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Abstract

Diffusion Mediated Signaling:

Information Capacity and Coarse Grained Representations

by

Matthew Thomas Garvey

Communication via diffusible chemical signals is ubiquitous within biology.

We explore a model of a biochemical communications channel using a diffusible

chemical signal transmitted across a volume. The received signal is attenuated by

a combination of diffusion, decay, and counting noise. We find the response of the

channel is well fit by an additive Gaussian noise model y = βx+ z, where x ∈ C is

the Fourier component of an arbitrary sinusoidal input at a frequency ω, z ∈ C is

complex bivariate Gaussian noise with variance N , and β ∈ C and N ∈ R depend

systematically on ω. We impose a natural constraint A on the input amplitude,

and find the information capacity on a single frequency, and on several together

by waterfilling. We also consider several different coarse grainings of the model

and how the loss of detail affects apparent information capacity.
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1 Introduction

Communication by means of diffusible chemical signals is ubiquitous within

biology. Examples include quorum sensing within bacterial colonies [9] and

triggering of developmental events and directed cell motion by spatial and

temporal gradients of 3’-5’-cyclic adenosine monophosphate (cAMP) [6], lo-

calization of pathogens by white blood cells in the human body [7], and

chemical signaling across the synaptic cleft separating an axon terminal from

a postsynaptic dendritic spine [5].

Abstracting from these examples, we explore a few aspects of a diffusion-

based signaling system, in which a passive diffusion process carries infor-

mation through a medium connecting two locations. A motivating exam-

ple is how varying concentrations of cyclic AMP may be used by cells such

as Dictyostelium discoideum to trigger developmental events or movement

[8]. Although we use an enclosed “cell” in the model we shall introduce, it

represents an extracellular space in which one object (a synaptic release site

localized to one point in space, for example) emits particles that are detected

elsewhere by another object.

Our first goal is to estimate the information capacity of such a system.

Information capacity is defined as the maximum of the mutual information

between possible inputs and outputs in a certain physical information chan-

nel. In a classic model, the additive white Gaussian noise (AWGN) channel

[3], inputs and outputs are realized as numbers in R, and each transmis-

sion involves the sending of one signal which is received in a form corrupted
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by additive Gaussian noise. In our model, the inputs for a single transmis-

sion are fixed-length time series comprising counts of particles injected into

the system at a particular location. The outputs for a single transmission

are corresponding time series representing the numbers of particles detected

at another location. In general, the average number of particles injected is

well above the number received, because the channel includes a linear decay

process. Similarly, signaling patterns at lower frequencies are received more

faithfully than those at higher frequencies because of attenuation from the

decay and diffusion processes.

We define a mathematical model of a simplified diffusion process within

an 8 × 16 lattice with fixed locations for particle injection and detection at

opposite ends. We then use the results of simulations to compare the model

to the AWGN channel and estimate the information capacity of the system.

Our second goal is motivated by the concept of coarse graining. Many

biological models involve large numbers of nodes, which can increase the

complexity of the model and the computational expense of simulations and

analysis. Coarse graining is a means of representing a system with many

nodes by another with fewer nodes. For example, grouping amino acids

in large proteins into clusters of m amino acids allows for a reduction in

computing time of m3 and a reduction in memory requirement of m2 in

simulations of protein dynamics [2]. Here, we experiment with several ways

of coarse graining our discrete diffusion lattice into 4-node clusters.

The act of coarse graining results in loss of information about the detailed

configuration of a system. In many applications it is desirable to find a
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coarse graining whose loss of information is as small as possible. Intuitively,

one expects “useful” coarse grainings will somehow make a natural fit to a

model’s structure or dynamics; one may even hope that the process of finding

a “good” coarse graining will provide insight into the function of whatever

network is under investigation. Information theoretic performance measures

such as the channel capacity offer a novel means of comparing alternative

coarse grainings. We experiment on a small sample set of coarse grainings in

order to see which work well. Our numerical experiments on the diffusion-

based communications channel and its coarse-grained representations suggest

a novel result: the more detail lost in the coarse graining, the higher the

apparent information capacity of the coarse-grained channel.

In the remainder of the Introduction we review a mathematical model for

transition matrices in Markov chains, and then the standard analysis for the

capacity of a single AWGN channel and how it can be used in the multichan-

nel case, following [3]. In Methods we detail our diffusion model and simula-

tions, how they are adapted for coarse graining, and an approach to get some

analytic and non-stochastic results using the transition and coarse-graining

matrices. The Results section contains the analysis of the simulations and

comparison to the Gaussian channel for both the original and coarse-grained

models, then an adaptation of the Gaussian channel’s information capacity

model for one channel alone and multiple channels in parallel. This situation

applies to our model by a standard frequency domain decomposition of the

input signals. Finally, in Discussion we consider a few possible continuations

of the project and present a few additional results of interest.
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1.1 Transition Matrices

One way to consider a particle’s movement is as a Markov chain with a

transition matrix. The same transition matrix can also be used to look at

behaviors of several particles at a time, for example to find a steady-state

distribution.

In order to represent the transition probabilities, let wt represent the

index wt ∈ {1, · · · , Nnodes} of a particle at time t. Define the transition

matrix to be

Pij = Pr{wt+1 = i|wt = j}

=



p (i, j) are neighbors;

1− 4p i = j is an internal node;

1− 3p i = j is an edge node;

1− 2p i = j is a corner node;

0 otherwise.

(1.1.1)

The parameter p of course cannot be greater than 1
4
. Let nt be a column

vector representing the location of a particle at time t. To represent a particle

located at position wt = j at time t, nt would contain a 1 in its jth entry and

0 elsewhere. Pij is the probability that wt+1 = i given that wt = j. Then

nt+1 = Pnt is a vector containing the probabilities of the particle’s locations

at the next timestep. Similarly, if a single particle takes position j at time t

with probability n
(j)
t , then it takes position i at time t + 1 with probability

n
(i)
t+1 =

∑
j Pijn

(j)
t .

If we let nt be more generalized, with a nonnegative integer for each
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position i representing the total number of particles at that position at time t,

then Pnt shows the expected number of particles after one timestep. Rather

than placing each particle into a new position, it “distributes” the particle

into several positions, based on the transition probabilities. Invoking the

central limit theorem1, if the particle density is sufficiently high then the

population vector obtained by the random movement of particles will be

close to Pnt.

This interpretation of P allows us to obtain analytical results, for ex-

ample via eigendecomposition. Because P is a symmetric matrix, it has real

eigenvalues with orthogonal eigenvectors. Because the nodes of the lattice all

intercommunicate, P has a unique maximal eigenvector with unit eigenvalue

(from the Perron-Frobenius theorem [4]). The eigenvector corresponding to

the unit eigenvalue, once normalized (so that it sums to 1), represents the

steady state particle distribution of the system. P alone does not include

the effects of particle injection or decay, so the steady state for our P is

the uniform distribution on all nodes. Later we will modify the stochastic

framework as well as the matrix analysis to take injection and decay into

1See e.g. [4]. Fix node j for consideration. Suppose node j initially holds n0 particles

and the nodes connected to j initially hold m0 particles in total. After allowing one step

of random particle movement, the number of particles at node j will be n0 − nout + nin

where nout ∼ Binom(n0, p) and nin ∼ Binom(m0, p) are binomial random variables.

The central limit theorem asserts that if n0p and m0p are sufficiently large, then the

distributions will be approximately Gaussian; therefore the number of particles at node j

is again approximately Gaussian and in particular its value will not deviate appreciably

from the mean when the total number is large.
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account.

Although the matrix P represents the transition probabilities of the model

system, as a practical matter we numerically implement the Markov chain

by direct simulation (as described in Methods). We do not actually create

the matrix P explicitly for the stochastic simulations.

1.2 Information Capacity of a Gaussian Channel

In Results we will show numerically that the diffusion based communications

channel is well approximated in the frequency domain by the classic addi-

tive white Gaussian noise (AWGN) channel [3]. Here we review the AWGN

channel and show how to determine its capacity, following [3].

In the real-valued AWGN channel, the input signal xt is transformed into

a received signal yt by the addition of Gaussian distributed white noise zt.

The corrupting noise is independent of the input signal, time, and history,

and has equal power at all frequencies. We consider discrete time, with our

focus on a single transmission at time t. Therefore, we refer to the input X,

the noise Z, and the output Y = X+Z. We assume the mean noise E(Z) = 0

and define the variance V(Z) = E (Z − E(Z))2 = N to be the noise variance

or equivalently the noise power. We use E to denote the expectation of a

random variable.

If the noise power N is zero, arbitrarily close inputs X1, X2, et cetera may

be distinguished upon observing the corresponding outputs Y1, Y2, and the

capacity is infinite. Intuitively, if the noise is nonzero, inputs must be spaced
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out so that the noisy output can be distinguished with high probability.

Similarly, if the inputs can be arbitrarily large, the capacity is infinite because

spacing them out does not impose a limit on the variety of signals we can

send reliably. In the real world, however, there is usually a constraint on

the size of the inputs, such as the energy needed to represent them. With a

constraint on input size and a nonzero noise power, only a finite set of inputs

can be resolved with any accuracy, and the information capacity of a single

transmission is finite.

Following Cover and Thomas’ chapter The Gaussian Channel [3], we will

calculate the information capacity of a single channel. A common constraint

on input size is the power constraint, where the expected value of the square

of the input may not exceed a limit P . For a set of inputs with mean 0

and equal probability of using any input, this corresponds to the variance of

the input set. For the AWGN channel the noise is assumed to be Gaussian,

typically because of the cumulative effect of many small random effects, with

mean 0 and variance N . Whether this is true for the diffusion channel we

will investigate empirically.

The information capacity C of a Gaussian channel is the maximum of the

mutual information (I, defined below) between the input X and the noisy

output Y over all possible input sets that satisfy the power constraint. Our

use of X, Y , etc. may now be construed as connoting random variables.

That is,

C = max
E(X2)≤P

I(X;Y ). (1.2.1)
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The mutual information I can be represented in terms of the entropy of X

and Y . The entropy h(X) of a random variable X is a measure of uncertainty

of X. For a continuous random variable X with probability density function

f(x) the entropy is

h(X) = E (log(1/f(x))) = −
∫
f(x)>0

f(x) log f(x) dx. (1.2.2)

Given a joint density function f(x, y) or a conditional density f(x|y), we

may also define the joint entropy

h(x, y) = −
∫
f(x,y)>0

f(x, y) log(f(x, y)) dx dy, (1.2.3)

or the conditional entropy

h(x|y) =

∫
y

(∫
f(x|y)>0

f(x|y) log(f(x|y)) dx

)
f(y) dy (1.2.4)

The latter quantity is the (average) uncertainty of the input X upon obser-

vation of the output Y . The mutual information is the mean reduction in

uncertainty about the input, given an observation of the output:

I(X;Y ) = h(X)− h(X|Y ) (1.2.5)

Using the natural logarithm in the expression for the entropy yields mutual

information measured in “nats”. Conversion from “nats” to “bits” (binary

digits) is accomplished by employing the logarithm in base two, or equiva-

lently dividing measurements in nats by the natural log of two.

It is easily shown that the mutual information is symmetric in X and

Y , and it is mathematically more convenient to work with the equivalent

expression:
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I(X;Y ) = h(Y )− h(Y |X)

= h(Y )− h(X + Z|X)

= h(Y )− h(Z|X)

= h(Y )− h(Z) (1.2.6)

The last step follows because Z is independent of X.

