple slow variables (Wang and Rubin,622

2016), which lies beyond the scope of the present paper, may be able to more faithfully623

capture the chain of dependencies present in the closed-loop model.624

It is both conceptually and mathematically convenient that the slow variables coincide625

with the control variables for this system, and we suggest that it may be useful to look626

for this feature in other motor control systems, such as those involved in legged locomotion627

(Full and Koditschek, 1999).628

Closed-loop respiratory control models629

Although the literature on computational modeling of the respiratory system is vast630

(Lindsey et al., 2012), the model analyzed here is, to our knowledge, the first to embed631

a conductance-based CPG capable of firing action potentials into a closed-loop respiratory632

control model. Most computational studies have focused on respiratory pattern generation633

rather than the neural response to changes in blood gases (Ben-Tal and Tawhai, 2013).634

Furthermore, much of the work that treats the respiratory system from a control-theoretic635

perspective (Grodins, 1963) predates the identification of the preBötzinger complex as the636

main location of the rhythmic pattern generation circuitry (Smith et al., 1991). In early637

dynamical models of the respiratory control loop, neuronal activity was represented by time638

delays between different compartments (Grodins et al., 1954, 1967), or as a black-box rhythm639

generator (Khoo, 1990; Cheng et al., 2010). Later models incorporated neuronal dynamics640

using a generic limit cycle oscillator (Eldridge, 1996) or firing rate models of excitatory and641

inhibitory neurons (Longobardo et al., 2005) as the respiratory pattern generator. Ben-Tal642

and Smith (2008) developed the first closed-loop model with a rhythm generator based on643

the persistent sodium current (INaP ) that plays a major role in bursting of brainstem pBC644

neurons. The Ben-Tal model used a reduced description of the BRS model that did not645

include the ionic currents needed to produce action potentials. Instead, the activity level is646

described by a variable that represents the average spike rate of the pBC population, which647

can be related to the average voltage by a linear transformation. Two closed-loop models648

with detailed respiratory neuronal networks are the O’Connor et al. (2012) and Molkov et649

al. (2014) models. Both include the pBC as well as other brainstem neuronal populations650

involved in pattern generation, such as the Bötzinger complex and the ventral respiratory651
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column. However, neither model simulates action potential-like spikes. The O’Connor model652

employed interacting populations of integrate-and-fire neurons where spikes are implied by653

voltage threshold crossings. The Molkov model used an activity-based neuron formalism654

in which the voltage variable represents an average voltage for the population, and the655

population firing rate is described by a function of the voltage variable. As discussed in656

the previous section, in our model we find that replacing the full conductance-based model657

with a lower-dimensional model obtained by averaging reproduces the qualitative but not658

quantitative aspects of the full model.659

It is possible that several of the features of the closed-loop model explored in this paper,660

such as bistability and spontaneous autoresuscitation, would still be present in a version of661

the model where the ionic currents responsible for action potential firing of the CPG have662

been removed. We choose to retain the spikes, as it has been shown that reduced models663

of bursting cells (the R15 neuron in Aplysia californica) that do not consider the effects of664

action potentials on the underlying slow-wave oscillation in membrane potential may wrongly665

predict transitions between quiescent, bursting, and beating activity modes compared to the666

full model (Butera et al., 1996). In the BRS model, creating a “spikeless” reduced model by667

removing the transient sodium current INa yields a slow-wave membrane potential oscillation668

with a period that is approximately twice that of the full model (Ermentrout and Terman,669

2010). The full model has a shorter period relative to the reduced model because action670

potentials intensify the inactivation of the pacemaking persistent sodium current INaP.671

Physiology of Autoresuscitation672

Autoresuscitation occurs when the confluence of chemosensory drive and centrally gen-673

erated drive causes a restart of the respiratory network. Typically, this restart occurs after674

the decreased oxygen tension is sensed via the carotid bodies and low O2 drives the hypoxic675

ventilatory response (HVR), consisting of two distinct phases: Phase 1, an acute increase676

in minute ventilation early after hypoxic exposure, and Phase 2, a later response character-677

ized by ventilatory depression. In most mammals, the HVR is fully mature by two weeks678

of postnatal life (Prabhakar et al., 2007). However, in neonatal mammals with immature679

chemosensory feedback, the reduced drive to the CPG is likely the key failure point that re-680

duces the probability of restarting the respiratory rhythm in response to severe hypoxia (i.e.,681
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anoxia). Serotonergic and adrenergic neuromodulatory inputs appear to play a key role and682

are developmentally regulated (Erickson and Sposato, 2009; Givan and Cummings, 2016).683

Other complications of neonatal life, including infection (Siljehav et al., 2014), confound our684

understanding of the points of failure in the respiratory control system. As of yet, we do not685

have a mechanistic understanding of why autoresuscitation sometimes fails and sometimes686

succeeds. Our model provides greater understanding of the state changes that are required687

for resuscitation, and an impetus for future experiments dedicated to elucidating the key688

control points that can force the respiratory network into restart after a hypoxic challenge.689

Development690

Developmental changes in the respiratory rhythm-generating and pattern formation net-691

works have been described, but we do not yet know the impact that these changes have on692

the core of the rhythm-generating circuit. For example, burst-generating currents, including693

