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Abstract—The cells in the human body use intercellular signal
transduction to organize themselves and regulate their work;
multicellular life could not exist without it. In this paper, we
discuss why information theory provides a useful toolbox to
approach this problem. We also discuss how to calculate the
capacity of intercellular signal transduction in some specific
examples. Finally, we describe the challenges and future prospects
of this avenue of research.

I. INTRODUCTION

Molecular communications, a rapidly growing subfield
of information theory, addresses the fundamental limits of
communication at micron and submicron length scales, and
strategies for achieving those limits [1]. Driven in part by
the anticipated need for nanoscale agents to communicate
and coordinate their actions, for instance for nanomedicine
applications [2], communications engineering can find inspi-
ration in naturally evolved approaches for signaling systems in
environments hostile to traditional wired and wireless solutions
– such as the interior of the human body.

Living cells monitor their environments and signal to one
another using chemical signals communicated via diffusion,
and transduced by receptor proteins [3], [4]. Early infor-
mation theoretic analyses of biochemical signaling focused
on chemotaxis, the directed movement of migrating cells in
response to chemical cues, in part because the input/output
signal ensembles could be clearly defined [5]–[10]. Advances
in high-throughput experimental techniques have facilitated
gathering enough data to quantitatively measure the capacity
of specific signaling pathways [11]–[13]. At the same time,
interest has grown among information theorists in a constel-
lation of microbiological signaling problems, for instance the
problem of a population of agents collectively estimating local
concentration of chemical species (the consensus problem
[14], [15]), the problem of memory effects in diffusion-
mediated communication [16], [17], bacterial quorum sensing
[18], [19], and communication via bacterial cables [20]. In
this paper we discuss recent work on the capacity of a simple
intercellular signal transduction system based on the cAMP
receptor of the social amoeba Dictyostelium discoideum [21].
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II. MARKOV MODELS OF SIGNAL TRANSDUCTION

As we show in this section, signal transduction can be
modelled as a finite state Markov chain. Thus, we can take
advantage of the rich toolbox of Markov chains [22] to analyze
signal transduction.

A. Biological model
Throughout this paper, we use cyclic adenosine monophos-

phate (cAMP) as a motivating example to discuss signal
transduction. This molecule is used in many biological pro-
cesses, for example by the amoeba Dictyostelium discoideum
in determining its social behaviour. Under normal circum-
stances, Dictyostelium act as unicellular individuals, but under
stress, numerous individuals gather together (in response to
cAMP) and form a multicellular “slug” in which the formerly
independent cells take on specialized roles. Dictyostelium is
well studied as a model organism for signal transduction.

cAMP has a simple (yet illustrative) model. The receptor
can be in one of two states: unbound (U) or bound (B). In state
U, the receptor awaits the arrival of a cAMP molecule; once
one arrives, the receptor enters state B. In state B, the receptor
cannot bind to other cAMP molecules (rendering it insensitive
to the signal), while some processing time is required before
returning to state U. We describe continuous-time and discrete-
time mathematical models for this process below.

B. Signal transduction as a Poisson process
In continuous time, the binding process is represented as

a Poisson process, transitioning between states U and B. The
transition rate from U to B is rUBc(t), proportional to ligand
concentration c(t); the transition rate from B to U is rBU,
independent of ligand concentration.

The transition rates are given as a time-varying matrix R(t),
as follows:

R(t) =

[
−rUBc(t) rUBc(t)

rBU −rBU

]
. (1)

(Note that the rows of R must sum to zero.) Let p(t) =
[pU(t), pB(t)] represent the time-varying row vector of state
occupancy probabilities; these probabilities are related to the
Poisson rates via the differential equation

d

dt
p(t) = p(t)R(t). (2)

Equation (2) forms the master equation of the system.
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Fig. 1. State transition diagram for cAMP. Each transition is labelled with
the transition probability. The U → B transition, depicted with a bold arrow,
is sensitive to the input ligand concentration ci; the B → U transition is
insensitive.

C. Signal transduction as a Markov process

We are interested in representing the binding process as
a discrete-time Markov chain. We can discretize time into
steps of length ∆t. Now, if I is the 2 × 2 identity matrix,
the Poisson process becomes a discrete-time Markov chain
with state transition probability matrix (at the ith step)

Pi = I −∆tR(i∆t) (3)

=

[
1−∆t rUBc(i∆t) ∆t rUBc(i∆t)

∆t rBU 1−∆t rBU

]
. (4)

For consistency with notation in [23], we let

ci = c(i∆t) (5)
αci = ∆t rUBc(i∆t) (6)
β = ∆t rBU, (7)

and (4) becomes

Pi =

[
1− αci αci

β 1− β

]
. (8)

The state transition diagram is given in Figure 1.
The ligand concentration ci exists in a range, from the

minimum allowed concentration ci = L to the maximum
ci = H. (Physically, there must exist a finite maximum
concentration. The minimum may be zero.) For simplicity, we
will use only the extreme concentrations ci = L and ci = H;
however, this restriction does not limit our analysis in the next
section.

