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Parametric Sensitivity in a Model of a Motor Pattern Generator in

Aplysia

Abstract

by

HSING-DUAN LOUH

An animal’s survival depends on its ability to adapt to a constantly shifting envi-

ronment. Mathematical models of rhythmic motor patterns typically incorporate a

central pattern generator (CPG) circuit, driving motor output in the body. In this

thesis, we study Shaw and Lyttle’s model for the feeding system of the marine mol-

lusk Aplysia californica, which eats seaweed. The CPG has a heteroclinic channel

architecture with three metastable fixed points. Using mean rate of seaweed in-

gestion as an objective function, we studied the system’s sensitivity to parameters

representing (i) the force with which seaweed opposes swallowing, and (ii) thresh-

old and weighting parameters controlling when the feeding apparatus (grasper)

opens or closes on the seaweed. We found eight motor “strategies,” corresponding

to whether the grasper was open or closed near each of the CPG’s fixed points.

In addition, we studied how rhythmic movements break down when challenged by

excessively large resisting forces.
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1 Introduction

An animal’s survival depends on its ability to adapt to a constantly shifting environment.

For example, when we swim or dig, we do so despite different current speeds and soil density,

respectively. From a dynamical systems point of view, rhythmic motions are often modeled as

being driven by a central pattern generator, a specialized network of nerve cells that produce

limit cycle dynamics. A stable limit cycle system is “robust” in the sense that if perturbed,

the trajectory returns to the limit cycle, perhaps with a delay or phase shift. On the other

hand, a rhythmic motor system operating under variable environmental conditions must also

be “responsive”, i.e. be able to adjust its strategy or else deploy alternative strategies under

different circumstances to improve performance. In order to maintain its biological fitness,

a rhythmic motor system must somehow be both robust and responsive, despite changing

conditions. How is do organisms achieve this? One way to begin answering this question is

by creating a mathematical model to incorporate details from both aspects and generate a

testable hypothesis about the organism in vivo.

At their best, mathematical models organize disparate experimental observations into a

common framework. For example, Hodgkin and Huxley consolidated many neurophysical

observations into a conductance model of the excitable membrane of the giant axon of the

squid [21]. Quantitative models let biologists test hypotheses about the mechanisms un-

derlying different behaviors. Examples include adjusting feeding rhythms to adapt to food

resisting being swallowed (e.g. while eating seaweed in the marine mollusk Aplysia califor-

nica) [13, 22], or studying the relative contribution of feedforward versus feedback signals in

controlling walking [10].
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In addition, conducting “experiments” within mathematical models can suggest novel ex-

periments to be done in the laboratory. Compared to the in vivo or in vitro laboratory

experiments, mathematical models have allowed significant freedom for experimentation.

Mathematical models let biologists test novel manipulations in silico with less expense in

time and materials.

The relative ease of exploration, given a mathematical model, is a two-edged sword. In order

to draw relevant conclusions, the modeller must develop a thorough understanding of the

biological context, by frequent comparison of the model behavior with the biological system

of of interest. Modeling may suggest parameters or interactions that lie beyond realistic

ranges of values or known functional connections, so care must be taken in interpreting the

results in such situations.

When creating a model, we take a minimalist approach: we attempt to include only as many

details as are necessary to account for the key phenomena of interest. In modeling feeding

movements in Aplysia, for example, we focus on robustness against the imposition of an

applied load resisting ingestion of seaweed. Generally, we begin modeling with a simplified

conceptual model [1] which we then instantiate as a mathematical model. As is often the case,

we formulate the model by specifying a system of ordinary differential equations. In order to

derive quantitative and qualitative predictions from the mathematical model, we then imple-

ment a numerical model, using numerical integration methods. We can subsequently affirm

or discover gaps in our understanding of the biology by comparing the model results with the

experimental observations [26]. Consider, for example, Hodgkin and Huxley’s model for the

action potential in the squid giant axon [4]. At the conceptual level, Hodgkin and Huxley

were interested in changes in current, voltage, and voltage-gated ion channels as a result of
3



ion movements across the membrane. These qualitative representations of the system were

then used as the basis for formulating differential equations that describe a neuron’s firing

pattern. The Hodgkin-Huxley model were implemented and produced computational results

[4] that were comparable to in vivo experimental data, and the relevance of their results

support their conclusions about neurons.

Here, we are interested in how organisms control and adapt their rhythmic movements.

Rhythmic movements are actions repeated at regular intervals such as dogs lapping water,

people walking, or birds beating their wings [14]. The sea slug Aplysia californica’s swal-

lowing behavior is another example of rhythmic movements. Aplysia californica is an ideal

organism for studying motor control; it has approximately twenty thousand neurons, mak-

ing its nervous system more tractable than most vertebrates [7]. A subset of these neurons

reside in the buccal ganglion and stimulate the buccal mass, the feeding organ, to induce

motions such as swallowing, biting, and rejection. The buccal ganglion stimulates movement

by activating muscles in the feeding apparatus but also receives sensory feedback signals,

which it uses to adjust ongoing rhythmic activity of the buccal mass. If a slug is interested

in a particularly resistant piece of seaweed, the neurons will respond to the sensory feedback

by increasing the duration and force of each bite. As with other animals, a slug’s ability to

adapt its rhythmic movements is critical its survival.

Dr. Kendrick Shaw and Dr. David Lyttle [13, 22] developed a phenomenological model of

ingestive behavior in Aplysia californica. More specifically, they modeled the behavior of the

sea slug’s radular/odontophore (also known as the grasper) during biting and swallowing.

The Shaw/Lyttle model can operate in two different dynamical regimes, controlled by a pa-

rameter representing endogenous excitation of the central neural circuit. The so-called limit
4



cycle regime and heteroclinic regime, described in the Results section of [22], are two distinct

modes of rhythmic motion. A key difference between the two regimes is the sensitivity of the

central circuit; in the heteroclinic regime, the circuit is more responsive to changes in sensory

feedback and shows greater adaptation to changing mechanical loads. According to [22], the

grasper behavior when operating in the heteroclinic regime showed greater similarity to the

behavior seen in vivo when a load is applied to the seaweed being swallowed by the sea slug.

In this thesis, we study Shaw and Lyttle’s [13, 22] Aplysia californica swallowing model

through parametric sensitivity analysis, in order to better understand how organisms control

and adapt rhythmic movements. Beginning with the parameters of the published model,

we systematically vary certain key parameters in order to investigate their qualitative and

quantitative impact on the performance of the system, quantified as the average rate of food

intake while swallowing an infinite uniform strip of seaweed. As we will show, variation of

parameters reveals both graded changes, studied through sensitivity analysis, and discrete

changes or bifurcations, leading to qualitatively different ingestion behaviors. As described

above, mathematical modeling in general, and parametric analysis in particular, allows us

to perform experiments that would be costly or impractical in the laboratory. Through our

numerical experimentation, we hope to gain a deeper understanding of how movement is

regulated in Alpysia californica.

1.1 Model Equations

In this thesis, we study the parametric sensitivity of the model introduced in [22]. The

governing equations of the model are specified separately for activities of the neural units
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(the “brain”) and the activation and displacements of motor components (the “body”):

da

dt
= f(a, µ) + εg(a,x)

dx

dt
= h(a,x) + ζ l(x).

(1)

The vector a = (a0, a1, a2) is the state variable representing the the neural activities of

the three pools of Aplysia californica’s motor neurons. The function f(a,x) describes the

neural dynamics, that is, how the neurons interacts with one another. The sensory feedback

function g(a,x) influences the neural dynamics, using information reflecting the response by

the periphery, or the body. The rate of change of x, the grasper position, is governed by

the muscle dynamics function h(a,x) and the external load l(x), which could arise from the

force of seaweed against ingestion. The parameter µ represents the endogenous excitation,

that is, the tendency of neurons to fire spontaneously in the absence of motor inputs. The

positive scaling constants ε and ζ control the magnitudes of the sensory feedback and the

external load, respectively. In this thesis, we will set l(x) to a variety of constant values, so

we subsume the parameter ζ into the external load henceforth. Specific parameter values

are given in Appendix A.1. The roles of µ and ε are discussed further in Section 1.2.

The Shaw/Lyttle model simplifies the anatomy of Aplysia californica to consider only the

I2, I3, and I4 muscles (Fig. 1) and groups the neurons related to each muscle into three

mutually inhibitory neural pools. The equations governing the neural dynamics are:

da0

dt
=

1

τa

(a0 (1− a0 − γ a1) + µ) + ε (xr − S0)σ0

da1

dt
=

1

τa

(a1 (1− a1 − γ a2) + µ) + ε (xr − S1)σ1

da2

dt
=

1

τa

(a2 (1− a2 − γa0) + µ) + ε (xr − S2)σ2.

(2)
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Fig. 1: Anatomy of the food grasping organ (also known as the radula/odontophore, or grasper) of Aplysia
californica. The I2 muscle pushes the grasper forward to induce protraction. The I4 muscle induces the
grasper to close. The squeezing of the I1/I3 muscle produces retraction. The remainder of anatomical
details are not discussed in this thesis but can be found in [18]. Figure adapted (with permission) from
Fig. 1 of [23].

The vector a = (a0, a1, a2) represents the activity in the three neural pools. Neural pool a0

corresponds to the B31, B32, B61, B62, and B63 neurons, and it is responsible for activating

the I2 muscle which causes the grasper to protract. This motion is called the protraction

phase. The a1 neural pool represents the B31, B32, B61, B62, B63 and B8a, B8b [9] neuronal

activities, and activates both the I2 and I4 muscles, which causes the grasper to close. These

muscles push the seaweed away from the animal, which initiates the protraction-closed phase.

The a2 neural pool represents the B8a, B8b, B3, B6, and B9 neurons and the B64 interneuron.
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Neurons B3, B6, B9, and B64 are responsible for activating the I3 retractor muscle. Together,

the I3 and I4 muscles cause the grasper to retract while pulling in seaweed, and this motion

is called the retraction phase. As shown in Fig. 2, oscillations in the neural pools generate

oscillations in the periphery necessary for the slug to swallow seaweed.

In addition to the differential equations Eq. (2), the neural system is constrained by enforcing

boundary conditions at a minimal and a maximal firing rate. Specifically, we require 1 ≥

ai ≥ 0 for each neural pool ai. In our model, we have nonnegative levels of endogenous

excitation (µ ≥ 0), which is always true for Aplysia californica. The boundary condition

ensures that when µ > 0, ε > 0, or both, inhibition from sensory feedback does not result in

negative neural activity (0 > ai) or activity exceeding the maximum activation (ai > 1).

Consider the neural dynamics at each face of the [0, 1]3 space where ai = 0 or ai = 1 while

0 ≤ aj, ak ≤ 1. Here we define aj to be the neural pool that will fire after ai, and ak to

be the previous neural pool. When there is no sensory feedback or endogenous excitation

(µ = 0 and ε = 0), a ∈ [0, 1]3. Similarly, the trajectory is contained in the cube for nonzero

endogenous excitation µ > 0 and ai = 0 because ∀t, dai
dt
> 0. However, if µ > 0 and ai = 1,

the trajectory could exit the cube since dai
dt
> 0 when µ > γaj. In addition, if there is sensory

feedback (ε > 0), ai can also be driven negative and the trajectory could exit any face of

the cube. Therefore, we impose hard boundary conditions on all sides of the unit cube, so

the neural activations are contained in the invariant set [0, 1]3, where 1 represents maximum

activation and 0 is equivalent to quiescence.

8



Fig. 2: Grasper motions and neural pools, from [22]. Left: The three phases of grasper motion with the
green arrow indicating a specific point on the seaweed (green) being pulled in by the grasper with the I2
(blue), I4 (red), and I3 (yellow) muscles. Right: The mutually inhibitory neural pools are displayed with
the activation of each neural pool corresponding to the recruitment and activation of a specific muscle. The
left and right images corresponds to Shaw et al. [22] Fig. 2 and Fig. 3, respectively.

The neural dynamics are also regulated by different parameters, as well as the grasper

position. Each neural pool receives proprioceptive feedback of the form ε(xr − Si)σi. The

position of the grasper is xr, and the parameter Si sets the proprioceptive neutral position for

the ith neural pool. Parameter σi determines the direction of proprioceptive inputs to each

neural pool relative to protraction versus retraction, and ε controls the overall strength of

sensory feedback. The parameter τa is the neural pool time constant, and γ is the inhibition

strength of the next neural pool. The mechanical advantage of each muscle will change

depending on the position of the grasper [24]. As the equations above describe, sensory

feedback influences the activity of each neural pool depending on the position of the grasper

relative to the proprioceptive neutral positions. For example, when xr > S0, the position of

the grasper extends past the proprioceptive neutral position of the I2 muscle and inhibits a09



activity, whereas xr < S0 increases a0 activity and causes the grasper to protract.

Using the same equations describing the muscle dynamics as [22, 13], we let the periphery

incorporate activities from different neural pools to generate muscle activation:

du0

dt
=

1

τm

((a0 + a1)umax − u0)

du1

dt
=

1

τm

(a2 umax − u1).

(3)

The state variable u0 represents I2 muscle activity as a result of innervation from the a0

and a1 neural pools while the u1 variable describes the I3 activity regulated by the a2 pool.

The parameter umax is the maximum muscle activation, and τm is the muscle activation

time constant. The activities of the muscles in response to innervation from the nerves are

slower compared to the acting neural pools. This phenomenon was previously described in

an experimental study of Aplysia muscle [27], which the authors of the Shaw/Lyttle model

[22, 13] used to derive the muscle activation dynamics.