INaP and ICAN (Ca2+-activated nonselective cation) currents, are modulated during devel-694

opment (Del Negro et al., 2005). Futhermore, fetal hemoglobin is known to have a higher695

binding affinity for oxygen, and the time course by which fetal hemoglobin shifts to pre-696

dominantly adult hemoglobin would impact autoresuscitation (Rutland et al., 1983; Teitel697

and Rudolph, 1985). Developmental changes in chemosensation also are key modifiers of698

autoresuscitation, as mentioned above. Carotid body resetting—after the relatively hypoxic699

environment in utero—occurs over the first weeks of life (Prabhakar et al., 2007), and the700

chronic intermittent hypoxic events common in neonates can alter the gain of carotid body701

chemosensors (Pawar et al., 2008). In our closed-loop model, changes in the gain of the hy-702

poxia sensitive pathway would correspond to changes in the slope of the sigmoid connecting703

PaO2 to gtonic (the parameter σg in (22)). Additionally, hypoxia alters gene transcription704

and reactive oxygen species (ROS)-mediated signaling. Relatively little is known about how705

the respiratory control circuit changes, as a whole, over the course of development from the706

perinatal period to adulthood.707

In our closed-loop model, the ability of the system to recover from an interruption in708

chemosensory feedback failure depends on the constant value assumed for gtonic when dis-709

connected from PaO2 (Fig. 14). If this value is in the range that produces bursting in the710

isolated CPG (between 0.25 and 0.4 nS), then the closed-loop system always returns to711
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eupnea following chemosensory interruption. Based on this observation, we speculate that712

there may be at least two distinct components of carotid body input to the brainstem: an713

excitatory drive that is independent of chemosensory feedback, and a modulatory pathway714

to confer additional robustness. The former would be an example of open-loop control,715

and may be dominant during early stages of development; whereas the latter would reflect716

closed-loop control, and may be more prominent in later stages of development.717

Periodic breathing718

In the closed-loop model, a stable bursting limit cycle (eupnea) coexists with a sta-719

ble tonic spiking limit cycle (tachypnea). On the boundary between the basins of attrac-720

tions of two different stable limit cycles, one may “generically” expect to find an unstable721

limit cycle solution—just as we have observed (Benes et al., 2011). Indeed, in many neu-722

ronal models, the transition between bursting and spiking exhibits complicated dynamics723

(Ermentrout and Terman, 2010). Recently, it has been shown that a common dynamical724

phenomenon, the torus canard, separates bursting and spiking regimes in several neuronal725

models (Kramer et al., 2008; Burke et al., 2012). Torus canards have been found in classes726

of neuronal models where the active phase of bursting terminates in a saddle-node bifurca-727

tion of periodic orbits (a fold-cycle bifurcation) in the fast subsystem, such as subcritical-728

Hopf/fold-cycle, circle/fold-cycle, and fold/fold-cycle bursters. In contrast, the BRS model729

is a fold/homoclinic (square wave) burster, i.e. the active phase of bursting terminates at730

a homoclinic bifurcation. In the BRS model, there is a fold-cycle bifurcation in the fast731

subsystem, however the active phase of bursting does not terminate there, and it is not clear732

whether the torus canard phenomenon is possible in the closed-loop model presented here.733

Although the single-neuron version of the BRS model exhibits fold/homoclinic bursting, two734

synaptically coupled BRS model neurons exhibit fold/fold-cycle (or top hat) bursting (Best735

et al., 2005). A recent study (Roberts et al., 2015) has linked the transitions between bursting736

and spiking in the coupled BRS model to folded singularities and canards. Thus, we expect737

that torus canards may be present in a version of the closed-loop model where the CPG is a738

network of BRS neurons, rather than a single representative neuron. In systems with torus739

canards, trajectories can make extended visits to the neighborhood of an attracting limit740

cycle and a repelling limit cycle in alternation (Benes et al., 2011). Such dynamics in a res-741
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piratory control loop might provide a model of periodic breathing, a phenomenon commonly742

observed in premature infants where pauses in breathing of up to 10 seconds are followed743

by a series of rapid, shallow breaths before breathing returns to normal (Mohr et al., 2015;744

Patel et al., 2016). The typical phenotype of periodic breathing—apneas interspersed with745

tachypneic episodes—is also seen in adults as Cheyne-Stokes breathing. Hypoxic episodes746

have been implicated in the early stages of Cheyne-Stokes breathing, and may be essential747

to the initiation of these episodes, and the downward spiral into pathophysiological rhythms748

(Guntheroth, 2011).749

Robustness and flexibility750

Lyttle et al. (2016) recently introduced a dynamical systems framework for character-751

izing the robustness and flexibility of motor control systems. They defined robustness as752

the ability of a system to maintain performance despite perturbations (or parameter varia-753

tion), and flexibility as the ability of a system to deploy alternative strategies that improve754

performance by adjusting behavioral output in response to perturbations. A third concept,755

sensitivity, measures the extent to which the dynamics of system components change in756

response to perturbations. Using a model of an invertebrate feeding apparatus, Lyttle et al.757

(2016) demonstrated that motor control systems can achieve robustness and flexibility by758

dynamically switching between coexisting modes in response to changing demands. One of759

these modes is characterized by low sensitivity to perturbations and parameter variations,760

and the other mode by high sensitivity.761

Interpreting our respiratory control model in this framework raises interesting questions.762

