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Sarı, Prof. Caner Kazanci, Prof. Beatrice Rivière, Prof. Richard Tapia, and Prof. Janet

Best. They were very generous with their time and advice, and have shaped my academic

growth in many impactful ways.

My family and friends thought I was crazy for turning down good PhD offers to be in

two master programs before doing a PhD, but I have learned so much from being at

different institutions. At Rice, I learned people skills and scientific communication from

Arturo, Emily, and Prof. Paul Hand, in addition to industry collaboration skills from the

department. Coming from the small department at Rice, I truly enjoyed having many

graduate friends at OSU and being in a large TA office, discussing and doing math until late

night. I gave credit to Roman Nitze for my decision to join OSU, as he gave an impression

of a nurturing department during recruitment. I thank Dan Boros, Deborah Stout, John

Lewis, Daniel Glasscock, and Amit Vutha for organizing probably the most remarkable

teaching training program in the country, which really shaped my teaching philosophy and

style. I think Matt Thompson at the MBI did the best organizational work among all the

workshops and conferences I have been to. While at Rice, I gained phenomenal scientific

computing knowledge; at OSU, I gained knowledge in dynamical systems; at CWRU, I

gained knowledge in stochastic processes. Finally, my life in Ohio couldn’t be more fun.

Both Columbus and Cleveland (and places in between) are so culturally rich with arts,

music, theater, trails, lakes, flowers, cuisines, festivals, movies (locations for Shawshank

ix



Redemption and Christmas Story), etc. I treasure my time at Steiner House, where I learned

democratic group decision making, and enjoyed daily authentic international foods and

conversations with friends from various departments such as law, social work, accounting.

Throughout my journey, I was so lucky to be surrounded by great friends, and I am ex-

tremely grateful for their support. Lan Thanh, chi Giao, anh Dat, anh Tri, co Huyen,

Likeleli, Abdul, Sebastian, Richard, Jizhou, Martha, chi Thu, Evelyn, I have missed seeing

you around! I also thank Duc Huy, Hoang Duy, Viet Duc for offering a helping hand at

some critical moments. I thank my high school math teacher, thay Cuong, for being very

strict on when to write ⇒ vs. ⇔, and the like, which really helped foster my mathematical

thinking.

Last but not least, I dedicate this thesis to my family. Words cannot describe how thankful

I am to have them in my life. Not only have my parents and my brother taught me

scientific reasoning and creativity in daily life activities, but they have also set a model

of kindness, thoughtfulness, sincerity, and generosity. They have instilled in me a love

for learning without putting any pressure. Most importantly, I thank my parents, brother,

grandmothers, and aunts for their unwavering support. I thank my baby niece and nephew

for their cute imagination and creativity, which really helped me get through some dark

moments of graduate school. Finally, a very special thank to my husband for taking care of

me, especially when I had some health issues, and for having been deterministic to all of

my stochastic fluctuations!

x



Inference and Analysis for Stochastic Density-Dependent Population

Dynamics, with Application to Drug Resistance

Abstract

by

LINH HUYNH

This thesis addresses two aspects of the stochastic dynamics of pathogenic populations:

time scale and density dependence. Ecological and evolutionary processes are fundamen-

tally distinguished by their time scales. One of the mathematical tools to quantify time

scales of stochastic processes is first-passage time analysis. However, we show that cell

populations with the same net growth rates, but different birth and death rates, exhibit

different mean extinction times. This finding calls for the need to parse out birth and

death rates from net growth rates, which is also important in the second aspect: density-

dependent dynamics. Observations of only the net growth rates cannot inform whether

density dependence manifest in the birth process, death process, or both. Therefore, this

thesis aims to separately infer birth and death rates from cell number time series that follow

logistic birth-death processes. We develop two methods, both of which harness stochastic-

ity in cell population dynamics to make inferences. The first method utilizes the mean

and variance of stochastic fluctuations in cell number increments, which provides a novel

perspective on the problem of stochastic parameter estimation. We validate this method

by deriving analytical expressions for the theoretical means and variances of estimation

x



errors as functions of the discretization bin size, and discover that intermediate bin sizes are

optimal and that the estimation is less effective for fast-producing cell types. This approach

requires sufficiently large sample sizes. To overcome this requirement, we consider the

maximum likelihood approach, in which we solve a one-dimensional constrained nonlinear

optimization problem to identify the most likely density dependence parameter, assuming

the other parameters are known. The computational complexity of adding more unknown

parameters leads us to answer the question of “more likely” instead. Towards this goal,

we derive the theoretical time-dependent mean and variance of the state in our birth-death

process, and the theoretical mean of the log-likelihoood. Together, all the results in this

thesis contribute to disambiguating mechanisms (especially drug resistance) underlying

the same net growth rate for biological systems at different scales.
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Chapter 1

Introduction

1.1 Background

Drug resistance is a concerning global crisis that hinders the efficacy of treatments of

pathogens [86, 95]. In this thesis, we mathematically study drug resistance from the

population-level dynamics perspective (as opposed to other scales such as the cellular

level). In doing so, we need to determine the growth law of a target population, for

instance exponential, logistic, or other. However, the choice of growth law is not too

straightforward, and may depend on the problems we want to analyze [51]. This thesis

focuses on logistic growth, one of the simplest (but still realistic [33]) models for density

dependence. Density dependence has been shown to have effects on the ecology and

evolution of microbial and cancer cells [20, 46, 64, 24, 27]. We analyze the ecological and

evolutionary density-dependent dynamics of pathogenic populations (e.g. harmful bacteria

or cancer cells), especially under drug treatments, and infer mechanisms underlying the

dynamics. This biological application motivates analysis and development of inference
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methods for stochastic processes. Two important components of this thesis are (1) mathe-

matical models and analysis, and (2) inference methods.

Mathematical models and analysis. As surveyed in the book by Bacaer [3], mathe-

matical models of population dynamics were developed at least as early as 1202 with the

Fibonacci sequence. In 1838, Verhulst published a logistic differential equation model

for single-species/homogeneous populations [92], which has been one of the classical

mathematical models for density-dependent population dynamics. Between 1920-1926,

Lotka and Volterra developed a two-species/heterogeneous logistic competitive model [60,

93]. In these models, density dependence is assumed to have a negative effect on the

population–in particular, reducing its net growth rate and subsequently population size.

Density dependence, however, can also have a positive effect on population growth. The

positive density dependence, commonly referred to as the Allee effect [1] and typically

modeled with cubic growth [44], can affect population evolution [75].

Despite the tractability of deterministic models, ecological and evolutionary dynamics are

fundamentally stochastic as discussed in [50, 13, 69, 56, 91]. Steinar Engen and Bernt-Erik

Sæther (1998) [26] discusses stochastic population dynamics models in terms of demo-

graphic and environmental stochasticity, diffusion approximation, density dependence, and

age-structured models with no density dependence, which are some factors one may take

into consideration when modeling stochastic population dynamics [10]. When building

stochastic models for population dynamics, one must pay attention to the types of noise in-

corporated into the system, because different noise classes can result in different dynamics–

for example, in extinction [83] or invasion probabilities [11]. Figure 1.1 illustrates that there

are three main kinds of noise: demographic, environmental, and measurement in ecological
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models [79]. Roughly speaking, demographic stochasticity is noise from demographic

processes intrinsic to the cell populations such as birth and death, while environmental

stochasticity is noise from the environment [79]. For example, in the context of the problem

we are interested in, drug resistance, environmental noise can be the stochasticity in drug

absorption. Engen et al. (1998) [25] provides mathematical definitions of demographic

and environmental stochasticity in terms of the variance of a general stochastic analog of

a family of density-dependent deterministic models. In this thesis, we utilize binomially

distributed demographic noise (i.e. from the birth and death events of individuals) to derive

the parameter identification method in Section 3.3.3, and Gaussian noise for the simulation

in Section 3.3.2, the statistical inference in Section 4.2, and the derivation of theoretical

mean and variance of the state X(t) in our one-species logistic birth-death model in Section

4.3.

Figure 1.1: There are three main kinds of noise in ecological models: demographic,
environmental, and measurement. This figure is taken from [79] as an illustration.
The corresponding author, Prof. Lauren Sullivan (sullivanll@missouri.edu), has granted
permission to include this figure in this thesis.
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Inference methods. Stochasticity allows us to make inference of the population dynamics.

Existing statistical inference methods [90] are mainly classified into Bayesian inference and

maximum likelihood. Parameter estimation under these two approaches commonly require

a numerical solution to a high-dimensional optimization problem [14]. While there have

been many advances in developing efficient optimization algorithms [72], in this thesis, we

want to focuses on fundamental principles of probability theory and stochastic processes.

Broad research questions. We are broadly interested in the role of stochastic fluctuations

in the answers to the following biological/medical questions:

Q1. What are the mechanisms of drug resistance?

Q2. How do ecological and evolutionary processes in population dynamics play a role in

development of drug resistance?

Q3. Can we develop optimal treatments to overcome drug resistance?

Baguley et al. (2010) [4] gives a good review of different drug resistance mechanisms for

cancer. To uncover drug resistance mechanisms from data, this thesis takes the first step of

disambiguating whether drug resistance happens through the birth process, death process,

or some combination of both, which motivates the work of Chapter 3 and Chapter 4. In

these chapters, we also answer the ecological part of Question Q2. We would like to use the

tools built from these chapters to answer Questions Q2 and Q3 with a focus on evolutionary

process. Chapter 2 provides some preliminary results towards this goal.

We provide additional detailed literature review and description of mathematical models

and methods in each of Chapter 2, Chapter 3, and Chapter 4.
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1.2 Thesis Contributions

The main goal of this thesis is to separately infer birth and death rates from cell number

time series using two methods that both harness stochasticity in cell population dynamics.

We have submitted the results from Chapter 3 and part of Chapter 4 for publication [41].

Key results of this thesis are:

C1. First-passage time analysis of extinction in a birth-death-mutation process model and

demonstration of the need for separate birth and death rates; see Section 2.4.

C2. Development of a direct estimation method to separately identify birth and death rates

from cell number time series data, giving a novel perspective on stochastic parameter

identifiability; see Section 3.3.3.

C3. Derivation of analytical expressions for the theoretical means and variances of errors

in estimating birth and death rates as functions of the discretization bin size; see

Section 3.3.4 and Appendix A.2.

C4. Application of the direct estimation method to disambiguate underlying autoregu-

lation, drug efficacy, and drug resistance mechanisms, and to infer whether these

processes happen through birth, death, or some combination of the two. The direct

estimation method can be applied to other biological systems at different scales; see

Section 3.4.

C5. Development of a likelihood-based inference method to infer the most likely density

dependence parameter corresponding to a given single cell number time series; see

Section 4.2.

C6. Derivation of a theoretical probability distribution for the system state in our logistic

5



birth-death process model; see Section 4.3.

C7. Derivation of the theoretical mean of the log-likelihood function for our logistic birth-

death process model; see Section 4.4.

The rest of the thesis is organized as follows. In Chapter 2, we discuss first-passage time

analysis of pathogen eradication and demonstrate the significance of separate birth and

death rates. In Chapter 3, we discuss our novel stochastic parameter identification method,

error analysis of the method (details in Appendix A.2), and application of the method

to describe drug resistance mechanisms. In Chapter 4, we discuss the likelihood-based

approach, in which we answer the questions of “most likely” and “more likely” density-

dependent dynamics, and analytically derive the probability distribution of the state in our

logistic birth-death process, and the theoretical mean of the log-likelihood. Finally, in

Chapter 5, we provide an overview of future research directions.
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Chapter 2

First-Passage Time: Significance of

Separate Birth and Death Rates

2.1 Motivation

Ecology and evolution are two major aspects of population dynamics. Ecological and evo-

lutionary processes are fundamentally distinguished by their time scales, with ecological

processes generally occurring on shorter time scales, and evolutionary processes unfolding

on longer time scales [22]. However, “shorter” time scales and “longer” time scales may

be difficult to quantify. Moreover, sometimes rapid evolution can happen on ecological

time scales [15, 89]. Recently, Gerlee [34] has introduced a method to separate ecology

and evolution using perturbation analysis. Since ecology and evolution are fundamentally

stochastic as discussed in [62, 66, 65], another mathematical tool that one can use to study

the time scale of ecology and evolution is first-passage time analysis [5, 74, 38]. Under

birth-death process models, the computation of first-passage times requires knowing the
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birth and death rates of the processes. Towards the broad goal of understanding ecological

and evolutionary time scales in biological systems, in this chapter, we analyze how cell

populations with the same net growth rate, but different birth and death rates, can exhibit

different mean extinction times. Then, in Chapters 3, we show how to separately identify

birth and death rates from data. Here, we consider the expected values of extinction times,

motivated by the problem of pathogen eradication. For future work, we can consider other

statistical measures of first-passage times such as extreme first-passage times (i.e. the time

it takes for the fastest searcher to reach a target) [18, 52, 53]–especially in the context of

optimal treatments.

2.2 Mathematical Model

We consider a cell population consisting of two cell types: drug-sensitive cells, which

we refer to as S-cells, and drug-resistant cells, which we refer to as R-cells. One of the

classical models describing density-dependent dynamics of two-species populations is the

competitive Lotka–Volterra model [60, 93]. In our work, since we are interested in the

evolution of cell populations under drug treatments, we add a mutation term to the model

as follows:

dϕS

dt
= b0SϕS − b0SµϕS︸ ︷︷ ︸

mutation

−d0Sϕs −
rS
KS

ϕ2
S − αSR

rS
KS

ϕSϕR, (2.1)

dϕR

dt
= b0RϕR + b0SµϕS︸ ︷︷ ︸

mutation

−d0RϕR − rR
KR

ϕ2
R − αRS

rR
KR

ϕRϕS, (2.2)

where ϕS and ϕR are numbers of S-cells and R-cells respectively; b0S and b0R are the

intrinsic per capita birth rates of S-cells and R-cells respectively; d0S and d0R are the

intrinsic per capita death rates of S-cells and R-cells respectively; rS = b0S − d0S and
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rR = b0R−d0R are intrinsic per capita net growth rates of S-cells and R-cells respectively;

KS and KR are carrying capacities of S-cells and R-cells respectively, in the absence of the

competing species. The presence of species R decreases the effective carrying capacity for

species S at a rate αSR. That is, the effective carrying capacity for species S is KS−αSRϕR.

Similarly, the carrying capacity of species R decreases at a rate αRS per unit increase in

the species S. We consider a mutation scenario where mutation happens through the birth

(or division) of S-cells, and interpret the mutation rate µ as the probability that an S-

cell divides into one S-cell and one R-cell. We can combine the two terms b0SϕS and

(−b0SµϕS) in Equation (2.1) into b0S(1 − µ)ϕS and interpret (1 − µ) as the probability

that mutation does not happen when an S-cell divides. In Equations (2.1) and (2.2),

we parameterize the intra-species density-dependent terms with the density dependence

parameters 0 ≤ γS ≤ 1 and 0 ≤ γR ≤ 1 as follows:

dϕS

dt
= b0S(1− µ)ϕS − γS

rS
KS

ϕ2
S︸ ︷︷ ︸

birth rate

−
(
d0,Sϕs + (1− γS)

rS
KS

ϕ2
S + αSR

rS
KS

ϕSϕR

)
︸ ︷︷ ︸

death rate

, (2.3)

dϕR

dt
= b0,RϕR + b0Sµϕs − γR

rR
KR

ϕ2
R︸ ︷︷ ︸

birth rate

−
(
d0RϕR + (1− γR)

rR
KR

ϕ2
R + αRS

rR
KR

ϕRϕS

)
︸ ︷︷ ︸

death rate

.

(2.4)

Here, we assume that the inter-species density dependence is only in the death rate for

each cell type. Note that we only consider nonnegative birth and death rates; in case an

expression such as b0S(1 − µ)ϕs − γS
rS
KS

ϕ2
S should become negative, we treat it as zero.

For notational convenience we omit writing max

{
b0S(1− µ)ϕs − γS

rS
KS

ϕ2
S, 0

}
for such

expressions in this section.

Table 2.1 provides a stochastic analog of the deterministic model (2.1) and (2.2): a two-
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species birth-death process with quadratic competition. Let NS and NR be integer-valued

random variables representing numbers of S-cells and R-cells respectively.

r Reaction/Transition Rate λr([i, j]
T ) Stoich. ζr Interpretation

1 NS → 2NS b0S(1− µ)NS − γS
rS
KS

N2
S [1, 0]T Birth (S)

2 NS → ∅ d0SNS [−1, 0]T Death (S)
3 NS +NS → NS (1− γS)(rS/KS)N

2
S [−1, 0]T Death (S)

4 NS → NS +NR b0SµNS [0, 1]T Birth with Mutation
5 NR → 2NR b0RNR − γR

rR
KR

N2
R [0, 1]T Birth (R)

6 NR → ∅ d0RNR [0,−1]T Death (R)
7 NR +NR → NR (1− γR)(rR/KR)N

2
R [0,−1]T Death (R)

8 NS +NR → NR αSR
rS
KS

NSNR [−1, 0]T Competition

9 NR +NS → NS αRS
rR
KR

NRNS [0,−1]T Competition

Table 2.1: Two-Species Birth-Death-Mutation Process Model. The state in this model is the
pair (NS, NR), where NS represents the number of S-cells and NR represents the number
of R-cells. There are nine reactions/transitions: reaction r = 1 represents natural birth
of S-cells; reaction r = 2 represents natural death of S-cells; reaction r = 3 represents
death of S-cells due to interactions among the S-cells; reaction r = 4 represents birth of
R-cells due to mutation; reaction r = 5 represents natural birth of R-cells; reaction r = 6
represents natural death of R-cells; reaction r = 7 represents natural death of R-cells due
to interactions among the R-cells; reaction r = 8 represents natural death of S-cells due
to interactions with the R-cells; reaction r = 9 represents natural death of R-cells due to
interactions with the S-cells. The stoichiometry vector ζr shows the changes in S-cells
and R-cells following reaction/transition r. The notation T represents the transpose of the
vector.

Note that the terms that are quadratic in NS or NR in Table 2.1 can be interpreted as either

direct or indirect competition. In the context of ecology, direct competitive interactions are

referred to as interference competition and indirect competitive interactions are referred

to as exploitation competition [80]. All reactions except reaction 1 and reaction 5 may

be interpreted using standard mass-action kinetics. For example, the quadratic term in the

death rate (reactions 3 and 7) may be interpreted as homogeneous bimolecular collision

reactions; reactions 8 and 9 may be interpreted as heterogeneous bimolecular collision

10



reactions. Reactions 2 and 6 may be interpreted as unimolecular decay reactions; reaction 4

may be interpreted as a unimolecular source reaction. The rates for reactions 1 and 5 should

be understood as nonnegative. The third column of Table 2.1 gives the stoichiometry vector

for each reaction.

The per capita birth rates and death rates for S-cells are thus given by

bNS
= b0S(1− µ)− γS

rS
KS

NS (2.5)

dNS
= d0S + (1− γS)

rS
KS

NS + αSR
rS
KR

NR, (2.6)

which means

bNS
+ dNS

= b0S(1− µ) + d0S + (1− 2γS)
rS
KS

NS + αSR
rS
KR

NR. (2.7)

When γS = 0.5, bNS
+ dNS

does not depend on NS (but still depend on NR). For fixed

values of NR, NS , and the other parameters in Equation (2.7), decreasing γS from the value

0.5 makes bNS
+dNS

bigger than the case γS = 0.5, and γS > 0.5 makes bNS
+dNS

smaller.

Similarly, we have the same properties for R-cells.

2.3 Mean Extinction Time Computation Method

The extinction time random variable T for this system is the first-passage time to the

absorbing state [NS, NR]
T = [0, 0]T starting from some initial state [NS, NR]

T = [nS, nR]
T .
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Mathematically, T is defined as follows:

T ([nS, nR]
T ) = inft>0

{
t
∣∣∣ [NS(t), NR(t)]

T = [0, 0]T , given [NS(0), NR(0)]
T = [nS, nR]

T
}
.

(2.8)

To compute the mean of the extinction time, we use one-step analysis. Intuitively, the mean

extinction time from the current state is weighted by the mean extinction times from all the

next states that the current state can transition into after one transition, plus the expected

time to stay in the current state. Assuming that the mean of T ([nS, nR]
T ) is finite, let

τ
(
[nS, nR]

T
)
:= E

[
T ([nS, nR]

T )
]

denote the mean first-passage time from state [nS, nR]
T

to the absorbing state [0, 0]T . Then, following e.g. [32, 68]

τ
(
[nS, nR]

T
)
=

1

Λ

[
1 +

nr∑
r=1

τ
(
[nS, nS]

T + ζr
)
λr

(
[nS, nR]

T
)]

(2.9)

⇒

(
nr∑
r=1

τ
(
[nS, nS]

T + ζr
)
λr

(
[nS, nR]

T
))

− (Λ) · τ
(
[nS, nR]

T
)
= −1 (2.10)

where nr denotes the total number of outgoing reactions from the current state; Λ =
nr∑
r=1

λr

(
[nS, nR]

T
)

denotes the total rate of all reaction rates λr

(
[nS, nR]

T
)
; and ζr denotes

the stoichiometry vector. In Equation (2.10),
1

Λ
is the mean dwell time in state [nS, nR]

T ,

and
λr

(
[nS, nR]

T
)

Λ
is the probability of going from state [nS, nR]

T to state
(
[nS, nR]

T +

ζr

)
. Denote τ as a vector of all mean extinction times. Combining Equation (2.10) for all

the states leads to a nonhomogeneous linear system of equations

Qτ = −1 with boundary condition τ([0, 0]T ) = 0. (2.11)
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If N̂S and N̂R, respectively, represent the upper limits for NS and NR imposed to define

the computational boundary, then there are M = [(N̂S + 1)(N̂R + 1) − 1] total states

(excluding the state (0, 0)). Then Q is a sparse M × M matrix. Solving the System of

Equations (2.11), we obtain the vector of mean times to extinction starting from the all

states in the system.

2.4 Effect of Density Dependence

In this section, we apply the method described in Section 2.3 to analyze the density de-

pendence effect and demonstrate the significance of parsing out birth and death rates from

net growth rate. We consider pairs of birth and death rates that have the same net growth

rate, but different density dependence distribution (i.e. different values of γS and γR). The

main purpose of this section is to show that mean extinction times are different for different

values of density dependence parameter, even though these parameters result in the same

net growth rate. When γX (X = S,R) is equal to 0, density dependence is fully in the

death rate. When γX (X = S,R) is equal to 1, density dependence is fully in the birth rate.