The amount of force that muscles are able to produce depends on the length and direction

in which they are stretched [28, 27]. Experimental studies of Aplysia feeding muscles showed

nonlinear length-tension properties [27], which are similar to those assumed in [22, 13]. We

describe the muscles generate force based on muscle activation and muscle position:

φ(x) = −κx(x− 1)(x+ 1)

Fmusc = k0 φ

(
xr − c0

w0

)
u0 + k1 φ

(
xr − c1

w1

)
u1

(4)

The length-tension relationship of the muscle is described by the nonlinear function φ(x).

Here a simplification to the biology is made so that the length-tension curve is described

10



by a cubic polynomial. The muscle force Fmusc is the net force generated by the I2 and I3

muscles. The constant κ normalizes the maximum of the length-tension function to 1. I2

and I3 generate forces in opposite directions specified by k0 and k1. The neutral positions

for the I2 and I3 muscles are c0 and c1. The parameters w0 and w1 are the maximal effective

lengths of I2 and I3.

The state variables xr and xsw are the positions of the grasper and seaweed, respectively.

The grasper position xr oscillate within the range [0, 1], where 0 is the anterior-most position

and 1 is the grasper position during maximum protraction. An exception may occur where

the grasper position exceeds 1 if the seaweed force overpowers the muscle force (Section 4.2).

Acceleration is assumed to be insignificant, and br and bsw are the damping parameters. The

load Fsw is the resisting seaweed force. When the grasper is open, the Shaw/Lyttle model

assumes that the grasper and seaweed do not interact [13, 22], so the seaweed position

remains unchanged. The grasper position is a function of the muscle force when the grasper

is open:

dxr

dt
=
Fmusc

br

dxsw

dt
= 0.

(5)

However, when the grasper is closed, the grasper position is influenced by both the muscle

force and seaweed force. Furthermore, both the grasper and the seaweed have the same rate

of change in position:

dxr

dt
=
dxsw

dt
=
Fmusc + Fsw

br + bsw

. (6)

11



The grasper is defined to be closed when a1 and a2 activities exceeds a threshold (Section

1.3) and open otherwise. The parameters governing the opening and closing of the grasper

will be the subject of our study.

1.2 Heteroclinic and Limit Cycle Regime

Limit cycles and heteroclinic orbits are special trajectories of continuous dynamical systems,

defined as follows:

“An isolated periodic trajectory is called a limit cycle. A limit cycle is said to be
asymptotically stable if any [nearby] trajectory ... approaches the cycle as t→∞.”
[5].

“A heteroclinic orbit corresponds to a trajectory that lies in both the unstable
manifold of [one fixed point] and the stable manifold of [another fixed point].” [2].

Furthermore, a limit cycle can also be unstable, if it repels at least some trajectories in any

neighborhood of the periodic orbit, and the trajectory along a heteroclinic orbit approaches

one fixed point as t→ −∞ and the other as t→ +∞. A sequence of heteroclinic orbits that

form a closed loop is a heteroclinic cycle [20].

Recall from Section 1.1, the neural activity vector a = (a0, a1, a2) is governed by Eq. (2).

When ε = µ = 0, there are three saddle nodes at (a0, a1, a2) = (1, 0, 0), (0, 1, 0), and (0, 0, 1).

These will be called the a0, a1, and a2 neural fixed points, respectively. The heteroclinic orbit

is an idealized trajectory that occurs when the endogenous activation is shut off (µ = 0),

the sensory feedback is absent (ε = 0), and the inhibition is sufficiently strong (γ > 2). If

µ→ 0, then the trajectory approaches a heteroclinic cycle with an infinite “period” since the

trajectory would take an infinite amount of time to travel from one fixed point to another.
12



Consequently, the rate of seaweed movement or the change in seaweed position per period

(∆xsw
∆t

) will approach zero. We therefore assume the endogenous excitations are positive

values, so the trajectory will only approach but not fall onto the heteroclinic orbit.

For different levels of endogenous excitation, Shaw et al. [22] divide trajectories into the

heteroclinic regime (µ . 1.7 × 10−5) and the limit cycle regime (µ & 1.7 × 10−5). As µ

increases, the trajectories converge to limit cycles further away from the fixed points (Fig. 3).

Consequently, the trajectories of the limit cycle regime spend less time near the fixed points

compared to those in the heteroclinic regime. In contrast, trajectories generated from smaller

µ values approach but do not come into contact with the fixed points. When µ . 1.7×10−5,

a longer retraction time was observed [13, 22] in comparison to the limit cycle regime, as

the seaweed force was increased. Although oscillations in both the limit cycle regime and

the heteroclinic regime are limit cycles, strictly speaking, they are divided into two distinct

regions in the parameter space because the different ways that the trajectory interacts with

the fixed points cause significant changes in the grasper behavior.
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Fig. 3: Neural activation limit cycles from [22] in the absence of sensory feedback. The green dots represent
the saddle fixed points corresponding to activation of the a0 (bottom right), a1 (bottom left), and a2 (top)
neural pools. Left: For small endogenous excitation (µ = 10−9), Eq. (2) produces a long-period limit cycle
with trajectories (blue curves) that stay very close to the µ = 0 heteroclinic cycle. Right: For larger
excitation (µ = 10−3), the trajectories are steered further away from the fixed points. Both vector fields
produce stable limit cycle trajectories because all trajectories in the state space converge to a limit cycle
over time regardless of the initial conditions (red dots). Note that there is no sensory feedback in either
system (ε = 0).

Near the fixed points, the rate of change of the trajectory is the smallest (Fig. 3), and the

role of sensory feedback becomes especially important. The perturbation ε may cause the

system to escape the region near the fixed points faster. From Eq. (2), we can see that

the greater the value of | ε − µ | is, the greater the impact of perturbation; consequently,

the heteroclinic regime with a smaller µ value is more responsive to sensory feedback [22].

In response to stronger seaweed force, the grasper in the heteroclinic regime increases the

duration of the retraction phase. In contrast, the trajectories in the limit cycle regime, being

less sensitive to sensory feedback, continue to perform the three phases of swallowing with

much less change in behavior.
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1.3 Measuring Fitness

In this thesis, we analyze the parametric sensitivity of Shaw and Lyttle’s Aplysia californica

swallowing model [13, 22]. In these papers, the implicit goal of the feeding motor system is

to ingest seaweed as rapidly as possible. Therefore, throughout this project, we choose our

objective function S to be the average rate of seaweed intake:

S = − lim
t→∞

1

t

∫ t

0

dxsw

dt′
dt′. (7)

The higher the average rate of seaweed intake, the higher the fitness. Under some conditions

the model system loses seaweed, meaning S < 0. This situation might be interpreted as

maladaptive behavior. Alternatively, under some experimental conditions Aplysia may be

induced to reject inedible “food” [19, 17] in which case S < 0 could be interpreted as

successful rejection behavior.

When a trajectory has converged to a stable limit cycle and the seaweed force is constant,

the grasper behavior is identical between each period:

S = − lim
n→∞

1

n · T

∫ n·T

0

dxsw

dt′
dt′

= − lim
n→∞

n

n · T

∫ T

0

dxsw

dt′
dt′ = − 1

T

∫ T

0

dxsw

dt′
dt′

(8)

During each period, the grasper is open and closed in fixed time intervals. The Shaw/Lyttle

model defined the grasper to be closed when

a1 + a2 ≥ 0.5 (9)
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and open for all other values of a1 and a2. Let tclosed ∈ [0, T ] be the first moment when

the grasper closes and topen, with tclosed < topen < tclosed + T , be the time when the grasper

transitions from closed to open. The objective function S can then be calculated using a

smaller time window:

S = − 1

T

(∫ topen

tclosed

dxsw

dt′
dt′ +

∫ tclosed

topen

dxsw

dt′
dt′

)

= − 1

T

∫ topen

tclosed

dxsw

dt′
dt′ = −xsw(topen)− xsw(tclosed)

T
.

(10)

Recall the integral from topen to tclosed is identically zero because the model assumes the

seaweed does not move while the grasper is open.

We will analyze the parametric sensitivity of the system by exploring the effects of varying

different parameters in the heteroclinic regime at a fixed level of endogenous excitation

(specifically, µ = 10−6). We redefine the parameterization of the grasper-open and grasper-

closed regions (cf. Eq. (9)) and describe how we implement our model in Chapter 2. In

Chapter 3, we measure the change in fitness and observe different ingestion and egestion

behaviors in different parameter regions. We then investigate the robustness of the feeding

system by examining the effect of varying the load in the different regions in Chapter 4.
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2 Sensitivity to Opening/Closing Boundary

In this chapter, we explain our methodology for evaluating our objective function S (Section

1.3, Eq. (10)) which measures the rate of seaweed movement over different parameterizations

of grasper behavior. Our project builds on a simulation of the Shaw/Lyttle model imple-

mented in Matlab by Dr. Yangyang Wang [13, 22]. We introduce alternative parametrizations

of the switching surface defining the opening/closing threshold in Section 2.1. We explain

our implementation of the model in Section 2.2.

Fig. 4: Grasper-open and grasper-closed regions. Heteroclinic orbit (blue, µ = 0) intersected by a plane
(orange) dividing the trajectory traveling counterclockwise into grasper-open (unshaded) and grasper-closed
(shaded) regions. The points (a1, a2, a3) = (1, 0, 0), (0, 1, 0), and (0, 0, 1) are the fixed points for the three
neural pools.

The Shaw/Lyttle model divides the neural activity space into grasper-open and grasper-

closed regions according to Eq. (9), as Fig. 4 illustrates. This figure contains a heteroclinic

orbit which arises when there is no endogenous excitation (µ = 0) and sensory feedback
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(ε = 0). However, we are interested in trajectories in the heteroclinic regime (specifically,

µ = 10−6) where the neural oscillations approach but do not contact the fixed points, much

like the graphs shown in Fig. 3. Once the trajectories have converged to a stable orbit,

the sum of the three neural activities is approximately 1 [13]. Thus, in Figs. 5 and 6 we

plot the trajectory and the opening/closing boundary in the (a1, a2)-plane, and note that

a0 ≈ 1− a1 − a2.

2.1 Parameterizing the Open and Closed Regions

We wish to write the grasper closing condition Eq. (9) in a more general form. We will

assume the grasper is closed whenever the activations of the neural pools satisfy the following

inequality:

β · a1 + γ · a2 ≥ δ. (11)

The grasper is open for all other combinations of a1 and a2. If β = γ = 1 and the closing

threshold is δ = 0.5, the new parameterization is equivalent to the original condition (Eq. (9))

from the Shaw/Lyttle model. This new parameterization allows us to explore how variations

in a1 and a2 activities affect the opening and closing of the grasper.

Alternatively, we may transform the parameterization from Eq. (11) into a more illuminating

expression that will allow us to systematically vary the closing condition. Let L be the line

of equality dividing the opening and closing regions in the (a1, a2)-plane:

L = {(a1, a2) | a2 = −β
γ
· a1 +

δ

γ
}. (12)

Define P to be the line perpendicular to L that intersects the point (a1, a2) = (0, 0). P is
18



Fig. 5: Grasper-open and grasper-closed regions parameterized by β and γ. The a0, a1, and a2 fixed points
(green) are located at positions (0, 0), (1, 0), and (0, 1) in the (a1, a2)-plane. The red, dashed line represents
the trajectory, moving counterclockwise. Left: Projection of the neural activity using the original parameters
from [22], i.e. β = γ = 1. Right: Projection of the neural activity using β = 2.5 and γ = 0.5. In both
panels, δ = 0.5.

thus the line:

P = {(a1, a2) | a2 =
γ

β
a1}. (13)

Define a positive constant z =
√
β2 + γ2. Then, we can re-parameterize inequality (11) as:

β

z
· a1 +

γ

z
· a2 ≥

δ

z
. (14)

The coefficients from (14) can be rewritten as:

cos(θ) =
β

z

sin(θ) =
γ

z

C =
δ

z
.

(15)
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Fig. 6: Defining different opening (gray) and closing (white) regions using an orthogonal vector
(cos(θ), sin(θ)). The vector (dashed) normal to the boundary (L) dividing opening and closing regions
is derived using the neural pool weighting parameters β and γ as well as the threshold δ, which corresponds
to the a2-intercept. This vector forms angle θ with the a1-axis.

Where θ is the angle between P and the a1-axis. We can now transform the original inequality

into the final expression:

cos(θ) · a1 + sin(θ) · a2 ≥ C. (16)

The vector (cos(θ), sin(θ)) is orthogonal to the boundary L dividing the opening and closing

regions. Fig. 6 illustrates the construction of expression (16).

The closing condition in the Shaw/Lyttle model is defined by β = γ = 1 and δ = 0.5, giving

1 · a1 + 1 · a2 = δ, so the original condition is equivalent to expression (16) with θ = π
4
. We
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re-parameterize to find the threshold δ:

C = cos(θ) · a1 + sin(θ) · a2

= cos(
π

4
) · a1 + sin(

π

4
) · a2

=

√
2

2
· (a1 + a2) =

√
2

2
· δ

=
δ√
2

or equivalently:

δ = C ·
√

2.

Thus, by varying θ ∈ [0, 2π] and δ ∈ R, we can define all possible geometries for the open

and closed regions.

2.2 Model Implementation

In order to study the parametric sensitivity of Aplysia californica’s grasper behavior, we

adapted a Matlab implementation of the Shaw/Lyttle model written by Dr. Yangyang Wang

[25]. As Dr. Wang’s code was not intended to facilitate parametric sensitivity studies, we

modified the code to introduce parameters θ and δ controlling the opening/closing surface.

The Matlab differential equations solver ODE15s evaluates the seven state variables: a0, a1, a2, u0, u1, xr,

and xsw. This numerical integration function is applied with Relative Tolerance = Absolute

Tolerance = 10−13 and the maximum step size = 10−3. The parameters are identical to

the values used by Lyttle et al. [13] except for the following: the endogenous excitation

(µ = 10−6), the sensory feedback (ε = 10−4), and seaweed force (Fsw = 0.1). See Tables

1 and 2 for initial conditions and parameter values, respectively (Appendix A.1). In this
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thesis, we will investigate trajectories in the heteroclinic regime (cf. Section 1.2 for more

information).