We have shown that the closed-loop system is more robust to changes in metabolic demand763

(M) than the open-loop system, because it is able to maintain blood oxygen within accept-764

able limits (80 to 110 mmHg) over a wider range of M values (Fig. 8). However, once M765

exceeds a certain value (1.24×10−7 ms−1), then PaO2 drops precipitously in the closed-loop766

model, and for M values above this threshold the PaO2 levels in the open-loop model are767

higher than they are in the closed-loop model. This suggests that respiratory system per-768

formance might improve if the system were to modulate its sensitivity by reducing the gain769

of chemosensory feedback (σg) as metabolic demand increases, paradoxically enabling it to770

postpone a collapse in PaO2 by switching to more of an open-loop control regime. Additional771
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feedback mechanisms on a longer time scale could potentially confer such flexibility.772

As another point of comparison, Fig. 10 illustrates the mechanism by which sensory773

feedback allows the closed-loop respiratory system to respond to what Lyttle et al. (2016)774

calls a “challenge”, that is, a perturbation that tends to decrease the system’s performance775

(in this case, maintenance of adequate PaO2 levels). Imposing a hypoxic challenge leads to776

the system producing a longer and stronger motor response that effectively counteracts the777

perturbation, within certain amplitude limits. The role of sensory feedback in (Lyttle et778

al., 2016) is qualitatively similar. In that system, applying a mechanical load opposing the779

pulling in of food, during the swallowing phase of an ingestive motor pattern, activates a780

proprioceptive input to the CPG that selectively extends a portion of the underlying limit781

cycle trajectory. In response, the central pattern generator produces a longer and stronger782

activation of the motor units innervating muscles opposed to the mechanical challenge.783

Model extensions784

There are several aspects of the respiratory control network that could be incorporated in785

future work extending our closed-loop model. These include modeling the pBC as a multi-786

unit network with parametric heterogeneity, which has been shown to increase the robustness787

of inspiratory oscillations in a network of model conditional pacemaker neurons (Rubin and788

Terman, 2002b); interaction of the pBC with other brainstem nuclei such as the ventral789

respiratory column and the retrotrapezoid nucleus, which can lead to a variety of multiphasic790

rhythms (Rubin et al., 2009); changes in cellular properties in response to hypoxia (Mironov791

et al., 1998; Mironov and Richter, 1998); and additional sensory feedback pathways involving792

carbon dioxide sensing (Molkov et al., 2014) and lung/chest/abdominal stretch receptors793

(Paintal, 1973; Widdicombe, 1982; Coleridge and Coleridge, 1994; Schlafke and Koepchen,794

1996).795

These extensions would introduce challenges in the mathematical analysis of the result-796

ing model. For example, inclusion of lung volume feedback modulation of inspiratory drive797

yields a closed-loop model with a mechanical control problem nested within the blood gas798

homeostatic control problem. Moreover, additional sensory feedback pathways may not799

converge on the same input (gtonic) used as the control variable in the present paper. Incor-800

porating multiple control pathways will significantly complicate the averaging analysis, just801
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as systems with multiple slow variables are more challenging to analyze through fast-slow802

dissection than systems with a single slow variable (Bertram and Rubin, 2016). However803

what we would expect to carry over to a more elaborate model is that the timing of the804

sensory feedback, or different components of sensory feedback, would still be expected to805

play the predominant role in setting the timing of respiration rather than intrinsic properties806

of the central pattern generator in isolation.807

APPENDIX808

To better understand the nature of the bistability between normal and reduced PaO2809

levels, we performed a fast-slow decomposition of the closed-loop system, treating PaO2810

as the slow variable and then approximating its dynamics using the method of averaging811

(Sanders et al., 2007).812

Fast-slow decomposition813

The application of singular perturbation methods developed by Fenichel and others (Ru-814

bin and Terman, 2002a; Fenichel, 1979; Jones, 1995; Wiggins, 1994) has led to rapid815

advances in understanding the geometry of bursting dynamics in numerous neural oscilla-816

tors admitting a time scale separation between “slow” and “fast” variables (Borisyuk and817

Rinzel, 2005; Coombes and Bressloff, 2005; Izhikevich, 2000; Rinzel and Ermentrout, 1989;818

Bertram and Rubin, 2016). The global structure of the flows in such systems is determined819

by the “slow” variables, for instance the persistent sodium gating variable h in the isolated820

BRS model (Best et al., 2005). In the case of a respiratory control loop, we embed the BRS821

model into a system including time scales for gas exchange, lung mechanics, and metabolic822

consumption of O2. What is, or what are, the “slow variables” in such a control system?823

The closed-loop model is a 7-dimensional system of ordinary differential equations (ODEs)824

that includes time scales for a variety of processes (neuronal dynamics, lung mechanics, gas825

exchange, and metabolic consumption of oxygen), and several different partitions of the826

system into fast and slow subsystems are possible. In order to place disparate variables on827

a common basis, we calculated the maximum relative speed of the variable, νx, defined as828
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the maximum rate of change divided by the range of the variable. Formally,829

νx =
maxt∈[0,T ){|x′(t)|}

maxt∈[0,T ){x(t)}−mint∈[0,T ){x(t)}
, (24)

where x′(t) is the time derivative dx/dt. The smaller νx is, the “slower” we consider x to be.830