To get to the entropy of Y we first look at its covariance, EY 2. Since

X and Z are independent, and EZ = 0, we may take the middle step of

going from 2E(XZ) to 2EXEZ to 0 in the expansion below. We should also

assume that the maximum power P is used. Thus:

EY 2 = E(X + Z)2 = EX2 + EZ2 = P +N. (1.2.7)

Theorem 9.6.5 in [3] notes that h(Y ) ≤ 1
2

log(2πe(P+N)), with equality iff Y

is normal with mean 0 and variance P +N . The entropy of Z is 1
2

log 2πeN .

We thereby arrive at the celebrated formula for the capacity of a Gaussian

channel in terms of the signal-to-noise ratio P/N :

I(X;Y ) ≤ 1

2
log(2πe(P +N))− 1

2
log(2πeN) =

1

2
log

(
1 +

P

N

)
. (1.2.8)

Equality, and thus the maximum, is reached when Y ∼ N (0, N + P ), and

therefore when X ∼ N (0, P ). If we use logs in base 2, this is the information

capacity C in bits per transmission.

A typical scenario involving additive models is when a channel carries

information simultaneously on several nonoverlapping frequencies with inde-

pendent noise. We therefore also want to consider the case where several
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(k) AWGN channels are used at once, independently of each other except

for a common power constraint. That is, each channel j (j = 1, 2, . . . k) has

a signal Xj and Gaussian noise Zj drawn from N (0, Nj) that are added to

make the output Yj. The noise sources are again independent of each other,

the Xjs, and time and history. The common power constraint P remains,

and the expected value of the sum of the squares of each channel’s input (or

alternatively the sum of the expected values of the squares of the inputs)

must not exceed it. That is,

E
k∑
j=1

X2
j ≤ P. (1.2.9)

How do we choose the input sets to maximize the information capacity?

As above, still following [3],

C = max
E

P
X2

j≤P
I(X1, . . . , Xk;Y1, . . . , Yk). (1.2.10)

Since each Xj is independent of Zj, we can break down the right-hand side

as before, so

I(X1, . . . , Xk;Y1, . . . , Yk)

= h(Y1, . . . , Yk)− h(Y1, . . . , Yk|X1, . . . , Xk)

= h(Y1, . . . , Yk)− h(X1 + Z1, . . . , Xk + Zk|X1, . . . , Xk)

= h(Y1, . . . , Yk)− h(Z1, . . . , Zk|X1, . . . , Xk)

= h(Y1, . . . , Yk)− h(Z1, . . . , Zk). (1.2.11)

Because the noises are independent, their joint entropy is the sum of the

marginal entropies. Without assuming the Yjs are independent, we can only
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say that their sum gives an upper limit. Repeating the single-channel argu-

ment, we have

I ≤
k∑
j=1

h(Yj)− h(Zj) ≤
k∑
j=1

1

2
log

(
1 +

Pj
Nj

)
. (1.2.12)

Pj now represents EX2
j , so then

∑
Pj = P . Theorem 9.6.5 in [3] refers not

just to one random variable but many, and we get equality for the right

inequality in (1.2.12) iff

(X1, X2, . . . , Xk) ∼ N


0,


P1 0 · · · 0

0 P2 · · · 0

...
...

. . .
...

0 0 . . . Pk




. (1.2.13)

Equality for the left inequality in (1.2.12) follows upon assuming (1.2.13),

which makes the Xjs, and hence the Yjs, independent. In short, we will

maximize capacity if each channel’s inputs are normally distributed and in-

dependent. It remains to find the optimal values of the Pjs.

We can use Lagrange multipliers to solve this problem. We maximize

I subject to the constraint (1.2.9) by introducing an extra variable λ and

finding extrema of∑ 1

2
log

(
1 +

Pj
Nj

)
+ λ((

∑
Pj)− P ), (1.2.14)

which yields

1

2 ln 2

1

Pj +Nj

+ λ = 0. (1.2.15)

Letting ν = −1
λ2 ln 2

, we see that

Pj +Nj = ν, (1.2.16)
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or in other words, the power constraint plus noise variance for each channel

should be equal. It may not be the case that a solution of this form exists,

since Pj ≥ 0; as shown in [3] one applies the Kuhn-Tucker conditions to

show that using Pj = (ν − Nj)
+ leads to the optimal distribution, where

(u)+ means max(u, 0). Consequently the capacity of the AWGN channel is

C =
∑
j:Nj<ν

1

2
log2

(
ν

Nj

)
(1.2.17)

where ν is chosen to be maximal given the constraint (1.2.9).

Figure 1: Waterfilling example. Given 3 AWGN channels with noise variance

N1, N2, N3 and constraint
∑
Pj ≤ P , the power is distributed to reach a

common noise-plus-signal-power level ν in all channels that are used.

Finding ν can best be understood graphically (see Figure 1). This is

often called a waterfilling model because of its similarity to pouring a fixed
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quantity (P ) of water into a tub with even-sized blocks of height Nj. The

information capacity (in bits per transmission) of such a system is the sum

of the capacities of all the channels using Pj and Nj.

We shall adapt both the single-channel information capacity formulas and

the multi-channel waterfilling formula to our model. We explore and derive

formulas for one interpretation, use of a disc in the Fourier transform’s com-

plex plane to encode a signal; we also touch briefly on another interpretation,

in which we assume little faith in the detector’s ability to synchronize with

the source, restricting the signal to an amplitude only.
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2 Methods

2.1 Simulation of a Diffusion Mediated Communica-

tions Channel

To approximate particle diffusion through a two-dimensional volume we in-

troduce an 8× 16 rectangular lattice. Particles perform a simulated discrete

time, discrete space random walk, moving independently between neighbor-

ing grid points and having a constant probability per time step of removal.

For definiteness, we number spatial coordinates as if indexing a transposed

matrix (row and column, swapped) with (1, 1) in the top left corner. In the

simulation, each particle corresponds to a single (x, y) coordinate pair. Mul-

tiple particles may occupy the same grid point; we neglect possible crowding

effects. Each grid point represents a subvolume 1/128 the size of the total

volume through which particles can diffuse. An injector adds some number

of particles at every timestep to an injection point at coordinates (1, 4), near

the middle of the left wall, and a detector counts particles at (16, 4) at the

far side of the grid. See Figure 2 for an illustration of the grid with injection

and detection points.

We think of the injector as a Poisson process with time-varying intensity

s′(t) = A+X cosωt, (2.1.1)

where we require s′(t) ≥ 0, i.e. |X| ≤ A. As a discrete-time approximation

we inject a random number of particles given by a Poisson distribution with
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mean s′(t), i.e.

Pr{# injected(t) = k} =
s′(t)k

k!
e−s

′(t). (2.1.2)

We implicitly assume time units such that our time step ∆t = 1.

Figure 2: The particle grid. Particles perform a discrete-time discrete-space

random walk on an 8 × 16 lattice, with injection at the left and detection

at the right, and constant probability of removal per timestep. A particle in

the green node can move to other nodes with specified probabilities. In this

case the probability of moving to each nearest neighbor is p = 0.2.

The simulation works as follows. Particles are tracked in an unordered
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list of (x, y) coordinates. We start with an empty grid, and at every timestep

do the following:

1. Insert a number of particles at the injector location.

2. Move each particle either one step in a random direction, or zero steps.

3. Remove a randomly chosen set of particles from the list.

4. Record the number of particles at the detector location.

5. Plot the position of each particle (optional).

We accomplish particle movement by generating a list of random numbers

from the uniform distribution on [0, 1], one per particle, and adjusting the

particles’ coordinates based on those numbers. Let p ≤ 0.25 represent the

probability of a given particle moving to an adjacent grid point on a given

timestep. The intervals [0, p], (p, 2p], (2p, 3p], (3p, 4p], (4p, 1] correspond to

right, left, down, up, and “stay”. We maintain the integrity of the “walls”

by keeping a particle in place if its random movement would place it off the

grid. This implementation changes slightly in the generalization for coarse-

graining (see Section 6.1 for code). Particle decay is done similarly: a new

list of random numbers is generated, and particles corresponding to numbers

less than the decay parameter α are removed.

The discrete-time Poisson process representing particle injection into the

volume is accomplished by a MATLAB command such as:

s(t) = poissrnd(max([0,(1+amp*cos(w*t)’)*a]))

16



Here w (for ω) is a column vector of several frequencies, amp is a row vector

of fractional amplitudes corresponding to each frequency, a is the overall

amplitude and the mean number of particles injected, and poissrnd is a

Poisson random number generator which uses our cosine or sum of cosines

as its parameter. That parameter is truncated at 0 in the code because

only nonnegative arguments are accepted; however, it is undesirable for the

injector to tend to dip below 0 for very long, because that introduces artifacts

into the power spectrum, complicating the subsequent analysis. It is up to the

user to ensure that amp is carefully chosen to keep the argument of poissrnd

nonnegative; we do so for our simulations. Using a vector representation

allows linear combination of input signals at multiple frequencies. Below,

“injector amplitude” will refer to components of amp or amp*a, the amplitudes

of the cosines, not to the mean injection rate a.

Simulations begin with an empty grid, but we do not want to consider

the initial transient period, during which an average particle distribution is

being built up, in the analysis. After recording the time series of the number

of particles at the detector, we discard the first 1024 of 3072 readings and

keep only the last 2048. This is adequate time to exclude the transient from

our analysis (see Figure 3).
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Figure 3: Example of diffusion channel input and output on a single trial.

Input used a mean injection rate A = 150 and amplitude 150 at a single

frequency f = 1
512

(i.e. ω = 2π/512). The number of particles injected

(top trace, green) is a Poisson random variable with mean determined by the

input rate. The number of particles at the counter (lower trace, blue) reflects

the input frequency with a phase shift. Note decay of the transient over the

first 1024 timesteps (separated by a vertical line), which are discarded before

performing frequency analysis.
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2.2 Spectral Analysis

In our simulations we set the mean injection rate to be A = 150, diffusion

parameter to be p = 0.2, and decay rate to be α = 0.01.2 Because we keep

only a time series of length 2048 for analysis, the argument ω is taken to be

an integer multiple of 2π
2048

, giving a base frequency of 1
2048

(units of inverse

time). Frequency by itself will be denoted f , with ω = 2πf . Because the

simulation is time-intensive, in practice we only sample frequencies 4k
2048

for

k = 1, 2, 3, 4. This range includes frequencies that transmit information well

and some that transmit almost none. Detailed analysis will be done on these

frequencies, but later we will use deterministic simulations to extrapolate

results at intermediate frequencies.

Our simulation generates a time series, r(t), giving the number of particles

at the counter location at each of N = 2048 time points t. We assume N is

even. We use MATLAB’s fft (fast Fourier transform) function to estimate

the power spectrum. Given a column vector u representing samples of a time

signal, it returns the discrete Fourier transform v as a column vector of the

same length. Each entry is a complex number that, in polar coordinates,

will represent the magnitude and phase of a component wave of a different

frequency. The power spectrum is v multiplied elementwise by its conjugate,

divided by the vector length (in MATLAB, v.*conj(v)/N).

We will find it more useful to use one of two more direct interpretations.

2These choices are chosen because they give numerically manageable quantities and

simulation times. Varying them slightly should result in predictable changes; testing

exactly how the results depend on choice of parameters is left for future work.
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The vectors 2v/N and 2*abs(v)/N are respectively the complex representa-

tion and the amplitudes of the component waves.3 At nonzero, non-Nyquist

frequencies, for a real-valued time series, the power is equally split between

frequencies f and −f . Each of those frequencies and its negative have con-

jugate values in both interpretations of the FT, so that the total value at a

given positive frequency is the double. For both we must be consistent, con-

sidering only the positive frequencies and ignoring the negatives, after this

doubling. Though we do not use the power spectrum, the amplitude version

of the Fourier transform described above is proportional to the square root

of it.