Thus, given the concentration, the signal transduction pro-
cess is a time-inhomogeneous Markov chain with either

PH =

[
1− αH αH

β 1− β

]
(9)

or

PL =

[
1− αL αL

β 1− β

]
, (10)

selected by the ligand concentration.

III. CAPACITY OF SIGNAL TRANSDUCTION

Here we review some of our main results on the capacity of
signal transduction; more details can be found in [23], [24].

A. Signal transduction as a communication channel
To define a communication channel, we must define inputs,

outputs, and channel input-output relationship:
• Input. The input X is the concentration of ligands in

the environment. We have a binary channel input: X ∈
{L,H}.

• Output. The output Y is the state of the receptor. We have
a binary channel output: Y ∈ {U,B}.

• Input-output relationship. As a Markov channel, the state
of the output at time i, Yi, depends on the current input
Xi and the previous channel output Yi−1. We can write
pYi|Xi,Yi−1

(yi |xi, yi−1), where the correct probability is
given by an entry in either (9) or (10). For example,

pYi|Xi,Yi−1
(B | H,U) = αH, (11)

selected from (9) since Xi = H.
From now on, we will omit the subscripts for probability mass
functions where unambiguous, e.g. pY (y) becomes p(y).

The conditional probability of a vector of outputs Y n
1 given

a vector of inputs Xn
1 is written

p(yn1 | xn
1 ) =

n∏

i=1

p(yi | xi, yi−1), (12)

where y0 is null, and where each p(yi | xi, yi−1) is selected
from (9) or (10), as above.

B. Capacity and IID capacity
Logarithms are base 2 throughout. We will use the following

special functions: let

φ(p) =

{
0, p = 0

−p log p, p ̸= 0
(13)

represent the partial entropy function, and let

H (p) = φ(p) + φ(1− p) (14)

represent the binary entropy function.
For any communication system with inputs Xi and outputs

Yi, the mutual information rate is given by

I(X;Y ) =
1

n
lim
n→∞

I(Xn
1 ;Y

n
1 ), (15)

where I(Xn
1 ;Y

n
1 ) is the mutual information between vectors

Xn
1 and Y n

1 . In our specific case, it can be shown that

I(X;Y ) = lim
n→∞

H(Yn | Y n−1
1 )−H(Yn |Xn, Yn−1). (16)

The capacity of the system is given by

C = max
p(xn

1 )
I(X;Y ), (17)

where the maximum is taken over all possible input distribu-
tions p(xn

1 ).
If we restrict the input distributions in (17) to be inde-

pendent and identically distributed (IID), then we have the
IID capacity, CIID. Since the maximizing distribution in (17)
is possibly (but not necessarily) IID, it should be clear that
CIID ≤ C.
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To calculate CIID, first note that the process Y n
1 is a time-

homogeneous Markov chain if Xn
1 is unknown but IID: (12)

becomes

p(yn1 ) =
∑

x1

· · ·
∑

xn

n∏

i=1

p(yi | xi)p(xi) (18)

=
n∏

i=1

∑

xi

p(yi | xi)p(xi). (19)

Letting

p(yi | yi−1) =
n∏

i=1

∑

xi

p(yi | xi)p(xi), (20)

and letting
ᾱ = pX(L)αL + pX(H)αH, (21)

we have that Y n
1 is a Markov chain with transition probability

matrix

P = pX(L)PL + pX(H)PH (22)

=

[
1− ᾱ ᾱ
β 1− β

]
(23)

Moreover, as a two-state Markov chain, the steady-state dis-
tribution of the process Y is given by

pY (y) =

⎧
⎨

⎩

β
ᾱ+β , y = U

ᾱ
ᾱ+β , y = B

(24)

In (16), H(Yn | Y n−1
1 ) becomes H(Yn | Yn−1), since the

process Y is a Markov chain. This quantity is given by

H(Yn | Yn−1)

= −E[log p(yn | yn−1)] (25)

= −
∑

yn−1

p(yn−1)
∑

yn

p(yn | yn−1) log p(yn | yn−1) (26)

=
β

ᾱ+ β
H (ᾱ) +

ᾱ

ᾱ+ β
H (β). (27)

Similarly,

H(Yn |Xn, Yn−1)

= −E[log p(yn | xn, yn−1)] (28)

=
β

ᾱ+ β

(
pX(L)H (αL) + pX(H)H (αH)

)
+

ᾱ

ᾱ+ β
H (β).