When γX (X = S,R) is equal to 0.5, density dependence is split equally between the two

rates. Figures 2.1, 2.2, 2.4, and 2.3 all show that the mean extinction times are different

for different combinations of γS and γR, even though the net growth rates for S-cells and

R-cells are the same for all the scenarios. In these figures, for purposes of illustration,

we artificially cap the population size at a maximum of N̂R = N̂S = 20, thereby limiting

the size of our computational domain. Truncating the domain in this way is equivalent

to setting the per capita birth rates bN,X = 0 for N ≥ 20. In Figures 2.1 and 2.2, we

use the parameter values: αSR = αRS = 0.75, b0S = b0R = 2/10, d0S = d0R = 1/10,

KS = KR = 102. We set the mutation probability per cell division to µ = 0 for Figure 2.1

13



and µ = 25× 10−4 for Figure 2.2.

Under parameters given above, the intrinsic growth rates are initially positive: rS > 0

and rR > 0. Thus the unconstrained S-cell and R-cell populations would grow to their

carrying capacities, as illustrated in Figure 2.5 (A, B) for the case µ = 0. In contrast to

deterministic models where the populations will never go extinct for positive net growth

rates, the stochastic fluctuations in cell number increments eventually drive the populations

to extinction [17, 88]. When the variance of cell number increments is larger, the quasis-

tationary distribution will be broader and extinction will happen sooner. Quasistationary

distribution is stationary distribution reached after a long period time. (Note, however,

that in Figures 2.1–2.4, by capping the total population at a value much lower than the

unconstrained carrying capacity, we greatly reduce the expected extinction time.) In a

later chapter of this thesis (Section 3.3.3) we will explain in detail that the variance of

cell number increments (i.e. change in cell number after a sufficiently small time period)

depends on the sum of birth and death rates. We formulate our mathematical model and

parameterization with the assumption that the density dependence (i.e. quadratic) term

either reduces the birth rate or increases the death rate, or both. Hence, among the three

scenarios, the sum of birth and death rates, is the largest for γX (X = S,R) = 0 and

smallest for γX (X = S,R) = 1, as explained above at the end of Section 2.2. That is why

for the scenario γS = γR = 0, as in plot (A) in all Figures 2.1, 2.2, 2.4, and 2.3, the mean

extinction time is the smallest compared to the other cases. Similarly, for the scenario

γS = γR = 1, as in plot (I) in all Figures 2.1, 2.2, 2.4, and 2.3, the mean extinction

time is the largest compared to the other cases. Figure 2.2 shows that even with mutation,

the pattern is similar to the case without mutation, cf. Figure 2.1. All the nine cases in

Figure 2.1 and Figure 2.2 have the same net growth rates for the S-cell population and
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R-cell population, but we can see that the mean extinction times are different for any initial

state (nS, nR). Even within one row or one column, where the parameters for one species

(e.g. S-cells or R-cells) are fixed, we can see that the mean extinction times are different

for different birth and death rates of the other species.

In Figure 2.3, we use the same parameters as those in Figure 2.1, except bS = 1/10 and

dS = 2/10, and hence the intrinsic net growth rate rS < 0. That is why we see the decay

in the S-cell population in Figure 2.5 (C, D), while the R-cell population is still growing.

We can interpret this scenario as when the whole two-species population is treated with a

drug that kills the drug-sensitive cells fast but does not have any effect on the drug-resistant

cells. In Figure 2.1 and Figure 2.2, we have to wait for both S-cell population and R-cell

population to die out, while for this case (Figure 2.3), we only need to wait for the R-

cell population to die out. That is why the values of mean extinction time in Figure 2.3

are smaller than those in Figure 2.1 and Figure 2.2. Moreover, in Figure 2.3, the mean

extinction time only changes when γR changes. The same idea applies to Figure 2.3, where

it is the R-cell population that has negative growth rate rR, not S-cells. Figure 2.4 shows

that when we switch the parameters (i.e. rR < 0, instead of rS), the plots of the mean

extinction times flip.
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𝜸𝑹 = 𝟏𝜸𝑹 = 𝟎. 𝟓𝜸𝑹 = 𝟎

Figure 2.1: Longer extinction times resulting from systems with smaller birth and
death rates, despite the same net growth rate. The gradient of colors correspond
to different values of mean extinction time starting from the location [nS, nR]

T on the
(NS, NR) coordinate. The black lines are part of the corresponding contour plot. We
compute the mean extinction times using the parameter values: µ = 0, αSR = αRS = 0.75,
b0S = b0R = 2/10, d0S = d0R = 1/10, KS = KR = 102. The differences between the
plots in this figure is the values of the intra-species density dependence parameters γS and
γR, which determine how much density dependence is in the birth and death rates. (A):
γS = 0, γR = 0. (B): γS = 0, γR = 0.5. (C): γS = 0, γR = 1. (D): γS = 0.5, γR = 0. (E):
γS = 0.5, γR = 0.5. (F): γS = 0.5, γR = 1. (G): γS = 1, γR = 0. (H): γS = 1, γR = 0.5.
(I): γS = 1, γR = 1. We observe that when γS = γR, the mean extinction times are
symmetric with respect to the diagonal, i.e. the line where NS = NR. Moreover, in each
row from left to right, the mean extinction time gets larger as the birth and death rates of
the R-cell population gets smaller. We observe the same pattern for each column from top
to bottom. 16



𝜸𝑹 = 𝟏𝜸𝑹 = 𝟎. 𝟓𝜸𝑹 = 𝟎

Figure 2.2: Nonzero mutation rates change the birth rates and subsequently mean
extinction times. The gradient of colors correspond to different values of mean extinction
time starting from the location [nS, nR]

T on the (NS, NR) coordinate. The black lines are
part of the corresponding contour plot. We compute the mean extinction times using the
parameter values: µ = 25 × 10−4, αSR = αRS = 0.75, b0S = b0R = 2/10, d0S =
d0R = 1/10, KS = KR = 102. The differences between the plots in this figure is the
values of the intra-species density dependence parameters γS and γR, which determine
how much density dependence is in the birth and death rates. (A): γS = 0, γR = 0. (B):
γS = 0, γR = 0.5. (C): γS = 0, γR = 1. (D): γS = 0.5, γR = 0. (E): γS = 0.5, γR = 0.5.
(F): γS = 0.5, γR = 1. (G): γS = 1, γR = 0. (H): γS = 1, γR = 0.5. (I): γS = 1, γR = 1.
We observe the same pattern as in Figure 2.1: the smaller the birth and death rates, the
larger the mean extinction times. In addition, this figure shows that the nonzero mutation
rate µ = 25 × 104, which decreases the birth rate of S-cells and increases the birth rate of
R-cells, alter the mean extinction times (compared with Figure 2.1).
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𝜸𝑹 = 𝟏𝜸𝑹 = 𝟎. 𝟓𝜸𝑹 = 𝟎

Figure 2.3: Negative intrinsic net growth rate of S-cells reduces mean time to
extinction. The gradient of colors correspond to different values of mean extinction time
starting from the location [nS, nR]

T on the (NS, NR) coordinate. The black lines are part of
the corresponding contour plot. We compute the mean extinction times using the parameter
values: µ = 0, αSR = αRS = 0.75, b0S = 1/10, b0R = 2/10, d0S = 2/10, d0R = 1/10,
KS = KR = 102. The differences between the plots in this figure is the values of the intra-
species density dependence parameters γS and γR, which determine how much density
dependence is in the birth and death rates. (A): γS = 0, γR = 0. (B): γS = 0, γR = 0.5. (C):
γS = 0, γR = 1. (D): γS = 0.5, γR = 0. (E): γS = 0.5, γR = 0.5. (F): γS = 0.5, γR = 1.
(G): γS = 1, γR = 0. (H): γS = 1, γR = 0.5. (I): γS = 1, γR = 1. We observe that
the mean extinction time only changes when the rates of R-cells change, as evident by the
same mean extinction time in each column, and different mean extinction times in each
row.
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𝜸𝑹 = 𝟏𝜸𝑹 = 𝟎. 𝟓𝜸𝑹 = 𝟎

Figure 2.4: Negative intrinsic net growth rate rR of R-cells reduces mean time to
extinction. The gradient of colors correspond to different values of mean extinction time
starting from the location [nS, nR]

T on the (NS, NR) coordinate. The black lines are part of
the corresponding contour plot. We compute the mean extinction times using the parameter
values: µ = 0, αSR = αRS = 0.75, b0S = 2/10, b0R = 1/10, d0R = 1/10, d0R = 2/10,
KS = KR = 102. The differences between the plots in this figure is the values of the intra-
species density dependence parameters γS and γR, which determine how much density
dependence is in the birth and death rates. (A): γS = 0, γR = 0. (B): γS = 0, γR = 0.5. (C):
γS = 0, γR = 1. (D): γS = 0.5, γR = 0. (E): γS = 0.5, γR = 0.5. (F): γS = 0.5, γR = 1.
(G): γS = 1, γR = 0. (H): γS = 1, γR = 0.5. (I): γS = 1, γR = 1. We observe that the
mean extinction time only changes when the rates of S-cells change, as evident by the same
mean extinction time in each row, and different mean extinction times in each column.
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𝟏𝟎𝟑 steps 𝟏𝟎𝟓 steps

Figure 2.5: Simulated cell number trajectories for unconstrained cell populations. This
figure compares the dynamics for three scenarios: in scenario (A, B) b0S = b0R = 2/10 and
d0S = d0R = 1/10; in scenario (C, D) b0S = 1/10, d0S = 2/10, b0R = 2/10, d0R = 1/10;
in scenario (E, F) b0R = 1/10, d0R = 2/10, b0S = 2/10, and d0S = 1/10. The trajectories
in the left column (A, C, E) are simulated for 103 timesteps. The trajectories in the right
column (B, D, F) are simulated for 105 timesteps.
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2.5 Conclusion and Discussion

In summary, we demonstrate the effect of separate birth and death rates on mean extinction

times. This chapter illustrates the need for parsing out net growth rate into separate birth

and death rates, which leads to our work in Chapter 3 and Chapter 4. In the next chapter,

we are going to show that with the additional information of the mean of cell number

increments, we can go one step further from this chapter to separately identify birth and

death rates from data.

Our broad goal is to analyze the ecological and evolutionary processes involved in drug

resistance. The relation between ecology and evolution is fundamentally characterized by

their disparate time scales. Towards the broad research question, we would like to make a

connection between the work of this chapter and the optimal treatments developed by Nara

Yoon et al. (2018) [97] and Jeff Maltas et al. (2019) [61]. We would like to analyze how

pathogenic populations evolve under the two treatments described in these two papers, both

of which are characterized by certain time scales. Both Nara Yoon et al. (2018) and Jeff

Maltas et al. (2019) consider cell populations consisting of different collaterally sensitive

cell types following exponential growth. Yoon’s model is deterministic, while Maltas’

model is stochastic. Collateral sensitivity occurs when the development of an adaptation

conferring resistance to one drug induces sensitivity to another drug [67, 78]. In particular,

in Yoon’s model, there are two cell types: type-A is sensitive to drug A and resistant to drug

B, and type-B is resistant to drug A and sensitive to drug B. Yoon’s proposed treatment

minimizes population size, while Maltas’ proposed treatment minimizes drug resistance.

In Maltas’ paper, drug resistance level is defined as log2

(
IC50,mutant

IC50,wild type

)
, where IC50 is the

drug concentration that reduces cell population growth to 50%. Yoon’s optimal treatment
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is characterized by a time point called Tmin: first we apply one drug until the time point

Tmin at which time the net growth rates of both cell types from an ODE model are equal to

each other, then we switch between the two drugs repeatedly. In contrast, Maltas’ optimal

treatment is based on the Markov Decision Process dynamic programming method.

A Markov Decision Process is a Markov Chain with a set of actions and a reward or cost

function associated with the actions. It consists of four components: states s ∈ S, actions

a ∈ A, a set of action dependent transition probabilities p(s, s′, a), and an immediate

objective function V I(s, a). A policy π is a map from the state set S to the action set A.

We want to find an optimal policy π∗ that specifies which action is optimal for each state.

By “optimal”, we mean the cumulative reward or cost V C(s) is maximized or minimized.

In doing so, we use the Value Iteration Algorithm, which iterates backward from a final

target state. The importance of the objective value from the future is weighted by a discount

factor, σ with 0 ≤ σ ≤ 1. The iteration of the algorithm is based on the Bellman equations

described in [7] and in equation (2.12) below. The algorithm is terminated at iteration K if

∥V CK − V CK−1∥∞ < ε.

V CN(s) = max
a

( or min
a

)

(
V I(s, a) + σ

|S|∑
j=1

p(s,S(j), a)V CN+1(s)

)
, (2.12)

where S(j) denote an element of the state set S. The actions in Maltas’ system are six

drugs to be used. The states s of the process are vectors of the form [r1, . . . , r6]
T , where

ra(s) ∈ {−1, 0, 1, . . . , 9} is the resistance level to drug a with a ∈ A = {1, . . . , 6},

when the cell is in state s. Denote the 6-dimensional hypercube comprising the set of all

states by S. Maltas et al. defines the “immediate cost” to be the resistance level to the

currently applied drug, ri. Explicitly, if the current state is sc = [r1, . . . , r6]
T then the
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immediate cost RI for applying drug a ∈ A is ra. The paper aims to minimizes the cost,

which is equivalent to maximize the negative of the cost. The time scale in Maltas’ optimal

treatment is characterized by the discount factor σ in the Markov Decision Process, because

σ indicates how much we weight the value of the objective function in the long term. In

his paper, Maltas concludes that long-term treatments are better, i.e. the higher the discount

factor, the lower the final drug resistance level. However, when we apply the Markov

Decision Process dynamic programming method to minimize population size in Yoon’s

cell population system of two collaterally sensitive cell types, our preliminary results show

that the higher the discount factor, the higher the population size. In particular, the actions

in our work are the two drugs A and B. The states of the system are the pairs of the number

of sensitive cells NS and resistant cells NR: (NS, NR). The transition probabilities are

the birth, death, and mutation rates defined similarly as in Yoon’s paper. The cost is the

total population size Ntotal := (NS + NR) that we want to minimize. The result regarding

discount factor is consistent with our intuition: the longer we let the cell populations grow,

the larger their population size becomes (under the exponential growth). For future work,

we would like to develop an optimal treatment that balances between the two approaches

put forward by Yoon et al. and Maltas et al.’s optimal treatments. In addition, we would

like to analyze the time-related parameters in their papers, namely the time point Tmin and

discount factor σ, and their roles in the evolution of pathogens under the treatments–by

taking separate birth and death rates into consideration.
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Chapter 3

Stochastic Parameter Identifiability:

Birth vs. Death Process Disambiguation

3.1 Motivation

Density dependence, a phenomenon in which a population’s per capita growth rate changes

with population density [40], plays an important role in the ecology and evolution of micro-

bial and cancerous populations, especially under drug treatments. For example, Karslake et

al. 2016 [45] shows experimentally that changes in E.coli. cell density can either increase

or decrease the efficacy of antibiotics. Existing work such as [46], [24], [70], [84], and

[27] shows that interactions between drug sensitive and resistant cancerous cells can shape

the population’s evolution of drug resistance. To analyze the role of density dependence,

especially in drug resistance, we consider one of the first, classical mathematical models

of density-dependent population dynamics, Verhulst’s logistic growth model [92], which
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describes the dynamics of a homogeneous population in terms of its net growth rate:

dϕ

dt
= r
(
1− ϕ

K

)
ϕ = rϕ− r

K
ϕ2. (3.1)

In Equation (3.1), ϕ denotes population size, r denotes intrinsic per capita net growth rate,

and K denotes carrying capacity. The density dependence term
r

K
ϕ2 describes the direct or

indirect interactions between individuals in the population. The minus (−) sign indicates

the interactions have a negative net effect on the population–in particular, reducing the

population size. We may consider this negative net effect as the difference between a

positive effect and a negative effect by introducing a parameter c ≥ 0:

dϕ

dt
= rϕ− r

K
ϕ2 = rϕ+ c

r

K
ϕ2︸ ︷︷ ︸

cooperation

− (1 + c)
r

K
ϕ2︸ ︷︷ ︸

competition

. (3.2)

In the context of ecology, we may interpret the term c
r

K
ϕ2 as cooperation, the term (1 +

c)
r

K
ϕ2 as competition, and the parameter c as a measure of cooperation. In this chapter,

we consider only competition (i.e. c = 0). For future work on the cases where c > 0,

please Section 3.5. Competitive interactions between individuals can hinder the growth

of population size through either the birth process, death process, or some combination

of the two. However, the formulation in Equation (3.1) leaves the underlying nature of

the density dependence unclear. Density dependence can be manifest in the birth process,

death process, or some combination of the two processes. To disambiguate birth-related

vs. death-related mechanisms, we rewrite the density dependence term with the parameter

γ as follows:

r

K
ϕ2 = γ

r

K
ϕ2 + (1− γ)

r

K
ϕ2, 0 ≤ γ ≤ 1. (3.3)
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We interpret the term γ
r

K
ϕ2 as the reduction in the population’s growth rate due to competition-

regulated mechanisms affecting the birth process, and (1 − γ)
r

K
ϕ2 as the population’s

competition-regulated mechanisms affecting the death process.

For completion, we also disentangle the intrinsic net growth rate rϕ into birth and death as

follows:

rϕ = b0ϕ− (b0 − r)ϕ = b0ϕ− d0ϕ, with b0 ≥ r > 0 and d0 := b0 − r ≥ 0, (3.4)

and interpret b0 as the population’s intrinsic per capita birth rate and d0 as the population’s

intrinsic per capita death rate. We can also interpret b0 as the population’s low-density per

capita birth rate and d0 as the population’s low-density per capita death rate, because for

low density, or N ≈ 0, then the birth and death rates are b0 and d0 respectively. Hence, we

parameterize Equation (3.1) with γ, b0, and d0 as follows:

dϕ

dt
=

(
b0 − γ

r

K
ϕ

)
ϕ︸ ︷︷ ︸

birth

−

(
d0 + (1− γ)

r

K
ϕ

)
ϕ︸ ︷︷ ︸

death

, 0 ≤ γ ≤ 1, r = b0 − d0. (3.5)

For fixed K, b0, and d0 (or r), while different values of γ in Equation (3.5) result in equa-

tions algebraically equivalent to Equation (3.1), they describe different density-dependent

biological processes. For example, in ecology, one distinguishes exploitative competition,

where limited resources hinder the growth of the populations, from interference competi-

tion, where individuals fight against one another [43]. The former is manifest in density-

dependent birth rates, while the latter leads to density-dependent death rates. The term

γ
r

K
ϕ2 in Equation (3.5) can be interpreted as the case where individuals have to compete

for resources and experience reduced birth due to unfavorable living conditions. In contrast,
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the term (1 − γ)
r

K
ϕ2 in Equation (3.5) can be interpreted as the case where interactions

between individuals lead to increased death. Nevertheless, both cases may result in the

same net growth rates. This example motivates us to ask the following question:

[Q]: In the context of density-dependent population dynamics, how much of a population’s

change in net growth is through mechanisms affecting birth and how much is through

mechanisms affecting death?

The significance of the answer to this question can also be seen in other contexts. The

Allee effect [1] of density-dependent dynamics (a positive correlation between population

density and per capita net growth rate) provides another example. Although the Allee

effect is typically modeled with cubic growth [44] instead of logistic growth, answering

question [Q] would contribute to understanding the mechanisms that give rise to the effect.

Increasing per capita net growth rates with increased population density could result from

increased cooperation or mating among individuals (increased birth rates) or from a reduc-

tion in fighting due to habitat amelioration (decreased death rates) [23]. This distinction

is important because populations that experience the Allee effect can become extinct if the

population sizes fall below the Allee threshold [83]. Extinction problems are of interest

because, for example, we hope to eventually eradicate tumors and harmful bacteria within

individual hosts. Clinically, bactericidal drugs such as penicillin promote cell death, while

bacteriostatic drugs such as chloramphenicol, clindamycin, and linezolid inhibit cell divi-

sion [71]. [59] shows that bactericidal and bacteriostatic drugs affect cellular metabolism

differently, and the bacterial metabolic state in turn influences drug efficacy. Identifying

“-cidal” versus “- static” drugs may help contribute to developing more efficacious drug

treatments. From an evolutionary perspective, [31] shows that assuming a zero death rate
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leads to overestimating bacterial mutation rates under stress, which in turn can lead to

incorrect conclusions about the evolution of bacteria under drug treatments. The authors

point out that it is important to separately identify birth and death rates. In another context

of evolutionary dynamics, one may compute probability of extinction/escape and mean

first-passage time to extinction/escape for cell populations under certain drug treatments

such as [42, 49, 29]. Under birth-death process models, computing the probability and

mean first-passage time involves separate birth and death rates [5, 68, 32], and cell popula-

tions with the same net growth rates–but different birth and death rates–can have different

extinction/escape probabilities and mean first-passage times, as demonstrated in Chapter 2.

Therefore, the significance of disambiguating birth and death rates underlying a given net

growth rate is clear across multiple biological contexts at different scales.

In this chapter, we aim to answer question [Q] by extracting birth and death rates from

observations of density-dependent population dynamics. One type of population dynamics

information that we can easily observe is population size. However, deterministic dy-

namical models of populations of size ϕ̂ do not allow us to disentangle birth rate bϕ̂ and

death rate dϕ̂ from net growth rate (bϕ̂ − dϕ̂), as the transformations bϕ̂ → bϕ̂ + aϕ̂ and

dϕ̂ → dϕ̂ + aϕ̂ leave (bϕ̂ − dϕ̂) unchanged. At a fundamental level, population growth is

driven by the birth/division1 and death of individual cells. At this level, cell birth and death

are discrete rather than continuous processes, and may involve stochastic elements such as

molecular fluctuations in the reactions within individual cells [55]. Therefore, although the

tractability of deterministic population equations has made them attractive as a framework

for modeling the growth of pathogenic populations and their responses to therapeutic agents

1Although cells do not give birth to offspring in the biological sense, for the rest of the manuscript, we
refer to cell division as birth to be consistent with the birth-death process model we use.
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[97, 96, 77], a stochastic modeling framework is more appropriate for the research question

we consider. Specifically, we consider a birth-death process describing a homogeneous cell

population. (By “homogeneous”, we mean all cells in the population have the same birth

and death rates.) We describe density dependence with logistic growth because it is one

of the simplest form of density-dependent dynamics and still captures some realistic cell

population dynamics such as the dynamics of cancer cells [33]. Therefore, we will consider

a logistic birth-death process model in this chapter.

The remainder of this chapter is structured as follows. In Section 3.2, we describe the

mathematical model. Then, we describe our direct estimation method in Section 3.3, where

we also validate our method and analyze estimation errors. The method is to estimate birth

and death rates Next, in Section 3.4, we use our direct estimation method to answer question

[Q] with a focus on disambiguating autoregulation, drug efficacy, and drug resistance

mechanisms. Finally, in Section 3.5 we compare our approach to related existing methods

[19, 58, 28], and discuss future directions.