Using the Matlab solver and specifications given in the paragraph above, Dr. Wang’s original

code (lyttle model.m, Appendix A.2) produces Fig. 7, where the four panels represent the

trajectories for neural pool activities, muscle activities, grasper position, or seaweed position.

In Fig. 7A, which plots the neural activity variables, one can see the difference in duration

of neural activity due to the influence of sensory feedback. Both the a0 and a1 neural pools

innervate the I2 protractor muscle. The onset of the a0 activity pushes the grasper away

from the I2 proprioceptive neutral position, so the ensuing a1 pool activity is met with

inhibition due to sensory feedback (Eq. (2)). All brain/body variables (a0, a1, a2 in Fig. 7A,

u0, u1 in Fig. 7B, and xr in Fig. 7C) have periodic trajectories. The only non-periodic state

variable is the seaweed position (Fig. 7D). However, once the trajectory has converged to

a stable limit cycle, the rate of change of the seaweed position is periodic. As described in

Section 1.1, the grasper has three different motions thereby producing three distinct types of

seaweed movement. When the grasper is in the protraction-open phase, the grasper is not in

contact with the seaweed, so the seaweed position does not change. In the protraction-closed

phase, the seaweed is pushed away from the slug (positive change in position, see Fig. 7D).

The seaweed is ingested during the retraction-closed phase of the grasper (negative rate of

change, see Fig. 7D).
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Fig. 7: Evolution of state variables of the Shaw/Lyttle model. Parameters as in Table 1 of [13], with
µ = 10−6. Plots generated using Dr. Yangyang Wang’s Matlab simulation. (A) Neural activity, showing a
near-heteroclinic trajectory, with long activations for a0 and a2 neural pools and short activation for the a1
pool. (B) Periodic muscle activity of the u0 and u1 variables corresponding to the I2 and I3 muscle groups,
respectively. (C) Oscillating grasper position with negative and positive slopes representing retraction
and protraction, respectively. (D) Negative change in seaweed position corresponds to ingestion (seaweed
movement into the slug). The seaweed position is assumed to be fixed when the grasper is open. The brief
a1 activity causes some loss of seaweed, resulting in short positive changes in the seaweed position.

Recall from Section 1.3, Eq. (7), that

S = − lim
t→∞

1

t

∫ t

0

dxsw

dt′
dt′ = −xsw(topen)− xsw(tclosed)

T
.

To accurately measure the average rate of seaweed movement, suppose the first point of

measurement is at xsw(t0) (t0 ≈ 15 in Fig. 8) and the ensuing points are measured at

xsw(t0 + n · T ), where n ∈ N and T is the period. Since the trajectories have converged to a

limit cycle, the net seaweed displacement per period is approximately constant. Therefore,

the seaweed intake rate can be estimated as the net change in seaweed position between the
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first and last point divided by the elapsed time:

S ≈ −xsw(t0 + ρ · T )− xsw(t0)

ρ · T
,

ρ = max
n∈N

(
n ≤ 40− t0

T

)
.

(17)

The simulation time is 40 seconds, and the first 10 seconds of activity are discarded as

transient under the assumption that 10 seconds is enough time for the limit cycle to converge

to stable orbit (Fig. 8).

Fig. 8: Measurement of S, the rate of seaweed intake. Values to the left of the dashed red line are discarded
as the initial transient. The ingestion rate is measured between corresponding points for each periodic motion
of the seaweed position, divided by the total time elapsed. The slope of the pink line gives (−1) times the
average rate of seaweed movement (S).

Points of measurement are taken when the seaweed velocity changes from 0 to a nonzero

value. Thus, each measurement point corresponds to a crossing from the grasper-open region

into the grasper-closed region. In Fig. 8, these points occur when the seaweed position

changes from flat to rising. However, in some combinations of θ, δ, and Fmusc could also be
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measured when the seaweed position changes from flat to falling.

We apply a different convention concerning the direction of seaweed movement than what

is used in the Shaw/Lyttle model [22, 13]. In the Shaw/Lyttle model, negative change

in seaweed position corresponds to ingestion while positive change represents to egestion.

However for this thesis, positive average rate of seaweed movement (S > 0) represents

ingestion while negative rate (S < 0) is egestion. When graphing seaweed position, we will

revert back to the original Shaw/Lyttle convention for easier comparison of the result with

that of the original papers [13, 22], cf. Figs. 7, 8, 16, 15, and 17.

Utilizing the parameterization from the previous section, and varying θ and δ to define dif-

ferent open and closed regions (Eq. (16), Section 2.2), we measure intake rates produced

by θ ∈ [0, 2π] and δ ∈ [−0.5, 1.5] by applying the Matlab codes given in Appendix A.2.

We systematically vary the angle and threshold (lyttle model vary grasper run.m) and

evaluate the corresponding trajectory using the code in (lyttle model vary grasper.m)1.

We numerically estimate fitness, following the procedure described in the paragraph above

(lyttle model vary grasper run.m). To perform analysis using a specific combination of

angle and threshold parameters, we visualize our result by plotting the evolution of the state

variables

(lyttle model state var plots.m), compare neural fixed points captured in different grasper-

closed regions (RegionGeometry.m), and explore how variations in load affect fitness (Fsw vsIntakeRate.m).

Section 4.2 evaluates two trajectories at different seaweed forces but with the same param-

eterization of the grasper closing condition. The rate of divergence of the two trajectories

were approximated and graphed

1Dr. Peter Thomas wrote this file by modifying lyttle model.m.
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(Rate of change of differences dzdt). We then compare grasper behaviors at different

parameterizations using the same seaweed force

(grasperForceCompare.m).
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3 Grasper Behaviors in Distinct Parameter Regions

3.1 Identifying Parameter Regions

In this chapter, we explore the change in S, the average rate of seaweed movement, as a result

of different parameterizations of the grasper closing conditions (Eq. (16)). By systematically

varying angle (θ ∈ [0, 2π]) and threshold (δ ∈ [−0.5, 1.5]), we identified eight parameter re-

gions, or sections in Fig. 9 with qualitatively distinct seaweed behaviors. Here, 0 < S means

seaweed ingestion while S < 0 represents egestion. We indexed these non-overlapping re-

gions with roman numerals such that if Sj is the average rate of seaweed movement where

j ∈ [I, II, ...,VIII], then SI ≥ SII ≥ ... ≥ SVIII.

Fig. 9: Average rate of seaweed movement S evaluated at different values of the parameters governing
the closing condition. This colormap is numbered according to the colorbar from regions with the greatest
average rate of seaweed movement (I) to the lowest (VIII). Here, positive rate refers to ingestion, and
negative values represent egestion. Although regions IV and V both have S = 0, the grasper behaviors
between each region are distinct (cf. Section 3.2). These two regions are separated by the line δ = 0. The
angles are discretized into 60 equally spaced points and the threshold into 75. The red asterisk approximate
the parameters used in [13, 22].

27



Each region is classified into one of three types: intake, neutral, or rejection. The intake

regions contain all parameter combinations that produce ingestion of seaweed (S > 0):

regions I, II, and III. The closing condition used by the Shaw/Lyttle model (δ = 0.5, θ = π/4,

cf. Eq. (9)) lies in region II (red asterisk in Fig. 9). There are two distinct neutral regions

that produce no net seaweed movement (S = 0): regions IV and V. Although these regions

appear indistinguishable in Fig. 9, they are separated by the δ = 0 line, and the grasper

behaves differently in each region (cf. Section 3.3). The grasper in the rejection regions ejects

or loses seaweed every period (S < 0) and include: regions VI, VII, and VIII. In Section

3.3 we will analyze the grasper behaviors in each region. The distribution of the rates of

seaweed movement across different parameterizations are shown in Fig. 10.

Fig. 10: Distribution of seaweed rates across the 60×75 grid containing different combinations of angle and
threshold. Average rates of seaweed movement can be classified into seven groups and correspond to the
eight parameter regions in Fig. 9.
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3.2 Fixed Points Distinguish Parameter Regions

To begin understanding each parameter region, we identify the switching boundary in the

(a1, a2)-plane and analyze how the grasper-open and grasper-closed regions are divided (refer

to Section 2.1 for additional background information). Fig. 11 illustrates the threshold loca-

tions in (a1, a2) coordinate space for selected points in the (δ, θ) parameter plane (cf. Fig. 14).

We observe that each of the regions includes a different set of neural fixed points, or equi-

librium points, in its grasper-closed space. Recall from Section 1.2 that the rate of change

of neural vector a is slowest near the neural fixed points. Therefore, having a fixed point

captured in the grasper-closed region results in sustained stimulation of the muscle driven

by the neural pool, which then develops a significant force on the seaweed. The a2 unit is

the only neural pool that drives the I3 muscle and grasper retraction, and all three intake

regions capture the a2 fixed point. The rejection regions include either the a1 fixed point

(region VI), a0 fixed point (region VII), or both (region VIII). Both the a0 and a1 neural

pools drive the I2 muscle that causes grasper protraction. Parameter region IV excludes all

fixed points, so the grasper is always open; therefore in the model, the instantaneous rate

of movement of seaweed is identically zero at all times. In contrast, region V includes every

fixed point, so the grasper always remains closed, and pulls the seaweed back and forth with

no net ingestive or egestive movement. Thus, the different rates of seaweed intake may be

explained by the specific neural fixed points included in the grasper-closed region.
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Positive Rate

No Net Change

Negative Rate

Fig. 11: Switching boundary in different parameter regions. The eight parameter regions are divided into
three groups depending on the direction of seaweed movement per period. From top to bottom, the three
groups correspond to intake, neutral, and rejection regions. In each panel, the shaded and unshaded regions
correspond to grasper-closed and grasper-open spaces, respectively.
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To verify whether the previous observation can be generalized to all angle-threshold com-

binations, we investigate the distribution of fixed points encompassed by the grasper-closed

space of all parameter regions. For each (δ, θ), we determine which of the fixed points

(a1, a2) ∈ {(0, 0), (0, 1), (1, 0)} satisfy the closing condition (Eq. (16)). Fig. 12 shows the

resulting map, with distinct fixed point regions, areas that capture a specific set of fixed

points.

Fig. 12: Different neural fixed points satisfy varying parameterizations of the grasper closing condition.
Regions of the same color encompass the same set of fixed points in the grasper-closed space. The only part
of the graph with no fixed points included within its grasper-closed region is the area in dark blue.

The distribution of the different regions appear to be similar to those of Fig. 9.

To understand the relationship between the neural fixed points and the parameter regions,

we derive the boundaries between the fixed point regions explicitly. Recall that the grasper-
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closed condition is defined by Eqs. (16) and (17) as:

cos(θ) · a1 + sin(θ) · a2 ≥
δ√
2

(18)

The boundaries divide the regions including different fixed points clearly. Regions with the

a0 fixed point in the closed region obey the following:

0 ≥ δ√
2

(19)

The regions where closing includes the a1 fixed point satisfy:

cos(θ) ≥ δ√
2

(20)

The regions where closing includes the a2 fixed point satisfy:

sin(θ) ≥ δ√
2

(21)
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Fig. 13: Comparison between the parameter regions and the fixed point regions. The a0, a1, and a2 fixed
point boundaries outline the eight different fixed point regions corresponding to 0 ≥ δ√

2
, cos(θ) ≥ δ√

2
, and

sin(θ) ≥ δ√
2
, respectively. These boundaries are also the boundaries of the intake regions.

To see how fixed points affect S, we overlay the boundaries dividing the fixed point regions

on top of the parameter regions in Fig. 13. These boundaries are indistinguishable from

the curves dividing the parameter space into the eight regions; that is to say, the parameter

and fixed point regions overlap. Therefore, knowing which fixed points are included in the

grasper-closed space allows us to predict the average rate of seaweed movement. The next

section will discuss how the fixed points affect the grasper and seaweed movement in more

detail.

3.3 Analyzing the Parameter Regions

At the end of Section 3.2, we established that the neural fixed points in the grasper-closed

space affect the average rate of seaweed movement, and points in the same parameter region
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share the same neural fixed points. Therefore, we selected one (δ, θ) point as representative

from each parameter region to analyze the variations in S. The points selected are shown in

Fig. 14.

Fig. 14: Points are selected from each of the eight parameter regions. The red point from region II is closest
to the angle and threshold values used by Shaw et al. [22]. The points have the following (δ, θ

π ) coordinates.
I: (0.5, 0.7119), II: (0.5, 0.2373), III: (0.2568, −0.7119), IV: (1.4189, 0.3390), V: (−0.2568, 0.2373), VI:
(0.3649, 1.661), VII: (−0.2568, 1.322), VIII: (−0.2568, 1.661).

The red point in region II ((δ, θ) = (0.5, 0.2373π)) corresponds to the parameters closest

to those used in (Eq. (9)) in the Shaw/Lyttle model ((δ, θ) = (0.5, 0.25π)). These selected

values will be used throughout the remainder of the thesis.

From Section 3.1, we classified the parameter regions into three groups: intake, neutral, and

rejection regions (Fig. 11). Region I has the highest fitness out of all the regions, and its

grasper-closed region captures only the a2 fixed point, thus ensuring that the grasper is only

closed during retraction (Figs. 15). Region II has parameters closest to the ones used in the

original model [13, 22]. The closing condition from this region includes the a2 and a1 fixed
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Fig. 15: Evolution of state variables from the intake regions I-III. In the neural pools and muscle activities,
positive values represent higher activation. The negative change in grasper and seaweed positions repre-
sent retraction, i.e. movement into the slug. Region II has a lower intake rate than region I (SI > SII).
Trajectories in region II (not shown) are qualitatively similar to those in region I, except for a longer
protraction-closed phase, shown as positive seaweed movement resulting in seaweed loss.

points to produce the protraction-open, protraction-closed, and retraction-closed behaviors

described in Section 1.1. Changes in seaweed position in regions I and II are qualitatively

similar. However, I has a shorter protraction closed phase which reduces the loss of seaweed
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per period.