For a vector of length N , and i = 1, 2, . . . , N
2

, the ith entry vi in the

fft output corresponds to frequency i−1
N

. The next entry, just after the

halfway point, corresponds to the Nyquist frequency (1
2
), and the rest are

the complex conjugates in reverse order, referring to the negative frequencies

(for example, the Nth is the conjugate of the 2nd, the N − 1th that of

the 3rd, etc.). Before running fft, we subtract the mean of u from u, in

order to suppress the spike at f = 0. MATLAB’s function fft corresponds

to the standard Fourier transform; for example, if we start with the vector

u = a cos 2πt
512

, where t = (1, 2, . . . , 2048), we get a spike of amplitude a at

3This doubling is correct for the frequencies we attribute significance to. The exceptions

are f = 0 and f = 1
2 (the Nyquist frequency). Because we subtract the mean, the value at

f = 0 is just 0; for our simulations we never approach the Nyquist frequency. Similarly, the

frequencies above 1
2 should not even be considered after the adjustment. A total doubling

of the vector is for computational convenience when the interpretation is well-known.
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precisely 1
512

, with zero power everywhere else (except the conjugate spike at

−1
512

, which we ignore since we’ve rolled it into the positive frequency).

For this project, although the cell’s input and output are s(t) and r(t),

they are not used directly in considering information capacity. A time series

of 2048 real numbers corresponds reversibly to its discrete Fourier trans-

form, which is complex but with redundancy so that it has 1023 independent

complex numbers and 2 independent real numbers (at 0 and the Nyquist

frequency), hence 2048 independent real values. Since most of those num-

bers will be close to 0 in the frequency domain of both input and output,

deviating only by small amounts independent of the input, we may redefine

the input and output X and Y of the model to be the complex amplitude of

their Fourier transforms at whichever frequency we are considering. When

multiple frequencies are used simultaneously, Xj and Yj represent the com-

plex amplitude of the corresponding input and output Fourier components

for each. Thus, by defining the input and output by their Fourier transforms,

we are not omitting any information, just transforming it into a more useful

form.

Each combination of one or more input frequencies was repeated over 30

or 100 trials in order to estimate both the mean and variance of the resulting

power spectrum of the resulting time series r(t).
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Figure 4: Example of a Fourier transform of 42 cos(2π 3
512
t − .5), t =

0, 1, . . . , 2047. Left: time series. Right: amplitude of Fourier transform

vs. frequency at low frequencies. There is a single spike of amplitude 42 at

f = 3
512

and zero values elsewhere.

2.3 Deterministic Simulations

The mean number of particles evolves according to a deterministic dynamics

governed by the same transition matrix P as the stochastic simulation. We

performed direct simulations of the corresponding deterministic system in

order to compare results at the four frequencies chosen for stochastic simula-

tions as well as for rapid generation of interpolating results at intermediate

frequencies. We ran deterministic versions of the simulation for all the varia-

tions in injector frequencies and amplitudes, and obtained Fourier transforms

matching the means of the corresponding stochastic simulations, as we will

see in Results. Obviously, however, the deterministic simulations do not

directly shed light on the nature of the noise.

We used the same approach with a modified transition matrix (as de-
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scribed below) to study the coarse grainings in conjunction with the stochas-

tic simulations.

2.4 Coarse Grained Channel Simulations

In addition to the basic simulation model, we implemented several coarse-

grained versions as follows:

• Chunky: Aggregate blocks of 2× 2 adjacent nodes to form a coarsened

4× 8 grid.

• Vertical: Aggregate blocks of 4× 1 adjacent nodes to form a coarsened

2× 16 grid.

• Horizontal: Aggregate blocks of 1× 4 adjacent nodes to form a coars-

ened 8× 4 grid.

• Random: Aggregate randomly chosen groups of four (typically uncon-

nected) nodes to form an irregular coarsened network.

In addition, we implemented an extremely coarse representation in which

two blocks of 8 × 8 nodes were aggregated into a two-node network. One

node contained the injection site and the other contained the counter, giving

a two-state Markov communications model.

The original simulation exploited the regularity of the 8 × 16 grid to

simplify the code. In order to handle arbitrary transition matrices we adapted

the code to employ a pair of matrices to define the coarse graining, one

containing a list of nodes adjacent to each node, the other containing a
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Figure 5: Graphical representation of the coarse grainings. Each of the red

(chunky), blue (vertical), and green (horizontal) groups of 4 nodes stands for

one coarse-grained node which is tiled 32 times. The cyan nodes form one of

the random coarse-grained nodes.
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3 5 11 14 13 26 2 10 10 22 14 26 6 13 21 15

11 15 13 10 24 21 8 17 22 20 7 7 13 1 29 18

25 12 32 24 21 19 31 9 26 14 2 16 16 28 20 32

4 2 12 29 22 29 23 12 4 31 14 22 30 31 27 32

6 21 9 16 9 6 19 24 26 17 31 15 25 18 8 30

28 3 3 27 12 23 29 32 20 5 25 19 11 27 8 6

10 17 18 3 4 24 11 17 30 9 20 5 4 8 5 1

15 28 1 30 2 7 16 7 18 1 19 27 28 23 23 25

Figure 6: Cluster numbers used for random coarse graining. The particle

entry is in cluster 4, and the detector is in cluster 32.

probability distribution for movement to those nodes. See Section 6.1 (Code)

for implementation details.

Each coarse-grained matrix model above requires a transition matrix.

The original method can be expressed as a transition matrix, P, which is

square and has both dimensions equal to the number of grid points (128).

To define a “coarse-grained” representation of the original N -node system

as a system with M < N nodes, we introduce an M × N matrix W. Wij

is 1 if original point j ∈ {1, · · · , N} is assigned to coarse-grained node i ∈

{1, · · · ,M} and 0 otherwise. Let nt be an N -dimensional vector represent-

ing the number of particles at each node in the fine-grained representation.

Then ñt = Wnt represents the number of particles at each coarse-grained

node. A single particle at node j would be represented by a vector nt =

[0, · · · , 0, 1, 0, · · · , 0] ∈ RN where the 1 is in the jth component. The coarse-
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grained representation of this state would be Wnt = [0, · · · , 0, 1, 0, · · · , 0] ∈

RM with the 1 in the location corresponding to whichever coarse-grained

node includes fine-grained node j.

Coarse graining is an irreversible process, but may be approximately re-

versed by suitable choice of an N ×M matrix U. If n ∈ RN represents a

fine-grained description of the system then ñ ∈ RM , with ñ = Wn, repre-

sents the corresponding coarse grained description. We require that the pair

U and W satisfy the following first consistency criterion: mapping a coarse

grained state into a fine grained state and back again should leave the coarse

grained description unchanged. That is, ∀ñ ∈ RM ,

WUñ = ñ. (2.4.1)

Equivalently,

WU = IM , (2.4.2)

the M ×M identity matrix.

In general, mapping from the fine-grained representation to the coarse-

grained representation and back again will not leave the detailed description

invariant. Nevertheless we may impose a second consistency criterion. Given

a particular choice of the one-step N × N transition matrix P, the unique

steady-state distribution vector π satisfies Pπ = π. We require that this

fine-grained steady-state distribution remain preserved by mapping from RN

to RM and back:

UWπ = π (2.4.3)
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Together, conditions (2.4.2) and (2.4.3) may not fully constrain the choice

of U. For our spatially uniform grid the steady state is the uniform distri-

bution for both the fine grained and each coarse grained representations, by

construction. In this case we may choose U to be the pseudoinverse of W,

W+ = W∗(WW∗)−1 (2.4.4)

where W∗ denotes the adjoint matrix. The pseudoinverse is the unique solu-

tion to the matrix equation WU = I that minimizes
∑

ij U2
ij. It also gives the

least-squares solution to an underdetermined linear equation Wx = b when

W is rectangular as in our case.4 Given the choice of U = W+ satisfying

both consistency criteria, it remains to choose an M×M matrix to represent

a set of one-step transition probabilities on the coarse-grained space. Because

the probability of transition between coarse-grained nodes depends, at least

in the short run, on the fine-grained node of entry, the true dynamics as seen

through the coarse-grained system is no longer Markovian. Nevertheless we

will define a Markov process on the coarse-grained space to approximate the

transitions present in the fine-grained description. The coarse-grained tran-

sition matrix P̃ must satisfy our third consistency criterion: that the steady

states of the fine- and coarse-grained descriptions should be consistent. That

is, a vector π stationary under P should be mapped to a coarse grained vector

4As a simple example consider a 4-to-2 coarse graining given by the matrix W =

 1 1 0 0

0 0 1 1

, for which we have the pseudoinverse W+ =


1/2 0

1/2 0

0 1/2

0 1/2

.
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π̃ = Wπ stationary under P̃. This criterion is satisfied by the coarse-grained

transition matrix

P̃kl =
∑
i

∑
j

WkiPijW
+
jl (2.4.5)

where P̃kl is the probability of a particle moving from l to k in the coarse-

grained system. This formula can be thought of as un-coarse-graining the

particle at l to several fine-grained positions j, finding the probabilities of

moving to other fine-grained positions i, and coarse-graining those to see

which wind up at coarse-grained node k. Equivalently, we define P̃ =

WPW+. Because (invoking equation (2.4.3)) W+Wπ = π we may write

P̃π̃ = (WPW+)(Wπ) = WPπ = Wπ = π̃ (2.4.6)

which establishes that π̃ is stationary under P̃ whenever π is stationary under

P and π̃ = Wπ.

For the purpose of computation we coded the transition probabilities

by hand rather than explicitly constructing the matrices W and P. The

probability of moving to a certain coarse-grained node i is the average of the

original probabilities of each point j within it (0 or p) moving to a point

within i. For example, in the (2 × 2) coarse graining, the probability of

moving to the node below is (0 + 0 + p+ p)/4 = p/2.

The pseudoinverse approach we use to make transitions for the coarse-

grainings is exact in the case of a uniform distribution of particles within each

coarse-grained node. In our simulation, there will be on average more par-

ticles on the left than on the right of any coarse-grained node, and slightly

more in the vertical center than at the top or bottom. The net effect of
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coarse graining is to “graduate” particles prematurely toward the counter in

the more horizontal coarse grainings, especially the one with only two nodes.

Given a known fine-grained steady state, one could replace W+ with a differ-

ent pseudoinverse that reflected it (as in consistency condition UWπ = π)

for the nonuniform steady state π. Further discussion of how the pseudoin-

verse affects things is found later in this section. However, we leave detailed

consideration of pseudoinverses corresponding to nonuniform steady states

for future work.

The “received signal” in the coarse-grained system must be interpreted

with care. In the fine-grained system, the received signal R(t) is r(t), the time

series of particle counts at the counter node. In the coarse-grained system

let r̃(t) be the time series of particles at the coarse-grained node containing

the counter. For a coarse graining in which the counter is aggregated into a

coarse node as one of N/M fine nodes, there are (at least) three reasonable

but nonequivalent ways to define the received signal R̃(t) for the coarse-

grained system.