3.2 Mathematical Model

We consider systems of homogeneous cells described by a birth-death process, that is, a

discrete-state continuous-time Markov chain tracking the number of individual cells N(t)

in the system over time t, with state transitions comprising either “birth” (N → N + 1) or

“death” (N → N − 1), as shown in Figure 3.1. In linear birth-death processes, per capita

birth and death rates are constants that do not depend on N . In contrast, here we consider

birth-death processes whose per capita birth and death rates depend on N , in order to

incorporate density-dependent population dynamics. Specifically, motivated by Equation
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(3.5), we define the per capita birth rate bN and death rate dN in our model as follows:

bN = max
{
b0 − γ

r

K
N, 0

}
, (3.6)

dN = d0 + (1− γ)
r

K
N, (3.7)

where b0 > 0 and d0 ≥ 0 are intrinsic (low-density) per capita birth and death rates

respectively, r = b0 − d0 ≥ 0 is the intrinsic (low-density) per capita net growth rate,

K > 0 is the population’s carrying capacity, and γ ∈ [0, 1] determines the extent to which

the nonlinear or density-dependent dynamics arises from the per capita birth versus death

rates. When γ = 0, the birth process is density-independent; all density dependence lies

in the death process. Conversely, when γ = 1, the density-dependent dynamics is fully

contained in the birth process. When 0 < γ < 1, the density-dependent dynamics is

split between birth and death. We use the max function in Definition (3.6) to ensure bN is

nonnegative. The total birth and death rates of the population are bNN and dNN .

0 1 2 · · ·

d1 · 1 d2 · 2 d3 · 3

b1 · 1 b2 · 2

k

dk · k dk+1 · (k + 1)

bk−1 · (k − 1) bk · k

k + 1

dk+2 · (k + 2)

bk+1 · (k + 1)

· · ·

Figure 3.1: Schematic representation of our birth-death process model. The per capita
birth rate bk, and per capita death rate dk depend on cell number N = k with k = 0, 1, . . ..
State N = k transitions to state N = k + 1 at rate bk · k and transitions to state N = k − 1
at rate dk · k. At state N = 0, the system cannot transition to state N = 1, because there is
no individual to give birth.

.

For a single-species birth-death process of this form, with d1 > 0 (d1 is the death rate

when N = 1) and no immigration, it is well known that the unique stationary probability

distribution gives N(t) → 0 as t → ∞ with probability one [2]. Rather than concern
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ourselves with the long-term behavior, here we are interested in answering question [Q]

by estimating bN and dN . Therefore we will focus on the analysis of transient population

behavior rather than long-time, asymptotic behavior.

3.3 Direct Estimation of Birth and Death Rates

In this section, we describe our method of estimating the birth and death rates of cell

populations that follow the logistic birth-death process model described in Section 3.2. We

would like to disambiguate different pairs of birth and death rates for the same observed

mean change in population size.

3.3.1 Mathematical Derivation

Let N(t) ≥ 0 be an integer-valued random variable representing the number of cells at

time t. We consider a small time increment ∆t, within which each cell can either divide

(i.e. one cell is replaced by two cells), die (i.e. one cell disappears and is not replaced), or

stay the same (i.e. there is still one cell). Focusing on a single timestep, let (∆N+|N,∆t)

and (∆N−|N,∆t) be two random variables representing the numbers of cells gained and

lost, respectively, from an initial population of N cells, after a period of time ∆t. The

number of cells that neither die nor divide is thus equal to N − ∆N+ − ∆N−. Although

the two random variables (∆N+|N,∆t) and (∆N−|N,∆t) are not strictly independent (as

one cell cannot both die and reproduce at the same time), we work in a regime in which

the correlation between them is small enough to be neglected. Among N cells, ∆N+

cells are “chosen” to divide and ∆N− cells are “chosen” to die. On a time interval of

length ∆t, the probabilities that a cell divides and dies are bN∆t + o(∆t) and dN∆t +
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o(∆t) respectively.2 For convenience, we will omit the o(∆t) correction where possible

without introducing inaccuracies. The random variables (∆N+|N,∆t) and (∆N−|N,∆t)

are binomially distributed. In particular,

(∆N+|N,∆t) ∼ Binomial(N, bN∆t) with mean NbN∆t and variance NbN∆t(1− bN∆t),

(3.8)

(∆N−|N,∆t) ∼ Binomial(N, dN∆t) with mean NdN∆t and variance NdN∆t(1− dN∆t).

(3.9)

Define a random variable (∆N |N,∆t) to be the net change in population size from N cells

after a period of time ∆t, i.e. (∆N |N,∆t) = (∆N+|N,∆t) − (∆N−|N,∆t). Typically,

experimental or clinical measurements reflect only the net change (∆N |N,∆t) rather than

the increase (∆N+|N,∆t) or decrease (∆N−|N,∆t) separately. Because (∆N+|N,∆t)

and (∆N−|N,∆t) are approximately independent, for sufficiently small ∆t, we have

E[∆N |N,∆t] = E[∆N+|N,∆t]− E[∆N−|N,∆t] = (bN − dN)N∆t, (3.10)

V[∆N |N,∆t] = V[∆N+|N,∆t] + V[∆N−|N,∆t]− 2Cov
(
∆N+|N,∆N−|N

)
︸ ︷︷ ︸

negligible

(3.11)

= NbN∆t(1− bN∆t) +NdN∆t(1− dN∆t) (3.12)

= NbN∆t+NdN∆t+O(∆t2) (3.13)

≈ (bN + dN)N∆t. (3.14)

2We adopt the standard convention
o(∆t)

∆t
→ 0 as ∆t → 0.
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Therefore, to estimate birth and death rates bNN and dNN , we solve the linear system:

(bN − dN)N =
E[∆N |N,∆t]

∆t
and (bN + dN)N =

V[∆N |N,∆t]

∆t
. (3.15)

In Section 3.3.3, we discuss how we obtain approximations to E[∆N |N,∆t] and V[∆N |N,∆t]

from discretely sampled finite time series.

3.3.2 Data Simulation

To validate our method, we use simulated in silico data. While our underlying model is

time-continuous, in experimental and clinical settings, one can only observe cell numbers

at discrete time points. In order to efficiently generate an ensemble of trajectories of the

birth-death process, we construct a τ -leaping approximation [35] as follows.

Given N(t) individuals at time t, we approximate the number of individuals after a short

time interval ∆t as

N(t+∆t) ≈ N(t) +∆N+(t)−∆N−(t), (3.16)

where ∆N+ ∼ Binomial
(
N(t), bN(t)∆t

)
and ∆N− ∼ Binomial

(
N(t), dN(t)∆t

)
rep-

resenting the number of cells added to and lost from the system after a period of time

∆t. We approximate ∆N+ and ∆N− as if they were independent random variables; see

discussion in Section 3.3.1. When N(t) is sufficiently large, we approximate the binomial

distributions with Gaussian distributions that have the same means and variances as the

binomial distributions, for computational efficiency and data format consistency with the

experimental data in our lab. Because our discrete-state process in Section 3.2 is now
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approximated with a continuous-state process, we replace N(t) with a different notation,

X(t), to make this approximation clear. We have

∆X(t)+ ∼ Normal

(
X(t)bX(t)∆t,X(t)bX(t)∆t

(
1− bX(t)∆t

))
, (3.17)

∆X(t)− ∼ Normal

(
X(t)dX(t)∆t,X(t)dX(t)∆t

(
1− dX(t)∆t

))
. (3.18)

Thus, the net change in number of cell after a timestep ∆t is

X(t+∆t)−X(t) ≈X(t)bX(t)∆t+∆W+(t)

√
X(t)bX(t)

(
1− bX(t)∆t

)
(3.19)

−X(t)dX(t)∆t−∆W−(t)

√
X(t)dX(t)

(
1− dX(t)∆t

)
=
(
bX(t) − dX(t)

)
X(t)∆t+

√(
bX(t) + dX(t)

)
X(t)∆W (t) + o

(
∆t
)
,

(3.20)

where ∆W± are independent Wiener process increments, and ∆W is a Wiener process

increment derived from a linear combination of the ∆W±. Equation (3.20) is the τ -

leaping approximation used in our data simulation, which is analogous to the forward Euler

algorithm in the deterministic setting. Taking the limit ∆t → dt, we obtain a version of

our population model as a continuous-time Langevin stochastic differential equation

dX(t) =
(
bX(t) − dX(t)

)
X(t)dt+

√(
bX(t) + dX(t)

)
X(t) dW (t). (3.21)

where dW (t) is delta-correlated white noise satisfying ⟨dW (t)dW (t′)⟩ = δ(t− t′). We use

Equation (3.21) under the Ito interpretation.
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3.3.3 Direct Estimation

We conduct S experiments to collect an ensemble of S cell number time series and obtain

the following dataset

D =
{
[X(t10), . . . , X(t1T1

)]T︸ ︷︷ ︸
time series 1

, . . . , [X(ts0), . . . , X(tsT1
)]T︸ ︷︷ ︸

time series s

, . . . , [X(tS0 ), . . . , X(tSTS
)]T︸ ︷︷ ︸

time series S

}
,

(3.22)

each of which has Ts + 1 data points, s = 1, . . . , S. Note that we use the notation X

to represent data for the continuous random cell number under a Gaussian approximation,

as discussed in Section 3.3.2. We use τ -leaping simulation so that for all the time series

indices s ∈ {1, . . . , S} and all the time point indices j ∈ {0, . . . , Ts − 1}, the difference

tsj+1 − tsj is equal to ∆t, which is independent of s and j, which is consistent with the

format of the dataset produced from the EVolutionary biorEactor (EVE) experiments in

our laboratory [36]. In our simulation, for all time series s = 1, . . . , S, we choose ts0 to be

equal to t0 and Ts to be equal to T so that each time series has the same number of data

points as the others.

In order to obtain the statistics of the cell number increments, conditioned on the population

size, we consider the truncated dataset

D−1 =
{
[X(t10), . . . , X(t1T1−1)]

T︸ ︷︷ ︸
time series 1

, . . . , [X(ts0), . . . , X(tsTs−1)]
T︸ ︷︷ ︸

time series s

, . . . , [X(tS0 ), . . . , X(tSTS−1)]
T︸ ︷︷ ︸

time series S

}
,

(3.23)

in which we omit the last element of each of the S time series in D. The notation [· · · ]T

means “column vector.” We put all the data points in D−1 across the whole ensemble of
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trajectories into bins along the population axis. Denote the bin size as η. The left end point

Xk of the kth bin [Xk, Xk + η), k = 1, 2, . . . , kmax, is equal to Xk := Xmin + (k − 1)η,

where Xmin is the smallest value of cell number across the whole dataset D−1. The total

number of bins kmax ∈ Z+ is equal to
⌈Xmax −Xmin

η

⌉
, where Xmax is the largest value of

cell number across the whole dataset D−1.

Denote Ŝk as the number of elements in the kth bin [Xk, Xk + η). Our method requires

a sufficiently large bin size so that the bins have at least two entries in D−1 in order to

compute the variances of the cell number increments. For each point X = Xk + ηi in

the kth bin, 0 ≤ ηi < η, i = 1, 2, . . . , Ŝk, let ∆Xki be the subsequent increment in X ,

i.e. ∆Xki = X(t∗ + ∆t) − X(t∗), where t∗ is the time corresponding to X = Xk + ηi.

For each kth bin, k = 1, 2, . . . , kmax, we compute the empirical mean and variance of the

cell number increments {∆Xki}Ŝk
i=1 , and use these statistics (e.g. mean and variance) to

estimate the birth and death rates corresponding to the population size X = Xk +
η

2
.

3.3.4 Validation and Error Analysis

We validate our method by comparing estimated rates with “true” rates that are used to

generate the simulated data. Specifically, we simulate S = 100 cell number trajectories,

using a numerically efficient τ -leaping approximation described in Section 3.3.2, and es-

timate birth and death rates using Equations (3.15) and the method described in Section

3.3.3. Figure 3.2 shows that the estimated and true rates are well-aligned. Figure 3.2 (A,

C, E) shows an ensemble of S = 100 independent realizations of the logistic birth-death

process formulated in Section 3.2 for three scenarios: γ = 0 (black), γ = 0.5 (green),

and γ = 1 (magenta), respectively, simulated using the τ -leaping method with the initial

condition N(t0) = 10 and the model parameter values in Table A.1, over a time period
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of length 3000 (arbitrary units) and timestep ∆t = 1/30. Figure 3.2 (B, D, F) shows the

corresponding true and estimated birth and death rates, using a bin size of η = 103. The

true birth and death rates are solid blue and red lines respectively. Plus signs (+) denote

estimated birth rates, and circles (◦) denote estimated death rates. We observe that the true

and estimated rates are well-aligned.
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RatesTrajectories
.5

Figure 3.2: Agreement of estimated and true birth and death rates validates the direct
estimation method. (A, C, E): Time series ensembles simulated using the τ -leaping
approximation for the cases γ = 0 (A), γ = 0.5 (C), and γ = 1 (E) respectively. Each
figure shows S = 100 trials. The estimated rates are computed using a bin size of η = 103.
Carrying capacity K = 105 cells; low-density growth rate r = 1/120 (arbitrary time units);
for other parameters see Table A.1. (B, D, F): Estimated and true birth and death rates, as
functions of population size. Blue line: true birth rate. Red line: true death rate. Plus signs
(+) denote estimated birth rates; circles (◦) denote estimated death rates. Throughout the
we will use distinct colors to denote values of γ. (B) Black: γ = 0; (D) Green: γ = 0.5;
(E) Magenta: γ = 1.0. We observe that the estimated birth and death rates are well-aligned
with the true birth and death rates used to simulate the trajectories in (A), (C), and (E).
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Using the discretization described in Section 3.3.3, we estimate birth and death rates via the

empirical mean
〈
∆N

∣∣∣N = Nk+ηi, 0 ≤ ηi < η, Ŝk

〉
and empirical variance σ2

[
∆N

∣∣∣N =

Nk + ηi, 0 ≤ ηi < η, Ŝk

]
obtained from an ensemble of S = 100 simulated trajectories.

Using empirical means and variances to estimate parameters (i.e. birth and death rates) is

similar to the Method of Moments [16, 37]. However, our method is slightly different.

Instead of using empirical means and variances at the midpoints
(

i.e.
〈
∆N

∣∣∣N = Nk +

η

2
, Ŝk

〉
and σ2

[
∆N

∣∣∣N = Nk +
η

2
, Ŝk

]
respectively

)
, we compute empirical means and

variances using all the points in the bins
(

i.e.
〈
∆N

∣∣∣N = Nk + ηi, 0 ≤ ηi ≤ η, Ŝk

〉
and

σ2
[
∆N

∣∣∣N = Nk+ηi, 0 ≤ ηi ≤ η, Ŝk

]
respectively

)
. Binning helps make sure the sample

size is sufficiently large without causing the burden of conducting many experiments. In

this section, we analyze the accuracy of our method by showing how the bin size influences

the errors in estimating birth and death rates. To quantify the accuracy of our discretization

method, we define the error Ekbirth in estimating the birth rate corresponding to population

size N = Nk +
η

2
, and the error Ekdeath in estimating the death rate corresponding to N =
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Nk +
η

2
as follows:

Ekbirth :=
E
[
∆N

∣∣∣N = Nk +
η

2

]
+ V

[
∆N

∣∣∣N = Nk +
η

2

]
2∆t

(3.24)

−

〈
∆N

∣∣∣N = Nk + ηi, 0 ≤ ηi < η, Ŝk

〉
+ σ2

[
∆N

∣∣∣N = Nk + ηi, 0 ≤ ηi < η, Ŝk

]
2∆t

,

(3.25)

Ekdeath :=
V
[
∆N

∣∣∣N = Nk +
η

2

]
− E

[
∆N

∣∣∣N = Nk +
η

2

]
2∆t

(3.26)

−
σ2
[
∆N

∣∣∣N = Nk + ηi, 0 ≤ ηi < η, Ŝk

]
−
〈
∆N

∣∣∣N = Nk + ηi, 0 ≤ ηi < η, Ŝk

〉
2∆t

.

(3.27)

(3.28)

Under the assumption that the samples ηi are iid uniformly distributed on [0, η), the theo-

retical means and variances of the errors Ekbirth and Ekdeath are equal to

E
[
Ekbirth

]
=

E

[
E
[
∆N

∣∣∣N = Nk +
η

2

]]
+ E

[
V
[
∆N

∣∣∣N = Nk +
η

2

]]
2∆t

(3.29)

−
E

[〈
∆N

∣∣∣N = Nk + ηi, 0 ≤ ηi < η, Ŝk

〉]
+ E

[
σ2
[
∆N

∣∣∣N = Nk + ηi, 0 ≤ ηi < η, Ŝk

]]
2∆t

(3.30)

=
E
[
∆N

∣∣∣N = Nk +
η

2

]
− E

[
∆N

∣∣∣N = Nk + U,U ∼ Unif[0, η)
]

2∆t
(3.31)

+
V
[
∆N

∣∣∣N = Nk +
η

2

]
− V

[
∆N

∣∣∣N = Nk + U,U ∼ Unif[0, η)
]

2∆t
, (3.32)
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E
[
Ekdeath

]
=

E

[
V
[
∆N

∣∣∣N = Nk +
η

2

]]
− E

[
E
[
∆N

∣∣∣N = Nk +
η

2

]]
2∆t

(3.33)

−
E

[〈
∆N

∣∣∣N = Nk + ηi, 0 ≤ ηi < η, Ŝk

〉]
+ E

[
σ2
[
∆N

∣∣∣N = Nk + ηi, 0 ≤ ηi < η, Ŝk

]]
2∆t

(3.34)

=
E
[
∆N

∣∣∣N = Nk +
η

2

]
− E

[
∆N

∣∣∣N = Nk + U,U ∼ Unif[0, η)
]

2∆t
(3.35)

+
V
[
∆N

∣∣∣N = Nk +
η

2

]
− V

[
∆N

∣∣∣N = Nk + U,U ∼ Unif[0, η)
]

2∆t
. (3.36)

Similarly,

V
[
Ekbirth

]
= V

[
Ekdeath

]
(3.37)

=

V

[〈
∆N

∣∣∣N = Nk + ηi, 0 ≤ ηi < η, Ŝk

〉]
+ V

[
σ2
[
∆N

∣∣∣N = Nk + ηi, 0 ≤ ηi < η, Ŝk

]]
4∆t2

(3.38)

=

V
[
∆N

∣∣∣N = Nk +
η

2

]
Ŝk

+
2
(
V
[
∆N

∣∣∣N = Nk + U,U ∼ Unif[0, η)
])2

Ŝk − 1
4∆t2

. (3.39)

In Figure 3.3, we plot three different kinds curves: the theoretical expected errors,
(
E[Ebirth]

and E[Edeath]
)

, represented by blue curves, the theoretical standard deviations of the er-

rors,
(√

V[Ebirth] and
√

V[Edeath]
)

, represented by red curves, and the empirical errors,(
Eempir, birth and Eempir, death

)
, represented by black, green, and magenta curves (respectively)

as functions of the bin size. For each bin size, the errors are the 2-norms values of the errors
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over all bins, particularly,

E[Ebirth] =

√∑
k

(
E[Ekbirth]

)2
=

√∑
k

(
E
[(

btrue
Nk+η/2 − bestimated

Nk+η/2

)(
Nk + η/2

)])2
(3.40)

E[Edeath] =

√∑
k

(
E[Ekdeath]

)2
=

√∑
k

(
E
[(

dtrue
Nk+η/2 − destimated

Nk+η/2

)(
Nk + η/2

)])2
(3.41)

V[Ebirth] =

√∑
k

(
V[Ekbirth]

)2
=

√∑
k

(
V
[(

btrue
Nk+η/2 − bestimated

Nk+η/2

)(
Nk + η/2

)])2
(3.42)

V[Edeath] =

√∑
k

(
V[Ekdeath]

)2
=

√∑
k

(
V
[(

dtrue
Nk+η/2 − destimated

Nk+η/2

)(
Nk + η/2

)])2
(3.43)

Eempir, birth =

√∑
k

(
Ekempir, birth

)2
=

√∑
k

((
btrue
Nk+η/2 − bestimated

Nk+η/2

)(
Nk + η/2

))2
(3.44)

Eempir, death =

√∑
k

(
Ekempir, death

)2
=

√∑
k

((
dtrue
Nk+η/2 − destimated

Nk+η/2

)(
Nk + η/2

))2
,

(3.45)

where k is the bin index. We derive explicit expressions for E
[
Ekbirth

]
, E
[
Ekdeath

]
, V
[
Ekbirth

]
,

and E
[
Ekdeath

]
as functions of bin size η in Appendix A.2.

For notational convenience, let θkb := btrue
Nk+η/2

(
Nk + η/2

)
, θ̂kb := bestimated

Nk+η/2

(
Nk + η/2

)
,
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θkd := dtrue
Nk+η/2

(
Nk + η/2

)
, and θ̂kd := destimated

Nk+η/2

(
Nk + η/2

)
. For each bin k, we have

(
E
[
Ekbirth

])2
=
(
E
[
θkb − θ̂kb

])2
=
(
E
[
θ̂kb

]
− θkb

)2
= bias2 (3.46)

V
[
Ekbirth

]
= V

[
θkb − θ̂kb

]
= V

[
θ̂kb

]
. (3.47)

In statistics, a common measure of estimation errors is mean squared error (MSE). In this

context, the mean squared error for the kth bin is E
[(

Ekempir, birth

)2]
= E

[(
θ̂kb − θkb

)2]
,

which is well-known to be equal to

E
[(

Ekempir, birth

)2]
= E

[(
θ̂kb − θkb

)2]
=
(
E
[
θ̂kb

]
− θkb

)2
︸ ︷︷ ︸

bias2

+V
[
θ̂kb

]
︸ ︷︷ ︸
variance

. (3.48)

The same applies to death rates. The bias-variance tradeoff says that the bias and variance

of the estimated parameters are the two conflicting sources of errors [48]. We also observe

this conflict in the context of our discretization/binning method. In Figure 3.3, we observe

that as the bin size η increases, the expected errors increase, the theoretical variances (or

standard deviations) of the errors decreases, and the empirical errors (computed using data

from a simulation of S = 100 cell number trajectories) balance between the expected values

and variances (or standard deviations). The expected values of errors reflect the differences

between computing the statistics ∆N at the midpoint
(
N = Nk +

η

2

)
and approximating

the statistics using multiple points
(
N = Nk + ηi, 0 ≤ ηi < η

)
. The smaller the bin size,

the closer multiple points are to the midpoint, so the error is smaller. However, if the bin is

too small, then there are too few samples to accurately estimate theoretical statistics with

empirical statistics. The theoretical variances of errors involves sample sizes; the bigger the

bin size, the more samples we have. These two competing effects of bin size result in the

empirical errors being intermediate values between the two theoretical statistics (expected
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values and variances) of the estimation errors. This “Goldilocks principle” is an example

of the bias-variance tradeoff common in many estimation problems. We observe in Figure

3.3 that when the bin size is smaller than the optimal bin size, the empirical error curves are

close to the sum of the expected error curves and the theoretical error standard deviation

curves, which is consistent with Equation (3.48). We expect the same behavior for bin

sizes that are larger than the optimal bin size. However, we do not observe what we expect

in Figure 3.3. We suspect this inconsistency is due to the fact the uniform distribution

approximation in each bin breaks down as the bin size gets larger.
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DeathBirth
.5

Figure 3.3: Intermediate bin sizes give optimal estimation performance. We plot the
l2-norm (over all bins) errors in estimating birth rate (left column) and death rate (right
column) as functions of bin size η for carrying capacity K = 105. Squares (□) denote
expected values of errors; triangles (△) denote standard deviations of errors; circles (◦)
denote empirical errors using data from a simulation of S = 100 cell number trajectories.
(A, C, E): errors in estimating birth rates. (B, E, F): errors in estimating death rates.
(A, B): γ = 0 (black color); (C, D): γ = 0.5 (green color); (E, F): γ = 0.5 (magenta
color). We observe that as the bin size η increases, the expected errors increase, the
theoretical variances/standard deviations of the errors decreases, and the sample errors
balance between the expected values and variances and have convex quadratic shapes.