Region III shows the smallest positive intake rate because both the a2 and a0 fixed points

satisfy the closing condition. In this region, the grasper is closed during retraction, as well as

during part of the protraction phase, which results in lower ingestion rate than the regions

above. Because the grasper is closed near a0 in region II, instead of a1 in III, we observe that

SII > SIII. The trajectory passes by the a0 fixed point more slowly than the a1 fixed point

due to the grasper’s response to feedback; this phenomenon was also observed by Shaw et

al. [22]. As a result, even though both the a0 and a1 neural pools innervate the I2 protractor

muscle, a0 is active for a longer duration than a1, so more seaweed is ingested during the

part of the trajectory that passes by the a0 point than the part passing by the a1 point.

Although S = 0 in both neutral regions, regions IV and V have very different grasper and

seaweed movements (Figs. 16). In region IV, the grasper-closed space does not overlap with

any part of the trajectory, so the grasper is always open. Because we assumed that the

seaweed position is fixed when the grasper is open, there is no change in seaweed position.

In contrast, the trajectory always satisfy the closing condition in region V. Therefore, the

grasper is always closed, and the seaweed oscillates back and forth along with the grasper

with no net change in position.

In contrast to the behavior in the ingestive regions, when the parameters fall in the rejection

regions (VI-VIII), the grasper closes during protraction and opens during retraction. Con-

sequently, seaweed is ejected from the slug, resulting in egestion (Fig. 17). This behavior

differs from the swallowing behavior (protraction-open, protraction-closed, and retraction)

studied in [13, 22]. The closing condition of regions VI, VII, and VIII includes the a1,
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Fig. 16: State variables from the neutral regions IV-V. The grasper is always open in region IV, so there
is no change in seaweed position. In region V, the grasper and seaweed have the same rate of change in
position because the grasper is always closed.

a0, and both the a0 and a1 fixed points, respectively. As was the case for the difference in

rate of seaweed movement between regions II and III, we find that region VII produces a

stronger rejection than region VI (0 > SVI > SVII) because the a0 neural pool is active for a
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Fig. 17: The state variables from the rejection regions VI-VIII. Here, the grasper is only closed when it is
protracting. Region VII is not shown because it is qualitatively similar to region VIII, but with a slightly
weaker rejection response (0 > SVII > SVIII) due to a shorter protraction-closed phase.

longer duration than the a1 pool (Fig. 17). Similarly, region VIII has the greatest rejection

rate because the grasper-closed region encompasses both the a0 and a1 fixed points, which

maximizes the duration of the protraction-closed phase.
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Examining Figs. 15, 16 and 17, we observe that the length of time for each period differs

between the regions, which affects how the seaweed position changes over time. We define

the period of each region to be Tj, where j ∈ [I, II, ...,VIII].

In Lyttle et al. [13], the authors observed that sensory feedback causes the grasper to pull

longer and with more force in the heteroclinic regime than in the limit cycle regime. When

confronted with an increased external load, the neural trajectories respond by causing a

further increase in both duration and intensity of the retraction-closed phase (the model

slug pulls “longer and stronger”), which gives the system additional robustness to this type

of perturbation. Here, we observe that among the eight example parameter sets considered,

the ingestive regions (I-III) have limit cycles with longer net periods than the egestive

regions (VI-VIII). In particular, the limit cycle period across the different regions from

shortest to longest is region VII, VIII, IV, VI, III, V, I, and II. When the grasper is open,

the change in position obeys dxr
dt

= Fmusc

br
, so the rate of change is dependent only on the

muscle dynamics. The grasper-open dynamics is captured in region IV. When the grasper

is closed, dxr
dt

= Fmusc+Fsw

br+bsw
. During the protraction-closed phase, the muscle and the seaweed

are exerting force in the same direction which allows for a higher rate of change in position

and a shorter period. In contrast, swallowing regions have the longest periods, because Fmusc

and Fsw act in opposite directions.

Another way to think about the frequency is to consider when the trajectory is in the open

versus the closed domains. When the grasper is closed during a2 activation, this will generate

stronger ingestion force in opposition to the seaweed force. When the grasper is closed during

a0 activation, the grasper and seaweed move together quickly because the two forces reinforce

each other.
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In summary, limit cycle trajectories with (δ, θ) values from a given parameter region exhibit

similar qualitative behavior, due to the grasper-closed regions encompassing the same fixed

points (Fig. 11). Thus, the parameter regions allow us to predict the qualitative behavior

of trajectories of the state variables and approximately predict the quantitative value of

seaweed movement rate S. By changing the parameterization of the closing condition, we

produced a wide range of biologically plausible grasper behaviors, including swallowing (I-

III), grasper always open (non-closing) (IV), uninterrupted engagement (constantly closed)

(V), and rejection (VI-VIII). We consider the biological relevance of each of these behaviors

further in the Discussion section.
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4 The Effect of Load on Fitness

For the sake of survival, robust rhythmic motor systems must maintain their performance de-

spite constantly changing environmental conditions. Consider walking, a sequence of rhyth-

mic limb movements. We never walk in “ideal” settings without any impedance; instead, we

regularly encounter a number of small obstacles: there may be a small bump in the road,

the wind may be pushing against us, or there may be an obstacle in our path. Our body and

brain work together to adjust to these environmental changes through sensory feedback, to

allow us to continue walking.

Similarly, the sea slug’s feeding pattern generator adapts its behavior to accommodate im-

pediments to ingestion. The papers introducing the Shaw/Lyttle model [13, 22] address how

the slug’s grasper responds to one such challenge: changes in the force with which seaweed

resists ingestion. In the heteroclinic regime (µ . 1.7 × 10−5) sensory feedback allows the

model to respond to increasing seaweed forces by extending the duration of retraction. In the

previous chapter, we modified the closing condition and identified eight parameter regions

each producing distinct grasper behaviors. In Section 4.1, we will examine robustness of

each parameter regime across different seaweed forces.

However robust, a motor system cannot maintain its performance when the countervailing

external forces are too strong. Referring to the earlier example, there are circumstances

when we can no longer walk: the wind may be blowing too strongly against us, or the hill

may become too steep. In Section 4.2, we investigate what happens when the seaweed force

overpowers the grasper.
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4.1 Varying Seaweed Force across Parameter Regions

We vary the seaweed force Fsw ∈ [−0.1, 0.15] for each of the eight parameter regions and

evaluate changes in S, the average rate of seaweed movement. Although negative seaweed

forces would not occur naturally in normal, pliant seaweed, they could occur transiently

if tidal surge pressed a sea slug towards a particularly stiff stalk of seaweed which it was

swallowing. In general, given the mathematical model in which Fsw appears as a parameter,

we can ask for the model’s behavior for a range of both positive and negative values of Fsw

separately from any physical interpretation.

When the load resisting ingestion becomes too great (Fsw > 0 becomes large), the grasper

behavior may no longer be periodic (for further discussion, see Section 4.2). Therefore,

we define the average rate of seaweed movement to be S ≡ 0 when there does not exist a

stable periodic orbit. Fig. 18 shows the rate of seaweed movement (positive S reflects inward

movement, or ingestion; negative S reflects outward movement, or egestion) as a function of

Fsw for a representative system from each of parameter region I-VIII.
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Fig. 18: Rate of seaweed movement for each parameter region at varying levels of seaweed force. A
representative set of parameters was drawn from each of the eight parameter regions (see Fig. 14). In each
region S decreases as a function of Fsw, except in regions IV and V in which it remains constant at S = 0.
When the grasper in regions I, II, III, and V encounter large forces that cause the periodic motion of the
grasper to collapse, the rate is defined to be S ≡ 0.

Recall that the parameter regions were defined with Fsw = 0.1 such that SI ≥ SII ≥ ... ≥

SVIII (Section 3.1). As Fig. 18 shows, the inequality remains consistent across all values of

the seaweed force as long as the net seaweed movement is nonzero for all non-neutral regions.

In the ingestion regions I-III, the grasper maintains its ingestive behavior until Fsw becomes

too great and causes a sudden drop in the rate of seaweed movement from S > 0 to S = 0.

In regions I, II, and III, the periodic limit cycle movement of the grasper loses stability

at Fsw ≥ 0.1376, Fsw ≥ 0.1162, and Fsw ≥ 0.131, respectively. In the neutral regions,

the grasper movement induces no net seaweed movement (S = 0) regardless of Fsw. In

region IV, the grasper never contacts the seaweed, so the seaweed position is fixed (Section

1.1). The grasper in region V is always closed, but S = 0 for two separate reasons. When

Fsw < 0.1138, the neuromotor trajectory is a stable limit cycle, and the seaweed oscillates

with that of the grasper with no net change in position. In contrast, if Fsw ≥ 0.1138, the
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periodic behavior of the grasper collapses due to the strong seaweed force, much like the

case in the intake regions. In comparison with the previous parameter regions, the grasper

in the rejection regions (VI-VIII) always maintains its stable oscillation and ejects seaweed

(S < 0), regardless of the seaweed force. The analysis of parameter regions from the previous

chapter appears consistent despite varying the seaweed force, even when the force is negative.

Fig. 18 shows the average rate of seaweed movement measured as the net change in position

divided by the net change in time. Consistent with previous observations [13, 22], the decline

of S as a function of increasing Fsw is remarkably gradual, a sign that the system is robust

to externally applied loads [13]. In order to understand this robustness in more detail, we

analyze the change in seaweed position per period along with the change in period, as Fsw

increases. In Fig. 19 we plot the net change in position against the oscillation period.
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Fig. 19: Change in seaweed position and period for different seaweed force Fsw ∈ [−0.1, 0.15]. Each point
represents a point from Fig. 18. The points with no change in seaweed position are discarded and are shown
as dashed lines connecting to (t, xsw) = (30, 0). Thin blue lines are level curves of the fitness function
S = ∆x/T . These level curves are constant rates of seaweed movement with positive and negative slopes
corresponding to ingestion and egestion, respectively. As the arrow indicates (black), in regions I, II, III,
and VI, the seaweed force increases from left to right while the force increases in the opposite direction for
regions VII and VIII.

Points where S = 0 are not shown, i.e. regions IV and V and the values where the load

overwhelms the periodic behavior of the grasper. The blue lines in the figure are level curves

representing constant rates of seaweed movement. Therefore, the fewer level curves crossed

as the force increases, the smaller the decrease in fitness. The slopes of the lines from regions

I and II remain slightly above zero in the figure which represents a slow decrease in ingestion,

with I decreasing slightly faster. In both of these regions, the amount of seaweed ingested per

period does not decrease but increases slightly; however, the decrease in the rate of seaweed

movement is due to the increasing time needed for each period. This behavior confirms the

earlier observation [13, 22] that robustness is achieved by the neuro-motor system pulling
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“longer and stronger” on each power stroke of the ingestive movement, in regions I-II. Unlike

the two other intake regions, region III is much less resilient to changes in seaweed force,

and the amount of seaweed ingested per period drops rapidly. As anticipated, regions of

higher intake (I and II) are more resilient and counteract the increase in load by increasing

the time per period.

From the rejection regions, region VI behaves qualitatively similarly to the previous regions,

but regions VII and VIII exhibit distinct position to duration ratios. In region VI, any

increase in load results in more seaweed loss and longer periods. Note that the rate of

seaweed movement will never become positive in this region, and more negative seaweed

forces would result in reduced seaweed rejection (S → 0). In regions VII and VIII, the

period duration decreases with increasing seaweed force while more seaweed is rejected per

period. Because the seaweed and the grasper move together, the increasing seaweed force is

pulling in the direction of protraction, which facilitates rejection and causes the rapid change

in the grasper position. Therefore, the length of time per period is decreased, resulting in a

grasper behavior unlike any of those observed in the previous regions.

4.2 Collapse of the Feeding Rhythm

Like any biomechanical system, rhythmic movements of Aplysia californica’s grasper can be

arrested by a sufficiently large opposing force. In the previous section, we established that

varying the seaweed force parameter (Fsw) can produce a collapse of the motor pattern in

certain regions (Fig. 18). Specifically, the trajectory ceases to be a limit cycle when Fsw ≥

0.1376, 0.1162, 0.1310, and 0.1138 in regions I, II, III, and V, respectively.
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In order to understand the mechanism of collapse, we consider trajectories beginning from a

common initial condition with seaweed force just above or just below the collapse point. Let y

represent the combined brain and body dynamics from Eq. (1), that is we set y = [a; x] ∈ R6,

and we write

dy

dt
= p (y, Fsw) =

(
f(y) + εg(y)

h(y)

)
+ Fsw[[grasper closed]]


0
0
0
0
0
1

 (22)

Here, [[grasper closed]] is the indicator function that is 1 when the grasper is closed and 0

otherwise. Note that we do not consider the seaweed position in y because we can evaluate

the seaweed position using the grasper position.

Let y1 and y2 be the trajectories when Fsw = 0.1161 and Fsw = 0.1162, respectively

(cf. Fig. 20). The common initial condition begins when the grasper is in the protraction-

open phase (Table 1). The rates of change dy1

dt
= p1(y1) and dy2

dt
= p2(y2) differ such

that

p2(y) = p1(y) + η q(y). (23)

We set η q(y) to be the difference term with magnitude η which represents the size the change

in seaweed force and is assumed to be small.
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Fig. 20: Collapse of grasper movement intake region II. The grasper behavior is periodic (blue) when the
seaweed force is not overpowering. The a0 (A) and a1 (B) neural pools can no longer oscillate and remain
fully inactivated when the seaweed force is too great (red). In contrast, the a2 pool is fully activated to
counteract the seaweed force. As a result of differences in the neural dynamics, the muscle activities (D)
of I2 (solid) and I3 (dashed) undergo a qualitative change, as well. The grasper (E), unable to retract, is
pulled by the seaweed force past its maximum protraction position of 1. (F) Changes in the seaweed position
correspond to changes in the grasper position.