1. R̃(t) = r̃(t)

2. R̃(t) = M
N
r̃(t)

3. R̃(t) ∼ Binom
(
r̃(t), M

N

)
Alternative 1 amounts to expanding the counter’s size by a factor of N/M

to count all particles in the coarse-grained node. Inasmuch as we wish to

compare the relationship between the input signal s(t) and the received signal
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R(t) in the coarse- and fine-grained systems respectively, 1 would seem to give

an unfair comparison. In the analysis, we will include both 2 and 3 as possible

interpretations of the received signal. Alternative 2 amounts to applying

the pseudoinverse matrix W+ consistent with the uniform steady state to

produce an approximate fine-grained time series R̂(t) = r̂(t) for the received

signal. Alternative 3 assigns an equal chance of being counted to each particle

in the coarse-grained node containing the counter. Hence the received signal

at time t is taken to be a random variable drawn from a binomial distribution

based on r̃(t) attempts with probabilityM/N . While this approach may seem

the most realistic interpretation, it also adds an additional source of noise

due to the binomial counting process. In the following sections, Alternative

3 will be referred to as the “probabilistic” counting method.

2.5 Steady States under Coarse Graining

In the introduction, we saw that finding the steady state of a model is as

easy as finding eigenpairs of the transition matrix. However, because we have

particle injection and decay, we must adapt that approach. The sinusoidal

components of the injection signal average out over observation times com-

mensurate with their frequencies. Therefore to find the mean steady state

distribution we consider only the constant mean injection rate. First we re-

place P by Q = (1− α)P for ease of notation. If nt is a vector representing

a population of many particles, then

nt+1 = Qnt + s, (2.5.1)

30



where s is a vector with all zeroes except for the constant injection rate (150)

in the row corresponding to the injection node. This corresponds to particle

injection after movement and decay, instead of before, which uses Qs above.

However, the two solutions only differ by s, so we use this for simplicity.

Then the steady state n∞ is where nt = nt+1, so with a little rearranging,

(I−Q)n∞ = s, (2.5.2)

n∞ = (I−Q)−1s, (2.5.3)

which has a unique solution because the eigenvalues of Q are all ≤ (1− α).

In the coarse-grained case, since (1 − α)P̃ = (1 − α)WPW+ = W(1 −

α)PW+, we can substitute Q̃ as the transition-plus-decay matrix. Then

with s̃ = Ws,

ñt+1 = Q̃ñt + s̃, (2.5.4)

with similar steady-state solution ñ∞ = (I − Q̃)−1s̃. Note ñ∞ refers only

to the steady state of a coarse-grained system, not necessarily the coarse

graining of n∞ (because of our choice of U and particle injection and decay).

How does this compare to the fine-grained model?

If we compare ñ∞ = (I−WQW+)−1Ws, the coarse-grained steady state,

to the coarse-grained version of the fine-grained steady state, Wn∞ = W(I−

Q)−1s, we may note that (I −WQW+)−1 = (WIW+ −WQW+)−1 =

(W(I−Q)W+)−1. If W were actually invertible (a trivial case, involving a

renumbering of nodes at best), then W+ = W−1, and (W(I−Q)W+)−1 =

W(I−Q)−1W−1, so that ñ∞ = (I−WQW+)−1Ws = W(I−Q)−1s = Wn∞,

and the two would be equal. The degree to which (W(I−Q)W+)−1 differs
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from W(I−Q)−1W+ makes up most of the difference when W is nontrivial,

depending on W and Q.

We find that the steady states of the coarse grainings generally spread

things out more evenly (compared to the coarse grainings of the original

steady state). This effect reflects graduation of particles too quickly toward

the counter as described above. See Figure 8.

Figure 7 shows a visualization of the original model’s steady state for

reference; in Figure 8 we see them for the more orderly coarse grainings,

along with the original steady state coarse-grained for comparison. All use

the calculation matching injection before movement. Note the flattening

effect of coarse graining first. The only exception is the horizontal one, which

is close to equal anyway. The random coarse graining (not shown) has a very

even steady-state distribution, with only the injector node being significantly

higher, and the populations falling off slightly by minimum distance to it;

but it is hard to visualize. Coarse graining the original steady state to match

makes it very erratic. The difference for the 2-node model (not shown) is

similar to the rest.

The average behavior of the system calculated from the steady state of the

deterministic model provides a useful check on the time-varying stochastic

simulations. The mean number of particles at the detector at steady state

should be close to the stochastic system’s mean; if that is true over the final

2048 timesteps, as it was for our models, the first 1024 steps were indeed

sufficient to reach equilibrium.
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Figure 7: Steady state concentration of the original model as a function of

position, as viewed from the bottom right corner. The injector at (1,4) is the

peak; the counter is at (16,4). Heights represent number of particles. Color

corresponds to height (population) for ease of visualization.
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Figure 8: Steady states of the coarse grainings. Left: their steady states

(ñ∞). Right: coarse grainings of the original model’s steady state (Wn∞).

The format is the same as Figure 7, and color mapping is consistent in each

pair.
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2.6 Information Capacity

Finally, for both the original model and the coarse-grained versions we wish

to determine the information capacity of the cell viewed as a communications

channel.

We require some adaptation of the Gaussian channel model’s formulas to

do so. As we will see in Results, there will be attenuation of the original signal

obeying a directly proportional relationship between the sent and received

amplitudes; the received signal will be at the same frequency; there will

be a somewhat predictable amount of phase shift; and we will define noise

for our model, which will be approximately Gaussian and independent in C

though not in amplitude-and-angle representation. We must reconcile the

expectation of a power constraint, which might allow for a direct use of the

Gaussian channel formulas, with an amplitude constraint for single-channel

information capacity and waterfilling. For waterfilling, we will see whether

signals sent simultaneously on different frequencies (channels) may be treated

as independent channels or if they influence each other.

In the simulations, we used an injector function with mean 150 and am-

plitude of 0, 50, 100, or 150 at various frequencies (or combinations of them).

To obtain a spectrum for analysis, we take the fft of the detector’s time se-

ries as described above; the relationship of the amplitude and phase of the

FT entries to the input’s own amplitudes and phases at the injected frequen-

cies gives us a signal-to-noise ratio. As we will see, amplitude and phase at

the driven frequencies is influenced, but at other frequencies is uncorrelated.
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3 Results

3.1 Main Model Results and Comparison to AWGN

Channel

First we examine the Fourier transform. This is useful in amplitude-only

form, such as for plotting against frequency to visualize the spectrum; it is

also useful in the complex plane, such as for comparing results from different

trials or parameters at particular frequencies.

Figure 9: Fourier transform example of received signal, using full-amplitude

injector (150) at f = 1
512

(about .00195 on the horizontal axis, left). Left:

amplitude vs. frequency. Right: FT in the complex plane, with blue points

corresponding to those on the left and red points representing the rest of the

spectrum (the higher frequencies not seen at left). Note the lone point near

(-8,-8) corresponding to the peak in the left plot (enlarged for visibility). The

time series for this data is found in Figure 3.

Figure 9 shows the low-frequency end of a spectrum of the received signal,
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as an illustrative example. The high point represents the amplitude of the

received signal at the same frequency the injector was using, 1
512

. At all

other frequencies, the amplitude is quite low, indicating the noisy particle

movement of the diffusion process. The bulk of the power is contained in the

original frequency, consistent with a linear signal transmission model.

Figure 10: Same as Figure 9, but showing the amplitude of the mean of 100

runs. The red dots indicate individual results.

The single-frequency simulations ran with cosine amplitudes of 0, 50, 100,

and 150 at the first four multiples of the base frequency 4
2048

. The received

signal amplitude scaled linearly with the injector amplitude, and the spikes

decreased as the injector frequency increased in a way we shall examine

shortly.

Figure 11 shows the first property, using the first four multiples of the

base frequency at four injector amplitudes. Here we plot the means of the

amplitudes from 100 runs. Error bars reflect the standard deviations. The

relationship is approximately linear. In Figure 12 we see the same data,
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Figure 11: Amplitudes of mean peaks (100 runs each), plotted vs. injec-

tor amplitude. Each line represents one frequency. Error bars indicate the

standard deviation.

Figure 12: Amplitudes of mean peaks (100 runs each), plotted vs. frequency.

Each line represents one amplitude.
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rearranged to show how the received signal amplitude changes with injector

frequency. The vertical axis is log-scaled to illustrate the trend. At nonzero

injector amplitudes, the peaks fall off nearly exponentially. At zero injection

amplitude, that is, a constant injection rate, the mean is very close to 0

everywhere, so the jagged line is only a result of the scale.

The waterfilling construction for the channel capacity requires that linear

superposition of input frequencies be transmitted as linear superposition in

the output. To test this, we ran simulations which superimposed several

cosines of different frequencies in the injector function. As seen in Figure

13, the transmission preserves linear superposition of the multiple frequency

components. Closer examination shows that the peaks are additive under

superposition, and the background amplitudes at other frequencies are about

0 in mean. For individual runs, each frequency component varies similarly

to the single-injector-frequency runs.

As described in the introduction, the AWGN model assumes each fre-

quency component is perturbed by additive Gaussian noise with mean 0,

independent of other frequencies and the signal itself. The background noise

found in all frequencies is the same whether or not a signal is present. To

what extent can we represent the perturbation at the encoded frequencies as

additive Gaussian noise?

To address this question, it is most helpful to evaluate the distributions

of the encoded frequencies’ Fourier transform entries in the complex plane.

Figure 14 shows all 100 trials for each injector amplitude at each frequency,

with their own means and the results of the deterministic simulations marked.
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Figure 13: Combining different frequencies. Left: sample runs of injected

signal (green) and received signal (blue). Right: corresponding FT amplitude

spectra of output for those samples. The extra blue points represent the

means from the full-strength injectors for comparison. Top to bottom: (2
3
, 1

3
),

(1
3
, 1

3
), (1

3
, 2

3
) times the base amplitude of the first two frequencies ( 1

512
, 2

512
).
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Figure 14: Diffusion noise appears effectively Gaussian and additive. Com-

plex Fourier representation of channel output at the input frequency, showing

100 runs of each type of injector with different amplitudes of injection rate

modulation (blue: amplitude 150; green: 100, red: 50; cyan: 0). Large ma-

genta points show the sample mean of each cluster; black points show the

mean expected based on the deterministic simulation. Top left: f = 1
512

.

Top right: f = 2
512

. Bottom left: f = 3
512

. Bottom right: f = 4
512

.
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Figure 15: Sample qqplots (quantile-quantile plot) of the real and imaginary

parts of the FT for one set of 100 runs. We can claim that the distributions

are approximately Gaussian because the plots are close to the diagonal lines.

The means match the deterministic version well. In both cases, not only are

the amplitudes spread out in a linear fashion, but the phase (angle) is the

same, independent of the amplitude but characteristic only of the frequency.

Concerning the noise, the actual distributions appear to be normal and

isotropic. Figure 15 shows a sample of a pair of qqplots, corresponding to

the real and imaginary parts of the transforms of the 100 trials using an

injector at f = 1
512

and amp = 1. If the plots are close to the center line, the

distribution is approximately normal, and we see that that is the case.

Using methods described below, we find the variances (in one dimension)

of these distributions, as well as of the many unseen ones from unused fre-

quencies (all of which have complex scatter plots resembling the 0-amplitude

distributions above). Figure 16 contains two visualizations of these vari-

ances. On the left, we see the variances of the 16 distributions from Figure

14, plotted against injector amplitude. Note that the variance shows no
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Figure 16: Variance of FT for each setup (100 runs each). Left: plotted

vs. amplitude, one line per frequency. Right: plotted vs. driving frequency,

including variances at other frequencies. The 16 points from the left are

connected by lines representing injection amplitude and are quite haphaz-

ard. The means of these variances are represented by the long line. Both

plots indicate that noise variance depends on injection frequency and not

amplitude.
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correlation with the amplitude; i.e., for each frequency (channel), the noise

is independent of the signal. However, the variance does decrease slightly

as the frequency increases, and this relationship will make different Nis in

the multichannel model. On the right, we have all computed variances vs.

frequency. The usual 16 points are highlighted, connected by amplitude to

show the independence. The means are connected as well on the longer line.