45



3.4 Application: Inferring Underlying Mechanisms of Au-

toregulation, Drug Efficacy, and Drug Resistance

In this section, we apply our direct estimation method (Section 3.3) to shed light on drug

resistance mechanisms of pathogenic cell populations (e.g. malignant tumors or harmful

bacteria) by disambiguating whether the mechanisms involve the birth process, the death

process, or both processes. We consider the scenario where a homogeneous pathogenic cell

population grows to its carrying capacity, then is treated with a drug that reduces its carrying

capacity, and then overcomes the drug effect to regain its original carrying capacity. Within

this scenario, we use “drug resistance” to refer to the pathogenic population’s recovery of

its original carrying capacity. (For a discussion of different perspectives on drug resistance,

please refer to Section 3.5). We divide our analysis into three stages: (1) auto-regulated

growth, (2) drug treatment, and (3) drug resistance. The autoregulation stage occurs before

the drug treatment stage; during this stage, the cells regulate themselves in such a way

that their growth saturates at a given carrying capacity. Such regulation can be due to

direct or indirect cell-to-cell interactions, such as exploitation or interference competition.

During the drug treatment stage, the cells are regulated by an applied drug, which reduces

the population’s carrying capacity. The reduced carrying capacity may result either by

increasing the density-dependent death rate (“-cidal” effect) or decreasing the density-

dependent birth rate (“-static” effect), or both. Finally, in the drug resistance stage, after

having been treated with either a “-cidal” or “-static” drug, the cell population fights back

and regains to its original carrying capacity by either decreasing its density-dependent death

rate or by increasing its density-dependent birth rate. In each of these stages, changes in

either birth or death rates could result in the same observed net dynamics. It is important to

disambiguate the underlying mechanisms, to appropriately design optimal treatments with
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the goal of eventually eradicating the pathogens (i.e. reducing their sizes to zero).

3.4.1 Stage 1: Autoregulation

Cell populations with the same mean net growth rate can grow and reach their carry-

ing capacities through different mechanisms: density-dependent birth dynamics, density-

dependent death dynamics, or some combination of the two. The differences between

theses scenarios are characterized by different values of the density dependence parameter,

γ, in the model described in Section 3.2. We demonstrate this variety with three scenarios:

(I) Density dependence occurs only in the per capita death rate, while the per capita

birth rate is density independent (γ = 0). In this case, the per capita birth rate is

(bN)original = b0 and the per capita death rate is (dN)original = d0 +
r

K
N . The plots

corresponding to scenario (I) in all the figures in this chapter are represented by the

color black.

(II) Density dependence occurs in both the per capita birth and death rates (γ = 0.5). In

this case, the per capita birth rate is (bN)original = max
{
b0 − 0.5

r

K
N, 0

}
and the per

capita death rate is (dN)original = d0 + 0.5
r

K
N . The plots corresponding to scenario

(II) in all the figures in this chapter are represented by the color green.

(III) Density dependence occurs only in the per capita birth rate, while the per capita

death rate is density-independent (γ = 1). In this case, the per capita birth rate

is (bN)original = max
{
b0 −

r

K
N, 0

}
and the per capita death rate is (dN)original =

d0. The plots corresponding to scenario (III) in all the figures in this chapter are

represented by the color magenta.

Recall that the random variable N(t) represents the number of cells at time t in the logistic

birth-death process described in Section 3.2. Similarly, the parameters b0, d0, r, K, and γ
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are the same as those described in Section 3.2. Scenarios (I-III) have the same net growth

rate, (bN)original − (dN)original, but different magnitudes of birth and death rates. Scenario

(I) represents a situation in which the carrying capacity of the population arises through

an increase in the per capita death rate with population density. Such a scenario could

arise, for example, when competition is mediated through cell-to-cell interactions such as

predation or other conspecific lethal interactions. Scenario (III), in contrast, represents a

situation in which the per capita death rate remains constant with increasing population

size, but the per capita birth (cell division) rate declines. Such a scenario could arise, for

example, when competition is mediated by accumulation of waste products or competition

for food resources that slow cell division.3 Scenario (II), intermediate between (I) and (III),

represents a combination of such density-dependent mechanisms.

Figure 3.4 shows how our direct estimation method can disambiguate the three autoregula-

tion scenarios (I), (II), and (III). We simulate 100 trajectories of the cell population under

each scenario with an initial population N(t0) = 10, and the parameter values in Table

A.1, except the carrying capacity value. In addition to using K = 105 for carrying capacity

(Figure 3.4 (A), (C), and (E)), we also simulate the population with a carrying capacity

K = 102 (Figure 3.4 (B), (D), and (F)). We demonstrate that when the carrying capacity is

small (e.g. 102), it is easier to see the noise levels than when the carrying capacity is large

(e.g. 105), as seen in Figure 3.4 (C) and (D), because the fluctuations are larger relative to

the mean population. After simulating an ensemble of cell number trajectories, we estimate

birth and death rates from that ensemble of trajectories using the method given in section

3.3.3, as shown in Figure 3.4 (A) and (B). Then, we randomly select one trajectory N(t)

from those 100 trajectories, as shown in Figure 3.4 (C) and (D), and plot birth and death

3Resources depletion can also increase death rates. In this chapter, we neglect such effect.
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rates as functions of time, as shown in Figure 3.4 (E) and (F). The birth rate bN(t) and death

rate dN(t) as functions of time are calculated by treating the rates as composite functions

of the cell number N(t), and finding the rates that correspond to the selected cell number

time series in Figure 3.4 (C) and (D). We couch our model in terms of density-dependent

changes in birth and/or death rates (thus, population-number dependent, given a fixed total

volume of the cell culture). When the same net growth rate can arise from different density-

dependent mechanisms, at the level of birth and death rates, the birth and death rates as

functions of time can appear markedly different. For example, while in scenarios (I) and

(II), the birth and death rates show monotonically increasing, sigmoidal shapes throughout

time, in scenario (III), the birth rate has the shape of a concave-down quadratic function as

shown by the “+” magenta curves in Figure 3.4 (E) and (F).
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Figure 3.4: Underlying autoregulation mechanisms are distinguished by separately
identified birth and death rates, not necessarily by net changes in total population size.
Plots showing that cell populations with the same net growth rate and carrying capacity
grow to the carrying capacity under different density-dependent mechanisms, although the
observed dynamics (shown in (C) and (D)) look indistinguishable. Noise levels are more
visible for smaller carrying capacities due to smaller scales. (A, C, E): logistic birth-death
processes with carrying capacity K = 105. (B, D, F): logistic birth-death processes with
carrying capacity K = 102. (A-F): black curves correspond to the scenario γ = 0; green
curves correspond to the scenario γ = 0.5; magenta curves correspond to the scenario
γ = 1. (A, B): estimated birth and death rates for three scenarios using the direct estimation
method with an ensemble of 100 trajectories. (C, D): one selected trajectory for each
scenario. (E, F): estimated birth and death rates throughout time corresponding to the
trajectories in (C) and (D). Plus signs (+) denote estimated birth rates; circles (◦) denote
estimated death rates.
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3.4.2 Stage 2: Drug Efficacy

In this stage, the cell population is treated with a drug that cuts its carrying capacity in half,

either by increasing the per capita death rate dN or by decreasing the per capita birth rate

bN . If a drug acts by increasing the per capita death rate, we refer to it as a drug with

a “-cidal” mechanism. If a drug acts by lowering the per capita birth rate, we refer to it

as a drug with a “-static” mechanism. If a drug combines both effects, we refer to such a

treatment as having a mixed mechanism.

Figure 3.5 shows our disambiguation results for the drug efficacy mechanisms for the three

scenarios (I), (II), and (III) described in Section 3.4.1. We simulate 100 trajectories of

the cell population under each scenario with an initial population N(t0) = 10, and the

parameter values in Table A.1 under three drug efficacy cases: (i) without drug (black

curves), (ii) with “-cidal” (death-promoting) drug (red curves), and (iii) with “-static”

(birth-inhibiting) drug (blue curves). Both of the drugs reduce the original carrying capacity

K to K/2. Under the “-cidal” drug, the per capita birth and death rates are as follows

• Scenario (I), -cidal: Drug increases the per capita death rate, (dN)cidal > (dN)original:

(bN)cidal = (bN)original = b0, (3.49)

(dN)cidal = d0 +
r

(K/2)
N. (3.50)

The density dependence parameter γ remains 0.
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• Scenario (II), -cidal: Drug increases the per capita death rate, (dN)cidal > (dN)original:

(bN)cidal = (bN)original = max
{
b0 − 0.5

r

K
N, 0

}
= max

{
b0 − 0.25

r

(K/2)
N, 0

}
,

(3.51)

(dN)cidal = d0 + 0.75
r

(K/2)
N = d0 + 1.5

r

K
N. (3.52)

The density dependence parameter γ changes from 0.5 to 0.25.

• Scenario (III), -cidal: Drug increases the per capita death rate, (dN)cidal > (dN)original:

(bN)cidal = (bN)original = max
{
b0 −

r

K
N, 0

}
= max

{
b0 − 0.5

r

(K/2)
N, 0

}
,

(3.53)

(dN)cidal = d0 + 0.5
r

(K/2)
N = d0 +

r

K
N. (3.54)

The density dependence parameter γ changes from 1 to 0.5.

Under the “-static” drug, the per capita birth and death rates are as follows

• Scenario (I), -static: Drug decreases the per capita birth rate, (bN)static < (bN)original:

(dN)static = (dN)original = d0 +
r

K
N = d0 + 0.5

r

(K/2)
N, (3.55)

(bN)static = max
{
b0 − 0.5

r

K
N, 0

}
. (3.56)

The density dependence parameter γ changes from 0 to 0.5.
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• Scenario (II), -static: Drug decreases the per capita birth rate, (bN)static < (bN)original:

(dN)static = (dN)original = d0 + 0.5
r

K
N = d0 + 0.25

r

(K/2)
N, (3.57)

(bN)static = max

{
b0 − 0.75

r

(K/2)
N

}
= max

{
b0 − 1.5

r

K
N
}
. (3.58)

The density dependence parameter γ changes from 0.5 to 0.75.

• Scenario (III), -static: Drug decreases the per capita birth rate, (bN)static < (bN)original:

(dN)static = (dN)original = d0, (3.59)

(bN)static = max

{
b0 −

r

(K/2)
, 0

}
. (3.60)

The density dependence parameter γ remains 1.

53



𝜸 = 𝟏𝜸 = 𝟎. 𝟓𝜸 = 𝟎
rate

s vs. N
vs. 

rate
s vs. t

Figure 3.5: Separating birth and death rates distinguishes the underlying -cidal versus
-static action of drugs. In each of the density-dependent cases (I), (II), (III), two different
drugs reduce the cell population’s carrying capacity to the same level (shown in red and
blues curves in (D), (E), (F)), but the underlying mechanisms are different: increasing death
rates (red curves) or decreasing birth rates (blue curves). Black, green, and magenta curves
represent scenarios (I), (II), and (III) without drugs. Red curves represent the scenarios
under a “-cidal” drug, and blue curves represent the scenarios under a “-static” drug. Plus
signs (+) denote estimated birth rates; circles (◦) denote estimated death rates. (A, D,
G): scenario (I) with γ = 0 (black curves), (B, E, H): scenario (II) with γ = 0.5 (green
curves), (C, F, I): scenario (III) with γ = 1.0 (magenta curves). (A, B, C): birth and
death rates estimated from 100-trajectory ensembles. (D, E, F): a representative trajectory
without drug and two representative trajectories treated with drugs. The red and curves
trajectories have the same mean-field behavior but the drug mechanisms are different. (G,
H, I): estimated birth and death rates throughout time corresponding to the trajectories in
(D, E, F).
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Figure 3.5 illustrates the effects of -cidal versus -static drugs in scenario (I) in the first

column (panels A, D, G), scenario (II) in the second column (panels B, E, H), and scenario

(III) in the third column (panels C, F, I). As is evident in Figure 3.5 (D, E, F), the observed

cell number dynamics can be very similar in each scenario. However, Figure 3.5 panels

(A, B, C) and (G, F, H) show that the underlying birth and death processes that give rise to

the dynamics can be very different. Specifically, in (D, E, F), we see that the red and blue

curves are almost indistinguishable. Thus, these scenarios could not easily be distinguished

from the general shape of the growth curve alone. However, to obtain the red curves, we

keep the per capita birth rates the same and increase the per capita death rates, and to

obtain the blue curves, it is the other way around–as illustrated in panels (A, B, C). The

time-dependent birth and death rates in panels (G, H, I) also show significant differences.

In particular, the per capita birth rates under the “-static” drug treatment (blue curves) are

monotonically increasing in scenario (I) (density-dependent death rate, as shown in (G)),

but show a pronounced increase and then decrease in scenario (III), as shown in (I). Thus,

by extracting birth and death rates separately from cell number time series, we are able to

disambiguate underlying drug mechanisms.

3.4.3 Stage 3: Drug Resistance

After having been treated with drugs that reduce their carrying capacities as described in

Section 3.4.2, cell populations can overcome the drug effects and revert to their original

carrying capacities. We refer to this phenomenon as drug resistance. In this section,

we demonstrate different mechanisms through which cell populations might develop drug

resistance against a -cidal drug (Figure 3.6) and against a -static drug (Figure 3.7), for the
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three scenarios (I), (II), and (III) described in Section 3.4.1. In simulating the scenarios

for these two cases, we set the original carrying capacity to be K = 103, and keep the

other original parameters to be the same as in Table A.1. On this scale, the fluctuations

are readily apparent in the traces; the method works robustly for larger values of K as

well. Throughout, “original” means “wild-type” and “before drug treatment”. We consider

the case where the “-cidal” and “-static” drugs reduce the carrying capacity by a factor of 2.

The effect of a drug and the cell population’s resistance mechanism can be captured in

part by a change in its carrying capacity, in part by a change in the distribution of density-

dependent effects, described by γ, and in part by a change in the per capita intrinsic/low-

density birth and death rates, b0 and d0. Figure 3.6 illustrates different mechanisms of drug

resistance to the “-cidal” effect described in Section 3.4.2.

• In scenario (I) as shown in Figure 3.6 (A, B), the cell population can develop resis-

tance either by decreasing its per capita death rate back to the original rate:

(dN)cidal, resistant = (dN)original = d0 +
r

2(K/2)
N, (3.61)

(bN)cidal, resistant = (bN)cidal = (bN)original = b0, (3.62)

or by increasing its per capita intrinsic birth rate to b0 + r = 2r + d0:

(bN)cidal, resistant = b0 + r = 2r + d0, (3.63)

(dN)cidal, resistant = (dN)cidal = d0 +
r

(K/2)
N = d0 +

2r

K
N, (3.64)

which leads to the per capita intrinsic net growth rate r increasing to 2r. Such an

increase in the intrinsic cell division rate could potentially arise through mutation.
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(Why such a mutation would not already have been exploited in the wild-type cell

line is a question beyond the scope of this chapter.) In both drug resistance scenarios,

the density dependence parameter γ remains 0, which suggests no significant change

in the cell-to-cell interaction modality.

• In scenario (II) as shown in Figure 3.6 (C, D), the cell population can develop

resistance by either decreasing its per capita death rate back to the original rate:

(dN)cidal, resistant = (dN)original = d0 + 0.5
r

2(K/2)
N, (3.65)

(bN)cidal, resistant = (bN)cidal = (bN)original = max
{
b0 − 0.5

r

K
N, 0

}
, (3.66)

or by increasing its per capita intrinsic birth rate to b0 + 2r = 3r + d0:

(bN)cidal, resistant = max

{
3r + d0 − 0.5

3r

K
N, 0

}
, (3.67)

(dN)cidal, resistant = (dN)cidal = d0 + 1.5
r

2(K/2)
N = d0 + 0.5

3r

K
N, (3.68)

which shows that the per capita intrinsic net growth rate r would have to increase to

3r. Such an increase in the intrinsic cell division rate could potentially arise through

mutation. In both drug resistance scenarios, the density dependence parameter γ

changes from 0.25 back to 0.5, which suggests a change in cell-to-cell interaction

modality. Note that the drug resistance mechanism through death in this scenario is

different from scenario (I), because in scenario (I), the per capita death rate decreases

only due to increased carrying capacity, while in this scenario, the per capita death

rate decreases also due to decreased density dependence of death (i.e. (1−γ) changes

from 0.75 to 0.5).
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• In scenario (III) as shown in Figure 3.6 (E, F), the cell population can become drug

resistant either by decreasing its per capita death rate back to the original rate:

(dN)cidal, resistant = (dN)original = d0, (3.69)

(bN)cidal, resistant = (bN)cidal = (bN)original = max
{
b0 −

r

K
N, 0

}
, (3.70)

or by increasing its per capita birth rate to

(bN)cidal, resistant = b0, (3.71)

(dN)cidal, resistant = (dN)cidal = d0 +
r

2(K/2)
N. (3.72)

In the first scenario (drug resistance mechanism via modified death rate), the density

dependence parameter γ changes from 0.5 back to 1, while in the drug resistance

mechanism through birth, the density dependence parameter γ changes from 0.5 to

0. Both of these scenarios suggest changes in the cell-to-cell interaction modalities.

The latter suggests a significant change from full density dependence in birth (before

drug treatment) to full density dependence in death (after “-cidal” drug treatment and

resistance). Note that the per capita intrinsic rates, b0 and d0, remain the same.

Figure 3.6 shows that having been treated with a “-cidal” drug, the cell population can

develop resistance either by reverting to its original dynamics–the red curves change back

to the black, green, and magenta curves for scenarios (I), (II), and (III) respectively in the

figure, or by increasing its per capita birth rate as illustrated by the cyan curves. We may

call the latter drug resistance mechanism “enhanced fecundity” or “hyper-birth.” Without

computing the birth and death rates explicitly, we observe from cell number time series that

if the resistant cell population (cyan curves) reaches its original carrying capacity earlier
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than the wild-type population (black, green, magenta curves) as in Figure 3.6 (B, D) or if the

typical fluctuations around the mean population size are visibly larger than the fluctuations

of the wild-type as in Figure 3.6 (F), we may hypothesize that the population has developed

drug resistance through the “hyper-birth” mechanism.
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Figure 3.6: Resolving separate birth vs. death rates distinguishes different underlying
mechanisms of resistance to -cidal drugs. In each of the three density-dependent
scenarios (I), (II), (III), a cell population can restore its carrying capacity after a “-cidal”
drug treatment via different mechanisms: decreasing death rate to return to the original
dynamics (shown in the black, green, magenta curves) or increasing birth rate (shown in
the cyan curves). (A, B, C): estimated birth and death rates using an ensemble of 100
cell number trajectories. Plus signs (+) denote estimated birth rates; circles (◦) denote
estimated death rates. (D, E, F): selected cell number trajectories. (G, H, I): estimated
birth and death rates corresponding to the cell number trajectories in (D, E, F). (A, D, G):
scenario (I) where the density dependence γ = 0. (B, E, H): scenario (II) where the density
dependence γ = 0.5. (C, F, I): scenario (III) where the density dependence γ = 1. The red
curves represent the case where the cell population has been treated with a “-cidal” drug.
The black, green, and magenta curves represent the case where the cell population develops
resistance by decreasing its per capita death rate and returns to the original dynamics for
the scenarios (I), (II), and (III) introduced in Section 3.4.1. The cyan curves represent the
case in which the cell population develops resistance by increasing its per capita birth rate.
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Figure 3.7 illustrates different mechanisms of drug resistance to the “-static” effect de-

scribed in Section 3.4.2.

• In scenario (I) as shown in Figure 3.7 (A, B), the cell population can become drug

resistant either by increasing its per capita birth rate back to the original rate:

(bN)static, resistant = (bN)original = b0, (3.73)

(dN)static, resistant = (dN)static = (dN)original = d0 +
r

K
N, (3.74)

or by decreasing its per capita death rate:

(dN)static, resistant = d0, (3.75)

(bN)static, resistant = (bN)static = b0 − 0.5
r

(K/2)
N = max

{
b0 −

r

K
N, 0

}
. (3.76)

In the drug resistance mechanism through birth, the density dependence parameter γ

changes from 0.5 back to 0, while in the drug resistance mechanism through death,

the density dependence parameter γ changes from 0.5 to 1. Both of these scenarios

suggest changes in the cell-to-cell interaction modalities. The latter suggests a sig-

nificant change from full density dependence in death (before drug treatment) to full

density dependence in birth (after “-static” drug treatment and resistance).

• In scenario (II) as shown in Figure 3.7 (C, D), the cell population can develop
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resistance by either increasing its per capita birth rate back to the original rate:

(bN)static, resistant = (bN)original = b0 − 0.5
r

K
N, (3.77)

(dN)static, resistant = (dN)static = (dN)original = d0 + 0.25
r

(K/2)
N = d0 + 0.5

r

K
N,

(3.78)

or by decreasing its per capita intrinsic death rate to d0 − 2r:

(dN)static, resistant = d0 − 2r + 0.5
3r

K
N, (3.79)

(bN)static, resistant = (bN)static = max

{
b0 − 0.5

3r

K
N, 0

}
. (3.80)

In the drug resistance mechanism through birth, the density dependence parameter γ

changes from 0.75 back to 0.5, which suggests a change in the cell-to-cell interac-

tion modality. In the drug resistance mechanism through death, the new per capita

intrinsic death rate, d0 − 2r, can be negative, which is not biologically meaningful.

• In scenario (III) as shown in Figure 3.7 (E, F), the cell population can develop

resistance by either increasing its per capita birth rate back to the original rate:

(bN)static, resistant = (bN)original = max
{
b0 −

r

K
N
}
, (3.81)

(dN)static, resistant = (dN)static = (dN)original = d0, (3.82)
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or by decreasing its per capita intrinsic death rate to d0 − r:

(dN)static, resistant = d0 − r, (3.83)

(bN)static, resistant = (bN)static = max

{
b0 −

2r

K
N, 0

}
. (3.84)

In the drug resistance mechanism through birth, the density dependence parameter γ

remains 1, which suggests no significant change in the cell-to-cell interaction modal-

ity. In the drug resistance mechanism through death, the new per capita intrinsic

death rate, d0 − r, can be negative, which is not biologically meaningful.