As Fig. 20 shows, the variables of the two trajectories behave differently; however, we cannot

easily discern which variable diverges first using this figure. Therefore, we investigate z(t),

the differences between the trajectories:

z(t) = y2(t)− y1(t). (24)

At the initial value, the grasper is open and z(0) = 0. The grasper remains open until

t0 = 0.116, after which the grasper closes and the trajectories begin to diverge. Thus we

consider the evolution of z starting from initial condition z(t0) = 0. Initially both z and η

are small. Numerically, we observe that |z| and η remain the same order, at least initially.

To understand how the grasper oscillation collapses, we develop a Taylor expansion in both
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η and |z|.

dz

dt
= p2(y2)− p1(y1)

= p2(y1 + z)− p1(y1)

= p1(y1 + z) + η q(y1 + z)− p1(y1)

= p1(y1) +Dp1(y1) · z− p1(y1) +O
(
|z|2
)

+ η q(y1 + z)

= Dp1(y1) · z +O
(
|z|2
)

+ η q(y1 + z)

= Dp1(y1) · z +O
(
|z|2
)

+ η q(y1) + η Dq(y1) · z +O(η2).

Here, D is the derivative, Dp is the 6 × 6 Jacobian matrix (calculated when the grasper is

closed), and |z| is the Euclidean norm of z.

The seaweed force is the only term that causes p1 and p2 to differ, so η q(y1) = 0.1162 −

0.1161 = 10−4ê6, where ê6 is a unit vector along the grasper axis (cf. Eq. (22)). Therefore,

as long as |z| ≤ O(η),

dz

dt
= Dp1(y1) · z + ηq(y1) +O(η2) = Dp1(y1) · z + 10−4ê6 +O(η2). (25)

The initial divergence of trajectories is captured by the linear inhomogeneous approximation

dz

dt
= Dp1(y1) · z + 10−4ê6. (26)

We evaluate the Jacobian of the model equations Dp as follows:
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Dp =



1−a0−γa1
τa

−γ a0
τa

0 0 0 −ε

0 1−a1−γa2
τa

−γ a1
τa

0 0 ε

−γ a2
τa

0 1−a2−γa0
τa

0 0 ε

umax

τm
umax

τm
0 − 1

τm
0 0

0 0 umax

τm
0 − 1

τm
0

0 0 0 −φ
(
xr−c0
w0

)
φ
(
xr−c1
w1

)
δ
δxr

Fmusc+Fsw

br+bsw



,

δ

δxr

Fmusc + Fsw

br + bsw

=
κu0

w0(br + bsw)

[(
xr − c0

w0

− 1

)(
xr − c0

w0

+ 1

)
+
xr − c0

w0

(
xr − c0

w0

+ 1

)
+
xr − c0

w0

(
xr − c0

w0

− 1

)]
− κu1

w1(br + bsw)

[(
xr − c1

w1

− 1

)(
xr − c1

w1

+ 1

)
+
xr − c1

w1

(
xr − c1

w1

+ 1

)
+
xr − c1

w1

(
xr − c1

w1

− 1

)]
.

Note that when the grasper is open, the model equations obeys a different system of ODEs

(Section 1.1). Moreover, when the trajectory crosses from the open to the closed region (or

vice-versa) there is a discontinuous jump in the vector field. For these reasons, the Jacobian

Dp is not well defined at the opening/closing boundary, and additional factors must be

considered when evaluating the linear response to perturbations. These considerations go

beyond the scope of this thesis but are considered in [25].

Evaluating dz
dt

reveals that divergence in the grasper position is the event that leads to the

collapse of the grasper oscillation. In Fig. 21, we plot dz
dt

and compare the rate of change in

the difference between the state variables of the stable and divergent trajectories.
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Fig. 21: Rate of change in the difference between state variables (dzdt ) from the trajectories (Fig. 20) in region
II. Initially, there are no differences between the two trajectories because the grasper is still open (0.116 ≤ t).
The rate change of the difference in the grasper position deviates from zero upon closing, while the other
state variables remain approximately constant. The rate of change in the difference in seaweed positions
equals that of the grasper, for the time interval shown. In order to focus on the initial small deviation due
to changing the force, the graphs terminate when 10−3 ≤ |z|.

The rate of change of the differences in grasper position (Fig. 21 (E)) increases faster than

the rates of change of the other state variables. Until around t = 2, zi ≈ 0 for all components

of z, except for the 6th (grasper) component. Consequently, we can approximate the rates

of change of differences to be:

dz

dt
≈ Dp1(y1) · z + 10−4ê6 = z6


−ε
ε
ε
0
0

δ
δxr

Fmusc+Fsw

br+bsw

+ 10−4ê6. (27)

For Figs. 20-21, η = 10−4. Because ε = 10−4 (Table 2 of Appendix A.1) and |z| ≤ 10−3, the
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neural components of Eq. (27) remain small relative to η q = 10−4ê6. As a result, not much

change in the rate of change in the difference is observed in any variable besides the grasper

for the first two seconds of the simulation in Fig. 21. However, the divergence between the

grasper position of the two trajectories eventually causes the trajectories to deviate from one

another.

The timing of the grasper closing explains why certain parameter regions can resist a wider

range of seaweed forces. The grasper is only affected by the seaweed force when the grasper

is closed (Section 1.1). In order to generate the strongest muscle force possible, the grasper

cannot be too far protracted or retracted when the a2 neural pool, responsible for activating

the I3 retractor muscle, is fully activated (Fig. 22).

Fig. 22: Length-tension curve of the I2 and I3 muscles. Normally, the grasper range is between 0 (maximum
retraction) and 1 (maximum protraction). Negative and positive forces contribute to protraction and retrac-
tion, respectively. The model I3 muscle produces almost no force near maximum protraction or retraction.
The I2 muscle generates more force as the grasper retracts and produces no force when the grasper is fully
protracted. The force generated by each muscle is scaled by the I2 and I3 muscle activation variables u0 and
u1, respectively, both of which range from 0 to 1.
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In region II, Fsw = 0.1162 is just strong enough to pull the grasper out such that it cannot

generate sufficient force to counteract the seaweed force. For the same force value, the grasper

in regions I and III is able to resist the seaweed force and successfully perform ingestion

because the model slug has maximized the time spent closed when a2 is strongly activated,

and remains open during other times (Fig. 23). In particular, the grasper in region I is

only closed when the neural trajectory is near high a2 activation, which allows the muscles

to generate large retraction forces. Despite having a weaker ingestion than region II for

Fsw ≤ 0.1161, region III is capable of handling a wider range of seaweed forces. Region V

can operate in the smallest range of the seaweed force. In this neutral region, the grasper

is always closed, which maximizes the grasper protraction-closed phase, so the grasper has

already protracted too far by the time I3 is innervated to generate enough muscle force

against the seaweed to continue the oscillation.
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Fig. 23: Grasper behaviors in parameter regions I, II, III, and V at Fsw = 0.1162. When the grasper is
closed (bold), the sum of the muscle and seaweed forces controls the rate of change of the grasper position.
For ingestion, the grasper would, ideally, be closed only near the high activity of the a2 neural pool (magenta),
or when 0.99 ≤ a2. However, in regions II and V, the grasper is almost fully protracted (dashed blue line)
when a2 is fully activated, so the I3 muscle cannot generate enough retraction force to oppose the seaweed
force. In contrast, the grasper in regions I and III was able to counteract the seaweed force because the
grasper generally closed only when there was strong a2 activity.

The collapse in feeding rhythm is not observed in all regions for strong seaweed forces

(0.1138 . Fsw). In the rejection regions (VI-VIII), the grasper can maintain oscillation

because the muscle and the seaweed force are acting in the same direction when the grasper

is closed. The grasper in region IV is always open, so its periodic trajectory is unaffected

by the seaweed force.
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5 Discussion

5.1 Interpreting the Parameter Regions

In this thesis, we parameterized the closing condition (Eq. (16)) of the Aplysia california

grasper model [13, 22] and systematically varied (δ, θ) to test the sensitivity of these pa-

rameters. We grouped combinations of parameters into eight distinct parameter regions

(Chapter 3) based on the rate of seaweed movement (S) such that SI ≥ SII ≥ ... ≥ SVIII.

The original closing condition (Eq. (9)) belongs to region II. These regions, each with their

own distinct grasper behavior, can be further classified into one of the three types: intake,

neutral, or rejection regions.

We could interpret the different parameterizations, which are subtle differences in how the

grasper closing condition is defined, as neuromodulation. Neuromodulation can alter fir-

ing properties of neurons or induce changes in synaptic strengths, which is different from

neurotransmission’s effect of exciting or inhibiting neurons. Some of the effects from neu-

romodulators are shown in the following examples. In Aplysia californica, modulation from

serotonin and the egg-laying hormone on the R15 neuron increases the cyclic AMP concen-

tration and induces changes in the underlying calcium and potassium currents, which causes

the R15 neuron to have more spikes per burst while increasing the amplitude of hyperpo-

larization between firing [11]. When dopamine act as a neuromodulator, certain synapses

in the crustacean stomatogastric system are strengthened while others are weakened which

serves as a system of “checks and balances” used to regulate the pyloric network [3]. Not

only do these modulators introduce flexibility in function to a motor pattern generator but

they are also essential to maintaining rhythmic movements. For example, neuromodulation
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from serotonergic neurons is intrinsic to the Tritonia swim pattern circuit and necessary

for swimming to occur [8]. Another example is in the regulation of the accessory radula

closer muscle in Aplysia californica. The B15 and B16 neurons release acetylcholine and

co-transmitters to regulate contraction and relaxation in this muscle [8].

Referring back to the original parametrization of the opening/closing threshold (Eq. (11))

neuromodulation could affect the synaptic weights (represented by γ and β ) or change the

threshold for activation of a muscle closing the grasper (δ). Although actively changing the

open/close boundary is beyond the scope of our analysis here, we can imagine situations in

which the sea slug uses neuromodulation to adapt its strategy to different circumstances.

Manipulating neuromodulation in the laboratory would require specific chemicals, which

can make the process difficult and expensive. By experimenting with the parameters of

the Shaw/Lyttle model, we can simulate how neuromodulation’s effect on the timing of the

closing of the grasper can produce distinct grasper behaviors.

The grasper in intake regions I, II, and III (S > 0) undergoes protraction-open, protraction-

closed, and retraction-closed phases of motion to generate swallowing. The grasper in neutral

region IV (S = 0) always remains open, so the seaweed position does not change. We

characterize this behavior as grasper always open (non-closing). In theory, it may be possible

to innervate the grasper in such a way that the grasper never closes even as it protracts and

retracts, but this behavior has not been observed in vivo.2 However, a situation could arise in

which the slug bites a large object that becomes stuck, so the slug does not need to exert any

force to hold the object in place while the grasper moves. In neutral region V, the grasper

undergoes lockdown (always closed) so the seaweed and grasper oscillates together which

2Dr. J.P. Gill, personal communication.
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results in net zero intake. This behavior has been referred to as the “intermediate pattern”

by Morton and Chiel [16] which occurs when the slug feeding behavior is transitioning from

ingestion to egestion. The authors suggested that the slug may be attempting to “reposition

partially swallowed food” or to induce mechanical fatigue to tear the object in its grasper.

The closing condition from the rejection regions VI, VII, and VIII (S < 0) cause the

grasper to be closed during protraction and open during retraction which simulates the slug

rejecting seaweed.

The eight parameter regions correspond to unique strategies available to Aplysia californica.

When Fsw ∈ [−0.1, 0.1137], which is a range where the grasper behavior is periodic (Section

4.1) regardless of the parameterization, the stronger of the intake and rejection regions have

unique strategies in response to an increasing seaweed force. Despite the increasing load,

regions I-II increase the duration of the retraction-closed phase to bring in more seaweed

at the cost of longer periods. In contrast, the rejection regions VII-VIII responds to large

seaweed forces by decreasing the period for each rejection cycle which increases the rate of

egestion.

Different grasper behaviors are more suitable for handling different levels of seaweed force.

For example, suppose a force transducer [23] is pulling on a tough object, such as nori

seaweed layered around a strip of tough, double-sided tape, with a force greater than what

the grasper can generate. If the slug grasper is undergoing lockdown (region V), then the

grasper will eventually be pulled out of the slug’s mouth. A more appropriate response

from the animal could be to eject (regions VI-VIII) the taped seaweed. Suppose instead

that the seaweed force is slightly weaker so some intake regions can still bring in seaweed.

Regions I and III can handle stronger forces than region II. As we analyzed in Section 4.2,
57



the timing of the grasper closing is crucial in determining how much force the grasper can

exert on the seaweed. To combat a powerful load, the grasper cannot be near full protraction

during strong a2 activity; or else, the I3 muscle cannot generate near the full potential of

its retractive force. Even though region II brings in more seaweed when Fsw ≤ 0.1161, the

grasper in this regions can handle a smaller range of force than in region III, which represents

slow but strong ingestion. Region I is the strongest mode of ingestion, which may cost more

energy than the other regions; therefore, if the slug is not in urgent need of food, it could

instead deploy regions II or III, thus making region III even more appealing if the seaweed

is offering strong resistance.

In Chapter 4, we experimented with different grasper behaviors confronted with both positive

and negative seaweed forces. As explained previously, one way to interpret negative seaweed

forces is to consider if tidal surge were to push the animal against a stiff stalk of seaweed.