We find that during eupneic bursting, the intrinsic slowness of the variables span multiple831

temporal scales, with PaO2, volL, and PAO2 being an order of magnitude slower than h and832

α, which in turn are an order of magnitude slower than v and n (Fig. 16 and Table I).833

x maxt∈[0,T ){|x′(t)|} maxt∈[0,T ){x(t)} mint∈[0,T ){x(t)} νx

PaO2 0.0278 105.7054 93.3442 0.0022

volL 0.0022 2.9744 2.0078 0.0023

PAO2 0.0349 107.2739 94.5528 0.0027

h 0.0035 0.7551 0.6734 0.0427

α 7.0518×10−4 0.0090 3.5427×10−5 0.0783

v 76.2152 6.3719 -59.7198 1.1532

n 1.7849 0.9386 4.6197×10−4 1.9027

Table I.Comparing the “relative speed” of the closed-loop model variables. The dimensionless

quantity νx of each variable in the model along the eupneic bursting limit cycle of period T is

calculated using equation (24).

Averaging analysis834

To set up an averaging calculation to obtain the approximate dynamics of the control835

variable, y = PaO2, we write the closed-loop model in the following form:836

dx

dt
= f(x, y) (25)

dy

dt
= g(x, y). (26)

where x = (V, h, n,α, volL, PAO2) play the role of the dependent variables. The control837

variable, y = PaO2, is held constant and the dependent variables are allowed to evolve838

freely. The dependent subsystem dx/dt = f(x, y) will evolve either to a fixed point or to a839

(beating or bursting) limit cycle. If the dependent subsystem has a fixed point, then840

dy

dt
= ḡ(y) = g(O∗(y), y) (27)
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is the reduced system for the evolution of the control variable, where O∗(y) is the (y-841

dependent) value of lung oxygen at the fixed point. If the dependent subsystem has a limit842

cycle γy(t) with period T (y), we obtain ḡ(u) by numerically integrating g(γu(t), u) over one843

period T (u)844

ḡ(u) =
1

T (u)

∫ T (u)

t=0

g(γu(t), u) dt, (28)

and the averaged equation for the dynamics of the control variable is845

dȳ

dt
≈ ḡ(ȳ). (29)

Floquet analysis846

The stability of periodic solutions can be determined using Floquet theory (Perko, 2001).847

Suppose we have a period T limit cycle solution x = γ(t) of a system ẋ = f(x), x ∈ Rn.848

The linearization of the dynamics around the limit cycle are A(t) = Dxf(γ(t)), giving the849

periodically forced linear system850

u̇ = A(t)u, (30)

with the fundamental matrix Φ(t) satisfying851

Φ̇ = A(t)Φ, Φ(0) = I. (31)

Floquet’s theorem says we can write Φ as852

Φ(t) = Q(t)eBt, (32)

where Q(t) is T -periodic and B is a constant matrix. The eigenvalues of eBt are the Floquet853

multipliers µ1, . . . , µn and they describe the cycle-to-cycle growth or decay of perturbations.854

One multiplier will be unity, corresponding to perturbations along γ(t). If any of the re-855

maining multipliers have |µ| > 1 then the periodic solution is unstable.856

In the closed-loop model, Dx is undefined at the transition from inspiration to expiration857

because the right hand side of (14) is nondifferentiable at that point. Thus, instead of solving858

the variational equation we compute Floquet multipliers through perturbation and direct859

simulation of the system equations alone. We start at a point x0 on the limit cycle, and solve860

the initial value problem from 0 to T with x0+ êkε for k = 1, . . . , 7. The êk are unit vectors,861

and ε must be small enough that we stay close to the limit cycle for one period, but large862

33



enough that we are not overwhelmed by roundoff error. For the limit cycle on the boundary863

between eupnea and tachypnea, the period T is 1818.5 ms, and we have found ε = 10−7
864

to work well. We also simulate the unperturbed system, which after one period returns to865

xT ≈ x0. Let xk be the solution starting from x0+ êkε. Then the seven vectors xk−xT form866

the columns of the (approximate) multiplier matrix, the eigenvalues of which are the Floquet867

multipliers. With x0 located at arrow (b) in Fig. 13A (v = −50.9617, n = 0.0041, h =868

0.5126,α = 0.0012, volL = 2.2660, PAO2 = 78.0837, PaO2 = 77.2000), the following Floquet869

multipliers µ1, . . . , µ7 were obtained: 1.37, 1.00, 0.49, −0.01+0.01i, −0.01−0.01i, 0.00, and870

0.00. Since µ1 > 1, we conclude that the limit cycle on the boundary between eupnea and871

tachypnea is unstable. Associated with each multiplier is an eigenvector ξi satisfying872

eBT ξi = µiξi. (33)

The components of ξ1 contain information about how influential each of the 7 closed-loop873

variables is in determining whether trajectories perturbed off of the boundary limit cycle874

will head towards eupnea or tachypnea. To ensure a fair comparison of the components,875

we rescaled the eigenvectors using scaling factors si defined as the magnitude of the change876

in each variable during one unperturbed period of the unstable limit cycle. The rescaled877

eigenvectors ζi are given by:878

ζi =
S−1ξi

||S−1ξi||
(34)

with scaling matrix S = diag(s1, . . . , s7). The components of ζ1 computed with x0 located879

at 4 different points along the boundary limit cycle (arrows b–e in Fig. 13A) are shown in880

Fig. 13B–E.881
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Figure 1. Schematic of closed-loop respiratory control model including neural, mechan-

ical, and chemosensory components. Bursting oscillations of the brainstem CPG membrane

potential (V ) activate motor neurons (α) to cause increases in lung volume (volL) and inspiration.