Figure 3.7 shows that having been treated with a “-static” drug, the cell population can

develop resistance either by reverting to its original dynamics–the blue curves change back

to the black, green, and magenta curves for scenarios (I), (II), and (III) respectively in the

figure–or by decreasing its per capita death rate as illustrated by the cyan curves. We

may call the latter drug resistance mechanism “reduced mortality” or “hypo-death.” We

note that the decreased per capita death rate can become algebraically negative and not

biologically meaningful, as seen in Equations (3.79) and (3.83), which is consistent with

the fact that drug resistance has previously been considered mainly for “-cidal” drugs, not

“-static” drugs, in the literature, cf. [12]. However, in contrast to some recent literature [12],

in this chapter, we propose the possibility of mechanisms through which cell populations

can overcome the “-static” effect (birth inhibition) of drugs–that is, increasing the per

capita birth rates back to the original rates, as seen in the black, green, and magenta curves

in Figure 3.7. For instance if, through preexisting genetic variation, the cell population

contained a mutant with an alternative sequence for the protein by which the drug targets

the cell, then as this variant propagated in favor of the principal variant, the cell line could

develop resistance to the “-static” drug. It is interesting to observe in Figure 3.7 (G) that
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even after being with a “-static” drug that inhibits birth, the cell population can develop

resistance by reducing birth rates throughout time–as we can see the cyan curves are lower

than the blue curves as time increases.

We note that for scenario (I) where γ = 0, we observe a second possible drug resistance

mechanism, in which the cell population decreases its per capita death rate without mak-

ing it negative. In this scenario, the cell population also changes its density dependence

parameter from γ = 0 to γ = 1 as it becomes resistant to the “-static” drug.
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s vs. t

Figure 3.7: Resolving separate birth vs. death rates distinguishes different underlying
mechanisms of resistance to -static drugs. A cell population can restore its carrying
capacity after a “-static” drug treatment via different mechanisms: increasing birth rate to
return to the original dynamics (shown in the black, green, magenta curves) or decreasing
death rate (shown in the cyan curves). The latter can happen only for scenario (I) where
originally, the density dependence is fully in the death rate. (A, B, C): estimated birth
and death rates using an ensemble of 100 cell number trajectories. Plus signs (+) denote
estimated birth rates; circles (◦) denote estimated death rates. (D, E, F): selected cell
number trajectories. (G, H, I): estimated birth and death rates corresponding to the cell
number trajectories in (D, E, F): selected cell number trajectories. (A, D, G): scenario (I)
where the density dependence γ = 0. (B, E, H): scenario (II) where the density dependence
γ = 0.5. (C, F, I): scenario (III) where the density dependence γ = 1. The blue curves
represent the case where the cell population has been treated with a “-static” drug. The
black, green, and magenta curves represent the case where the cell population develops
resistance by decreasing its per capita death rate and returns to the original dynamics for
the scenarios (I), (II), and (III) introduced in Section 3.4.1. The cyan curves represent the
case in which the cell population develops resistance by increasing its per capita birth rate.
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3.5 Conclusion and Discussion

In order to infer density-dependent population dynamics mechanisms from data, we sep-

arately identify density-dependent per capita birth and death rates from net growth rates

using the method described in Section 3.3 and infer whether density dependence is man-

ifest in the birth process, death process, or some combination of the two. Our method

involves directly estimating the mean and variance of cell number increments, as functions

of population size, and expressing birth and death rates in terms of these two statistics. In

order to obtain the mean and variance with tolerable accuracy, we compute them from an

ensemble of cell number time series (e.g. multiple experiments). We analyze the accuracy

of this method and derive analytical expressions for the theoretical expected errors and

variance of errors in estimating birth and death rates as functions of the bin size (details

are in Appendix A.2). We discover that small bin sizes do not necessarily result in small

errors in estimating birth and death rates, due to small sample sizes. In fact, we find that

intermediate bin sizes are optimal. Our error analysis also shows that if the intrinsic per

capita net growth rate r is large relative to the carrying capacity K, then the expected error

in estimating the mean cell number increment is high, as shown in Equation (A.33), which

suggests that the estimation is not as good for fast-producing cell types.

Our method is distinct from other methods in the literature. It provides a novel perspective

on the problem of stochastic parameter identification. Existing methods typically require

numerical solution of a high-dimensional optimization problem, e.g. in a Bayesian inverse

problem setting [14] or a likelihood function maximization framework. [19] constructed an

expectation-maximization algorithm to identify birth and death rates for general birth-death

processes. This method enjoys fast convergence and benefits from an elegant formulation of
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conditional expectations in terms of convolutions of transition probabilities. Their approach

results from solving a maximum likelihood problem. In contrast, we suggest a simple direct

estimation approach that accurately extracts birth and death rates from the conditional first

and second moments of the cell number time series data. Aside from [19], to the best of

our knowledge, other work addressing disambiguation of birth and death rates has been

confined to linear birth-death processes. For example, [58] used a Bayesian approach

to parameter estimation for linear birth-death models in order to quantify the effects of

changing drug concentrations. Here, we also consider different drug treatment scenarios,

but in the context of nonlinear, logistic population models rather than linear growth models.

[28] estimated birth and death rates as functions of time for a continuous-time branching

process. Their method applies to multi-type cell populations and is illustrated with density-

independent per capita birth and death rates. In contrast, our framework encompasses

density-dependent per capita rates.

Our direct estimation method is a data-hungry approach. As an alternative, for small

sample sizes, we also present a maximum likelihood approach in Section 4.2, in which we

evaluate the log-likelihood function and maximize it over the density dependence parameter

γ ∈ [0, 1]. This approach, which involves solving a constrained nonlinear optimization

problem, is limited to the assumption that the other system parameters are known.

The significance of both approaches is the application in studying treatments of pathogens

and their resistance to the treatments. Specifically, in Section 3.4, we consider the scenario

where a homogeneous cell population goes through three stages: (1) grows naturally to its

carrying capacity, (2) is treated with a drug that reduces its carrying capacity, and (3) over-

comes the drug effect to gain back its carrying capacity. Our method allows us to identify
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whether each stage happens through the birth process, death process, or some combination

of the two. Our analysis contributes to disambiguating underlying mechanisms such as ex-

ploitation vs. interference competition in ecology, bacteriostatic vs. bactericidal antibiotics

in clinical treatments, and enhanced fecundity vs. reduced mortality in pathogens’ defense

against drug treatments, which we may define as drug resistance. The mechanisms shown

in this chapter can help explain biological phenomena and may suggest novel approaches

for engineering synthetic biological systems. More microscopic mechanisms within the

birth process or death process, such as inactivating mutations of the gene for p53 protein

[4], are beyond the scope of the model in this chapter.

In Section 3.4.2, we show how to apply our method to distinguish the action of “-static”

(birth-inhibiting) versus “-cidal” (death-promoting) drugs. However, the classification of

drugs as being “-static” or “-cidal” is complicated by potentially stochastic factors such

as external growth conditions [71]. For bacterial infections in a clinical setting, the “-

static/-cidal” distinction is defined in terms of drug concentrations–specifically in terms of

the ratio between Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal

Concentration (MBC). The Minimum Inhibitory Concentration (MIC) is defined as the

lowest drug concentration that prevents visible growth, and the Minimum Bactericidal

Concentration (MBC) is defined as the lowest drug concentration that results in a 99.99%

decrease in the initial population size over a fixed period of time. Bacteriostatic drugs

have been defined as those for which the ratio of the MBC to the MIC is larger than 4.

Bactericidal drugs are those for which the ratio is ≤ 4 [94]. Including the differential effects

of drugs at larger or smaller concentrations will be an interesting direction for expanding

our birth/death rate analysis in future work.
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In Section 3.4.3, we use our direct estimation method to disambiguate different drug re-

sistance mechanisms. In our chapter, we define “drug resistance” as the cell population’s

ability to overcome the drug effect and gain back its original carrying capacity. However,

the term “drug resistance” is used to mean different things in the research literature. For

example, in Davison et al. 2000 [21], drug resistance is defined in terms of the drug

concentration needed to inhibit growth or kill the pathogen. Brauner et al. 2016 [12]

quantify cell populations overcoming drug effects in terms of MIC and the minimum time

needed to kill the pathogens (MDK). Based on these two measures, MIC and MDK, the

pathogens’ defense against the drug can be called drug tolerance, persistence, or resistance.

For future work, we will look into different definitions of “drug resistance”.

For the present study, we confine our investigation to simulated data because of several

factors. First, generating large ensembles of cell population trajectories is expensive,

although high-throughput methods continue to accelerate the pace of data generation [36].

In a typical bioreactor, the data available are optical density time series, rather than direct

cell number measurements. In theory, the relation between optical density and cell count

is expected to be linear. Unfortunately, that is not always the case. McClure et al. 1993

[63] show that it can be second order and Stephens et al. 1997 [81] show that it can be

third order. Moreover, Stevenson et al. 2016 [82] show that the relation between cell count

and optical density varies for different cell sizes and shapes, as well as other properties

such as the index of refraction of the media. Some experimental calibration techniques

have been developed to overcome these discrepancies, such as Francois et al. 2005 [30]

and Beal et al. 2020 [6]. Finally, experimental data may include measurement noise that

obscures finite population driven density fluctuations. Swain et al. 2016 [85] attempts to

estimate net growth rates from optical density data using a Gaussian process framework.
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In contrast, we would like disambiguate net growth rate into separate birth and death rates.

Extending our method to take into account the mapping from cell number to noisy optical

density measurements is an interesting subject for future work.

In the derivation of the relations between birth/death rates and the mean/variance of cell

number increments in Section 3.3, we assume that the birth and death processes are ap-

proximately independent. However, the birth and death processes cannot be truly indepen-

dent, as a cell cannot both divide and die at the same time. Suppose we do not assume

independence in data, which means our data simulation include the nonzero covariance

between the number of cells going through division and the number of cells going through

death. The covariance is computed as follows. Let I(p)+ denotes a binary-valued random

variable indicating whether the pth cell going through division after a time period ∆t and is

equal to 1 for yes, and 0 for no. Similarly, let I(q)− denotes a binary-valued random variable

indicating whether the qth cell going through death after a time period ∆t and is equal to 1

for yes, and 0 for no. Then,

∆N+ =
N∑
p=1

I
(p)
+ and ∆N+ =

N∑
q=1

I
(q)
− , (3.85)
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and

Cov
(
∆N+|N,∆N−|N

)
= Cov

( N∑
p=1

I
(p)
+ ,

N∑
q=1

I
(q)
−

)
(3.86)

=
N∑
p=1

N∑
q=1

Cov
(
I
(p)
+ , I

(q)
−

)
(3.87)

=
∑
p=q

N∑
q=1

Cov
(
I
(p)
+ , I

(q)
−

)
+

N∑
p=1,p ̸=q

N∑
q=1

Cov
(
I
(p)
+ , I

(q)
−

)
(3.88)

= 0 +
N∑
q=1

Cov
(
I
(q)
+ , I

(q)
−

)
, as p ̸= q represents two different cells, so they are independent.

(3.89)

=
N∑
q=1

E
[
I
(q)
+ I

(q)
−

]
−

N∑
q=1

E
[
I
(q)
+

]
E
[
I
(q)
−

]
(3.90)

= 0−
N∑
q=1

E
[
I
(q)
+

]
E
[
I
(q)
−

]
, as I(q)+ I

(q)
− = 0, since a cell cannot divide and die at the same time.

(3.91)

= −N
(
bN∆t

)(
dN∆t

)
(3.92)

= −NbNdN∆t2, (3.93)

which we could include in our data simulation using Gaussian approximation and τ -leaping

simulation as follows:

X(t+∆t)−X(t) =
(
bX(t) − dX(t)

)
X(t)∆t (3.94)

+

√√√√(bX(t) + dX(t)

)
X(t)− bX(t)dX(t)X(t)∆t︸ ︷︷ ︸

from nonzero covariance

∆W (t).
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We simulate cell number trajectories using Equation (3.95) and estimate birth and death

rates with the independence assumption, as in Equations (3.15) with the approximation

V[∆X|X] ≈
(
bX + dX

)
X∆t. Although the data do not assume independence between

the birth and death processes and our estimation does, we see that the estimated and true

birth and death rates are well-aligned, showing our method described in Section 3.3 with

the independence assumption is robust, as shown in Figure 3.8.
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RatesTrajectories

.5

Figure 3.8: The estimation method works well even without the independence
assumption in the simulated data. (A, C, E): Time series ensembles simulated using
the τ -leaping approximation for the cases γ = 0 (A), γ = 0.5 (C), and γ = 1 (E)
respectively. In the simulation, we do not assume independence between the birth and
death processes, and include the nonzero covariance between the two processes. Each
figure shows S = 100 trials. The estimated rates are computed using a bin size of η = 103.
Carrying capacity K = 105 cells; low-density growth rate r = 1/120 (arbitrary time units);
for other parameters see Table A.1. (B, D, F): Estimated and true birth and death rates, as
functions of population size. Blue line: true birth rate. Red line: true death rate. Plus signs
(+) denote estimated birth rates; circles (◦) denote estimated death rates. Throughout the
we will use distinct colors to denote values of γ. (B) Black: γ = 0; (D) Green: γ = 0.5;
(E) Magenta: γ = 1.0. We observe that the estimated birth and death rates are well-aligned
with the true birth and death rates used to simulate the trajectories in (A), (C), and (E).
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In this thesis, we consider the stochastic dynamics where the waiting time to the next event

(i.e. birth or death) is exponentially distributed. However, in real life, this distribution

does not have to be exponential and the variation from cell to cell can be significant.

For example, [57] considers the case where the generation time (i.e. the time from cell

birth to division) follows a general probability distribution, and expresses the long-term

net growth rate in terms of the distribution. Similarly, the book by Kimmel and Axelrod

[47] provides theories in branching processes to analyze and make inferences when the cell

division process includes transitions among multiple stages. As pointed out in [57], many

factors can give rise to cell-to-cell variability such as asymmetries in cell division. It is an

interesting problem to consider extending our analysis to systems with a richer description

of the cell division process. For future work, we would like take the variations between

cells into consideration, and infer the dynamics accordingly.

As mentioned in the Introduction (Section 3.1), throughout the chapter, we interpret the

density dependence term (interaction between individuals) as competition, which either

reduces birth rates or increases death rates. However, in some situations, interactions

among individuals can be cooperative, and increase the birth rate or reduce death rate

with increasing population size [9]. To address this possibility, in future work one might

introduce to a cooperation parameter c ≥ 0:

dϕ

dt
= rϕ− r

K
ϕ2 = rϕ+ c

r

K
ϕ2︸ ︷︷ ︸

cooperation

− (1 + c)
r

K
ϕ2︸ ︷︷ ︸

competition

. (3.95)

One may interpret the cooperation term c
r

K
ϕ2 as a positive interaction between individuals

that increases cell population growth. One could parameterize this term with parameter

γc, to quantify how much of the cooperation increases birth and how much of the coop-
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eration decreases death. Similarly, one may interpret the competition term (1 + c)
r

K
ϕ2

as a negative interaction between individuals that reduces cell population growth. One

could parameterize the competition term with parameter γ∼c to quantify how much of the

competition decreases birth and how much of the competition increases death:

dϕ

dt
=rϕ+ γcc

r

K
ϕ2︸ ︷︷ ︸

cooperation

+(1− γc)c
r

K
ϕ2︸ ︷︷ ︸

cooperation

− γ∼c(1 + c)
r

K
ϕ2︸ ︷︷ ︸

competition

− (1− γ∼c)(1 + c)
r

K
ϕ2︸ ︷︷ ︸

competition

(3.96)

=
(
b0ϕ+ γcc

r

K
ϕ2 − γ∼c(1 + c)

r

K
ϕ2
)

︸ ︷︷ ︸
birth

(3.97)

−
(
d0ϕ− (1− γc)c

r

K
ϕ2 + (1− γ∼c)(1 + c)

r

K
ϕ2
)

︸ ︷︷ ︸
death

. (3.98)

Exploring these and other extensions provide interesting directions for future investigation.
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Chapter 4

Likelihood-Based Inference:

Density-Dependent Dynamics

Disambiguation

4.1 Motivation

Separately identifying birth and death rates using the direct estimation method in Chapter

3 requires sufficiently large sample sizes. However, large datasets can be costly in terms

of time and resources. In this chapter, we consider alternative approaches for small sample

sizes. Most statistical inference methods are for linear birth-death-processes, in which the

per capita birth and death rates do not depend on cell numbers [87], while we are interested

in density dependence. Since we want to perform inference in the context of our logistic

birth-death process model described in Chapter 3, Section 3.2, we adopt one of the classical

methods: the likelihood approach [76]. The key aspects of our model are the per capita
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birth and death rates defined in Equations (3.6) and (3.7). For convenience, we are going

to recall those definitions here:

bN = max{b0 − γ
r

K
N, 0}, (4.1)

dN = d0 + (1− γ)
r

K
N. (4.2)

Our model is characterized by the parameter set Θ := {b0, d0, K, γ}. Although there

are four parameters in our model, we can easily estimate the carrying capacity K, and

we can estimate the intrinsic net growth rate r = b0 − d0 using methods such as [85].

Therefore, we just need to estimate γ and either b0 or d0. In Section 4.2, we assume that we

know b0, d0, K, and solve a one-dimensional maximum likelihood problem with γ being

the variable. Moving from one-dimension to two-dimension introduces computational

complexity. Moreover, even for the one-dimensional problem, it is hard to theoretically

verify that the numerical solution is indeed a maximizer. In particular, as shown in Section

4.2, we can only verify numerically that the second derivative of the log-likelihood at the

numerical solution is negative; it remains very difficult to prove the second-order optimality

condition in the context of our problem. Therefore, instead of solving a two-dimensional

optimization problem for γ and b0 (or d0), we take a different perspective. We compute

the mean and variance of the log-likelihood, and we use these two statistics to answer

the “more likely” question. By “more likely”, we mean For which scenario is the log-

likelihood higher? We are hoping that L(XΘ1|Θ1) > L(XΘ1 |Θ2), from which we can infer

that scenario Θ1 is “more likely” than scenario Θ2. Since L(XΘ1|Θ1) and L(XΘ1|Θ2) are

random variables, we need to assess the following probability:

P

(
L(XΘ1|Θ1) > L(XΘ1|Θ2)

)
, (4.3)
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Define Z1 := L(XΘ1|Θ1)− L(XΘ1 |Θ2). Then,

P

(
L(XΘ1|Θ1) > L(XΘ1 |Θ2)

)
= P

(
Zdata > 0

)
, (4.4)

and

E[Z1] = E
[
L(XΘ1|Θ1)

]
− E

[
L(XΘ1 |Θ2)

]
(4.5)

V[Z1] = V
[
L(XΘ1|Θ1)

]
+ V

[
L(XΘ1|Θ2)

]
. (4.6)

We may then use E[Z1] and V[Z1] to compute P

(
Zdata > 0

)
. Computing the mean and

variance of the log-likelihood in Section 4.4 and Section 4.5 requires the probability of the

state in our model (i.e. number of cells), which we compute in Section 4.3.

4.2 Maximization over Density Dependence Parameter

In the instance that there is only a single cell number trajectory, we would like to infer the

density dependence scenario from which the data are generated. This question leads us to

consider a maximum likelihood approach.

Let a cell number time series Xdata = [x0, x1, . . . , xT ] be a realization for the normally

distributed random variable X = [X(t0), X(t1), . . . , X(tT )], which approximates the dis-

crete random variable N = [N(t0), N(t1), . . . , N(tT )] as discussed in Section 3.3.2. For

clarity, we denote xj as xj,data, j = 0, . . . , T . Recall that X(t) follow a Gaussian birth-

death process1 characterized by the parameter set Θdata = {b0,data, d0,data, γdata, Kdata}. These

1This approximation requires sufficiently large summed birth and death rates.
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parameters determine the birth and death rates of the birth-death process from which the

time series is generated. In particular, the per capita birth and death rates are defined as

follows:

bXj,data = max

{
b0,data − γdata

rdata

Kdata
Xj,data, 0

}
, (4.7)

dXj,data = d0,data + (1− γdata)
rdata

Kdata
Xj,data, (4.8)

where rdata = b0,data −d0,data. To test whether a given time series Xdata belongs to a scenario

characterized by the parameter set Θtest = {b0,test, d0,test, γtest, Ktest}, we evaluate the log

likelihood function at the time series:

L(Xdata|Θtest) = ln
(
P (x0,data)

)
︸ ︷︷ ︸

=ln(1)

+
T−1∑
j=1

ln
(
P (xj+1,data|xj,data, Θtest)

)
(4.9)

=
T−1∑
j=1

1

2
ln

(
1

2πxj,data(btest,xj,data + dtest,xj,data)∆t

)
(4.10)

− 1

2

(
xj+1,data − xj,data − xj,data(btest,xj,data − dtest,xj,data)∆t

)2
xj,data(btest,xj,data + dtest,xj,data)∆t

, (4.11)

where

btest,xj,data = max

{
b0,test − γtest

rtest

Ktest
xj,data, 0

}
, (4.12)

dtest,xj,data = d0,test + (1− γtest)
rtest

Ktest
xj,data, (4.13)

rtest = b0,test − d0,test. (4.14)

Suppose we know b0,data, d0,data, and Kdata. That is, suppose that b0,test = b0,data, d0,test =

d0,data, and Ktest = Kdata. Given one cell number time series, to infer which density
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dependence scenario the data mostly likely belongs, we treat the log-likelihood function

as a function f of γ := γtest, and find γ ∈ [0, 1] that maximizes f(γ). We thus formulate a

constrained nonlinear optimization problem as follows:

max
γ

f(γ) = L(Xdata|Θtest) subject to 0 ≤ γ ≤ 1. (4.15)

For shorter notation, here we denote b0,test and b0,data as b0, d0,test and d0,data as d0, Ktest and

Kdata as K, and xj,data as xj . We calculate the first derivative df/dγ and find critical points

by solving
df

dγ
= 0, γ ∈ [0, 1] numerically using the Bisection method on the interval

[0−∆γ, 1 +∆γ], ∆γ = 0.5 > 0. We use the interval [−0.5, 1.5], which is wider than the

domain of γ, so that we can find the end points γ = 0 and γ = 1 using the Bisection method.

Given multiple samples of cell number time series (e.g. from multiple experimental trials),

we obtain an empirical distribution of solutions γ to the optimization problem (4.15).