Alternatively, if the slug has gripped a stiff object, such as a polyethylene tube, then a

force could be applied to push the object towards the slug. Previous experiments have been

performed using polyethylene tubes to elicit rejection behaviors from Aplysia californica

[17, 16]. While experimenters did not push the tube past the grasper and further into the

animal, such a task could be possible either in vivo or for an isolated buccal mass [15].

While certain behaviors are more appropriate in response to different loads, some parameter

regions are more advantageous because they can more readily transition to other regions

and behaviors. Each of the regions corresponds to either including or excluding each of the

three fixed points from the closed region. Therefore, the eight regions may be identified with

the corners of the cube {0, 1}3 (Fig. 24). Let us consider
√

∆δ2 + ∆θ2 to be the difference

in neuromodulation between two parameterizations of the grasper closing condition. The
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“easiest” transition between regions will occur between adjacent regions where shifting only

δ or θ is necessary to enter a neighboring region.

Fig. 24: Adjacent parameter regions. The parameter regions (Fig. 9) are represented as nodes with the edges
connecting regions that are separated by a boundary. Each region includes or excludes each of the 3 neural
fixed points, forming the cubic structure {0, 1}3. The fixed points captured by the grasper-closed space are
listed next to each region. Note the “best” and “worst” regions (I and VIII, resp.) occupy diametrically
opposite corners; similarly the 2nd best and 2nd worst (II and VII, resp.), et cetera.

Out of all intake regions, region I has the highest rate of ingestion but also the least diverse

neighbors. The regions adjacent to region I are the other two regions with positive intake

(II and III) and the grasper always open region (IV). In contrast, region II is connected to

regions with rejection (VI) and lockdown (V) behaviors, and region III has similarly diverse

neighbors. Suppose that adjacency means less time or energy needs to go into a system to

transition to a different region. Then region II and III would be able to transition to other

behaviors more quickly than region I. Furthermore, region II can retain a much higher rate

of intake than region III, while also remaining flexible. Therefore, the optimal strategy for
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an animal’s survival might not be to always remain in regions with the highest intake but

in regions that have relatively high intake but can easily transition to other behaviors, thus

being more adaptable to different circumstances. Similar conclusions could be drawn about

the rejection regions. Although region VIII has the highest rate of egestion, the other two

regions (VI and VII) have neighbors with more diverse behaviors.

5.2 Model Limitations

We made some simplifications and followed the assumptions made by [13, 22] to study

the underlying mechanisms involved in rhythmic motion. Although we have generalized the

neurons controlling the buccal mass into three neural pools and three muscle groups, Aplysia

california’s buccal ganglion [12] contains other neurons responsible for stimulating a number

of muscles (Fig. 1, Chapter 1) that controls the radula/odontophore [9].

The authors of the Shaw/Lyttle model only considered using the length tension curve φ(xr)

when xr ∈ [0, 1], and the oscillating grasper position was constrained accordingly. In this

thesis, we experimented with the seaweed force necessary to produce a collapse in grasper

motion in the different parameter regions. For strong enough seaweed forces, the model

grasper extended beyond the maximum protraction position (1 < xr). Biologically, this

overextension would result in eversion, a fatal condition in which the grasper is pulled out

of the mouth. A boundary condition was not imposed on the grasper in our Matlab model

because Dr. Wang had developed the code to analyze a different problem: the behavior of

limit cycle trajectories with hard boundary conditions imposed on the neural pools [25].

Furthermore, the seaweed forces applied by Dr. Wang were within the range of forces used
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by Shaw et al. [22] and Lyttle et al. [13], so the grasper position did not diverge past 1.

The analysis performed in this thesis was not affected even when the grasper diverged, but a

future improvement to our implementation of the model could be to impose a hard boundary

on the position of the grasper.

In the Shaw/Lyttle model, the seaweed position is assumed to be fixed whenever the grasper

is open. After Aplysia californica’s grasper (in vivo) retracts to swallow seaweed, the anterior

portion of the I3 muscle, or the “lip” of the slug, pinches down on the seaweed during the

grasper protraction-open phase to reduce seaweed loss [15]. Our conclusions drawn about

the different regions would change if the model incorporated some seaweed loss while the

grasper is open. For example, the amount of seaweed ingested in regions I-II would be

reduced, while the net seaweed movement in weak intake region III might approach zero.

The Shaw/Lyttle model was created as a biting and swallowing model. By controlling the

timing of grasper closing, we were able to generate other behaviors such as rejection. In the

model, the sequence of neural pools firing do not change regardless of the grasper behavior;

however, the timing of certain neurons distinguishes ingestion and rejection behaviors in vivo.

In particular, the motor neurons B8a, B8b, and B10 fire at different times in ingestion versus

rejection [17]. Motor neurons B8a and B8b induce the grasper to close and are two of the

neurons considered in neural pools a1 and a2. The different activities in these two neurons

during ingestion versus egestion is facilitated by interneurons: B20, B4/5, and cerebral-

buccal interneuron 3 [6]. Although motor neuron B10 was not listed as a neuron in one of

the neural pools, it is responsible for closing the jaws and facilitating grasper retraction. In

addition to the motor neurons and interneurons, the onset of the radula nerve activity after

the buccal nerve 2 activation can also serve to distinguish ingestion apart from rejection [16].
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Thus, in a more detailed model, the sequencing and timing of the neural pools comprising

the central pattern generator would change, as well as the timing of opening and closing

relative to the different neural pools.

5.3 Future Directions

In order to investigate how rhythmic movements can be simultaneously robust and adapt-

able, the Shaw/Lyttle model was made to be sensitive to sensory feedback and changes in

load, which are perturbations in the brain and the periphery, respectively. Throughout this

thesis, we utilized this model to investigate how modulating the grasper affects the rate of

seaweed movement (S) by systematically changing the parameters governing grasper closing

condition. We have only experimented with a subset of all the parameters (Table 2, Ap-

pendix A.1). One of the ways to explore the model would be to vary the strength of sensory

feedback (ε). In Chapter 3, we saw that the neural fixed points within the grasper-closed

space determined the grasper behavior. Depending on its magnitude, strong sensory feed-

back may cause the trajectory to escape the fixed points faster, thereby affecting S. Another

set of parameters to explore could be the muscle activation time constant (τm) and the max-

imum muscle activation (umax) parameters. We had applied the effects of neuromodulation

on the opening and closing of the grasper, and manipulating τm and umax would explore the

effects of neuromodulation on the reaction speed and power, respectively, produced by the

I2 and I3 muscles.

In this thesis, we identified eight different parameter regions with different rates of seaweed

movements and qualitatively different grasper behaviors. However, we have yet to determine
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the rate of seaweed movement explicitly, so future developments could include deriving the

rate of change S depending on other parameters such as Fsw, θ, δ, or µ. Currently, we

numerically estimate S, so deriving the procedure to analytically calculate how S varies

depending on other parameters would accelerate the research process as well as reveal other

possibilities for experimentation.

Lyttle et al. [13] had observed a range of endogenous excitation values that cause the model

to exhibit qualities from both the heteroclinic and the limit cycle regimes (Fig. 11 of [13]).

We suspect that the grasper in the parameter regions determined in this thesis may behave

differently within this range of endogenous excitation. Similarly, we expect the grasper to

behave differently when the model is in the limit cycle regime. As the endogenous excitation

increases, the trajectory moves away from the fixed points [22]. Consequently, there will be

fewer (δ, θ) parameterizations that will have the grasper-closed space capture the trajectory,

so we expect the area of region IV to increase while the size of other regions decrease.

Changing the different parameter regions by varying the strength of µ would correspond to

an interesting experiment on how the strength of the endogenous excitation can alter the

way neuromodulation affects grasper behavior.
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A Appendix

A.1 Parameters and Variables

Table 1: Model state variables and initial values. This table is modified from Table 2 of [13]. In the Shaw
et al. model, the initial values are: a0 = 1 − 10−9, a1 = 10−9, a2 = 10−9, u0 = 0, u1 = 0, xr = 0.5, and
xsw = 0. All quantities are dimensionless.

Variables Value Description

a0 0.9003 activity of protraction-open neural pool
a1 0.0836 activity of protraction-closing neural pool
a2 0 activity of retraction-closed neural pool
u0 0.7476 activity of I2 muscle
u1 0.2463 activity of I3 muscle
xr 0.6500 grasper position (0 is retracted, 1 is protracted)
xsw −8.2732 seaweed position (negative is towards the animal)

Table 2: Model parameters. This table is modified from Table 1 of [13]. In the Shaw/Lyttle model, µ = 10−9,
ε = 2× 10−3, and Fsw = 0.01. All quantities are dimensionless.

Parameter Value Description

γ 2.4 inhibition strength from the next neural pool
ε 10−4 sensory feedback strength

κ 3
√
3

2 length-tension curve normalization constant
µ 10−6 neural pool intrinsic excitation
τa 0.05 neural pool time constant
τm 2.45 muscle activation time constant
br 0.1 grasper damping constant
bsw 0.3 seaweed damping constant
c0 1.0 position of shortest length for I2
c1 1.1 position of center of I3
Fsw 0.1 force on the seaweed resisting ingestion
k0 −1 I2 muscle strength and direction
k1 1 I3 muscle strength and direction
σ0 −1 sign of proproceptive input to a0 neural pool
σ1 1 sign of proproceptive input to a1 neural pool
σ2 1 sign of proproceptive input to a2 neural pool
S0 0.5 proprioceptive neutral position for protraction-open neural pool
S1 0.5 proprioceptive neutral position for protraction-closed neural pool
S2 0.25 proprioceptive neutral position for retraction-closed neural pool
umax 1.0 maximum muscle activation
w0 2 maximal effective length of I2
w1 1.1 maximal effective length of I3
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A.2 Code

A.2.1 lyttle model.m

Original code by Dr. Yangyang Wang to implement the Shaw et al. [22] and Lyttle et al.

[13] model.

A.2.2 lyttle model vary grapser.m

Code written by Dr. Peter Thomas through modifying lyttle model.m by Dr. Yangyang

Wang to allow varying of the grasper closing conditions.

A.2.3 lyttle model vary grasper run.m

% Script to run Dr. Yangyang Wang’s version of the Lyttle model for different

% thresohld geometries and plot net seaweed intake rate.

%

% PJT w/ help from YYW 2019-11-01

% Graphing and other modifications by Hsing-Duan Louh

%% Start Parallel Workers

[status,hostname]=system(’echo $HOSTNAME’);

poolobj = gcp(’nocreate’);

if max(size(poolobj))==0

if strcmp(hostname,’phase.MATH.CWRU.Edu’)

parpool(6) % start a pool of six workers if not already running

else

parpool(4) % start a pool of four workers if not already running

end

end

%% S_rate_in

force=0.1; % default = force=.01;

nthresh=75;

clist=linspace(-.5,1.5,nthresh); % list of thresholds

dc = 2/(nthresh-1);

nangle=60;

alist=linspace(0,2*pi,nangle); % list of angles

da = 2*pi/(nangle-1);

[c,angle]=meshgrid(clist,alist);

S_rate_in=nan(nangle,nthresh);

nanRegions=zeros(nangle,nthresh);

for i=1:nthresh

parfor j=1:nangle

if isnan(S_rate_in(j,i))==1

disp([j,i,nangle,nthresh])
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M=lyttle_model_vary_grasper;

M.tmax=40;

M.yinit(8)=force; % Force is the 8th "variable".

M.ocangle=alist(j);

M.octhresh=clist(i)/sqrt(2);

M.solve;

t=M.t;

S=M.yext(:,7);

% discard trace for t<=10

idx_start=find(t>10,1,’first’);

t=t(idx_start:end);

S=S(idx_start:end);

% Find where dS is zero.

dS=diff(S);

% Find last point where dS/dt=0

% (this is the open->close transition).

idx_end_of_flat=2+find(...

(dS(1:end-2)==0).*...

(dS(2:end-1)==0).*...

(abs(dS(3:end))>0));

if ~isempty(idx_end_of_flat) %not empty

i1=idx_end_of_flat(1);

i2=idx_end_of_flat(end);

% Net time

delta_t=t(i2)-t(i1);

% Net seaweed movement (let positive be inwards)

delta_S=S(i1)-S(i2);

% Rate

S_rate_in(j,i)=delta_S/delta_t;

else

i1=0; i2=0; delta_t=t(end)-t(1);

delta_S=0;

S_rate_in(j,i)=delta_S/delta_t;

end

else

continue

end

end

% This is the saving protocol.