We see that the variance is a little higher at low frequencies. While it

bends the truth to call it white noise, it will not matter for our purposes,

especially when we use the waterfilling method. How the noise fits in will be

seen when we work on information capacity.

3.2 Capacity of the Diffusion Channel at a Single Send-

ing Frequency

Before estimating the capacity of the diffusion-based communications channel

for general inputs combining multiple frequencies, we require an analytic

approximation for the capacity of a single channel. The numerical results

in section 3.1 show that for a single frequency ωk a (complex) Fourier input

xk ∈ C is converted to an output with Fourier component yk ∈ C at the same

frequency given by

yk = βkxk + zk (3.2.1)

where βk ∈ C captures the attenuation and phase lag of the transmitted

signal, and zk ∈ C is a standard complex Gaussian random variable, i.e., its

mean is zero and its density in the complex plane is a circularly symmetric
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bivariate Gaussian with variance Nk along both the real and imaginary axes.

Moreover, the channel satisfies linear superposition of multiple frequencies.

The noise variance (2Nk), the attenuation |βk|, and lag Arg[βk] all vary with

ωk.

The complicating factor for this channel is that the natural constraint on

the ensemble of input signals x ∈ C is not a mean power constraint but rather

a constraint on the support of the probability distribution fx(x). For a mean

sending rate A, we require |x| < A so that the injected signal A+<[xeiωt] ≥ 0

at all times. As described above, the capacity at this frequency alone is given

by the supremum of I(x; y) over all distributions fx(x),

I(x; y) = h(y)− h(y|x). (3.2.2)

Assuming y = βx + z, then as in the AWGN case the conditional entropy,

h(y|x) = h(y − βx|x) = h(z|x) = h(z), is a constant independent of the

distribution fx(x).

To find the largest value of I therefore requires maximizing

h(y) = −
∫
y∈C

fy(y) log(fy(y)) dy (3.2.3)

with

fy(y) =

∫
|x|<A

gN(|y − αx|)fx(x) dx (3.2.4)

where gN is the bivariate Gaussian with variance 2N . The supremum is taken

over all distributions fx(x). Being unable to find a closed-form solution of

this nonlinear optimization problem, we explored several approximations.
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First we considered the analogous optimization problem for real-valued x

and y with the support of x limited to the compact interval 0 ≤ x ≤ a. In

this case, the optimization problem is to maximize

h(y) = −
∫
y∈R

fy(y) log(fy(y)) dy (3.2.5)

with

fy(y) =

∫
|x|∈[0,a]

g(y − x)fx(x) dx (3.2.6)

subject to the constraints

fx(x) ≥ 0,

∫
x∈[0,a]

fx(x) dx = 1. (3.2.7)

For this problem we arbitrarily set the Gaussian to be g(u) = exp[−u2]/
√
π,

and explore the change in h as a function of the scale a. If we choose the

uniform distribution fx(x) = 1/a, the resulting distribution for y ranges

between a Gaussian when a is small and a plateau with rounded shoulders for

large a. The entropy of fy will be maximized when this posterior distribution

is as “close” to a uniform distribution as possible. Rather than solve the

full nonlinear optimization problem for fx we try to gain some intuition by

examining convex combinations of the form

fx(x) = (1− γ)
1

a
+
γ

2
(δ(x) + δ(x− a)) (3.2.8)

for 0 ≤ γ ≤ 1. By shifting weight to the ends of the interval we can increase

the entropy of fy. Figures 17 and 18 show the entropy h(y) for different

values of the convex combination parameter γ. Note that the entropy of

the y-distribution generated by optimal convex combination of the two ba-

sis functions differs from the entropy of the y-distribution generated by the
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uniform Ansatz only slightly once a > 10. Since the uniform distribution

will be easiest to work with later on, and our significant results satisfy this

condition, we use the approximation of a uniformly-distributed input set.

Figure 17: Entropy from 1D uniform distribution + delta functions. Entropy

(in nats) was calculated numerically for a family of distribution functions on

the interval [0, a] of the form fx(x) = (1 − γ) 1
a

+ γ
2
(δ(x) + δ(x − a)) for

0 ≤ γ ≤ 1. When γ = 0 we have the uniform distribution, x ∼ Unif[0, a].

When γ = 1 we have a pair of delta functions at x = 0, a.

As noted, we examined two ways of looking at the channel. Of primary in-

terest is the use of a disc in the Fourier transform’s complex plane constrained
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Figure 18: Entropy h(y) in nats for fy = fx ∗g for fx taken to be the uniform

distribution on [0, a] (solid blue line), a pair of delta functions at x = 0, x = a

(solid green line), and the optimal convex combination of the two (dotted

line), versus the size of the support region, a. Once the support parameter

a is above 10, the uniform distribution and the optimal convex combination

of uniform plus delta functions for fx give nearly the same entropy h(y).

Here the Gaussian g(x) has width
√

E(x2) = 1/
√

2. The “signal-to-noise

ratio” analogous to a/
√
N (introduced later) corresponds to a/

√
2 (for this

temporary a).
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by amplitude for containing the input ensemble; we shall also touch on the

one-dimensional “amplitude-only” version of this, ignoring phase shifts.

Returning to the complex case, we will approximate the convolution

(3.2.4) as follows. We assume that as in the case of the mean power con-

straint waterfilling construction, most of the capacity in the multifrequency

channel will be carried in frequencies at which the noise is relatively small

compared to the signal. In the diffusion channel case, let

a = |β|A (3.2.9)

represent the amplitude of the maximum signal after attenuation by the

channel, ignoring noise (or considered as the mean). Assuming a �
√
N ,

the integrand in (3.2.4) will be close to the uniform distribution on the disc

|y| < a, except within approximately the range |y| ≈ (a±
√
N). In this region

the profile of fy as a function of r = |y| will be close to the convolution of a

Gaussian with a step function, involving the standard error function erf:

erf(x) =
2√
π

∫ x

0

e−t
2

dt (3.2.10)

with a correction of order a−1 due to the curvature of the boundary:

fy(r) =
1

πa2

(
1− erf((r − a)/

√
N)

2
+O(a−1)

)
(3.2.11)

Given this approximation for fy we investigated the entropy (3.2.3) via

straightforward numerical integration. For N = 0 we know the entropy:

the uniform distribution on the disc of radius a has entropy h0 = log2(πa
2).

An empirical fit to first order in a and N shows that the correction due to
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small amounts of noise takes the form

hy(a,N) ≈ log2(πa
2) +K1

√
N

a
+O

(√
N

a

)2

. (3.2.12)

The constant K1 obtained empirically is K1 ≈ 1.8873 bits (or K1 ≈ 1.3082

nats if we calculate entropy using the natural logarithm). The mutual infor-

mation then takes the form

I(x; y) = h(y)− h(y|x)

≈ log2(πa
2) +K1(

√
N/a) +O

(√
N/a

)2

− log2(2πeN)

= 2 log2(a/
√
N) +K1(

√
N/a)− log2(2e) +O(

√
N/a)2

= 2 log2

(
a√
N

+K1
ln 2

2

)
− log2(2e) +O(

√
N/a)2

= 2 log2

(
a√
N

+K

)
− log2(2e) +O(

√
N/a)2 (3.2.13)

where we obtain the last equality from the Taylor expansion

log2(x+ ε) = log2(x) + ε/(x ln(2)) +O(ε2). (3.2.14)

The unitless constant K in (3.2.13) is approximately K ≈ 0.6541. Note that

by definition the mutual information I cannot be negative. The asymptotic

expression (3.2.13) requires a/
√
N >

√
2e − K ≈ 1.68. Because this is

an asymptotic expression valid in the limit of small values of
√
N/a (or

large values of a/
√
N) this condition is always satisfied for the frequencies of

interest.

Expression 3.2.12 includes several assumptions:

1. The noise is small in the sense that
√
N/a� 1.
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2. For given values of a and N , the maximal entropy of the distribution

f ∗y (y) is close to the entropy of the distribution fy(y) resulting from

convolution of a Gaussian of width
√
N with the uniform distribution

on the disc of radius a, at least for the relevant frequencies.

3. The expression obtained for the entropy is a good approximation of the

true entropy for fy(y).

3.3 Adapting Information Capacity and Waterfilling

As suggested by the results in the previous section we will assume that for a

combination of inputs with complex Fourier components at several frequen-

cies {ωi}, the channel affords linear superposition with independent noise

added to each frequency component:

s(t) = <[A+
∑
i

xie
iωit] (3.3.1)

r(t) = <[r̄ +
∑
k

yie
iωit] +O(1) (3.3.2)

yk = βixi + zi (3.3.3)

where s(t) is the input sending rate, r(t) is the number of particles counted at

the receiver (the term O(1) denotes the discrepancy between having counts

restricted to integers and having real-valued approximate values), and r̄ is

the mean number counted at steady state. Note that O(1) is small compared

to the typical size of r(t) for the parameter ranges we consider.
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The natural constraint on the system is

∑
|Ai| ≤ A (3.3.4)

where |xi| ≤ Ai for each frequency, the Ais being those individual frequen-

cies’ constraints which we seek to solve to maximize capacity. The constraints

guarantee a nonnegative sending rate s(t). Given this constraint and the (ap-

proximate, empirically derived) form of the single frequency capacity (3.2.13)

we will obtain a waterfilling formula analogous to (1.2.17).

From (3.2.13) the multi-channel mutual information is approximately

I(x, y) =
∑
i

(
2 log2

(
ai/
√
Ni +K

)
− log2(2e) +O(

√
Ni/ai)

2
)

(3.3.5)

with ai = |βiAi|. This approximation is valid for all i for which
√
Ni is

sufficiently smaller than ai. We wish to maximize I given the constraint

(3.3.4) by maximizing

I(x, y) + λ(A−
∑
i

|Ai|). (3.3.6)

The solution leads to a waterfilling distribution of amplitudes rather than

power :

|Ai| =
(
ν −K

√
Ni

|βi|

)+

(3.3.7)

where the constant ν is chosen to be maximal given the constraint (3.3.4),

and (u)+ = max(0, u) as before. For the frequencies at which the signal-

to-noise ratio is too low, i.e., ν < K
√
Ni/|βi|, the asymptotic expression

(3.2.13) is no longer valid. For these frequencies we set the amplitude of the

52



sending signal to |Ai| = 0 and also set to zero the corresponding terms in

calculating the channel capacity:

C =
∑

i:K
√
Ni/|βi|<ν

2 log2

(
|βiAi|√
Ni

+K

)
− log2(2e)

=
∑

i:K
√
Ni/|βi|<ν

2 log2

(
|βi|√
Ni

ν

)
− log2(2e) (3.3.8)

for the constant K.

This means that finding the optimal distribution is equivalent to waterfill-

ing! Instead of the solutions having equal levels of power plus noise variance,

they have equal levels of essentially the sums of their square roots (in the

sense that the power P , or constraint on input variance, from the AWGN

channel is proportional to the square of our amplitude constraint).

Two problems arise. If the optimal distribution uses 0 amplitude in some

of the noisier frequencies (channels), this method will not find that distribu-

tion. In addition, since the information capacity function does not intercept

the origin, no matter how the formula is rearranged there is always a nonzero

constant term that does not drop out in the derivative. (It is true that we

never seek to use an Ai that makes ai/
√
Ni so low that the approximation

is invalid, but the optimization method denotes unused channels that way.)