Inhaled air increases alveolar oxygen partial pressure (PAO2). Oxygen enters the bloodstream

through gas exchange. Arterial oxygen partial pressure (PaO2) is monitored by chemoreceptors

that regulate input drive current (Itonic) to the CPG by modulating excitatory synaptic conduc-

tances (gtonic). This respiratory control circuit can maintain PAO2 levels in the desired range

around 100 mmHg.

Figure 2. Closed-loop bursting persists in the absence of the isolated CPG bursting

mechanism. A: Black traces show bursts of action potentials (V , top panel) in the closed-loop

model with persistent sodium channel inactivation (h, middle panel) as a dynamic variable and a

dynamic gtonic (bottom panel) in response to changes in PaO2. B: Blue traces show bursting in the

open-loop model with h as a dynamic variable and gtonic set as a static parameter. C: Red traces

show bursting in a version of the closed-loop model where h is set as a static parameter. This

illustrates that the dynamical mechanism responsible for bursting in the open-loop model (slow h

dynamics) is not required for bursting in the closed-loop model.
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Figure 3. Closed-loop bursting exists in the quiescent regime of the isolated CPG

system. Blue contour and vertical hatching indicate the range of values the dynamic variable

h (abscissa) traverses as the static parameter gtonic (ordinate) is varied in the open-loop model.

For example, with gtonic fixed at 0.3 nS, the CPG is bursting and h oscillates between 0.57 and

0.61. The blue dashed vertical lines demarcate regions of quiescence (Q), bursting (Bu), and

beating (Be) in the open-loop model. The red contour and horizontal hatching indicate the range

of values the variable gtonic traverses as the parameter h is varied in the version of the closed-loop

model with dynamic gtonic and static h. For example, with h fixed at 0.6, the CPG is bursting

and gtonic oscillates between 0.21 and 0.32 nS. The red dashed horizontal lines demarcate regions

of quiescence, slow beating, bursting, and fast beating in this model. The black curve is the

bursting trajectory of the full closed-loop model (with dynamic gtonic and dynamic h) projected

onto the gtonic − h plane. Note that this limit cycle exists in the Q/Bu region indicating that the

gtonic values traversed during closed-loop bursting lie entirely within the range of gtonic values that

produce quiescence in the open-loop model. The black arrow indicates the direction of flow on

the closed-loop limit cycle. The cyan, green, and magenta dots (along with the cyan, green, and

magenta arrows labeled B, C, and D on the gtonic axis) denote three locations on the closed-loop

limit cycle that are further illustrated in Figs. 4B, C, and D (where the same color scheme is

used). The blue arrow labeled A corresponds to gtonic = 0.3 nS, which is the value used to further

illustrate the open-loop limit cycle in Fig. 4A.
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Figure 4. Closed-loop fast subsystem undergoes bifurcations differently than the open-

loop fast subsystem. A. Bifurcation diagram of open-loop fast subsystem (V̇ , ṅ) with bifurcation

parameter h, and gtonic = 0.3 nS. Black curve S shows stable (thick lines) and unstable (thin lines)

fixed points of the fast subsystem. Solid black dots indicate saddle-node (SN), Hopf (HB), and

homoclinic (HC) bifurcations of the fast subsystem. The blue trace is the bursting trajectory from

the open-loop system projected onto the h−V plane. Bottom panel is a zoomed-in view of the top

panel, also showing the h-nullcline (dashed gray line). Open gray dot is an unstable fixed point

of the full CPG subsystem (V̇ , ṅ, ḣ); the bursting trajectory circumnavigates this unstable fixed

point. Additional unstable fixed points located at (h = 0.20, V = −39) and (h = 0.02, V = −24)

are not shown. B–D. Bifurcation diagrams of closed-loop fast subsystem during silent phase (B),

at the onset of spiking (C), and at the termination of spiking (D). Black trace is the closed-loop

bursting trajectory, and gray curves show how S shifts as gtonic varies during closed-loop bursting

(the locations shown correspond to the points labeled B, C, and D in Fig. 3). B. Cyan dot shows

the location of the trajectory at the minimum gtonic value (0.12 nS) observed during closed-loop

bursting. Lower portion of S, and corresponding SN point, are shifted to the right relative to the

open-loop system and the CPG is not spiking. Cyan arrow indicates that S will move to the left as

the trajectory evolves and gtonic increases through the remainder of the silent phase of the burst.

C. Green dot shows the location of trajectory at the maximum gtonic value (0.22 nS) observed

during closed-loop bursting. Lower portion of S, and SN point, are shifted to the left relative

to panel (B) and the CPG is about to start spiking. Green arrow indicates that S will move to

the right as the trajectory evolves and gtonic decreases, during the spiking phase of the burst. D.