% Saving once very column to either lmvg2 or lmvg3

if mod(i,2)==0

save lmvg2

display(sprintf(’Now Completed column %d saved to lmvg2’,i))

sound(y, Fs);

elseif mod(i,2)==1

save lmvg3

display(sprintf(’Now Completed column %d saved to lmvg3’,i))

else

display(’Error’);

end

end

%% Intake Rate

da = 2*pi/(nangle-1);

dc = 2/(nthresh-1);

figure(1)

pcolor(clist-dc/2,(alist-da/2)/pi,S_rate_in)

hold on;

p2=plot(clist(38),alist(8)/pi,’r*’,’MarkerSize’,12,’LineWidth’,1.3)
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set(gca,’FontSize’,20)

xlabel(’Threshold (\delta)’)

ylabel(’Angle (\theta/\pi)’)

colormap hot

colorbar

%% Fixed Point Regions

%Load a a completed file such as lmvg3 to run this section

da = 2*pi/(nangle-1);

dc = 2/(nthresh-1);

figure(2)

pcolor(clist-dc/2,(alist-da/2)/pi,S_rate_in)

hold on;

th=linspace(0,2*pi,201);

rp1=plot(zeros(length(th),1),th,’c--’,’Linewidth’,4);

rp2=plot(sqrt(2)*cos(th),th/pi,’g-’,’Linewidth’,4);

rp3=plot(sqrt(2)*sin(th),th/pi,’b--’,’Linewidth’,4);

xlabel(’Threshold (\delta)’)

ylabel(’Angle (\theta/\pi)’)

LG=legend([rp1,rp2,rp3],{’a_0 Region’,’a_1 Region’,’a_2 Region’});

colormap hot

colorbar

ax=gca;

ax.FontSize=20;

LG.FontSize=14;

%% Distribution of Intake Rates

%Load a a completed file such as lmvg3 to run this section

figure(3)

hist(S_rate_in(:),100)

ylabel(’Frequency’);

xlabel(’Rate of Seaweed Movement’);

ax=gca;

ax.FontSize=20;

%% Plot Sampled Points from Each Parameter Region (j,i)

%Load a a completed file such as lmvg3 to run this section

da = 2*pi/(nangle-1);

dc = 2/(nthresh-1);

%Defining Colors for some sampled regions

orange=[0.9100,0.4100,0.1700];

pink=[1,0.4,0.6];

brown=[0.2 0 0];

figure(4)

pcolor(clist-dc/2,(alist-da/2)/pi,S_rate_in)

hold on;

% Plot horizontal and vertical lines intersecting at the sampled point

% Region I: Orange=(22,38)

plot(clist,alist(22)/pi*ones(nthresh,1),’w--’)

plot(clist(38)*ones(nangle,1),alist/pi,’w--’)

% Region II: Red=(8,38)

plot(clist,alist(8)/pi*ones(nthresh,1),’w--’)

plot(clist(38)*ones(nangle,1),alist/pi,’w--’)

% Region III: Green=(22,10)

plot(clist,alist(22)/pi*ones(nthresh,1),’w--’)

plot(clist(10)*ones(nangle,1),alist/pi,’w--’)

% Region IV: Pink=(11,72)

plot(clist,alist(11)/pi*ones(nthresh,1),’w--’)
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plot(clist(72)*ones(nangle,1),alist/pi,’w--’)

% Region V: Cyan=(8,10)

plot(clist,alist(8)/pi*ones(nthresh,1),’w--’)

plot(clist(10)*ones(nangle,1),alist/pi,’w--’)

% Region VI: Brown=(50,33)

plot(clist,alist(50)/pi*ones(nthresh,1),’w--’)

plot(clist(33)*ones(nangle,1),alist/pi,’w--’)

% Region VII: Blue=(40,10)

plot(clist,alist(40)/pi*ones(nthresh,1),’w--’)

plot(clist(10)*ones(nangle,1),alist/pi,’w--’)

% Region VIII: Yellow=(50,10)

plot(clist,alist(50)/pi*ones(nthresh,1),’w--’)

plot(clist(10)*ones(nangle,1),alist/pi,’w--’)

%Plot all points again

p1=plot(clist(38),alist(22)/pi,’Color’,orange,’Marker’,’s’,...

’MarkerSize’,10,’MarkerFaceColor’,orange)

p2=plot(clist(38),alist(8)/pi,’-rs’,’MarkerSize’,10,’MarkerFaceColor’,’r’)

p3=plot(clist(10),alist(22)/pi,’-gs’,’MarkerSize’,10,’MarkerFaceColor’,’g’)

p4=plot(clist(72),alist(11)/pi,’Color’,brown,’Marker’,’s’,...

’MarkerSize’,10,’MarkerFaceColor’,brown)

p5=plot(clist(10),alist(8)/pi,’-cs’,’MarkerSize’,10,’MarkerFaceColor’,’c’)

p6=plot(clist(33),alist(50)/pi,’Color’,pink,’Marker’,’s’,...

’MarkerSize’,10,’MarkerFaceColor’,pink)

p7=plot(clist(10),alist(40)/pi,’-bs’,’MarkerSize’,10,’MarkerFaceColor’,’b’)

p8=plot(clist(10),alist(50)/pi,’-ys’,’MarkerSize’,10,’MarkerFaceColor’,’y’)

xlabel(’Threshold (\delta)’)

ylabel(’Angle (\theta/\pi)’)

LG=legend([p1,p2,p3,p4,p5,p6,p7,p8],...

{’I’,’II’,’III’,’IV’,’V’,’VI’,’VII’,’VIII’})

colormap gray

colorbar

ax=gca;

ax.FontSize=20;

LG.FontSize=14;

A.2.4 lyttle model state var plots.m

%Created by Hsing-Duan Louh, March 2020

clear all, close all

%% Evaluating the Grasper Trajectory

j=8; %Angle input

i=10; %Threshold input

force=0.1; % Seaweed force strength input

nthresh=75; nangle=60;

clist=linspace(-.5,1.5,nthresh); % list of thresholds

alist=linspace(0,2*pi,nangle); % list of angles

M=lyttle_model_vary_grasper;

M.tmax=40;

M.yinit(8)=force;

M.ocangle=alist(j);
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M.octhresh=clist(i)/sqrt(2);

M.solve;

%% Plotting the Trajectory

ax1=subplot(2,2,1)

hold on;

plot(M.t,M.yext(:,1));

plot(M.t,M.yext(:,2));

plot(M.t,M.yext(:,3));

title(’Neural Pool Activation’);

legend(’a0’, ’a1’, ’a2’);

xlabel(’Time (s)’);

hold off;

%Muscle activations vs. time

ax2=subplot(2,2,2)

hold on;

plot(M.t,M.yext(:,4));

plot(M.t,M.yext(:,5));

title(’Muscle Activation’);

legend(’I2’,’I3’);

xlabel(’Time (s)’);

hold off;

%Grasper position vs. time

ax3=subplot(2,2,3);

hold on;

gBold=boldClose(M.yext(:,2),M.yext(:,3),M.yext(:,6),alist(j),clist(i));

hold on;

plot(M.t,M.yext(:,6),’k’);

plot(M.t,gBold,’color’,[0 0.5 0],’LineWidth’,3);

hold off;

title(’Grasper Position’);

legend(’Open’,’Closed’);

xlabel(’Time (s)’);

%Seaweed position vs. time

ax4=subplot(2,2,4)

hold on;

plot(M.t,M.yext(:,7));

title(’Seaweed Position’);

xlabel(’Time (s)’);

hold off;

fs=17; %All axes fontsize

xfs=15; %x-axis FontSize

ax1.FontSize=fs;

ax1.YAxis.TickValues=[0,0.2,0.4,0.6,0.8,1];

ax1.XAxis.TickValues=[0,5,10,15,20,25,30,35,40];

ax1.YAxis.TickLength=[0.03,0.03];

ax1.XAxis.TickLength=[0.03,0.03];

ax1.XAxis.FontSize=xfs;

ax2.FontSize=fs;

ax2.YAxis.TickValues=[0,0.2,0.4,0.6,0.8,1];

ax2.XAxis.TickValues=[0,5,10,15,20,25,30,35,40];

ylim(ax2,[0,1]);

ax2.YAxis.TickLength=[0.03,0.03];
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ax2.XAxis.TickLength=[0.03,0.03];

ax2.XAxis.FontSize=xfs;

ax3.FontSize=fs;

ax3.YAxis.TickValues=[0,0.2,0.4,0.6,0.8,1];

ax3.XAxis.TickValues=[0,5,10,15,20,25,30,35,40];

ax3.YAxis.TickLength=[0.03,0.03];

ax3.XAxis.TickLength=[0.03,0.03];

ax3.XAxis.FontSize=xfs;

ax4.FontSize=fs;

ax4.XAxis.TickValues=[0,5,10,15,20,25,30,35,40];

ax4.YAxis.TickLength=[0.03,0.03];

ax4.XAxis.TickLength=[0.03,0.03];

ax4.XAxis.FontSize=xfs;

%Bold Grasper Position when the Grasper is closed

function dxr = boldClose(a1,a2,xr,theta,threshold)

%Return nan for when the grasper (xr) is open

cloStrength=cos(theta).*a1+sin(theta).*a2;

nanIdx=find(cloStrength<threshold);

dxr=xr;

dxr(nanIdx)=nan;

end

A.2.5 Fsw vs IntakeRate.m

% Code created by Hsing-Duan Louh January 2020

% The first section measures the periodic seaweed behavior with

% varying seaweed force and save each file

% Make sure to run each of the eight (i,j) combinations

% in the saving protocol at the end of this section

% The second section generates the plot for a single parameterization

% This section requires you to load data from one

% specific parameterization

% The third section compiles data from all eight regions into

% Fsw_vs_IntakeRate_all_zones.mat, this file is necessary for the

% fourth section. Therefore must have data

% from all eight regions compiled

% (regions listed in the saving protocol of first section)

% The fourth section requires loading Fsw_vs_IntakeRate_all_zones.mat

% before evaluating the graph of all regions together

%% Fsw impact on S_rate

clear all, close all

nthresh=75;

clist=linspace(-.5,1.5,nthresh); % list of thresholds

nangle=60;

alist=linspace(0,2*pi,nangle); % list of angles

[c,angle]=meshgrid(clist,alist);

nfsw=101;

delta_S = zeros(1,nfsw);

delta_t = zeros(1,nfsw);

seaweed_force = linspace(-0.1,0.15,nfsw); %list of seaweed forces

j=9;

i=38;

parfor w=1:length(seaweed_force)

70



display(w)

M=lyttle_model_vary_grasper;

M.tmax=40;

M.yinit(8)=seaweed_force(w); % Force is the 8th "variable".

M.ocangle=alist(j);

M.octhresh=clist(i)/sqrt(2);

M.solve;

t=M.t;

S=M.yext(:,7);

% discard trace for t<=10

idx_start=find(t>10,1,’first’);

t=t(idx_start:end);

S=S(idx_start:end);

plot(t,S)

% Find where dS is zero.

dS=diff(S);

%Find last point where dS/dt=0 (this is the open->close transition).

idx_end_of_flat=2+find(...

(dS(1:end-2)==0).*...

(dS(2:end-1)==0).*...

(abs(dS(3:end))>0));

if ~isempty(idx_end_of_flat) %not empty

i1=idx_end_of_flat(1);

i2=idx_end_of_flat(end);

% Limit Cycle Period/Num of Periods

delta_t(w)=(t(i2)-t(i1))/(length(idx_end_of_flat)-1);

% Seaweed Movement per Period/Num of Periods

delta_S(w)=(S(i1)-S(i2))/(length(idx_end_of_flat)-1);

else

%If the seaweed movement is not periodic,

i1=0; i2=0;

delta_S(w)=0;

delta_t(w)=t(end)-t(1);

end

end

%Saving Protocol for Different Regions

if j==22 && i==38

save(’Fsw_vs_IntakeRate_zone1_orange.mat’);

elseif j==8 && i==38

save(’Fsw_vs_IntakeRate_zone2_red.mat’);

elseif j==22 && i==10

save(’Fsw_vs_IntakeRate_zone3_green.mat’);

elseif j==11 && i==72

save(’Fsw_vs_IntakeRate_zone4_pink.mat’);

elseif j==8 && i==10

save(’Fsw_vs_IntakeRate_zone5_cyan.mat’);

elseif j==50 && i==33

save(’Fsw_vs_IntakeRate_zone6_brown.mat’);

elseif j==40 && i==10

save(’Fsw_vs_IntakeRate_zone7_blue.mat’);

elseif j==50 && i==10

save(’Fsw_vs_IntakeRate_zone8_yellow.mat’);

else

display(’Please adjust if-statement for (i,j) not listed ’);

end

%% Single Region Analysis

figure(1) %Fsw vs S rate
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plot(seaweed_force,delta_S./delta_t,’o-’)

xlabel(’Seaweed Force’)

ylabel(’Intake Rate’)

title(strcat(’Theta =’,{’ ’},num2str(alist(j)),{’ ’},’Threshold =’,...