In Figure 4.1, for each of the three scenarios (I) γdata = 0, (II) γdata = 0.5, and (III)

γdata = 1, we plot the results upon solving the optimization problem 100 times for 100

independent time series, and obtain a distribution of estimated γ parameters. In addition

we obtain a distribution of the estimation error, which we define as the absolute difference

(γdata − γestimated), where γestimated is the numerical solution to the optimization problem

(4.15). The values of the parameters b0, d0, and K used in data simulation are the same as

in Table A.1. The empirical means and variances of the estimated γ values and estimation

errors for the three scenarios (I), (II), and (III) are listed in Table 4.1.
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Table 4.1: Numerical solution to the optimization problem (4.15) for a time series of length
T = 90, 000 points (timestep ∆t = 1/30, total time 3000 arbitrary units).

True γ Mean Variance of Mean Error
Value Estimated γ Estimated γ Error Variance

0 0.0010 1.4858× 10−4 −0.0010 1.4858× 10−4

0.5 0.4996 8.4605× 10−5 2.7218× 10−5 8.4605× 10−5

1 1.0000 3.6839× 10−5 −2.8675× 10−5 3.6839× 10−5

We note that the mean values of γ for the three scenarios (I), (II), and (III) are separated

by margins that are an order of magnitude larger than the standard errors of the estimates.

Thus, for the data generated by our birth/death simulations, the distribution the density-

dependent effects can clearly be distinguished in terms of fully a birth-rate effect, fully a

death-rate effect, or an evenly mixed effect.
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Figure 4.1: Numerical solutions to the optimization problem for different density
dependence scenarios are clearly separated. We plot empirical distributions of estimated
γ values, and corresponding errors, for an ensemble of individual cell number time series.
(A, B): cell number time series simulated with γ = 0; (C, D): cell number time series
simulated with γ = 0.5; (E, F): cell number time series simulated with γ = 1. (A, C, E):
distributions of estimated γ; (B, D, F): distributions of the corresponding estimation errors,
defined as (γdata−γestimated). We observe that the distributions of the estimated γ have small
variances, and the errors are approximately normally distributed. Here we used time series
of length T = 90, 000 points (timestep ∆t = 1/30, total time 3000).
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We calculate the first and second derivatives of the log-likelihood function f(γ) (4.11) for a

single trajectory as a function of the density-dependence parameter γ. Let ∆xj = xj+1−xj .

f(γ) =
T−1∑
j=1

1

2
ln

(
1

2πV[∆xj]

)
− 1

2

(
∆xj − E[∆xj]

)2
V[∆xj]

(4.16)

=
T−1∑
j=1

−1

2
ln(2π)− 1

2
ln
(
V[∆xj]

)
− 1

2

(
∆xj − E[∆xj]

)2
V[∆xj]

, (4.17)

where

E[∆xj] = xj∆t(bxj
− dxj

) = xj∆t (4.18)

V[∆xj] = xj∆t(bxj
+ dxj

) (4.19)

We observe that E[∆xj] is a piecewise linear function of γ, i.e. E[∆xj] has the form

cj1 + cj2γ, where

cj1 =


xj∆t

(
b0 − d0 −

r

K
xj

)
, for

(
b0 − γ

r

K
xj

)
> 0

−xj∆t
(
d0 +

r

K
xj

)
, for

(
b0 − γ

r

K
x2
j

)
= 0

(4.20)

and

cj2 =


0, for

(
b0 − γ

r

K
xj

)
> 0

∆t
r

K
xj, for

(
b0 − γ

r

K
x2
j

)
= 0

(4.21)
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The variance V[∆xj] is also a linear function of γ, i.e. V[∆xj] has the form cj3 − cj4γ with

cj3 =


xj∆t

(
b0 + d0 +

r

K
xj

)
, for

(
b0 − γ

r

K
xj

)
> 0

xj∆t
(
d0 +

r

K
xj

)
, for

(
b0 − γ

r

K
x2
j

)
= 0

(4.22)

and

cj4 =


2∆t

r

K
x2
j , for

(
b0 − γ

r

K
xj

)
> 0

∆t
r

K
x2
j , for

(
b0 − γ

r

K
x2
j

)
= 0

(4.23)

Therefore,

f(γ) =
T−1∑
j=1

−1

2
ln(2π)− 1

2
ln
(
cj3 − cj4γ

)
− 1

2

(
∆xj − cj1 − cj2γ

)2
cj3 − cj4γ

(4.24)

Denote vj =
1

cj3 − cj4γ
⇒ vj > 0 and

dvj
dγ

=
cj4

(cj3 − cj4γ)
2
= cj4v

2
j . We have

f(γ) =
T−1∑
j=1

−1

2
ln(2π) +

1

2
ln(vj)−

1

2

(
∆xj − cj1 − cj2γ

)2
vj (4.25)
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If b0 − γ(r/K)xj > 0, then cj2 = 0 and E[∆xj] = cj1 is independent of γ. Hence,

df

dγ
=

T−1∑
j=1

1

2

1

vj

dvj
dγ

− 1

2

(
∆xj − cj1

)2dvj
dγ

=
T−1∑
j=1

1

2
cj4vj −

1

2

(
∆xj − cj1

)2
cj4v

2
j (4.26)

⇒ d2f

dγ2
=

T−1∑
j=1

1

2
cj4
dvj
dγ

− 1

2

(
∆xj − cj1

)2
cj42vj

dvj
dγ

(4.27)

=
T−1∑
j=1

1

2
(cj4)

2v2j −
(
∆xj − cj1

)2
(cj4)

2v3j (4.28)

=
T−1∑
j=1

(cj4)
2v2j

(
1

2
−
(
∆xj − cj1)

)2
vj

)
(4.29)

=
T−1∑
j=1

(cj4)
2v2j

(
1

2
−

(∆xj − E[∆xj])
)2

V[∆xj]

)
(4.30)
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In general,

df

dγ
=

T−1∑
j=1

1

2

1

vj

dvj
dγ

− 1

2

(
∆xj − cj1 − cj2γ

)2dvj
dγ

+ cj2

(
∆xj − cj1 − cj2γ

)
vj (4.31)

=
T−1∑
j=1

1

2
cj4vj −

1

2

(
∆xj − cj1 − cj2γ

)2
cj4v

2
j + cj2

(
∆xj − cj1 − cj2γ

)
vj (4.32)

⇒ d2f

dγ2
=

T−1∑
j=1

1

2
cj4
dvj
dγ

+
1

2
2cj2

(
∆xj − cj1 − cj2γ

)
cj4v

2
j −

1

2

(
∆xj − cj1 − cj2γ

)2
cj42vj

dvj
dγ

(4.33)

+
T−1∑
j=1

cj2

(
∆xj − cj1 − cj2γ

)dvj
dγ

(4.34)

=
T−1∑
j=1

1

2
(cj4)

2v2j + 2cj2c
j
4

(
∆xj − cj1 − cj2γ

)
v2j −

(
∆xj − cj1 − cj2γ

)2
(cj4)

2v3j

(4.35)

=
T−1∑
j=1

cj4v
2
j

(
1

2
cj4 + 2cj2

(
∆xj − cj1 − cj2γ

)
−
(
∆xj − cj1 − cj2γ

)2
cj4vj

)
(4.36)

Figure 4.2 shows the frequency
d2f

dγ2
evaluated at the numerical root of

df

dγ
on [0, 1] is

negative among 100 times of solving the optimization problem (4.15). We observe that the

second derivatives are negative for all of the cases, which implies that the numerical root is

reasonably a maximum.
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Figure 4.2: The second derivative of the log likelihood is confirmed empirically to
be negative at the numerical solution of the optimization problem. We plot empirical
distributions of the second derivative of the log-likelihood function f(γ) evaluated at the
numerical root on [0, 1] of the first derivative of f(γ) for 100 cell number trajectories. (A),
(B), (C) correspond to three different scenarios of density dependence γ = 0, γ = 0.5,
γ = 1 respectively. The distributions are obtained from maximizing the log-likelihood
function f(γ) 100 times for each of the three γ scenarios. We observe that the second
derivatives are negative for all of the cases.

We explicitly calculate the first derivative of f(γ) below to find critical points:

df

dγ
=

T−1∑
j=1

−1

2

1

xj(bxj
+ dxj

)
xj

d

dγ
(bxj

+ dxj
) (4.37)

−
T−1∑
j=1

1

2
2
(
∆xj − xj(bxj

− dxj
)∆t
)
∆t(−xj)

d

dγ
(bxj

− dxj
)

1

xj(bxj
+ dxj

)

1

∆t

(4.38)

−
T−1∑
j=1

1

2
(∆xj − xj(bXj

− dxj
)∆t)2

−1

∆tx2
j(bxj

+ dxj
)2
xj

d

dγ
(bxj

+ dxj
) (4.39)

=
T−1∑
j=1

−1

2

1

(bxj
+ dxj

)

d

dγ
(bxj

+ dxj
) (4.40)

+
T−1∑
j=1

(
∆xj − xj(bxj

− dxj
)∆t
) 1

(bxj
+ dxj

)

d

dγ
(bxj

− dxj
) (4.41)

+
T−1∑
j=1

1

2
(∆xj − xj(bXj

− dxj
)∆t)2

1

∆txj(bxj
+ dxj

)2
d

dγ
(bxj

+ dxj
), (4.42)
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where

bxj
+ dxj

=
b0 − γ(r/K)xj +

∣∣∣b0 − γ(r/K)xj

∣∣∣
2

+ d0 + (1− γ)(r/K)xj

(4.43)

⇒ d

dγ

(
bxj

+ dxj

)
= −(r/K)xj

2
− (r/K)xj −

1

2
(r/K)xj

∣∣∣b0 − γ(r/K)xj

∣∣∣
b0 − γ(r/K)xj

(4.44)

= −3

2
(r/K)xj −

1

2
(r/K)xj

∣∣∣b0 − γ(r/K)xj

∣∣∣
b0 − γ(r/K)xj

(4.45)

and

bxj
− dxj

=
b0 − γ(r/K)xj +

∣∣∣b0 − γ(r/K)xj

∣∣∣
2

− d0 − (1− γ)(r/K)xj

(4.46)

⇒ d

dγ

(
bxj

− dxj

)
= −(r/K)xj

2
+ (r/K)xj −

1

2
(r/K)xj

∣∣∣b0 − γ(r/K)xj

∣∣∣
b0 − γ(r/K)xj

(4.47)

=
1

2
(r/K)xj −

1

2
(r/K)xj

∣∣∣b0 − γ(r/K)xj

∣∣∣
b0 − γ(r/K)xj

. (4.48)
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4.3 Probability Distribution of the State in the Logistic

Birth-Death Process Model

In this section we develop a semianalytic Gaussian approximation to the probability distri-

bution for the population size as it evolves over time.

Let ϕ(t) denote the deterministic cell number at time t, normalized to the carrying capacity

K; that is, Kϕ(t) represents the total population. Then ϕ(t) satisfies the following logistic

differential equation:

d(Kϕ)

dt
= (Kϕ)r

(
1− Kϕ

K

)
= bKϕKϕ︸ ︷︷ ︸

birth

− dKϕKϕ︸ ︷︷ ︸
death

(4.49)

⇒dϕ

dt
= rϕ(1− ϕ) = bKϕϕ− dKϕϕ, (4.50)

with a predetermined initial condition ϕ(0) = ϕ0 and 0 ≤ ϕ ≤ 1. As in Section 3.2, the

parameter r represents the intrinsic, low-density net growth rate, and the density-dependent

per capita birth and death rates for population size n are bn and death rate dn defined by

Equations (3.6) and (3.7). However, for our analysis in this section, we drop the max

function in the birth rate, since the birth rate is positive in all of our data simulations. In

Equation (4.50), n = Kϕ. Solving Equation (4.50) with a fixed (deterministic) initial

condition ϕ(0) = ϕ0, we obtain an explicit expression for ϕ(t):

ϕ(t) =
1

1 + Ae−rt
, with A =

1− ϕ0

ϕ0

. (4.51)
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We represent the stochastic total population size X(t) in our logistic birth-death process

model as the deterministic solution plus a (stochastic) variation, using the Ansatz

X(t) = Kϕ(t) +
√
KU(t), (4.52)

where E[U(t)] = O(1). Scaling out the carrying capacity we have

X(t)

K
= ϕ(t) + εU(t), (4.53)

where we introduce the small parameter ε := K−1/2. As discussed in Section 3.3.2 we use

a Langevin equation to approximate trajectories of the total population, whence U(t) and

X(t) are Gaussian stochastic processes. To be consistent with the notations used in the

log-likelihood function, we define Xj := X(tj) to mean the continuous random variable

representing the number of cells at time tj , and denote xj as a realization of the random

variable Xj . We adopt a finite time step ∆t such that tj = t0 + j∆t. Similarly, we define

Uj := U(tj), with realization uj . We have:

E[Xj] = Kϕj + εKE[Uj] = Kϕj +
√
K E[Uj], (4.54)

V[Xj] = ε2K2V[Uj] = KV[Uj]. (4.55)

To find E[Xj] and V[Xj], it suffices to find E[Uj] and V[Uj]. Using the Ansatz (4.52), we

have

dX(t) = Kdϕ(t) + εK dU(t) (4.56)

=
(
bKϕ(t) − dKϕ(t)

)
Kϕ(t) dt+ εK dU(t). (4.57)
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At the same time, from Equation (3.21) we have

dX(t) =
(
bX(t) − dX(t)

)
X(t)dt+

√(
bX(t) + dX(t)

)
X(t) dW (t) (4.58)

=
(
bKϕ(t)+εKU(t) − dKϕ(t)+εKU(t)

)(
Kϕ(t) + εKU(t)

)
dt (4.59)

+

√(
bKϕ(t)+εKU(t) + dKϕ(t)+εKU(t)

)(
Kϕ(t) + εKU(t)

)
dW (t),

since X(t) = Kϕ(t) + εKU(t). Noting that bx = b0 − γ
r

K
x and dx = d0 + (1 − γ)

r

K
x

are linear in x, we have

bKϕ+εKU = b0 − γ
r

K

(
Kϕ+ εKU

)
= b0 − γ

r

Kϕ
Kϕ− γεU = bKϕ − γεrU (4.60)

dKϕ+εKU = d0 + (1− γ)
r

K

(
Kϕ+ εKU

)
= dKϕ + (1− γ)εrU, (4.61)

which implies

bKϕ+εKU − dKϕ+εKU = bKϕ − dKϕ − εrU, (4.62)

bKϕ+εKU + dKϕ+εKU = bKϕ + dKϕ + (1− 2γ)εrU. (4.63)
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Substituting these expressions into Equation (4.59) gives

dX (4.64)

=
(
bKϕ − dKϕ − εrU

)(
Kϕ+ εKU

)
dt (4.65)

+

√(
bKϕ + dKϕ + (1− 2γ)εrU

)(
Kϕ+ εKU

)
dW

=
(
bKϕ − dKϕ

)
Kϕdt+

(
bKϕ − dKϕ

)
εKUdt− εKϕrUdt+ εK

(
εU
)
rUdt︸ ︷︷ ︸

drop

(4.66)

+
√
K

√√√√(bKϕ + dKϕ

)
ϕ+

(
bKϕ + dKϕ

)
εU + (1− 2γ)rεU

(
ϕ+ εU

)
︸ ︷︷ ︸

drop

dW

≈
(
bKϕ − dKϕ

)
Kϕdt+ εK

(
bKϕ − dKϕ

)
Udt− εKrϕUdt (4.67)

+ εK

√(
bKϕ + dKϕ

)
ϕ dW +O(

4
√
K).

Note that we drop the term εK
(
εU
)
rUdt = r

(
U
)2
dt because it is small relatively to the

terms
(
bKϕ − dKϕ

)
Kϕdt and

(
bKϕ − dKϕ

)
εKUdt in the same equation. Specifically, the

“small” term is O(1) while the other terms are O(K) or O(
√
K). Similarly, we also drop

the term
(
bKϕ + dKϕ

)
εU + (1 − 2γ)rεU

(
ϕ + εU

)
in the square root, because it is of

smaller order than the leading term under the radical sign.

Setting Equation (4.57) equal to Equation (4.67), and neglecting terms of order O( 4
√
K)

92



and smaller, we require

dU =
(
bKϕ − dKϕ − rϕ

)
Udt+

√(
bKϕ + dKϕ

)
ϕ dW (4.68)

=
(
b0 − d0 −

r

K
Kϕ− rϕ

)
Udt+

√(
b0 + d0 + (1− 2γ)rϕ

)
ϕ dW (4.69)

=
(
r − rϕ− rϕ

)
Udt+

√(
b0 + d0 + (1− 2γ)rϕ

)
ϕ dW (4.70)

= r
(
1− 2ϕ

)
︸ ︷︷ ︸

deterministic

Udt+

√√√√(b0 + d0 + (1− 2γ)rϕ
)

︸ ︷︷ ︸
deterministic

ϕ dW. (4.71)

From Equation (4.71), we have

dE[U ] = r
(
1− 2ϕ

)
E[U ]dt+

√(
b0 + d0 + (1− 2γ)rϕ

)
ϕE[dW ]︸ ︷︷ ︸

=0

(4.72)

⇒dE[U ]

dt
= r
(
1− 2ϕ

)
E[U ]. (4.73)

93



We solve equation (4.73) using integration by parts. The integrating factor is

I(t) = e

(∫
r
(
2ϕ(t)− 1

)
dt

)
= e

(
2r

∫
1

1 + Ae−rt
dt−

∫
rdt

)
(4.74)

= e

(
2r
1

r

∫
1

z(1− z)
du− rt+ C1

)
, with z = 1 + Ae−rt (4.75)

= e

(
2

∫
1

z
− 1

z − 1
dz − rt+ C1

)
(4.76)

= e

(
2

(
ln(z) ln(z−1)

)
−rt+C1

)
(4.77)

= e

(
2 ln

∣∣∣ z

z − 1

∣∣∣−rt+C1

)
= e

(
2 ln

∣∣∣∣∣∣
1 + Ae−rt

Ae−rt

∣∣∣∣∣∣−rt+C1

)
(4.78)

= e

(
ln

∣∣∣∣∣∣
1

A
ert+1

∣∣∣∣∣∣
2

−rt+C1

)
(4.79)

= C2

∣∣∣∣∣ert + A

A

∣∣∣∣∣
2

e−rt = C(ert + A)2e−rt, for some constant C. (4.80)

We have

(ert + A)2e−rt d

dt
E[U(t)]− (ert + A)2e−rtr

(
2ϕ(t)− 1

)
E[U(t)] = 0 (4.81)

⇒

(
(ert + A)2e−rtE[U(t)]

)
= C (4.82)

⇒E[U(t)] =
Cert

(ert + A)2
. (4.83)

If we assume E[U(0)] =
C

(1 + A)2
= 0, then C = 0, which implies E[U(t)] = 0 ∀t. If

E[U(0)] = u0 ̸= 0, then C = u0(1 + A)2 ̸= 0.
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Let V[U(t)] = E
[
(U(t)− E[U(t)])2

]
be the variance of U(t). We have

d

dt
V[U(t)] =

d

dt
E
[
(U(t)− E[U(t)])2

]
=

d

dt
E[(U(t))2]− d

dt

(
E[U(t)]

)2
. (4.84)

As discussed above, if we choose E[U(0)] = 0, then E[U(t)] = 0 ∀t, and

V[U(t)] = E[(U(t))2] ⇒ d

dt
V[U(t)] =

d

dt
E[(U(t))2]. (4.85)

Now, we find
d

dt
E[(U(t))2]. Using Ito’s formula, we have

d
[
U(t)2

]
=
(
2r(1− 2ϕ(t))U(t)2 +

(
bKϕ(t) + dKϕ(t)

)
ϕ(t)

)
dt (4.86)

+ 2

√(
bKϕ(t) + dKϕ(t)

)
ϕ(t)U(t) dW (t). (4.87)

Taking expectations of both sides, and recalling that U(t) and dW (t) are independent, we

have

E
[
d
(
U(t)2

) ]
=
(
2r(1− 2ϕ(t))

)
E[U(t)2]dt+

(
bKϕ(t) + dKϕ(t)

)
ϕ(t)dt. (4.88)

It follows that the rate of change of the second moment is given by

d

dt
E
[
U(t)2

]
=
(
2r(1− 2ϕ(t))

)
E[U(t)2] +

(
bKϕ(t) + dKϕ(t)

)
ϕ(t). (4.89)

As mentioned above, we choose E[U(0)] = 0, so V[U(t)] = E
[
U(t)2

]
. Therefore,

d

dt
V
[
U(t)

]
=
(
2r(1− 2ϕ(t))

)
V
[
U(t)

]
+
(
bKϕ(t) + dKϕ(t)

)
ϕ(t). (4.90)
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Thus the variance of U(t) spontaneously grows during the initial growth phase of the

population, when ϕ(t) < 1/2, and tends to decay during the approach to equilibrium,

when ϕ(t) > 1/2. Meanwhile the sum of the per capita birth and death rates act as a

source term driving the variance all along the trajectory.

Let D(t) =

(
bKϕ(t) + dKϕ(t)

)
ϕ(t)

2
. For notational convenience, we will write U for

U(t) in the following computation. Similarly, we are going to omit the notation for time

dependence in the other variables.

1

2

d

dt
V[U ] = r

(
1− 2ϕ

)
V[U ] +D (4.91)

⇒

(
(ert + A)2e−rtV[U ]

)
=

∫
D(ert + A)2e−rtdt (4.92)

=

∫ (b0 + d0
2

+
(1− 2γ)r

2

1

1 + Ae−rt

) 1

1 + Ae−rt
(ert + A)2e−rtdt (4.93)

=

∫ (b0 + d0
2

+
(1− 2γ)r

2

1

1 + Ae−rt

) 1

1 + Ae−rt
(1 + Ae−rt)2e2rte−rtdt (4.94)

=

∫ (b0 + d0
2

+
(1− 2γ)r

2

1

1 + Ae−rt

) 1

1 + Ae−rt
(1 + Ae−rt)2ertdt (4.95)

=

∫
b0 + d0

2
(1 + Ae−rt)ertdt+

∫
(1− 2γ)r

2
ertdt (4.96)

=

∫
b0 + d0

2
ert + A

b0 + d0
2

dt+

∫
(1− 2γ)r

2
ertdt (4.97)

=
1

r

b0 + d0
2

ert + A
b0 + d0

2
t+

(1− 2γ)

2
ert + CV[U ], (4.98)

which implies

V[U(t)] = (ert + A)−2ert

(
b0 + d0

r
ert + A(b0 + d0)t+ (1− 2γ)ert + CV[U ]

)
, (4.99)
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for some constant CV[U ]. Assuming the initial condition V[U(0)] = 0, then

CV[U ] = −b0 + d0
r

− (1− 2γ). (4.100)

To visualize and check our analytical computation, in Figure 4.3 (A), we plot 10 empiri-

cal, simulated cell number trajectories (multicolor stochastic curves), the theoretical mean

E[X(t)] (solid black curve), and the theoretical mean plus/minus two theoretical standard

deviations, i.e. E[U(t)] ± 2
√

V[U(t)], (dashed black curves). In Figure 4.3 (B), we plot

the theoretical variance V[U(t)] of the stochastic fluctuation U(t) (recall that we assume

X(t) is sum of the deterministic solution Kϕ(t) and stochastic fluctuation). We verify

that E[U(t)] = 0, but it is not necessary to plot it. We observe that nearly all empirical,

simulated cell number trajectories are bounded between E[U(t)] ± 2
√

V[U(t)], which is

consistent with our Gaussian distribution assumption. We also see that variance of the

stochastic fluctuation U(t) increases exponentially, and then decreases to a stabilized value.
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Figure 4.3: Analytically derived mean and variance agree with simulated trajectories.
Note that nearly all simulated trajectories are bounded between E[X(t)] ± 2

√
V[X(t)].