Therefore, for example, a distribution using 3 frequencies may be better for

us than an “optimal” distribution using 4 if the constant is close enough to

the gain. The answer to both problems is to repeat the process several times,

each time leaving out the (next) noisiest frequency; the solutions provide a

basis for comparison. This solves the first problem essentially by considering
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boundary conditions (like [3]’s explanation of waterfilling); for the second

problem, since the optimization is broken down into groups with a fixed

number of frequencies, the subtraction of some constant number of bits does

drop out in the derivatives.

3.4 Coarse Graining Results

Now we move on to the coarse-grained versions of the simulation. The major

difference in actually running them was the time involved; because of the

matrix lookups involved and other factors, each trial took about two to three

times as long as the standard 8× 16 simulation. Consequently, not as many

trials could be run for smoothing the results (30 instead of 100), but that is

still adequate to compare with the original grid results.

For each coarse graining the amplitude of the received signal falls away

linearly as the amplitude does, and approximately exponentially as the fre-

quency increases. Superposition of cosines results in the correct power at each

frequency. Distributions of the relevant Fourier transform points are approx-

imately Gaussian and independent of the amplitude. The means match the

deterministic versions. What changed primarily were the actual amplitudes

of the received signal and the rate at which they dropped off with increases

in frequency. Using probabilistic particle counting affected mostly the noise,

but not the amplitudes of the means in any noticeable way.

Figures 19 to 21 contain a visual summary of the coarse-grained mod-

els’ results, along with the original, highlighting the differences among them.
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Figure 19: Coarse grainings, showing direct proportion to injector amplitude.

Each model is received amplitude vs. injected amplitude. Probabilistic ver-

sions are plotted with dotted lines and +s. Error bars representing standard

deviations are included for both; at this scale, the difference in them between

counting methods is difficult to detect.
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Figure 20: Coarse grainings, showing exponential decay of received ampli-

tude as frequency increases. Each model is received amplitude vs. injector

frequency. The scales are identical. Probabilistic versions are plotted with

dotted lines and +s.
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Figure 21: Coarse grainings, showing (mean) noise variance vs. frequency.

Note how those for the probabilistic counting (dotted lines) are higher, es-

pecially the 2-node coarse graining.
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Figure 19 shows the amplitudes of the means of the received signals of various

injector types vs. injector amplitude. All are linear, but note the different

scales. Surprisingly, the random coarse graining is the highest, with the 2-

node grid not far behind. After those two, the horizontal coarse graining

and the chunky one continue the decrease, with the vertical coarse grain-

ing lowest and in fact matching the original model very closely. This order

seems to suggest that horizontal distance from the injector to the detector

is instrumental in determining the fraction of particles getting across. (In

the random one, there are several very probable routes of just 2 steps from

injector to detector, something which was generally true of all the candidate

random coarse grainings.)

Figure 20 shows the same data vs. frequency again, with a log-scaled

vertical axis to highlight that the amplitude decreases approximately expo-

nentially with frequency. These are all on the same scale. Note, however,

that the rate of the drop is much lower (the lines are closer to horizontal) for

the random and 2-cell coarse grainings, with a similar increase in the decay

rate corresponding to the distance to the injector. In both cases (overall

amplitude and exponential decay with frequency), this dependence on num-

ber of steps to the other side is notable, especially since the probabilities of

movement are adjusted for each coarse graining. Perhaps it is actually the

length of the coarse-grained nodes that plays this role; we noted in Section

2 that horizontally longer clusters tended to reduce the bias of the steady

state to the left. With more particles to transmit information with, and less

time to have to travel and get shuffled around, the increasing frequency does
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not affect it as much.

In both figures, note also that the differences between counting 1/4 (or

1
64

in one case) the particles in the detector node, shown with dots and solid

lines, and counting them probabilistically, shown with +s and dotted lines,

are negligible. That is, overall (in the mean of 30 runs) the results don’t

change much. (In fact, even at full size they are hard to tell apart on the

graphs.) However, when we look at the variances of the distributions, the

extra randomness inserted by the probabilistic counting plays a bigger part,

as seen below.

The amplitudes and their relationships are not useful by themselves; it

is only in tandem with the variances that we can calculate the information

capacity. An analog to Figure 16 (left) is not supplied, because the jagged

lines make for difficult comparison; still, the reader may be assured again

that the variances are independent of the injector amplitude. Figure 21, in-

stead, shows the means of the variances, highlighting the familiar decreasing

variance spectrum, as well as the large jumps in variance when probabilistic

counting is used. In particular, the 2-cell coarse graining, with a cluster size

of 64 instead of 4, finds a much higher jump in variance overall.

In all cases, the vertical coarse graining is closest to the original model.
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3.5 Numerical Capacities for Original and Coarse-Grained

Models

The single-channel and waterfilling calculation for the information capacity

developed in section 3.3 can be repeated for each of the coarse grainings. We

summarize the results in the tables below. The first lists the maximum mean

received amplitude a and noise variance N for each frequency and model,

along with the channel capacity C in bits as described above.

The second table contains waterfilling results, with amplitude distribu-

tions and capacities listed for cases in which four, three, or two channels

are active under the constraint condition. The distributions are listed with

the lowest (least noisy) frequency first, and are presented as fractions of the

original amplitude constraint (for example, .25 instead of 37.25 = .25 · 150).

Blank spaces and parenthetical entries indicate when adding the next noisiest

channel does not improve the capacity. An entry is blank when the noisiest

channel’s new constraints are too low and would result in its contribution to

the capacity being less than zero, were it not excluded. Numbers in parenthe-

ses represent a slightly different condition: that of the optimal distribution

over n channels not resulting in enough improvement over n− 1 channels to

overcome the per-channel offset. Finally, the highest capacities per model

are underlined for convenience.
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Frequency 1/512 2/512 3/512 4/512

Original a 11.538 4.137 1.717 0.711

N 0.144 0.115 0.107 0.094

C 7.468 4.922 2.685 0.697

Chunky a 26.964 12.120 6.000 3.238

N 0.154 0.106 0.094 0.086

C 9.792 8.043 6.236 4.660

C. prob. a 26.984 12.117 6.004 3.233

N 0.189 0.140 0.128 0.124

C 9.496 7.651 5.804 4.149

Vertical a 11.375 4.146 1.660 0.872

N 0.100 0.723 0.065 0.048

C 7.949 5.564 3.243 1.979

V. prob. a 11.393 4.172 1.641 0.869

N 0.116 0.092 0.080 0.068

C 7.741 5.250 2.943 1.551

Horizontal a 45.822 23.788 13.647 8.363

N 0.186 0.135 0.114 0.112

C 11.036 9.620 8.272 6.921

H. prob. a 45.841 23.703 13.657 8.345

N 0.236 0.195 0.171 0.163

C 10.700 9.086 7.708 6.383

Random a 71.926 42.924 29.880 22.777

N 0.128 0.088 0.082 0.071

C 12.867 11.933 10.982 10.415

R. prob. a 71.935 42.843 29.949 22.779

N 0.203 0.163 0.159 0.149

C 12.209 11.034 10.046 9.358

2-node a 60.550 34.255 22.030 15.243

N 0.084 0.044 0.025 0.020

C 12.973 12.264 11.842 11.111

2 prob. a 60.481 34.208 22.041 15.247

N 0.159 0.136 0.116 0.112

C 12.063 10.648 9.616 8.621
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# of channels 4 3 2 1

Original (proportions) .5161 .4839

(bits) 8.5961 7.4684

Chunky (.2704 .2623 .2465 .2208) .3440 .3359 .3201 .5040 .4960

(13.6969) 14.8979 13.9121 9.7922

C. prob. (.2747 .2651 .2463 .2139) .3460 .3364 .3176 .5048 .4952

(12.2260) 13.8263 13.2338 9.4964

Vertical (.3688 .3445 .2867) .5122 .4878

(8.0902) 9.6805 7.9490

V. prob. .5140 .4860

9.1765 7.7411

Horizontal .2585 .2546 .2484 .2385 .3380 .3341 .3279 .5020 .4980

20.3388 19.6016 16.7021 11.0356

H. prob. .2607 .2555 .2479 .2360 .3394 .3341 .3265 .5026 .4974

18.4627 18.2031 15.8402 10.7001

Random .2522 .2509 .2491 .2478 .3348 .3335 .3317 .5006 .4994

30.3811 26.3518 20.8217 12.8669

R. prob. .2534 .2513 .2488 .2464 .3356 .3335 .3310 .5010 .4990

26.9019 23.8871 19.2723 12.2088

2-node .2513 .2504 .2498 .2485 .3341 .3333 .3326 .5004 .4996

32.3431 27.6371 21.2575 12.9729

2 prob. .2546 .2519 .2488 .2446 .3362 .3334 .3304 .5014 .4986

25.2519 22.9396 18.7437 12.0630
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The waterfilling results are notable for a few reasons. Note that the orig-

inal model and the chunky and vertical coarse grainings have fewer than 4

channels used (some only 2!). As illustrated in Figure 1, under standard

AWGN waterfilling with a power constraint it may happen that some chan-

nels get no power; in the present case, some channels get no amplitude.

Finally, these results are summarized graphically in Figure 22, which

shows capacities for each model at each of the 4 individual frequencies as

well as the waterfilling solution. Colors help visualize the height of each bar.

Subtle differences in the shades of blue across the lower 32 are present; the

waterfilling solutions are particularly marked, with the six models using all

four channels shown in red to light green, the two using three channels in a

sea-foam green, and those using just two channels in the same blues as the

rest.
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Figure 22: Single-channel capacities at each frequency and multichannel ca-

pacity with waterfilling for each coarse-graining scheme. Or=Original, Vp =

Vertical (probabilistic), V=Vertical, C=Chunky, H=Horizontal, R=Random,

2=two-node division. See text for notes on the color.
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4 Discussion

The exponential drop in the received signal amplitude at a driven frequency

and the shift in the phase of the received signal as a function of frequency

are typical behavior of a damped driven system that linearly attenuates its

inputs. In future work it should be possible to extend the calculations herein

to arbitrary geometries and different diffusion and decay constants via ana-

lytic solutions of the forced diffusion equation with appropriate parameters.

This direction of inquiry lay beyond the scope of the present thesis.

To explore trends a little further numerically, we ran the deterministic

simulation at full amplitude on intermediate frequencies, 1
2048

to 16
2048

, for a

total of 16 instead of 4 ( 4
2048

, 8
2048

, 12
2048

, 16
2048

). One thing we can do with the

received amplitudes at more frequencies is a finer-scale capacity and waterfill-

ing approximation. We have noise measurements for the lowest 16 frequencies

( 1
2048

, . . . , 16
2048

) from the random simulations, and the deterministic simula-

tions provide approximate amplitudes for them for the original model. Figure

23 shows some results we may look at: a√
N

vs. frequency resembles exponen-

tial decay, since both a and N approximately do. If we use those in the ca-

pacity formula from Section 3 (Results), we see that the individual-frequency

capacity decreases approximately linearly with frequency; this should not be

surprising, since it’s close to the log of an exponential. The appearance of

exponential decay and linearity is unlikely to persist beyond this frequency

range, however. Finally, we consider the waterfilling case. The optimization

solution uses values proportional to
√
N/a, which are simply the reciprocals

65



of the first plot (in the bottom of the figure). In the same way that one

resembles exponential decay in this frequency range, its reciprocal resembles

exponential growth. If we are able to represent the noise curve analytically,

it may help in the following way. As the length of the transmission period

T increases, the lowest possible encoding frequency and the interval between

frequencies decreases. Interpolation of the noise levels is useful for any finite

number of frequencies that can fit into this range; however, being able to use

a standard function for integration would provide an easy way to approxi-

mate the waterfilling result in the limit as T →∞. Such a direction may be

the subject of future work.