{’ ’},num2str(clist(i))))

figure(2) % Change in Seaweed Position and Period for Different Forces

hold on

plot(delta_t,delta_S,’o-’)

xlabel(’Period Duration (s)’)

ylabel(’Change in Seaweed Position’)

title(’Change in Seaweed Position per Period’)

for th=linspace(-pi/2,pi/2,200),...

line([0 10*cos(th)],[0 40*sin(th)]),end,shg

ax=gca;

axis(ax);

ax.FontSize = 12;

ax.TickDir = ’out’;

minW=min([first_deltaT,last_deltaT,first_deltaS,last_deltaS]);

maxW=max([first_deltaT,last_deltaT,first_deltaS,last_deltaS]);

hold off

%% Multiple Regions Comparison

%Compiling the saved data from the 8 sampled regions into

%Fsw_vs_IntakeRate_all_zones.mat

load Fsw_vs_IntakeRate_zone1_orange

Odelta_S=delta_S;

Odelta_t=delta_t;

load Fsw_vs_IntakeRate_zone2_red

Rdelta_S=delta_S;

Rdelta_t=delta_t;

load Fsw_vs_IntakeRate_zone3_green

Gdelta_S=delta_S;

Gdelta_t=delta_t;;

load Fsw_vs_IntakeRate_zone4_pink

Pdelta_S=delta_S;

Pdelta_t=delta_t;

load Fsw_vs_IntakeRate_zone5_cyan

Cdelta_S=delta_S;

Cdelta_t=delta_t;

load Fsw_vs_IntakeRate_zone6_brown

Brdelta_S=delta_S;

Brdelta_t=delta_t;

load Fsw_vs_IntakeRate_zone7_blue

Bldelta_S=delta_S;

Bldelta_t=delta_t;

load Fsw_vs_IntakeRate_zone8_yellow

Ydelta_S=delta_S;

Ydelta_t=delta_t;
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save(’Fsw_vs_IntakeRate_all_zones.mat’);

%% Analyzing Multiple Datasets

load Fsw_vs_IntakeRate_all_zones.mat

figure(1) %Fsw vs S rate

hold on

plot(seaweed_force,Odelta_S./Odelta_t,’o-’)

plot(seaweed_force,Rdelta_S./Rdelta_t,’o-’)

plot(seaweed_force,Gdelta_S./Gdelta_t,’o-’)

plot(seaweed_force,Pdelta_S./Pdelta_t,’o-’)

plot(seaweed_force,Brdelta_S./Brdelta_t,’o-’)

plot(seaweed_force,Bldelta_S./Bldelta_t,’o-’)

plot(seaweed_force,Ydelta_S./Ydelta_t,’o-’)

xlabel(’Seaweed Force’)

ylabel(’Rate of Seaweed Movement (S)’)

LG=legend(’I’,’II’,’III’,’IV and V’,’VI’,’VII’,’VIII’)

ax=gca;

ax.FontSize = 20;

LG.FontSize=14;

hold off;

figure(2) % Change in Seaweed Position and Period for Different Forces

hold on

p1=plot(Odelta_t,Odelta_S,’o-’,’LineWidth’,1.5);

p2=plot(Rdelta_t,Rdelta_S,’o-’,’LineWidth’,1.5);

p3=plot(Gdelta_t,Gdelta_S,’o-’,’LineWidth’,1.5);

p4=plot(Pdelta_t,Pdelta_S,’o-’,’LineWidth’,1.5);

p6=plot(Brdelta_t,Brdelta_S,’o-’,’LineWidth’,1);

p7=plot(Bldelta_t,Bldelta_S,’o-’,’LineWidth’,1);

p8=plot(Ydelta_t,Ydelta_S,’o-’,’LineWidth’,1);

for th=linspace(-pi/2,pi/2,200),...

line([0 10*cos(th)],[0 40*sin(th)]),end,shg

ax=gca;

ax.FontSize = 20;

LG.FontSize=16;

ax.TickDir = ’out’;

title(’Change in Seaweed Position and Period for Different Forces’);

xlabel(’Period Duration (s)’)

ylabel(’Change in Seaweed Position’)

legend(’I’,’II’,’III’,’IV and V’,’VI’,’VII’,’VIII’)

hold off;

A.2.6 RegionGeometry.m

%% Find regions where fixed points are included

%Finding the fixed points that are within the closed region

%By Hsing-Duan Louh Febrary 2020

force=0.1;

nthresh=75;

clist=linspace(-.5,1.5,nthresh); % list of thresholds

nangle=60;

alist=linspace(0,2*pi,nangle); % list of angles

regionGeometry=zeros(length(alist),length(clist));

dc = 2/(nthresh-1);

da = 2*pi/(nangle-1);

for j=1:length(alist)
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for i=1:length(clist)

val=0;

beta=cos(alist(j));

gamma=sin(alist(j));

delta=clist(i);

%testing a0 fixed point

if 0 >= delta/sqrt(2)

val=val+2;

end

%testing a1 fixed point

if beta >= delta/sqrt(2)

val=val+4;

end

%testing a2 fixed point

if gamma >= delta/sqrt(2)

val=val+8;

end

regionGeometry(j,i)=val;

end

end

figure(5)

pcolor(clist-dc/2,(alist-da/2)/pi,regionGeometry)

colormap jet

colorbar

xlabel(’\delta = Threshold’)

ylabel(’Angle/\pi’)

title(’Fixed Points Regions’);

A.2.7 Rate of change of differences dzdt.m

% Figure 21 of the Thesis

% Evaluate the rate of change of the differences between trajectories

% on either side of the bifurcation in Region II.

% First and second sections evaluate forces and saves them separately

% Third section calculates the Jacobian symbolically and consolidates

% both files into one: ’Grasper_FBCompare_1-2.mat’.

% Note this Jacobian is for when the grasper is closed.

% Fourth section plots dz/dt or the rate of change of the differences.

% File by Hsing-Duan Louh

%% Trajectory for force less than the bifurcation force

j=8; %Angle of Region II

i=38; %Threshold of Region II

force=0.1161;

region=’II’;

nthresh=75; nangle=60;

clist=linspace(-.5,1.5,nthresh);

alist=linspace(0,2*pi,nangle);

M=lyttle_model_vary_grasper;

M.tmax=15;

M.yinit(8)=force;

M.ocangle=alist(j);

M.octhresh=clist(i)/sqrt(2);

M.solve;

save(’Grasper_FB_1.mat’);

%% Trajectory for force greater than the bifurcation force

j=8; %Angle of Region II
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i=38; %Threshold of Region II

force=0.1162;

region=’II’;

nthresh=75; nangle=60;

clist=linspace(-.5,1.5,nthresh);

alist=linspace(0,2*pi,nangle);

M=lyttle_model_vary_grasper;

M.tmax=15;

M.yinit(8)=force;

M.ocangle=alist(j);

M.octhresh=clist(i)/sqrt(2);

M.solve;

save(’Grasper_FB_2.mat’);

%% Calcuate the Jacobian of the Model Equations

% Jacobian for when the grasper is closed.

% Results saved to GrasperFB1-2.mat

% Calculate z=y1-y2

load Grasper_FB_1.mat

y1=M.yext(:,1:7);

times1=M.t;

load Grasper_FB_2.mat

y2=M.yext(:,1:7);

times2=M.t;

time=unique([times1;times2]); %Unique time discretizations

y1i=interp1q(times1,y1,time); %Interpolated y1

y2i=interp1q(times2,y2,time); %Interpolated y2

z=y2i-y1i;

load Grasper_FB_1.mat

%Parameters

mu=1e-6; % original standard value is 1e-5

tau_a=0.05; % time constant for neural activity

tau_m=2.45; % time constant for muscle activation

gamma=2.4;

eps=1e-4; % epsilon in the MS

s1=.5; % this is S0 in the MS

s2=.5; % this is S1 in the MS

s3=.25; % this is S2 in the MS

sig1=-1; % this is sigma0 in the MS

sig2=1; % this is sigma1 in the MS

sig3=1; % this is sigma2 in the MS

kappa=2.598076211353316; % This is the factor by which mu is reduced

% when seaweed is "present in the buccal cavity" i.e. during swallowing.

umax=1; % peak muscle activation

br=0.4; % grasper damping constant

k0=-1;

k1=1;

c0=1;

c1=1.1;

w0=2;

w1=1.1;

Fsw=0.145; %Parameter of interest

%Symbolically solve for the Jacobian

syms a0 a1 a2 u0 u1 xr xsw

v = [a0,a1,a2,u0,u1,xr,xsw];

F = [1./tau_a.*(a0.*(1-a0-gamma.*a1)+mu)+eps.*(xr-s1).*sig1,...

1./tau_a.*(a1.*(1-a1-gamma.*a2)+mu)+eps.*(xr-s2).*sig2,...
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1./tau_a.*(a2.*(1-a2-gamma.*a0)+mu)+eps.*(xr-s3).*sig3,...

1./tau_m.*((a0+a1).*umax-u0),...

1./tau_m.*(a2.*umax-u1),...

(k0.*(-1.*kappa.*((xr-c0)./w0).*(((xr-c0)./w0)-...

1).*(((xr-c0)./w0)+1)).*u0+...

k1.*(-1.*kappa.*((xr-c1)./w1).*(((xr-c1)./w1)-...

1).*(((xr-c1)./w1)+1)).*u1+...

Fsw)./br,...

(k0.*(-1.*kappa.*((xr-c0)./w0).*(((xr-c0)./w0)-...

1).*(((xr-c0)./w0)+1)).*u0+...

k1.*(-1.*kappa.*((xr-c1)./w1).*(((xr-c1)./w1)-...

1).*(((xr-c1)./w1)+1)).*u1+...

Fsw)./br];

J=jacobian(F,v);

A=[]; %Storing Jacobian values

dzdt=[];

for w=1:size(z,1)

input=y1i(w,:);

A(:,:,w)=double(subs(J,v,input)); %Calculating each Jacobian

dzdt(:,:,w)=A(:,:,w)*z(w,:)’+0.0001/br*[0,0,0,0,0,1,1]’;

Az(:,:,w)=A(:,:,w)*z(w,:)’;

end

% Grapser is open (manually determined) from M.t(1:292)

% These values have to be recalculated in the next 4 lines

% Since z = 0 when the grasper is open using our initial conditinos.

nanIdx=[1:292];

for n=1:length(nanIdx)

dzdt(:,:,n)=A(:,:,n)*z(n,:)’;

Az(:,:,n)=A(:,:,n)*z(n,:)’;

end

save(’Grasper_FBCompare_1-2.mat’)

%% Plot dz/dt

load Grasper_FBCompare_1-2.mat

% Reshape Data

rAz=reshape(Az,size(Az,1),size(Az,3));

rdzdt=reshape(dzdt,size(dzdt,1),size(dzdt,3));

idx=1;

%Run as long as |z|<=O(Fsw2-Fsw1)

while norm(z(idx,1:6))<=0.001

idx=idx+1;

end

% select the appropriate time interval

t=time(1:idx);

rdzdt=rdzdt(:,1:idx);

rAz=rAz(:,1:idx);

fs=15; %All axes fontsize

xfs=15; %x-axis FontSize

sts=17; %Subplot title size

ax1=subplot(3,2,1);

hold on;

plot(t,rdzdt(1,:),’LineWidth’,2)

hold off;

title(’a0’);

ax2=subplot(3,2,2);

hold on;
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plot(t,rdzdt(2,:),’LineWidth’,2)

hold off;

title(’a1’);

ax3=subplot(3,2,3);

hold on;

plot(t,rdzdt(3,:),’LineWidth’,2)

hold off;

title(’a2’);

ax4=subplot(3,2,4);

hold on;

plot(t,rdzdt(4,:),’LineWidth’,3)

plot(t,rdzdt(5,:),’LineWidth’,1.7)

title(’Muscle Activation’);

legend(’I2’,’I3’)

hold off;

ax5=subplot(3,2,5);

hold on;

plot(t,rdzdt(6,:),’LineWidth’,2)

hold off;

title(’Grasper Position’);

xlabel(’Time (s)’);

ax6=subplot(3,2,6);

hold on;

plot(t,rdzdt(7,:),’LineWidth’,2)

hold off;

title(’Seaweed Position’);

xlabel(’Time (s)’);

ylim(ax1,[-1e-3,1e-3])

ylim(ax2,[-1e-3,1e-3])

ylim(ax3,[-1e-3,1e-3])

ylim(ax4,[-1e-3,1e-3])

ylim(ax5,[-1e-3,1e-3])

ylim(ax6,[-1e-3,1e-3])

ax1.FontSize=fs;

ax1.YAxis.TickLength=[0.03,0.03];

ax1.XAxis.TickLength=[0.03,0.03];

ax1.Title.FontSize=sts;

ax1.XAxis.FontSize=xfs;

ax2.FontSize=fs;

ax2.YAxis.TickLength=[0.03,0.03];

ax2.XAxis.TickLength=[0.03,0.03];

ax2.Title.FontSize=sts;

ax2.XAxis.FontSize=xfs;

ax3.FontSize=fs;

ax3.YAxis.TickLength=[0.03,0.03];

ax3.XAxis.TickLength=[0.03,0.03];

ax3.Title.FontSize=sts;

ax3.XAxis.FontSize=xfs;
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ax4.FontSize=fs;

ax4.XAxis.TickLength=[0.03,0.03];

ax4.Title.FontSize=sts;

ax4.XAxis.FontSize=xfs;

ax5.FontSize=fs;

ax5.XAxis.TickLength=[0.03,0.03];

ax5.Title.FontSize=sts;

ax5.XAxis.FontSize=xfs;

ax6.FontSize=fs;

ax6.XAxis.TickLength=[0.03,0.03];

ax6.Title.FontSize=sts;

ax6.XAxis.FontSize=xfs;

save(’Grasper_FBCompare_1-2.mat’);

A.2.8 grasperForceCompare.m

%Modify j, i, and force to compare grasper behavior of different regions

%at some seaweed force

%Generates Figure 23 in the Thesis

%File by Hsing-Duan Louh 2020

clear all, close all

j=[22,8,22,8,22]; %Parameter region input

i=[38,38,10,10,10]; %Parameter region input

force=0.1162; % Seaweed force input

region=["I","II","III","V","III"];

color=[0.9100,0.4100,0.1700;1,0,0;0,0.5,0;0,1,1;0,0.5,0];

for w=1:length(region)

nthresh=75; nangle=60;

clist=linspace(-.5,1.5,nthresh); % list of thresholds

alist=linspace(0,2*pi,nangle); % list of angles

M=lyttle_model_vary_grasper;

M.tmax=2;

M.yinit(8)=force; % Force is the 8th "variable"

M.ocangle=alist(j(w));

M.octhresh=clist(i(w))/sqrt(2);

M.solve;

gBold=boldClose(M.yext(:,2),M.yext(:,3),...

M.yext(:,6),alist(j(w)),clist(i(w)));

figure(1)

hold on;

plot(M.t,M.yext(:,6),’color’,color(w,:));

h(w)=plot(M.t,gBold,’color’,color(w,:),’LineWidth’,3);

indx=find(0.99<=M.yext(:,3),1,’first’);

ll(w)=plot(M.t(indx),gBold(indx),’*’,’color’,’magenta’,...

’LineWidth’,1.5,’MarkerSize’,7);

ylabel(’Grasper Position’);

xlabel(’Time (s)’);

label=strcat(’Grasper Behavior at Force =’," ",num2str(force));

title(label);

end

ylim([0.6,1.1]);

plot([M.t(1),M.t(end)],ones(1,2),’--b’,’LineWidth’,1.5)

ax=gca;

ax.FontSize=20;
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h(5)=ll(1);

legend(h,{region(1),region(2),region(3),region(4),’High a2 Activity’})
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