In (A), we plot 10 empirical, simulated cell number trajectories (multicolor stochastic
curves), the theoretical mean E[X(t)] (solid black curve), and the theoretical mean plus
and minus two theoretical standard deviations (dash black curves). In (B), we plot the
theoretical variance V[U(t)] of the stochastic fluctuation U(t). We observe that variance of
the stochastic fluctuation U(t) increases exponentially, and then decreases to a stabilized
value.

4.4 Mean of Log-Likelihood

In this section, we apply the results of Section 4.3 to calculate the expected value of the

log-likelihood function for a single trajectory. By the Markov property of our model, we
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have P (Xdata) = P (x0)P (x1|x0) . . . P (xN |xN−1) and

E
[
L(Xdata|Θtest)

]
(4.101)

=

∫
Xdata

ln
(
P (Xdata)︸ ︷︷ ︸

Θtest

)
P (Xdata)︸ ︷︷ ︸

Θdata

dXdata (4.102)

=

∫ ∞

−∞
. . .

∫ ∞

−∞
ln
(
P (x0)︸ ︷︷ ︸
Θtest

)
P (x0)P (x1|x0) . . . P (xN |xN−1)︸ ︷︷ ︸

Θdata

dxN . . . dx0 (4.103)

+
T−1∑
j=1

∫ ∞

−∞
. . .

∫ ∞

−∞
ln
(
P (xj+1|xj)︸ ︷︷ ︸

Θtest

)
P (x0)P (x1|x0) . . . P (xN |xN−1)︸ ︷︷ ︸

Θdata

dxN . . . dx0.

(4.104)

Note that the notation P (·)︸︷︷︸
Θtest

means the probability distribution is characterized by the param-

eter set Θtest. Similarly, the notation P (·)︸︷︷︸
Θdata

means the probability distribution is characterized

by the parameter set Θdata. All the xj in this section denote realizations from the distribution

characterized by the parameter set Θdata. The notations bxj ,test and dxj ,test mean the per

capita birth and death rates are defined with the parameter set Θtest as follows

bxj ,test = b0,test − γtest
rtest

Ktest
xj (4.105)

dxj ,test = d0,test + (1− γtest)
rtest

Ktest
xj. (4.106)
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Continuing with the computation, we have

E
[
L(Xdata|Θtest)

]
(4.107)

=

∫ ∞

−∞
ln
(
P (x0)︸ ︷︷ ︸
Θdata

)
︸ ︷︷ ︸

=ln(1)

P (x0)︸ ︷︷ ︸
Θdata

dx0 (4.108)

+
T−1∑
j=1

∫ ∞

−∞
. . .

∫ ∞

−∞
ln
(
P (xj+1|xj)︸ ︷︷ ︸

Θtest

)
P (x0)P (x1|x0) . . . P (xj+1|xj)︸ ︷︷ ︸

Θdata

dxj+1dxj . . . dx0

(4.109)

=
T−1∑
j=1

∫ ∞

−∞
. . .

∫ ∞

−∞
ln
(
P (xj+1|xj)︸ ︷︷ ︸

Θtest

)
P (x2|x1) . . . P (xj+1|xj)︸ ︷︷ ︸

Θdata

(4.110)

(∫ ∞

−∞
P (x0)P (x1|x0)︸ ︷︷ ︸

Θdata

dx0

)
dx1 . . . dxj+1

=
T−1∑
j=1

∫ ∞

−∞
. . .

∫ ∞

−∞
ln
(
P (xj+1|xj)︸ ︷︷ ︸

Θtest

)
P (x3|x2) . . . P (xj+1|xj)︸ ︷︷ ︸

Θdata

(4.111)

(∫ ∞

−∞
P (x1)P (x2|x1)︸ ︷︷ ︸

Θdata

dx1

)
dx2 . . . dxj+1

=
T−1∑
j=1

∫ ∞

−∞

(∫ ∞

−∞
ln
(
P (xj+1|xj)︸ ︷︷ ︸

Θtest

)
P (xj+1|xj)︸ ︷︷ ︸

Θdata

dxj+1

)
P (xj)︸ ︷︷ ︸
Θdata

dxj (4.112)

=
T−1∑
j=1

∫ ∞

−∞

∫ ∞

−∞

(
1

2
ln
( 1

2πVtest[X(tj+1)|X(tj) = xj]

)
P (xj+1|xj)︸ ︷︷ ︸

Θdata

dxj+1

)
P (xj)︸ ︷︷ ︸
Θdata

dxj

(4.113)

−
T−1∑
j=1

∫ ∞

−∞

∫ ∞

−∞

(
(xj+1 − xj − Etest[X(tj+1)|X(tj) = xj])

2

2Vtest[X(tj+1)|X(tj) = xj]
P (xj+1|xj)︸ ︷︷ ︸

Θdata

dxj+1

)
P (xj)︸ ︷︷ ︸
Θdata

dxj

(4.114)
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=
T−1∑
j=1

∫ ∞

−∞

∫ ∞

−∞

(
1

2
ln
( 1

2πxj(bxj test + dxj test)∆t

)
P (xj+1|xj)︸ ︷︷ ︸

Θdata

dxj+1

)
P (xj)︸ ︷︷ ︸
Θdata

dxj (4.115)

−
T−1∑
j=1

∫ ∞

−∞

∫ ∞

−∞

(
(xj+1 − xj − xj(bxj ,test − dxj ,test)∆t)2

2xj(bxj ,test + dxj ,test)∆t
P (xj+1|xj)︸ ︷︷ ︸

Θdata

dxj+1

)
P (xj)︸ ︷︷ ︸
Θdata

dxj.

(4.116)

Observing that P (xj+1|xj) may be computed from P (xj+1 − xj|xj), we define the random

variable ∆Xj := X(tj+1)−X(tj) and a realization ∆xj := (xj+1 − xj) of ∆Xj . We have

g1(∆xj) :=

(
∆xj − xj(bxj ,test − dxj ,test)∆t

)2
2xj(bxj ,test + dxj ,test)∆t

. (4.117)
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With these definitions and the observation that integration with respect to the infinitesimal

d∆xj and dxj+1 mean the same thing, we have

E
[
L(Xdata|Θtest)

]
(4.118)

=
T−1∑
j=1

∫ ∞

−∞

1

2
ln
( 1

2πxj(bxj ,test + dxj ,test)∆t

)(∫ ∞

−∞
P (xj+1|xj)︸ ︷︷ ︸

Θdata

dxj+1

)
P (xj)︸ ︷︷ ︸
Θdata

dxj

(4.119)

−
T−1∑
j=1

∫ ∞

−∞

∫ ∞

−∞

(
g1(∆xj)

)
P (∆xj|xj)︸ ︷︷ ︸

Θdata

d∆xj

)
P (xj)︸ ︷︷ ︸
Θdata

dxj (4.120)

=
T−1∑
j=1

∫ ∞

−∞

1

2
ln
( 1

2πxj(bxj ,test + dxj ,test)∆t

)
P (xj)︸ ︷︷ ︸
Θdata

dxj (4.121)

−
T−1∑
j=1

∫ ∞

−∞
Edata

[
g1(∆Xj)

∣∣∣Xj)
]
P (xj)︸ ︷︷ ︸
Θdata

dxj (4.122)

=−
T−1∑
j=1

1

2
ln(2π∆t)−

T−1∑
j=1

1

2
Edata[ln(Xj)]−

T−1∑
j=1

1

2
Edata[ln(bXj ,test + dXj ,test)] (4.123)

−
T−1∑
j=1

∫ ∞

−∞
Edata

[
g1(∆Xj)

∣∣∣Xj

]
P (xj)︸ ︷︷ ︸
Θdata

dxj (4.124)

=
T−1∑
j=1

(
− 1

2
ln(2π∆t)− 1

2
Edata[ln(Xj)]−

1

2
Edata[ln(bXj ,test + dXj ,test)]

)
(4.125)

−
T−1∑
j=1

Edata

[
Edata

[
g1(∆Xj)

∣∣∣Xj

]]
. (4.126)

We approximate the expected values Edata[ln(Xj)], Edata[ln(bXj ,test+dXj ,test)], Edata

[
g1(∆Xj)|Xj

]
,

and Edata

[
Edata

[
g1(∆Xj)|Xj

]]
as follows. In general, given a random variable Y and a

function g(Y ), we consider the Taylor expansion of g(Y ) around the expected value E[Y ]
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of the random variable Y , and we write

g(Y ) ≈ g(y)
∣∣∣
y=E[Y ]

+
dg

dy

∣∣∣
y=E[Y ]

(
Y − E[Y ]

)
+

1

2

d2g

dy2

∣∣∣
y=E[Y ]

(
Y − E[Y ]

)2
(4.127)

⇒ E[g(Y )] ≈ g(y)
∣∣∣
y=E[Y ]

+
1

2

d2g

dy2

∣∣∣
y=E[Y ]

V[Y ]. (4.128)

Applying the approximation in Equation (4.128), we have

Edata[ln(Xj)] ≈ ln(Edata[Xj])−
1

2

1

Edata[Xj]2
Vdata[Xj] (4.129)

Edata[ln(bXj ,test + dXj ,test)] ≈ ln(bEdata[Xj ],test + dEdata[Xj ],test) (4.130)

− 1

2

(
d(bEdata[Xj ],test + dEdata[Xj ],test)

xj

)2

(bEdata[Xj ],test + dEdata[Xj ],test)2
, (4.131)

where

d(bxj ,test + dxj ,test)

dxj

=


(1− 2γtest) if

(
b0,test − γtest

rtest

Ktest
xj

)
> 0

(1− γtest) otherwise
. (4.132)

Similarly,

d(bxj ,data + dxj ,data)

dxj

=


(1− 2γdata) if

(
b0,data − γdata

rdata

Kdata
xj

)
> 0

(1− γdata) otherwise.
(4.133)
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We apply Equation (4.128) and have

Edata

[
g1(∆Xj)|Xj

]
≈g1(∆xj)

∣∣∣
∆xj=Edata[∆Xj |Xj ]

+
1

2

d2g1
d∆x2

j

∣∣∣
∆xj=Edata[∆Xj |Xj ]

Vdata[∆Xj|Xj]

(4.134)

=

(
Xj(bXj ,data − dXj ,data)∆t−Xj(bXj ,test − dXj ,test)∆t

)2
2Xj(bXj ,test + dXj ,test)∆t

(4.135)

+
1

2

Xj(bXj ,data + dXj ,data)∆t

Xj(bXj ,test + dXj ,test)∆t
(4.136)

=

(
Xj(bXj ,data − dXj ,data)∆t−Xj(bXj ,test − dXj ,test)∆t

)2
2Xj(bXj ,test + dXj ,test)∆t

(4.137)

+
1

2

bXj ,data + dXj ,data

bXj ,test + dXj ,test
. (4.138)

In the context of our research problem, we are interested in cases where the net growth

rates are the same. Hence, it is reasonable to assume bXj ,data − dXj ,data = bXj ,test − dXj ,test,

which leads to

Edata

[
g1(∆Xj)|Xj

]
≈ 1

2

bXj ,data + dXj ,data

bXj ,test + dXj ,test
(4.139)

⇒ Edata

[
Edata

[
g1(∆Xj)|Xj

]]
=

1

2
Edata

[
bXj ,data + dXj ,data

bXj ,test + dXj ,test

]
. (4.140)
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Using Equation (4.128), we have

d

dxj

bxj ,data + dxj ,data

bxj ,test + dxj ,test
=

d(bxj ,data + dxj ,data)

dxj

bxj ,test + dxj ,test
(4.141)

−
(
bxj ,data + dxj ,data

)(
bxj ,test + dxj ,test

)−2d(bxj ,test + dxj ,test)

dxj

(4.142)

d2

dx2
j

bxj ,data + dxj ,data

bxj ,test + dxj ,test
=−

d(bxj ,data + dxj ,data)

dxj

d(bxj ,test + dxj ,test)

dxj(
bxj ,test + dxj ,test

)2 (4.143)

−

d(bxj ,data + dxj ,data)

dxj

d(bxj ,test + dxj ,test)

dxj(
bxj ,test + dxj ,test

)2 (4.144)

+
2
(
bxj ,data + dxj ,data

)
(
bxj ,test + dxj ,test

)3 (d(bxj ,test + dxj ,test)

dxj

)2
(4.145)

Edata

[
bXj ,data + dXj ,data

bXj ,test + dXj ,test

]
≈
bEdata[Xj ],data + dEdata[Xj ],data

bEdata[Xj ],test + dEdata[Xj ],test
(4.146)

+
1

2

d2

dx2
j

bxj ,data + dxj ,data

bxj ,test + dxj ,test

∣∣∣∣∣
xj=Edata[Xj ]

Vdata[Xj]. (4.147)
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Note that when Θdata = Θtest, we have

d2

dx2
j

bxj ,data + dxj ,data

bxj ,test + dxj ,test
=−

(
bxj ,test + dxj ,test

)(d(bxj ,test + dxj ,test)

dxj

)2
(
bxj ,test + dxj ,test

)3 (4.148)

−
(
bxj ,test + dxj ,test

)(d(bxj ,test + dxj ,test)

dxj

)2
(
bxj ,test + dxj ,test

)3 (4.149)

+
2
(
bxj ,test + dxj ,test

)
(
bxj ,test + dxj ,test

)3 (d(bxj ,test + dxj ,test)

dxj

)2
(4.150)

=0 (4.151)

and Edata

[
Edata

[
g1(∆Xj)|Xj

]]
=

1

2
, which is consistent with

∫ ∞

−∞

∫ ∞

−∞

(
(xj+1 − xj − Etest[X(tj+1)|X(tj) = xj])

2

2Vtest[X(tj+1)|X(tj) = xj]
P (xj+1|xj)︸ ︷︷ ︸

Θdata

dxj+1

)
P (xj)︸ ︷︷ ︸
Θdata

dxj

(4.152)

=

∫ ∞

−∞

∫ ∞

−∞

(
(xj+1 − xj − Edata[X(tj+1)|X(tj) = xj])

2

2Vdata[X(tj+1)|X(tj) = xj]
P (xj+1|xj)︸ ︷︷ ︸

Θdata

dxj+1

)
P (xj)︸ ︷︷ ︸
Θdata

dxj

(4.153)

=

∫ ∞

−∞

1

2Vdata[X(tj+1)|X(tj) = xj]
Vdata[X(tj+1)|X(tj) = xj]P (xj)︸ ︷︷ ︸

Θdata

dxj (4.154)

=
1

2
. (4.155)

In Figure 4.4, we compare the theoretical mean with empirical mean for various combi-

nations of γdata and γtest listed in Table 4.2. We see that the two means are well-aligned.
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We compute the theoretical mean using the approximation described above, except for

Edata

[
bXj ,data + dXj ,data

bXj ,test + dXj ,test

]
; it only works when we use first-order Taylor approximation for

this mean. For the other expected values, it works even when we use second-order Taylor

approximation.

Figure 4.4: Theoretical mean and empirical mean of the log-likelihood are well-
aligned. In this figure, we compare the theoretical mean and the empirical mean of the
log-likelihood for various combinations of γdata and γtest listed in Table 4.2 and different
carrying capacities: (A): K = 102, (B): K = 103, (C): K = 103, (D): K = 104.
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γdata γtest γdata γtest γdata γtest

0 0 0.5 0 1 0
0 0.1 0.5 0.1 1 0.1
0 0.2 0.5 0.2 1 0.2
0 0.3 0.5 0.3 1 0.3
0 0.4 0.5 0.4 1 0.4
0 0.5 0.5 0.5 1 0.5
0 0.6 0.5 0.6 1 0.6
0 0.7 0.5 0.7 1 0.7
0 0.8 0.5 0.8 1 0.8
0 0.9 0.5 0.9 1 0.9
0 1 0.5 1 1 1

Table 4.2: Various Combinations of γdata and γtest used in Figure 4.4.

4.5 Variance of Log-Likelihood

In this section we apply the results of Section 4.3 to attempt to find the variance of the log-

likelihood function, using a linear Taylor approximation for the log-likelihood L
(
Xdata|Θtest

)
.

V
[
L
(
Xdata|Θtest

)]
= E

[
L2
(
Xdata|Θtest

)]
−

(
E
[
L
(
Xdata|Θtest

)])2

, (4.156)

where

E
[
L2
(
Xdata|Θtest

)]
= E

[
ln2
(
P (Xdata)︸ ︷︷ ︸

Θtest

)]
(4.157)

= E

[(
ln
(
P (x0,data)︸ ︷︷ ︸

Θtest

)
+

N−1∑
j=1

ln
(
P (xj+1|xj)︸ ︷︷ ︸

Θtest

))2]
, (4.158)
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which is hard to compute. Therefore, we consider the linear Taylor expansion of gL
(
Xdata

)
:=

L
(
Xdata

∣∣∣Θtest

)
around E

[
Xdata

]
as follows:

gL

(
Xdata

)
≈ L

(
E
[
Xdata

]∣∣∣Θtest

)
+

(
∇gL

∣∣∣
E[Xdata]

)T(
Xdata − E

[
Xdata

])
(4.159)

⇒ V
[
gL

(
Xdata

)]
≈

(
(∇gL)

2
∣∣∣
E[Xdata]

)T

V
[
Xdata

]
, (4.160)

where (∇gL)
2 denotes the vector of the squares of the elements of ∇gL. For j = 2, . . . , T−

1,

(∇gL)j = −1

2

d
(
xj(bxj ,test + dxj ,test)

)
dxj

xj(bxj ,test + dxj ,test)
(4.161)

−
2
(
xj+1 − xj − xj(bxj ,test − dxj ,test)∆t

)
2xj(bxj ,test + dxj ,test)∆t

(
− 1−∆t

d

(
xj(bxj ,test − dxj ,test)

)
dxj

)
(4.162)

+

(
xj+1 − xj − xj(bxj ,test − dxj ,test)∆t

)2
(
2xj(bxj ,test + dxj ,test)∆t

)2 2∆t
d
(
xj(bxj ,test + dxj ,test)

)
dxj

(4.163)

−
2
(
xj − xj−1 − xj−1(bxj−1,test − dxj−1,test)∆t

)
2xj−1(bxj−1,test + dxj−1,test)∆t

(4.164)
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For j = 1,

(∇gL)j = −1

2

d
(
xj(bxj ,test + dxj ,test)

)
dxj

xj(bxj ,test + dxj ,test)
(4.165)

−
2
(
xj+1 − xj − xj(bxj ,test − dxj ,test)∆t

)
2xj(bxj ,test + dxj ,test)∆t

(
− 1−∆t

d

(
xj(bxj ,test − dxj ,test)

)
dxj

)
(4.166)

+

(
xj+1 − xj − xj(bxj ,test − dxj ,test)∆t

)2
(
2xj(bxj ,test + dxj ,test)∆t

)2 2∆t
d
(
xj(bxj ,test + dxj ,test)

)
dxj

, (4.167)

where

d
(
xj(bxj ,test + dxj ,test)

)
dxj

=


b0,test + d0,test + (1− 2γtest)

rtest

Ktest
xj if b0,test − γtest

rtest

Ktest
xj > 0

d0,test + (1− γtest)
rtest

Ktest
xj if b0,test − γtest

rtest

Ktest
xj ≤ 0

(4.168)

and

d
(
xj(bxj ,test − dxj ,test)

)
dxj

=


b0,test − d0,test −

rtest

Ktest
xj if b0,test − γtest

rtest

Ktest
xj > 0

−d0,test − (1− γtest)
rtest

Ktest
xj if b0,test − γtest

rtest

Ktest
xj ≤ 0

(4.169)

Unfortulatey, we do not consider this approximation to be successful. In our estima-

tion, the failure of the approxmation most likely results because here we approximate

L
(
Xdata|Θtest

)
with a linear function, but this function is too highly nonlinear for the
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approximation to be accurate.

4.6 Conclusion and Discussion

In this chapter, we use the log-likelihood approach to disambiguate density-dependent

dynamics. In Section 4.2, we maximize the log-likelihood function to find the most likely

density dependence parameter γ ∈ [0, 1] for a given single cell number time series, with

the assumption that we know the other parameters b0, d0, and K.

Solving numerical optimization problems can be challenging as we move to higher di-

mensions (i.e. add more unknown parameters to the system). In Sections 4.3, 4.4, and 4.5,

we use a probabilistic/statistical approach to disambiguate density-dependent dynamics.

In particular, we have observed empirically that the log-likelihood value is higher when

γtest matches with γdata in Figure ?? and ??, which is also well-known analytically [76].

Therefore, instead of asking the question of “most likely” as in Section 4.2, we ask the

question of “more likely” in Sections 4.3, 4.4, and 4.5. Instead of considering a continuous

spectrum of density dependence candidates (i.e. γ on the whole interval [0, 1]) as in Section

4.2, we consider a discrete number of candidate γ values, and we check which one gives

the highest value of when plugged into the log-likelihood, then we may say that the value is

“more likely” than the others on the discrete list. In order to justify this approach, we need

to analyze the theoretical distributions of the log-likelihood evaluated at different values

of γ. Therefore, we compute the theoretical mean and variance of the log-likelihood. In

order to compute these two statistics, we must know the theoretical mean and variance of

the cell number X(t). In section 4.3, we derive analytical expressions for the theoretical

mean and variance of X(t), by considering X(t) as a stochastic deviation from the deter-
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ministic solution ϕ(t) to the classical logistic differential equation [93]. We assume that

the stochastic deviation U(t) added to the deterministic solution follows a time-dependent

Ornstein–Uhlenbeck process [32] and compute the theoretical mean and variance of U(t).

We use those theoretical statistics to derive the theoretical mean and variance of the log-

likelihood in Section 4.4 and Section 4.5. The main idea of computing the theoretical mean

of the log-likelihood in Section 4.4 is to use properties of Markov process to have a for-

mula for P (Xdata|Θtest), and approximate functions of random variables with second-order

Taylor polynomials [8, 39]. The second-order approximation works well, except when

computing the mean Edata

[
bXj ,data + dXj ,data

bXj ,test + dXj ,test

]
, which would equal to 1 if the parameter set

Θtest = Θdata. For this mean, we find a linear Taylor approximation works well. We confirm

our analytical computation by comparing the theoretical means with the empirical means

for various combinations of γdata and γtest, in Figure 4.4.