Magenta dot shows the location of the trajectory at gtonic = 0.22, which is near the HC bifurcation

that terminates spiking. Lower portion of S is shifted to the left relative to (B) and to the right

relative to (C). Magenta arrow indicates that S will continue to move to the right until reaching

the minimum gtonic configuration shown in (B). B–D bottom panels. Solid gray dots are stable

fixed points of the full CPG subsystem (V̇ , ṅ, ḣ). The trajectory does not circumnavigate these

fixed points, but exhibits bursting due to the movement of S, the fast subsystem’s steady-state

curve.
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Figure 5. Chemosensory feedback (not the isolated CPG bursting mechanism) governs

burst timing in the closed-loop system. A–C: Effect of persistent sodium channel inactivation

time constant (τ̄h) and timescale of chemosensory feedback (τPaO2) on burst properties. Blue lines

(open-loop) and black lines (closed-loop): τ̄h is increased from 8 to 45 s, where γ = 1 corresponds

to the default BRS model setting of τ̄h = 10, 000 ms. Green line: τPaO2 is modulated by forcing the

BRS model with compressed (γ < 1) and elongated (γ > 1) versions of the gtonic waveform observed

during closed-loop bursting (γ = 1). A: Interburst interval (IBI) increases linearly in the open-loop

system as τ̄h is increased (blue) and in the forced system as τPaO2 is increased (green). IBI is much

less sensitive to τ̄h in the closed-loop system (black). B–C: Burst duration (B) and the number of

spikes per burst (C) are more sensitive to increases in τ̄h in the open-loop system (blue) than in

the closed-loop system (black). In the forced system, burst duration and the number of spikes per

burst increase sharply, then level off, and eventually decrease slightly as τPaO2 is increased (green).

Figure 6. Coexistence of two stable periodic orbits (bistability) in the closed-loop

respiratory control model. (A) and (B) show simulations with identical parameter values

but different initial conditions. Top panel is CPG voltage (mV), second panel is lung volume

(liters), third panel is arterial oxygen (mmHg), bottom panel is chemosensory-dependent input

to CPG (nS), and horizontal axis is time (seconds). A: “Eupneic” bursting. The central BRS

circuit responds to time varying chemosensory input by producing a regular breathing rhythm at

approximately 10 breaths per minute. Lung volume varies between 2-3 liters. Blood oxygen (PaO2)

varies between 90 and 110 mmHg. B: Different initial conditions lead to pathological “tachypneic”

spiking. The CPG receives elevated tonic input causing sustained spiking at several Hz, leading

to ineffective motor output. Lung volume fluctuates by less than 0.1 liters and blood oxygen is

approximately constant at a pathologically reduced level (25 mmHg).
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Figure 7. Reduced slow subsystem predicts that eupnea is lost at high metabolic de-

mand through saddle-node bifurcation. A: Phase line of averaged slow subsystem (23) show-

ing the approximate rate of change of PaO2 (ḡ) as a function of PaO2. The curves show when PaO2

will increase (ḡ > 0) and decrease (ḡ < 0) for three different values of the metabolic demand M .

Colored dots are fixed points of the averaged slow subsystem (ḡ = 0). Zero crossings with positive

and negative slopes are unstable and stable fixed points, respectively. When M = 0.4× 10−5 ms−1

(green curve), the system has a stable fixed point corresponding to eupneic bursting (PaO2 = 89

mmHg), a stable fixed point corresponding to tachypneic spiking (PaO2 = 41 mmHg), and an

unstable fixed point (PaO2 = 74 mmHg). When M = 0.8 × 10−5 ms−1 (cyan curve), the system

still has two stable fixed points, but the stable eupneic fixed point (PaO2 = 87 mmHg) and the

unstable fixed point (PaO2 = 80 mmHg) have moved closer together. When M = 1.6× 10−5 ms−1

(magenta curve), the system has only one fixed point, which corresponds to stable tachypneic spik-

ing (PaO2 = 17 mmHg). B: Location of fixed points in averaged slow subsystem. The curve shows

the PaO2 value of fixed points (ḡ = 0) as a function of metabolic demand M . For intermediate

M values, the system has three branches of fixed points. The upper branch is stable and corre-

sponds to eupnea, the middle branch is unstable, and the lower branch is stable and corresponds

to tachypnea. At M = 0.25 × 10−5 ms−1 , the lower stable branch and unstable middle branch

collide and these fixed points are destroyed in a saddle-node bifurcation (SN1) leaving only the

stable upper branch (eupnea) for M < SN1. Similarly, at M = 0.88× 10−5 ms−1, the upper stable

branch and unstable middle branch collide in another saddle-node bifurcation (SN2) leaving only

the stable lower branch (tachypnea) for M > SN2.