That the coarse-grained versions of the model all seem to have better

information capacity is a surprise at first. The intuitive idea of a coarse

graining is that one loses information. However, we lose fine detail, which

is not the same as the “information” in information capacity. The 2-node

system, for example, has one of the highest capacities despite losing almost

all detail; a 1-node system would transmit the injector’s time series perfectly

and without delay (save for a slight roughness from the Poisson random

generator), but could hardly be called a faithful coarse graining. That the

vertical one is very close to the original model in all respects seems significant:

it seems clear that the horizontal dimension, and the distance across the cell,

is the most important, and this is a coarse graining that loses little important

detail.
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Figure 23: Linearly interpolated channel behavior based on deterministic

simulation. We performed (fast) deterministic simulations at integer mul-

tiples of the base frequency (1/2048), for multiples from 1 to 16. These

simulations filled in the frequencies omitted from the (slow) stochastic sim-

ulation sets, and confirmed agreement between the deterministic and mean

stochastic behavior for those frequencies at which both were tested (see also

Figure 14). Top left: signal-to-noise ratio a/
√
N versus frequency. Top right:

approximate capacity, obtained from the logarithmic fitting procedure (see

Results) using a from the deterministic simulations and N from the stochastic

simulations, versus frequency. Bottom: effective noise amplitude spectrum

to be used for waterfilling calculation (compare Figure 1).
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4.1 Capacity in a System without Synchronization

It is an assumption of our model that phase shifts in the input sinusoids can

be determined from the output because both input and output are on the

same clock. However, if we cannot assume that the detector knows the phase

of the original signal, then we cannot use this component, and information

can only be sent as the (unsigned) amplitude of the sinusoids.5

An analog to the approach used for the disc of inputs in the complex plane

may be used, with the same assumption of uniform distribution, integration

of the error function, and log fit, but now applied to an interval on the real

line. The fact that amplitudes do not average out correctly near 0 will be

ignored for this discussion. A full discussion is omitted for brevity, but the

results are very similar: capacity is of the form log2(K
a√
N

+ L) for some

constants K and L, which is roughly half the capacity using the complex

disc, differing mainly by an additive constant.

There is a useful geometric interpretation of this result. Imagine a disc

in the complex plane full of 2C evenly spaced circles representing discrete

inputs and their ranges of influence (ignoring for now the scaling and rotating

effect of β), so that the disc is tessellated with many circles or squares or

hexagons. If we wish to restrict the input to a single line, individual discrete

inputs would have the same spacing, but there could geometrically only be a

number of them proportional to the square root of the disc’s area, leading to

5In the multi-frequency case, we might only apply this restriction to a single frequency,

which could then synchronize the rest. Our aim in this section is just to characterize the

change in single-frequency information capacity.
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a capacity of about 1
2
C + log2(K) if there are K

√
2C inputs, for some other

constant K. The constant depends mostly on the manner of packing.

Waterfilling may be applied for this interpretation as well, and since the

capacity is approximately logarithmic the waterfilling takes the same form

as for the full two dimensional case. If it is exactly half the original capacity

(plus a constant), the solutions use the same proportions of amplitude, be-

cause the term optimized is half the original. The same checks for optimality

must be used, but the results of that process can differ significantly because

of the change in offsets. For our model and its coarse grainings under this

interpretation, the number of channels used is generally reduced; overall this

is due to the halved single-channel capacities.

4.2 Brief Comparison to AWGN Capacity Formula

We present these notes out of general interest, but qualitatively for brevity.

The classical information capacity formula for an AWGN channel with

power constraint P and noise varianceN is 1
2

log2(
P
N

+1). If we consider this in

two dimensions, the capacity doubles exactly to log2(
P
N

+1) = 2 log2(
√

P
N

+ 1).

Our formula is 2 log2(
a√
N

+K)−log2(2e). We have seen that the noise in both

models is comparable. The variance of a uniform distribution is proportional

to the square of its size (a here); with that in mind, the two information

capacity formulas are seen to be fairly close in spirit, though differing in the

placement of square root.

In addition, how might the AWGN capacity be used as an approximation
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to ours? The original formulas were dependent mostly on the entropy of

the output. In the AWGN case, the input and noise are both distributed

normally, thus so is the output; in ours, the input is uniform but the noise

is normal. If a/
√
N is very low, the noise overshadows the signal, and the

output approaches a normal distribution as a/
√
N goes to 0. If it is high,

on the other hand, the output approaches strict uniformity. (Recall that this

same reason was given as justification for the uniform distribution to lead

to a reasonable approximation for capacity.) In that case, since the entropy

of a uniform distribution can be calculated easily, and differs by a constant

from the entropy of a normal distribution with equal variance, we might

alternatively use the AWGN formula, minus a constant, for capacity of our

system when a/
√
N is high enough.

4.3 Future Work and Other Notes

Most parameters were not varied at all once the simulations began to work.

Possible future areas of exploration include asking how well the signals are

transmitted when the diffusion probability is changed (for example to a more

stagnant .1 or .05, or up to .25 so particles never sit still) or how the transmis-

sion is affected by non-uniform probabilities (for example favoring left-right

movement over up-down movement, or strongly favoring movement to the

right).

The grid size was not changed at all; would there be significant changes

if the ratio of dimensions was altered, or the shape became non-rectangular,
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perhaps even three-dimensional, to mimic a real space even better? Some

of these variations have been found in the coarse-grained models, though

even then in limited amounts, and not isolated (the first coarse graining used

.1 probabilities in a 4-by-8 grid, but not one change by itself). We may

wish to try a non-rectangular lattice as well; would something hexagonal, for

example, help approximate continuous-space particle movement better and

change the results?

Another possible area for future work is the elimination of counted par-

ticles. Since the particles move independently, once one is detected, it offers

no further information [1], yet it continues to be counted again and again as

it hovers around the detector space until it eventually decays. It would be

interesting to see whether making the counter an absorbing node increased

the capacity or not.

As mentioned in Section 2, the pseudoinverse used for coarse graining

transition probabilities is not tuned for the actual particle distributions found

in the simulation. A better pseudoinverse might allow a more faithful repre-

sentation of the cell model, while still reducing dimensionality.

A future area for analysis might be the integer granularity inherent in the

particle counts. In a system with a more continuous measure of the signal-

propagation device, scaling should not matter; here, clearly, if everything

were divided by two, starting with the particle injection rate, we would expect

lower relative information capacity (and thus higher proportional noise to

signal). An area where this can be seen is in the fourth image in Figure

14. The black dots represent the deterministic results, which do not rely
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on integer particle counts, and when the signal is small they are noticeably

different from the magenta means from the simulations. We would like to

know how exactly the discrete particle counts affect results.
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5 Conclusions

We have seen how information can be transmitted by particle diffusion in sev-

eral versions of a simple model. We have obtained estimates of the channel

capacity of a diffusion mediated signaling model by examining the stochas-

tic response of the channel to distinct driving input frequencies. Regarding

the secretion or injection of diffusing particles at one location as the “in-

put” to the channel and the counting or detection of particles at another

location as the “output” of the channel, we have constructed a well defined

communications channel that may contribute to developing an understand-

ing of biological communication systems. Through computer simulation we

have observed that the input-output relationship of our model system, when

viewed in the frequency domain, is quantitatively similar to that of the ad-

ditive white Gaussian noise (AWGN) channel, a well understood system in

communications engineering. By combining simulations and analysis we have

obtained approximate expressions for the channel capacity that are analogous

to the well known logarithmic signal-to-noise ratio for the AWGN channel

capacity, despite the fact that our new channel has a qualitatively different

kind of constraint on the ensemble of input signals. Our approximation re-

sults in a logarithmic capacity function, which aids greatly in analysis and

in adapting the classical AWGN waterfilling approach for our model.

In addition we have examined the effect of replacing a fine grained lattice

model of diffusion with a coarse grained version of the same model. Sur-

prisingly, the more information about the microscopic state of the channel
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that is “lost” in the coarse graining process, the higher the apparent channel

capacity of the resulting channel. We also noted that the coarse grainings

having the highest impact on the apparent channel capacity were those that

most reduced the shortest path length between the injection and counting

sites. A fuller explanation of this observation awaits future work.

74



6 Appendix

6.1 Matlab Code

Following are some scripts to aid in the simulations described in this paper.

Some comments indicate how to set parameters. Variable names are generally

different from their use elsewhere in the paper.

Coarse grainings are identified by number or letter throughout, and usu-

ally a variable cg must be set: 1 (A/chunky), 2 (B/vertical), 3 (C/random),

4 (D/2-node), 5 (E/horizontal).

Otherwise, for all three versions of the simulation, parameters are con-

tained in the code itself. T represents the period used, or the reciprocal of the

base frequency (the way the code is written, the period is actually 2*T); w is

a vector of frequencies to use based on that period. Both may be adjusted

if desired. The duration of the simulation and the amount of it that is used

for analysis is hard-coded, but references to numbers in the vicinity of 1024,

2048, and 3072 represent timesteps. The function r and its parameter a may

be adjusted, along with transition probability p and decay rate decay.

The most useful things to adjust are a short list. Amp is a matrix with each

row representing a fraction amplitude set to use for the injector; it has as

many columns as the size of w, with each one corresponding to one frequency

in w. The code provided uses 16 rows that give the results found in this

paper. imax is simply the number of times to run each amplitude set; it is

set to 100 for the original model and 30 for the coarse grainings (and should

stay at 1 for the deterministic version).
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After any desired adjustments are made to any of the three scripts, the

code may be run. When the simulation is complete, save the desired output

data before running the script again. The most important are Pzz (the

transform), seenvtotal (each column represents one detector timeseries),

and rtotal (each column represents one injector timeseries). These are

described below.

Afterward, to find means and standard deviations for the stochastic ver-

sions, be sure to separate out by Amp type. Code like this (written for 2048

timesteps, 16 amplitude sets, and 30 runs of each) works. Remember that

standard deviation in one direction is based on half the complex variance, so

in that use, divide by
√

2.

Pzzm=zeros(2048,16);
Pzzs=zeros(2048,16);
for i=1:16;
Pzzm(:,i)=mean(Pzz(:,i*30-29:i*30),2);
Pzzs(:,i)=std(Pzz(:,i*30-29:i*30),1,2);

end

Data can be located easily. Except for the mean and standard deviation,

each column represents one run, with each group of imax representing one

amplitude set. (For mean and standard deviation, there is one column per

amplitude set.) In the Fourier transform data, the first row corresponds to

f = 0, and should be all 0s; the next half correspond to each next frequency,

as outlined in Methods. (See the note of caution there.) In the simulations

as used in this paper, frequencies f = 1
512
, 2

512
, 3

512
, 4

512
correspond to rows 5,

9, 13, and 17.
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6.1.1 Stochastic Simulations (Original Model)

Some parameters to adjust: Amp is amplitude fractions for the injector (cur-

rently for the first four multiples of f = 1/512), imax is the number of times

to run the simulation per amplitude set.

%Run this for the main simulation.

%Most easily adjusted parameters are found first:

Amp = [1,0,0,0;0,1,0,0;0,0,1,0;0,0,0,1;
2/3,0,0,0; 0,2/3,0,0; 0,0,2/3,0; 0,0,0,2/3;
1/3,0,0,0; 0,1/3,0,0; 0,0,1/3,0; 0,0,0,1/3;
0,0,0,0;
2/3,1/3,0,0; 1/3,2/3,0,0; 1/3,1/3,0,0];

%Amp contains the list of amplitude vectors to use on a particular run.
%Each one is run a certain number of times before moving to the next. In
%this case, it assumes a frequency vector of length 4, but that can be
%changed in conjunction with code below. Note that these are fractions of
%the base amplitude.

typemax=size(Amp);
typemax=typemax(1); %simply to grab the number of amplitude vectors

imax=100;
%imax is the number of times to run the simulation for each amplitude type.