Finally, in Section 4.5, we attempt to compute the variance of the log-likelihood. How-

ever, the computation involves the square of the sum of many random variables, many of

which may not be independent. Moreover, second-order Taylor approximation requires

a covariance matrix, which we do not know. When we use linear Taylor approximation,

the theoretical variance and empirical variance do not match well, as the log-likelihood

is highly nonlinear. This problem of computing the theoretical variance remains an open

problem for future work. As for future directions, we will also explore other approaches

such as Bayesian inference and Gibbs sampling. [14, 54].
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Chapter 5

Future Directions

At the end of each of Chapter 2, Chapter 3, and Chapter 4, we summarize our results and

discuss, in detail, future work related to the project discussed in the chapter. In this last

chapter of the thesis, we give a big picture of future directions.

A big-picture takeaway of this thesis is that stochastic fluctuations allow us to separately

infer birth and death rates from cell number time series data, which is significant in disam-

biguating different mechanisms underlying the same net growth rates.

Mathematically, we are broadly interested in roles of stochasticity in biological dynamics

and parameter identification. For future directions, we will consider different stochastic

models for biological systems and analyze the roles of noise in the analysis of the models.

We will also explore how we can further utilize stochasticity to uncover underlying mech-

anisms at different scales–more microscopic (e.g. within the birth process or within the

death process) and more macroscopic (e.g. cell populations moving in space). Biologically,
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we are broadly interested studying ecological and evolutionary processes on different time

scales and the relation between these processes and drug resistance. Combing mathematics

and biology, we would like to develop translational optimal treatments that can be effec-

tively applied in clinical settings.
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Appendix A

Appendix for Chapter 3

A.1 Model Parameters Used in Simulation

Table A.1: Model Parameters Used in Simulation

Parameter Value Unit
b0 1.1/120 1/time
d0 0.1/120 1/time
r 1/120 1/time
K 105 Dimensionless

A.2 Error Analysis of the Direct Estimation Method

As described in Section 3.3.3, we discretize all the values of cell number across the whole

ensemble of trajectories into bins. Denote the bin size as η. The left end point Nk of the

kth bin [Nk, Nk + η) with k = 1, 2, . . . , kmax is equal to Nk := Nmin + (k − 1)η, where

Nmin is the smallest value of cell number across the whole ensemble of trajectories. In many

instances, Nmin = N(t0), the initial population size. The total number of bins kmax ∈ Z+ is
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equal to
⌈Nmax −Nmin

η

⌉
, where Nmax is the largest value of cell number across the whole

ensemble of trajectories, and ⌈n⌉ is the smallest integer not less than n. The ith cell number

element to have landed in the kth bin [Nk, Nk + η) is equal to Nk + ηi. For simplicity, we

make the approximation that for each bin, the random variables ηi are i.i.d. and uniformly

distributed on [0, η). We expect this approximation to be reasonably accurate when the bin

size η is small enough that a given trajectory is unlikely to land in any particular bin twice

in succession; the approximation may become inaccurate for excessively large bin sizes. In

light of this uniform distribution assumption, we use the midpoint Nk +
η

2
to represent the

kth bin [Nk, Nk + η).

We approximate the theoretical mean E
[
∆N

∣∣∣N = Nk +
η

2

]
with the empirical mean〈

∆N
∣∣∣N = Nk + ηi, 0 ≤ ηi < η, Ŝk

〉
and the theoretical variance V

[
∆N

∣∣∣N = Nk +
η

2

]
the empirical variance σ2

[
∆N

∣∣∣N = Nk + ηi, 0 ≤ ηi < η, Ŝk

]
obtained from simulation of

S cell number trajectories. Recall that Ŝk denotes the number of population size Nk + ηi

landing in bin k. These sample sizes Ŝk, k = 1, 2, . . . , kmax, are not necessarily equal to

each other or equal to the number of cell number trajectories S, which is pre-determined

and independent of the bin size η. Different bin sizes η result in different sets of Ŝk, k =

1, 2, . . . , kmax. With the same bin size η, different simulations may also result in different

sets of cell number values and hence different sets of Ŝk, k = 1, 2, . . . , kmax. It is well-

known that as the larger the sample size Ŝk, the smaller the estimation errors [28].

In this section, we analyze how the bin size influences distributions of estimation errors

of birth and death rates. In particular, we compute the theoretical means and variances of

errors as functions of bin size η. We use the notation N for cell number to be consistent

with the mathematical model discussed in Section 3.2. A summary of notations can be
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found in Section A.2.3.

A.2.1 Theoretical Mean and Variance of Cell Number Increment as

Functions of Bin Size

As mentioned above, our estimation of the birth and death rates corresponding to N =

Nk +
η

2
uses the empirical mean

〈
∆N

∣∣∣N = Nk + ηi, 0 ≤ ηi < η, Ŝk

〉
and empirical

variance σ2
[
∆N |N = Nk + ηi]

∣∣∣0 ≤ ηi < η, Ŝk

]
. The theoretical means and variances of

the estimation errors involves the theoretical mean E
[
∆N

∣∣∣N = Nk + U,U ∼ Unif[0, η)
]

and theoretical variance V
[
∆N

∣∣∣N = Nk + U,U ∼ Unif[0, η)
]
, as shown in Section 3.3.4.

In this subsection, we analyze how the bin size η influences these theoretical mean and

variance. We present the analysis for nonnegative birth rates, that is, in which we can drop

the max function in Equation (3.6), as the birth rates are always positive in our simulated

datasets.

Theoretical mean:

E
[
∆N

∣∣∣N = Nk + U,U ∼ Unif[0, η)
]
= E

[
E[∆N |N = Nk + U ]

∣∣∣U ∼ Unif[0, η)
]

(A.1)

=E
[
(bNk+U − dNk+U)(Nk + U)∆t

∣∣∣U ∼ Unif[0, η)
]

(A.2)

=E
[
(r − r

K
Nk −

r

K
U)(Nk + U)∆t

∣∣∣U ∼ Unif[0, η)
]

(A.3)

=E
[
(r − r

K
Nk)Nk∆t

∣∣∣U ∼ Unif[0, η)
]
− r

K
Nk∆tE

[
U
∣∣∣U ∼ Unif[0, η)

]
(A.4)

+ (r − r

K
Nk)∆tE

[
U
∣∣∣U ∼ Unif[0, η)

]
− r

K
∆tE

[
U2
∣∣∣U ∼ Unif[0, η)

]
=E[∆N |N = Nk] + (r − 2

r

K
Nk)∆t

η

2
− r

K
∆t

η2

3
. (A.5)
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Theoretical variance:

V
[
∆N

∣∣∣N = Nk + U,U ∼ Unif[0, η)
]

=E
[
∆N2

∣∣∣N = Nk + U,U ∼ Unif[0, η)
]
−
(
E
[
∆N

∣∣∣N = Nk + U,U ∼ Unif[0, η)
])2

,

(A.6)

where

E
[
∆N2

∣∣∣N = Nk + U,U ∼ Unif[0, η)
]
= E

[
E[∆N2|N = Nk + U ]

∣∣∣U ∼ Unif[0, η)
]

=E

[
V[∆N |N = Nk + U ] +

(
E[∆N |N = Nk + U ]

)2∣∣∣U ∼ Unif[0, η)

]
(A.7)

=E
[
V[∆N |N = Nk + U ]

∣∣∣U ∼ Unif[0, η)
]
+ E

[(
E[∆N |N = Nk + U ]

)2∣∣∣U ∼ Unif[0, η)
]
,

(A.8)
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and

E
[
V[∆N |N = Nk + U ]

∣∣∣U ∼ Unif[0, η]
]

= E
[
(bNk+U + dNk+U)(Nk + U)∆t

∣∣∣U ∼ Unif[0, η)
]

(A.9)

= E
[
(b0 + d0 + (1− 2γ)

r

K
Nk + (1− 2γ)

r

K
U)(Nk + U)∆t

∣∣∣U ∼ Unif[0, η)
]

(A.10)

= E
[
(b0 + d0 + (1− 2γ)

r

K
Nk)Nk∆t

∣∣∣U ∼ Unif[0, η)
]

(A.11)

+ E
[
(b0 + d0 + (1− 2γ)

r

K
Nk)U∆t

∣∣∣U ∼ Unif[0, η)
]

(A.12)

+ E
[
(1− 2γ)

r

K
NkU∆t

∣∣∣U ∼ Unif[0, η)
]
+ E

[
(1− 2γ)

r

K
U2∆t

∣∣∣U ∼ Unif[0, η)
]

= V[∆Nk] +
(
b0 + d0 + 2(1− 2γ)

r

K
Nk

)
∆tE[U |U ∼ Unif[0, η)] (A.13)

+ (1− 2γ)
r

K
∆tE[U2|U ∼ Unif[0, η)] (A.14)

= V[∆Nk] +
(
b0 + d0 + 2(1− 2γ)

r

K
Nk

)
∆t

η

2
+ (1− 2γ)

r

K
∆t

η2

3
, (A.15)

and

E
[
(bNk+U − dNk+U)

2(Nk + U)2∆t2
∣∣∣U ∼ Unif[0, η)

]
= ∆t2E

[(
(b0 − d0)(Nk + U)− r

K
(Nk + U)2

)2∣∣∣U ∼ Unif[0, η)
]

(A.16)

= ∆t2E
[
r2(Nk + U)2 − 2

r2

K
(Nk + U)3 +

r2

K2
(Nk + U)4

∣∣∣U ∼ Unif[0, η)
]

(A.17)

= ∆t2r2E
[
(Nk + U)2

∣∣∣U ∼ Unif[0, η)
]
− 2

r2

K
∆t2E

[
(Nk + U)3

∣∣∣U ∼ Unif[0, η)
]

(A.18)

+
r2

K2
∆t2E

[
(Nk + U)4

∣∣∣U ∼ Unif[0, η)
]

= ∆t2r2
(Nk + η)3 −N3

k

3η
− 2

r2

K
∆t2

(Nk + η)4 −N4
k

4η
+

r2

K2
∆t2

(Nk + η)5 −N5
k

5η
.

(A.19)
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Therefore,

V
[
∆N

∣∣∣N = Nk + U,U ∼ Unif[0, η)
]

=V[∆Nk] +
(
b0 + d0 + 2(1− 2γ)

r

K
Nk

)
∆t

η

2
+ (1− 2γ)

r

K
∆t

η2

3
(A.20)

+∆t2r2
(Nk + η)3 −N3

k

3η
− 2

r2

K
∆t2

(Nk + η)4 −N4
k

4η
+

r2

K2
∆t2

(Nk + η)5 −N5
k

5η

−

(
E[∆N |N = Nk] + (r − 2

r

K
Nk)∆t

η

2
− r

K
∆t

η2

3

)2

.

In Figure A.1, we compare the theoretical mean E
[
∆N

∣∣∣N = Nk+U,U ∼ Unif[0, η)
]

that

we just computed with the theoretical mean E
[
∆N

∣∣∣N = Nk +
η

2

]
and the empirical mean〈

∆N
∣∣∣N = Nk+U,U ∼ Unif[0, η)

〉
using data from a simulation of S = 100 cell number

trajectories. Similarly, we also compare the population variance V
[
∆N

∣∣∣N = Nk+U,U ∼

Unif[0, η)
]

that we just computed with the theoretical variance V
[
∆N

∣∣∣N = Nk +
η

2

]
and

the empirical variance σ2
[
∆N

∣∣∣N = Nk + ηi, 0 ≤ ηi < η
]

using data from a simulation of

S = 100 cell number trajectories.
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VarianceMean
.5

Figure A.1: Theoretical mean and variance of cell number increments ∆N as functions
of population size are well-aligned with empirical mean and variance. The statistics
are computed using carrying capacity K = 105 and bin size η = 103. In (A, C, E), we
compare the theoretical mean E

[
∆N

∣∣∣N = Nk + U,U ∼ Unif[0, η)
]

with the theoretical

mean E
[
∆N

∣∣∣N = Nk +
η

2

]
and the empirical mean

〈
∆N

∣∣∣N = Nk + ηi, 0 ≤ ηi < η
〉

using data from a simulation of S = 100 cell number trajectories. In (B, E, F), we compare
the theoretical variance V

[
∆N

∣∣∣N = Nk + U,U ∼ Unif[0, η)
]

with theoretical variance

V
[
∆N

∣∣∣N = Nk +
η

2

]
and the empirical variance σ2

[
∆N

∣∣∣N = Nk + ηi, 0 ≤ ηi < η
]

using data from a simulation of S = 100 cell number trajectories. (A, B): γ = 0 (black
color); (C, D): γ = 0.5 (green color); (E, F): γ = 0.5 (magenta color). Red lines (-) denote
theoretical statistics (i.e. mean and variance) for N = Nk +

η

2
; blue squares (□) denote

theoretical statistics for N = Nk+U,U ∼ Unif[0, η); circles (◦) denote empirical statistics
for N = Nk + ηi with i = 1, . . . , Ŝk.
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A.2.2 Errors of Birth and Death Rate Estimation as Functions of Bin

Size

In this section we consider the effect of bin size on the accuracy with which we can estimate

the birth and death rates. Thus we compare the theoretical mean and variance of the

population increment, given that a point of the trajectory lies within a given bin, versus

the empirical mean and variance obtained from simulation with a finite sample size. We

use E to represent expected differences in these errors. Define

Ekmean := E
[
∆N

∣∣∣N = Nk +
η

2

]
−
〈
∆N

∣∣∣N = Nk + ηi, 0 ≤ ηi < η, Ŝk

〉
, (A.21)

Ekvar := V
[
∆N

∣∣∣N = Nk +
η

2

]
− σ2

[
∆N

∣∣∣N = Nk + ηi, 0 ≤ ηi < η, Ŝk

]
. (A.22)

The errors in estimating the birth and death rates corresponding to N = Nk +
η

2
are

Ekbirth =
Ekvar + Ekmean

2∆t
and Ekdeath =

Ekvar − Ekmean

2∆t
. (A.23)

The theoretical means of the errors over all realizations ηi of the iid uniform random

variable U ∼ Unif[0, η) are

E
[
Ekbirth

]
=

E
[
Ekvar

]
+ E

[
Ekmean

]
2∆t

and E
[
Ekdeath

]
=

E
[
Ekvar

]
− E

[
Ekmean

]
2∆t

. (A.24)

The theoretical variances of the errors over all realizations ηi of U are

V
[
Ekbirth

]
= V

[
Ekdeath

]
=

V
[
Ekvar

]
+ V

[
Ekmean

]
4∆t2

. (A.25)
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We analyze how the bin size η influences these analytical expected values and variances of

errors E
[
Ekmean

]
, E
[
Ekvar

]
, V
[
Ekvar

]
, and V

[
Ekmean

]
.

Treating the samples of
(
∆N

∣∣∣N = Nk+U,U ∼ Unif[), η)
)

as if they were identically and

independently distributed, the expected value of the sample mean is equal to the theoretical

mean. Therefore,

E
[
Ekmean

]
= E

[
E
[
∆N

∣∣∣N = Nk +
η

2

]
︸ ︷︷ ︸

independent of ηi

]
− E

[〈
∆N

∣∣∣N = Nk + ηi, 0 ≤ ηi < η, Ŝk

〉]

(A.26)

= E
[
∆N

∣∣∣N = Nk +
η

2

]
− E

[
∆N

∣∣∣N = Nk + U,U ∼ Unif[0, η)
]
, (A.27)

where

E
[
∆N

∣∣∣N = Nk +
η

2

]
=
(
bNk+(η/2) − dNk+(η/2)

)(
Nk +

η

2

)
∆t (A.28)

=
(
r − r

K
Nk −

r

K

η

2

)(
Nk +

η

2

)
∆t (A.29)

=
(
r − r

K
Nk

)
Nk∆t+

(
r − r

K
Nk

)
∆t

η

2
− r

K
Nk∆t

η

2
− r

K

η2

4
∆t (A.30)

= E[∆N |N = Nk] +
(
r − 2

r

K
Nk

)
∆t

η

2
− r

K
∆t

η2

4
. (A.31)
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Hence,

E
[
Ekmean

]
=E[∆N |N = Nk] +

(
r − 2

r

K
Nk

)
∆t

η

2
− r

K
∆t

η2

4
(A.32)

− E[∆N |N = Nk]− (r − 2
r

K
Nk)∆t

η

2
+

r

K
∆t

η2

3

=
1

12

r

K
∆tη2. (A.33)

We observe that the expected error E
[
Ekmean

]
in approximating the true mean E

[
∆N

∣∣∣N =

Nk +
η

2

]
for each bin k is independent of k and is increasing quadratically for η > 0. If

we write the expected error E
[
Ekmean

]
as

1

12

(
r∆t

)( η

K

)
η, then we see that the expected

error depends on the ratio
( η

K

)
, which shows how big the bin size is relative to the

system size (i.e. carrying capacity K), and also depends on the product r∆t, which can

be interpreted roughly as the per capita change in cell number
(∆N

N

)
after ∆t. The

higher these ratios are, the higher expected error is. Looking from a different angle, the

expected error E
[
Ekmean

]
can be written as

(r∆t

K

)( 1

12
η2
)

. This shows that the expected

error depends on
( 1

12
η2
)

, which is the variance of the random variable ηi, and how big

the per capita change in cell number r∆t after ∆t is relative to the system size K. This

observation suggests that it may be harder to estimate the cell number increments with

high accuracy for fast-reproducing cell types. Further analysis on the relation between r

and K would be interesting for future work, since existing work such as [73] shows that

the product rK can influence the evolution of antibiotic-resistant bacterial genomes.

We assume that the samples of
(
∆N

∣∣∣N = Nk + U,U ∼ Unif[0, η)
)

are independently

and identically distributed, so the expected value of the sample variance is equal to the
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population variance. Therefore,

E
[
Ekvar

]
=E

[
V
[
∆N

∣∣∣N = Nk +
η

2

]
︸ ︷︷ ︸

independent of ηi

]
− E

[
σ2
[
∆N

∣∣∣N = Nk + ηi, 0 ≤ ηi < η, Ŝk

]]

(A.34)

=V
[
∆N

∣∣∣N = Nk +
η

2

]
− V

[
∆N

∣∣∣N = Nk + U,U ∼ Unif[0, η)
]
, (A.35)

where

V
[
∆N

∣∣∣N = Nk +
η

2

]
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Therefore,

E
[
Ekvar

]
= −(1− 2γ)

r

K
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η2
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K
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η2

3

)2

.

Now, we compute the theoretical variances V
[
Ekmean

]
and V

[
Ekvar

]
over all realizations

of ηi. We assume the samples of
(
∆N

∣∣∣N = Nk + U,U ∼ Unif[0, η)
)

are identically

distributed, so the variance of the sample mean is equal to the population variance divided
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by the sample size. Therefore,

V
[
Ekmean

]
= V

[
E
[
∆N

∣∣∣N = Nk +
η

2

]
︸ ︷︷ ︸

independent of ηi

]
+ V

[〈
∆N

∣∣∣N = Nk + U, 0 ≤ ηi < η, Ŝk

〉]

(A.39)

= V

[〈
∆N

∣∣∣N = Nk + ηi, 0 ≤ ηi < η, Ŝk

〉]
(A.40)

=
V
[
∆N

∣∣∣N = Nk + U,U ∼ Unif[0, η)
]

Ŝk

. (A.41)

As mentioned above, the samples of
(
∆N

∣∣∣N = Nk + U,U ∼ Unif[0, η)
)

are indepen-

dently and identically distributed. For computation convenience here, we approximate the

binomial distribution of these samples with the Gaussian distribution with the empirical

mean and variance as discussed in Section 3.3.2. We still use the notation N instead of X

here to be consistent with the other statistics computed above. With this approximation, the

theoretical variance of the empirical variance is equal to two times the theoretical variance

squared divided by the sample size minus one. Therefore,

V
[
Ekvar

]
=V

[
V
[
∆N

∣∣∣N = Nk +
η

2

]
︸ ︷︷ ︸

independent of ηi

]
+ V

[
σ2
[
∆N

∣∣∣N = Nk + ηi, 0 ≤ ηi < η, Ŝk

]]

(A.42)

=V

[
σ2
[
∆N

∣∣∣N = Nk + ηi, 0 ≤ ηi < η, Ŝk

]]
(A.43)

=
2
(
V
[
∆N

∣∣∣N = Nk + U,U ∼ Unif[0, η)
])2

Ŝk − 1
. (A.44)
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The theoretical variance V
[
∆N

∣∣∣N = Nk+U,U ∼ Unif[0, η)
]

is given by Equation (A.20).

Using the E
[
Ekmean

]
, E
[
Ekvar

]
, V
[
Ekmean

]
, and V

[
Ekvar

]
that we just computed, we ob-

tain the theoretical means and variances of the errors in estimating birth and death rates

corresponding to N = Nk+
η

2
for all k = 1, 2, . . . , kmax using Equations (A.23) and (A.24).

In Figure 3.3, we compare the l2-norm of the theoretical means and variances of the

errors and compare them with the l2-norm of the empirical errors (i.e. realizations of the

error random variables) computed using data from a simulation of S = 100 cell number

trajectories. To computed the theoretical variances of the errors shown in Figure 3.3, we

use the empirical sample sizes Ŝk, k = 1, 2, . . . , kmax, from the same data simulation.

We observe that as the bin size η increases, the theoretical means of the errors increase,

the theoretical variances (or standard deviations) of the errors decreases, and the empirical

errors balance between the theoretical means and variances (or standard deviations) and

have convex quadratic shapes. The theoretical means of the errors reflect the differences

between ∆N at one point
(
N = Nk +

η

2

)
and ∆N at multiple points

(
N = Nk + ηi, 0 ≤

ηi < η
)

; the smaller the bin size, the closer multiple points are to one point, so the error

is smaller (for example, Equation (A.33) shows that the expected errors in estimating the

mean of cell number increments are (r∆t/12K)η2). However, if the bin is too small,

then there are not enough samples to estimate theoretical statistics with empirical statistics

with accuracy. The theoretical variances of errors involves sample sizes; the bigger the

bin size, the more samples we have. These two competing effects of bin size result in the

empirical errors being intermediate values between the two theoretical statistics (means and

variances) of the estimation errors. The optimal bin size reflects a balancing of these two
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effects. When the bin size is smaller than the optimal bin size, the sample error coincides

with the sum of the expected error and the standard deviation of the error. When the

bin size is bigger than the optimal bin size, this relationship breaks down, which may

reflect growing inaccuracy of our approximation that the trajectory points are uniformly

and i.i.d. within each bin.

A.2.3 Notation

N : discrete cell number random variable

t0 and tT : deterministic initial and final times respectively

η : deterministic bin size

k : bin index, k = 1, 2, . . . , kmax

U : uniformly distributed random variable,
(
N = Nk + U

)
∈ [Nk, Nk + η)

ηi : realization of the random variable U

S : number of cell number trajectories/time series

Ŝk : number of samples of ∆N := N(t+∆t)−N(t) in bin [Nk, Nk + η)

E[·] : theoretical mean

⟨·⟩ : empirical mean

V[·] : theoretical variance

σ2[·] : empirical variance

E[·] : error
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