(29)

Substituting back into (16),

I(X;Y )

=
β

ᾱ+ β

(
H (ᾱ)− pX(L)H (αL)− pX(H)H (αH)

)
. (30)

Finally, CIID is found by maximizing (30) with respect to
pX(L), recalling that pX(H) = 1 − pX(L). Since CIID ≤ C,
this provides us with a lower bound on capacity.

In [23], it is shown that even if inputs at intermediate
concentrations other than L and H are allowed, the input
distribution that maximizes CIID has all probability mass on
L and H, and none on any intermediate concentration.

C. Feedback capacity

Suppose the transmitter has causal feedback of all past
outputs Y i−1

1 , and uses these outputs to determine its strategy
in setting Xi; the best such strategy gives the feedback
capacity CFB.

In our model of the signal transduction channel, the output is
the same as the Markov state of the channel. Such channels are
sometimes called Previous Output is the STate (POST) chan-
nels [25], or unit output memory (UOM) channels [26]. For
our specific case, CFB is given by the maximum of the directed
information [27] over all causal-conditional input distributions
of the form

∏n
i=1 p(xi |yn−1

1 , xn−1
1 ). Since the transmitter has

the option of disregarding the feedback (resulting in the regular
capacity C), we now have the sequence of bounds

CIID ≤ C ≤ CFB. (31)

To obtain CFB, it seems a daunting task to specify the
correct input distribution for all settings of yn−1

1 and xn
1 . How-

ever, from [26], we have a key simplification: in most UOM
channels (including ours), the feedback-capacity-achieving in-
put distribution is stationary, with the form

p(xn
1 | yn1 ) =

n∏

i=1

p(xi | yi−1). (32)

That is, xi is selected by considering only the two possibilities
of yi−1 ∈ {U,B}. Moreover, in our specific case, it can be
shown that the directed information rate has the same form
as I(X;Y ) in (16); we need only to maximize over the input
distributions in (32) to obtain CFB.

Consider H(Yi | Y i−1
1 ) from (16). From the above dis-

cussion, we need to specify only pXi|Yi−1
(L | U) and

pXi|Yi−1
(L | B). Since the input xi depends only on yi−1, the

process Y with feedback is still a time-homogeneous Markov
chain: we can substitute

ᾱ = pXi|Yi−1
(L | U)αL + (1− pXi|Yi−1

(L | U))αH (33)

into P from (23). Note that β (the transition rate in state B) is
independent of the input xi. Thus, the transition probability
matrix P is independent of pXi|Yi−1

(L|B), as is H(Yi |Yi−1).
By a similar argument, H(Yi | Xi, Yi−1) is also independent
of pXi|Yi−1

(L | B).
Since the directed information rate is constant with respect

to pXi|Yi−1
(L | B), it makes no difference to CFB if we set

pXi|Yi−1
(L | B) = pXi|Yi−1

(L | U) = pX(L), (34)

which is an IID input distribution.
Since CFB is satisfied with an IID input distribution, we

have CIID = CFB; thus, from (31),

CIID = C = CFB, (35)

and the (non-feedback) capacity-achieving input distribution
is IID.

Please see [23] for a more formal and complete description
of this argument.
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Fig. 2. Illustration of the information rate per time step ∆t as a function of
pX(L). In this figure, αL = 0.01, β = 0.1, and αH varies from 0.1 (bottom
curve) to 0.9 (top curve) in increments of 0.1.

IV. DISCUSSION

In Figure 2, we illustrate the information rates of our system
for some sample parameter values. The capacity C may be
determined by taking the maximum of each curve.

The techniques employed in this paper may be general-
ized to receptors with larger state spaces. In forthcoming
work [28], we perform similar capacity calculations on the
channelrhodopsin-2 (ChR2) receptor, with three states; and
the acetylcholine (ACh) receptor, with five states. If there is
exactly one state transition that is sensitive to the input signal,
then the capacity-achieving input distribution is IID. This is
the case for ChR2, but not for ACh. In the latter case, the IID
capacity CIID remains a lower bound on the true capacity C.
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