Figure 8. Sensory feedback increases the robustness of eupnea with respect to metabolic

demand. Mean PaO2 levels in systems with (closed-loop, black curve) and without (open-loop,

blue curve) chemosensory feedback as a function of M . Green band indicates a nominal range of

normoxia from 80-110 mmHg. The enhanced robustness of the closed-loop system is evident in the

shallower slope of the black curve relative to the blue curve at the operating point of PaO2 = 100

mmHg, and in the wider range of M values for which the black curve stays within the normoxic

limits.
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Figure 9. Transient response of CPG in closed-loop system can lead to “autoresuscita-

tion” after hypoxic perturbations. The open-loop system was simulated with gtonic = 0.3800

nS (red curve) and gtonic = 0.3791 nS (blue curve) until it reached steady state. At t = 0, we

“closed the loop” and allowed gtonic to vary as a function of PaO2 throughout the remainder of

the simulation. From these initial conditions, the blue trajectory approaches eupnea, whereas the

red trajectory approaches tachypnea. The dashed line indicates that initial conditions determined

from steady states of open-loop simulations with gtonic values corresponding to PaO2 levels above

(below) this line will approach eupnea (tachypnea). At t = 180 s, PaO2 was set to 40 mmHg

momentarily and then immediately went back to being determined by the system dynamics. This

hypoxic perturbation takes the trajectory to PaO2 levels below the steady-state dividing line, but

the transient response allows the system to recover to eupnea. At t = 360 s, PaO2 was set to 30

mmHg momentarily, and then immediately went back to being determined by the system dynamics.

The transient response again leads to an abrupt initial increase in PaO2 following the perturba-

tion, but it is not enough to get over the dividing line and the trajectory ultimately approaches

tachypnea.
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Figure 10. Hypoxia-induced barrage of spiking leads to an autoresuscitative lung ex-

pansion and is explained by the effect of hypoxia on the location of the homoclinic

bifurcation that terminates spiking. A: Traces from the closed-loop model during eupneic

bursting (t < 180 s) and after a hypoxic perturbation (t > 180 s). At t = 180 s, PaO2 (top) was

set to 40 mmHg, which causes a large and immediate increase in gtonic (second from top). The

increase in gtonic elicits a barrage of spiking (V , second from bottom) that drives a much bigger

increase in lung volume (volL, bottom) than occurs during a typical breath. This large breath

causes a substantial increase in PaO2, which reduces gtonic sufficiently for the system to recover

from the perturbation and return to eupneic bursting. The green and magenta dots indicate the

values of system variables at, respectively, initiation and termination of spiking during the last

burst before the perturbation and the first burst after the perturbation. The cyan dot indicates

the minimum gtonic point during eupneic closed-loop bursting. B: Expanded view of voltage trace

from (A) during the last burst before the hypoxic perturbation (top) and during the barrage of

spiking induced by the perturbation (bottom). The burst induced by the perturbation is longer

and consists of higher frequency spiking than the burst before the perturbation. C: Bifurcation

diagram of BRS model fast subsystem during the last burst before the hypoxic perturbation (top)

and during the barrage of spiking induced by the perturbation (bottom). Top: Black trace is the

trajectory during closed-loop bursting, projected onto the V − h plane. The green, magenta, and

cyan curves show the location of the fast subsystem steady states in its leftmost position which

occurs at the initiation of spiking (green, gtonic = 0.22 nS), at the homoclinic bifurcation that

terminates spiking (magenta, gtonic = 0.18 nS), and at its rightmost position which occurs at the

gtonic minimum point (cyan, gtonic = 0.12 nS). Note that these three curves are the same as those

shown in Fig. 4B, C, and D. Bottom: Black trace is the trajectory during the barrage of spiking

induced by the perturbation, projected onto the V − h plane. The green and magenta curves

show the location of the fast subsystem steady states in its leftmost position which occurs at the

initiation of spiking (green, gtonic = 0.57 nS), and at the homoclinic bifurcation that terminates

spiking (magenta, gtonic = 0.35 nS). The cyan curve is the same as in the top panel. The drastic

reduction in PaO2 due to the hypoxic perturbation has shifted the green curve much further to the

left (cf. top and bottom panels), enabling the CPG to fire more spikes (and at a higher frequency)

before reaching the homoclinic bifurcation.
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Figure 11. Hypoxia induces a barrage of spiking in vitro. A: Application of 300 µM

sodium cyanide (NaCN), a pharmacological analog of hypoxia, led to increased spiking in an

individual pBC inspiratory cell recorded in current-clamp (top) and increased network activity

measured as hypoglossal nerve (XII) rootlet discharge (bottom) in a brainstem slice preparation.

At the peak of the stimulation, phasic, coordinated drive is abolished. Insets show the firing

pattern of pBC cell before (left) and after (right) the NaCN challenge. The depolarization and

increased spiking that occurs in response to the hypoxic perturbation in vitro is qualitatively similar

to the responses observed in our closed-loop model. B: Summary data from nine experiments

showing burst duration and frequency changes for baseline, NaCN treatment, hypoxia treatment,

and recovery (N = 9, p < 0.05 ANOVA, Tukey’s LSD as post-hoc test, baseline vs. hypoxia or

NaCN, error bars are SEM). NaCN and hypoxia challenges do not result in statistically significantly

different responses and produce an equivalent perturbation of the breathing rhythm in our in vitro

slice preparations.
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Figure 12. Recovery to eupnea versus tachypneic failure following transient interruption

of chemosensory feedback. A: Time course of PaO2 before (black), during (blue), and after

(green) interruption of chemosensory feedback. Black: Eupneic breathing in closed-loop model.

Blue: Chemosensory feedback is interrupted by holding gtonic fixed at 0.1 nS for 49.2466 s. Green:

Chemosensory feedback is reestablished by again making gtonic a function of PaO2. System recovers

to eupnea. B: Same as (A), except the gtonic = 0.1 nS clamp (blue) is held for 0.1 ms longer.

After reestablishing chemosensory feedback the system ultimately descends into tachypnea (red)

rather than recovering to eupnea. C. Eupneic recovery from (A) projected onto (h, volL, PaO2)

coordinates. During the gtonic clamp (blue curve), the CPG is quiescent and PaO2 decreases to

42 mmHg. Following release of the clamp (green curve), gtonic increases rapidly, causing a barrage

of spiking and a large expansion of lung volume that rapidly increases PaO2 to 82 mmHg. From

t = 120 to 180 seconds the system exhibits bursts of spiking with shorter interburst intervals and

shorter burst durations than eupneic breathing. This leads to intermediate PaO2 values (76 to 80

mmHg) as the interburst intervals and burst durations gradually lengthen and the system returns

to eupneic breathing. D: Tachypneic failure from (B) projected onto (h, volL, PaO2) coordinates.

Same as (C), except that during the intermediate PaO2 oscillations from t = 120 to 180 seconds the

interburst intervals and burst durations gradually shorten and the system descends into tachypnea

(red curve).

Figure 13. Floquet eigenvectors at the eupnea-tachypnea boundary limit cycle. A: Tra-

jectories from the closed-loop model that either recover to eupnea (green) or descend to tachypnea

(red) following chemosensory interruption, projected onto (h, volL, PaO2) coordinates. These are

the same trajectories as shown in Fig. 12C and D, replotted here for the time window between

t = 130 and 155 seconds, when they are near an unstable limit cycle on the boundary between

eupnea and tachypnea. The black arrows illustrate the eigenvectors associated with the unstable

Floquet multiplier at four locations along the boundary limit cycle. To aid the clarity of the illus-

tration, the eigenvectors were multiplied by -1 so that the arrows point towards tachypnea rather

than eupnea. B–E: Eigenvector components at the locations labeled (b)–(e) in panel (A). The

signs of the components were chosen such that positive values are consistently “pro-eupneic” and

negative values are consistently “pro-tachypneic” (see text for details).
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Figure 14. Autoresuscitation occurs for both high and low default gtonic levels. Pseu-

docolors indicate PaO2 levels in the restored closed-loop system after transient interruption of

chemosensory feedback for a range of durations (horizontal axis, seconds) and severities (vertical

axis, nS). The severity of the failure corresponds to the value at which gtonic was held constant

during the chemosensory interruption. The PaO2 levels shown were measured 3 minutes after

chemosensory feedback was reestablished and were calculated as the mid-range of PaO2 over a 10

second window. The capability of the system to autoresuscitate is observed whether the CPG

is quiescent due to low input drive (low gtonic values) or hyperexcited due to high input drive

(high gtonic values) during the absence of chemosensory feedback. For default gtonic values in an

intermediate range, the system recovers to eupnea despite arbitrarily long interruptions of feedback.
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Figure 15. Recovery to eupnea versus tachypneic failure following transient interrup-

tions of chemosensory feedback assuming high input drive to the CPG during the

interruptions. These simulations are analogous to those shown in Fig. 12, except here gtonic is

set to 0.5 nS (high drive to CPG) rather than 0.1 nS (low drive to CPG) in the absence of chemosen-

sory feedback. A: Time course of PaO2 before (black), during (blue), and after (green) interruption

of chemosensory feedback. Black: Eupneic breathing in closed-loop model. Blue: Chemosensory

feedback is interrupted by holding gtonic fixed at 0.5 nS for 24.5 s. Green: Chemosensory feedback

is reestablished by again making gtonic a function of PaO2. System recovers to eupnea. B: Same

as in (A), except the gtonic = 0.5 nS clamp (blue) is held for 0.1 s longer. After reestablishing

chemosensory feedback the system ultimately descends into tachypnea (red) rather than recov-

ering to eupnea. C. Eupneic recovery from (A) projected onto (h, volL, PaO2) coordinates. The

interruption of chemosensory feedback causes a sudden increase in gtonic, since the constant value it

is set to during the interruption (0.5 nS) is higher than the values traversed by gtonic during eupneic

bursting (0.12-0.22 nS). This change triggers a barrage of spiking and a large expansion of lung

volume that rapidly increases PaO2 to 124 mmHg. During the remainder of the gtonic clamp, the

CPG exhibits tonic spiking that does not drive effective lung expansions and PaO2 decreases to 83

mmHg. Following release of the clamp, the system exhibits bursts of spiking with shorter interburst

intervals and shorter burst durations than eupneic breathing. This leads to intermediate PaO2 val-

ues (76 to 80 mmHg) as the interburst intervals and burst durations gradually lengthen and the

system returns to eupneic breathing (green trace). D: Tachypneic failure from (B) projected onto

(h, volL, PaO2) coordinates. Same as in (C), except that during the intermediate PaO2 oscillations

from t = 90 to 120 seconds the interburst intervals and burst durations gradually shorten and the

system descends into tachypnea (red trace).

Figure 16. (Appendix Figure 1) Phase plots showing the relative speed of each vari-

able during closed-loop bursting identify PaO2 as a slow variable. Horizontal axis

is x and vertical axis is the rate of change x′(t) normalized by the range of x, where x =

n, V,α, h, volL, PAO2, PaO2. Green dots indicate the maximal speed νx of each variable (−νx is

shown for x = h). Note the significantly different time scales involved: PaO2, PAO2, and volL are

slower than h and α, which themselves are slower than V and n.
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