%More setup/initialization, not too much to vary, though.

t=0; %discrete time step
A=[]; %position array (n rows by 2 cols)
Pzz=[];
rtotal=[];
rvec=[];
seenvtotal=[];
%These four (along with some later) just keep records of all the runs.
%Pzz contains the power spectra, one column per run;
%rvec (along with seenv below) keeps track of the injector (detector) for
%the duration of one run;
%rtotal and seenvtotal contain each run’s rvec and seenv.
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%probability of moving in some direction (so 1-4p is staying put)
p=.2; %be sure it’s less than .25!

%decay rate
decay=.01;

%grid size = 16 x 8 points with entry at 1,4 and eye at 16,4
gridx=16;
gridy=8;
entry=[1,4];
eye=[16,4];

seenv=[]; %see above

T=256;
%period to make base frequency; NOTE that it is later doubled (sorry!) (The
%doubled value should divide the number of timesteps used in the FFT.)

w=(0:(T/2))*2*pi/(2*T);
w = w(2:5);
%Note the 2T that represents the true base period. w(0) is 0, so w(2:5)
%gives the first four useful frequencies.

%The actual simulation begins:

for type=(1:typemax)
for iter=(1:imax)
amp = Amp(type,:); %amp now has one row of the user-defined Amp above

%reinitializations of everything that gets replaced per run
t=0;seenv=[];A=[];
rvec=[];

a=150; %admittedly hidden down here, this is the base amplitude
b=150*ones(size(w))’; %ignore this

r = inline(’poissrnd(max([0,(1+amp*cos(w*t)’’)*a]))’,’t’,’a’,’w’,’amp’);
%The main function that does everything. amp and w are rows, so a transpose
%is needed (in the string, ’’ is needed to represent ’), then the actual
%value of the function is truncated at 0 if nececssary, and the result
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%passed to the Poisson random number generator.

while(t<=3071) %A little more hard-coding;
%t starts at 0 and we want 3072 steps

count=max([0,round(r(t,a,w,amp))]); %just to be sure we
%get a positive int

for i=1:count
A=[A;entry]; %for each particle we want to inject,

%add it to the list at the entry point
end

rvec=[rvec;count]; %keep track of the number of particles injected

%diffuse
D=rand(size(A(:,1))); %generate a list of random numbers in [0,1],

%one per particle
%for 0<r<=p add 1 to x
%for p<r<=2p subtract 1 from x
%for 2p<r<=3p add 1 to y
%for 3p<r<=4p subtract 1 from y
%else stay put
A(:,1)=min(gridx*ones(size(A(:,1))),A(:,1)+ (D<=p));
A(:,1)=max(ones(size(A(:,1))), A(:,1)- ((p<D)&(D<=2*p)));
A(:,2)=min(gridy*ones(size(A(:,2))),A(:,2)+((2*p<D)&(D<=3*p)));
A(:,2)=max(ones(size(A(:,2))), A(:,2)-((3*p<D)&(D<=4*p)));

%decay
D=rand(size(A(:,1))); %see above, we just want a new random list
A=A(find(D>decay),:); %retains only those particles whose random

%numbers are above decay rate

%how many eye sees
seen=sum((A(:,1)==eye(1))&(A(:,2)==eye(2)));

switch seen
otherwise

seenv=[seenv;t,seen];
end
%switch functionality was used earlier, but now, we just build up seenv
%as a record of the detector for the entire run
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t=t+1;
end %end while(<=3071)

%Once the 3072 steps are done, some analysis and record-keeping:

%subtract the mean so there’s no spike of the FFT at frequency 0
svminusmean=seenv(:,2)-mean(seenv(1025:3072,2));
Z=fft(svminusmean(1025:3072,:),2048);
Pzz = [Pzz,2*Z/2048]; %see thesis text for doubling explanation

rtotal=[rtotal,rvec];
seenvtotal=[seenvtotal,seenv(:,2)]; %more archiving

iter %to let me keep tabs on the progress of the whole batch

end %end for iter=(1:imax)

amp %also to let me keep tabs

end %end for type=(1:typemax)

6.1.2 Stochastic Simulations (Coarse Grainings)

The variable cg needs to be set first, as noted above. See below for instruc-

tions on generating probabilistic counts.

Some parameters to adjust (as before): Amp is amplitude fractions for

the injector (currently for the first four multiples of f = 1/512), imax is the

number of times to run the simulation per amplitude set.

See additional comments in the original model’s code.

Amp = [1,0,0,0;0,1,0,0;0,0,1,0;0,0,0,1;
2/3,0,0,0; 0,2/3,0,0; 0,0,2/3,0; 0,0,0,2/3;
1/3,0,0,0; 0,1/3,0,0; 0,0,1/3,0; 0,0,0,1/3;
0,0,0,0;
2/3,1/3,0,0; 1/3,2/3,0,0; 1/3,1/3,0,0];

typemax=size(Amp);
typemax=typemax(1);
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imax=30;

t=0;
A=[];
Pzz=[];
rtotal=[];
rvec=[];
seenvtotal=[];

%coarse...B = destinations, C = prob distr

if (cg==1)

B = [2,9,1,0,0;
1,3,10,2,0;
2,4,11,3,0;
3,5,12,4,0;
4,6,13,5,0;
5,7,14,6,0;
6,8,15,7,0;
7,16,8,0,0;
1,10,17,9,0;
2,9,11,18,10;
3,10,12,19,11;
4,11,13,20,12;
5,12,14,21,13;
6,13,15,22,14;
7,14,16,23,15;
8,15,24,16,0;
9,18,25,17,0;
10,17,19,26,18;
11,18,20,27,19;
12,19,21,28,20;
13,20,22,29,21;
14,21,23,30,22;
15,22,24,31,23;
16,23,32,24,0;
17,26,25,0,0;
18,25,27,26,0;
19,26,28,27,0;
20,27,29,28,0;
21,28,30,29,0;
22,29,31,30,0;
23,30,32,31,0;
24,31,32,0,0]
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C= [.1,.2,1,1,1;
.1,.2,.3,1,1;
.1,.2,.3,1,1;
.1,.2,.3,1,1;
.1,.2,.3,1,1;
.1,.2,.3,1,1;
.1,.2,.3,1,1;
.1,.2,1,1,1;
.1,.2,.3,1,1;
.1,.2,.3,.4,1;
.1,.2,.3,.4,1;
.1,.2,.3,.4,1;
.1,.2,.3,.4,1;
.1,.2,.3,.4,1;
.1,.2,.3,.4,1;
.1,.2,.3,1,1;
.1,.2,.3,1,1;
.1,.2,.3,.4,1;
.1,.2,.3,.4,1;
.1,.2,.3,.4,1;
.1,.2,.3,.4,1;
.1,.2,.3,.4,1;
.1,.2,.3,.4,1;
.1,.2,.3,1,1;
.1,.2,1,1,1;
.1,.2,.3,1,1;
.1,.2,.3,1,1;
.1,.2,.3,1,1;
.1,.2,.3,1,1;
.1,.2,.3,1,1;
.1,.2,.3,1,1;
.1,.2,1,1,1]

entry = 9;
eye=16;

elseif (cg==2)

B = [2,17,1,0;
1,3,18,2;
2,4,19,3;
3,5,20,4;
4,6,21,5;
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5,7,22,6;
6,8,23,7;
7,9,24,8;
8,10,25,9;
9,11,26,10;
10,12,27,11;
11,13,28,12;
12,14,29,13;
13,15,30,14;
14,16,31,15;
15,32,16,0;
18,1,17,0;
17,19,2,18;
18,20,3,19;
19,21,4,20;
20,22,5,21;
21,23,6,22;
22,24,7,23;
23,25,8,24;
24,26,9,25;
25,27,10,26;
26,28,11,27;
27,29,12,28;
28,30,13,29;
29,31,14,30;
30,32,15,31;
31,16,32,0]

C=[.2,.25,1,1;
.2,.4,.45,1;
.2,.4,.45,1;
.2,.4,.45,1;
.2,.4,.45,1;
.2,.4,.45,1;
.2,.4,.45,1;
.2,.4,.45,1;
.2,.4,.45,1;
.2,.4,.45,1;
.2,.4,.45,1;
.2,.4,.45,1;
.2,.4,.45,1;
.2,.4,.45,1;
.2,.4,.45,1;
.2,.25,1,1;
.2,.25,1,1;
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.2,.4,.45,1;

.2,.4,.45,1;

.2,.4,.45,1;

.2,.4,.45,1;

.2,.4,.45,1;

.2,.4,.45,1;

.2,.4,.45,1;

.2,.4,.45,1;

.2,.4,.45,1;

.2,.4,.45,1;

.2,.4,.45,1;

.2,.4,.45,1;

.2,.4,.45,1;

.2,.4,.45,1;

.2,.25,1,1]

entry=1;
eye=16;

elseif (cg==3)

%generated by my ti-92, then sorted, and grouped by hand...
%sanity check to follow
B = [5,6,9,13,18,19,25,28,29,30,1,0,0,0,0;

4,7,8,10,12,14,16,21,26,30,2,0,0,0,0;
4,5,9,11,17,18,21,27,28,30,3,0,0,0,0;
2,3,5,6,8,11,12,24,25,26,28,31,4,0,0;

1,3,4,8,9,11,15,17,19,20,23,25,27,5,0;
1,4,8,9,13,19,21,23,26,28,29,30,6,0,0;
2,13,14,16,17,18,20,24,26,7,0,0,0,0,0;
2,4,5,6,17,18,21,23,27,30,31,8,0,0,0;

1,3,5,6,12,16,17,20,21,22,26,30,31,9,0;
2,13,14,15,17,22,24,28,10,0,0,0,0,0,0;
3,4,5,13,14,15,16,17,19,24,25,27,29,11,0;
2,4,9,15,23,24,25,27,29,32,12,0,0,0,0;

1,6,7,10,11,14,15,16,21,24,26,32,13,0,0;
2,7,10,11,13,20,22,26,31,14,0,0,0,0,0;
5,10,11,12,13,18,19,21,22,25,28,31,15,0,0;
2,7,9,11,13,22,27,28,29,30,16,0,0,0,0;

3,5,7,8,9,10,11,18,22,26,28,30,31,32,17;
1,3,7,8,15,17,25,27,29,30,31,32,18,0,0;
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1,5,6,11,15,20,21,23,24,25,27,29,31,19,0;
5,7,9,14,19,22,25,26,27,28,29,30,32,20,0;

2,3,6,8,9,13,15,19,22,24,26,29,21,0,0;
9,10,14,15,16,17,20,21,26,29,30,22,0,0,0;
5,6,8,12,19,24,25,28,29,31,23,0,0,0,0;
4,7,10,11,12,13,19,21,23,26,29,32,24,0,0;

1,4,5,11,12,15,18,19,20,23,30,31,25,0,0;
2,4,6,7,9,13,14,17,20,21,22,24,26,0,0;
3,5,8,11,12,16,18,19,20,28,31,32,27,0,0;
1,3,4,6,10,15,16,17,20,23,27,31,28,0,0;

1,6,11,12,16,18,19,20,21,22,23,24,32,29,0;
1,2,3,6,8,9,16,17,18,20,22,25,31,32,30;
4,8,9,14,15,17,18,19,23,25,27,28,30,31,0;
12,13,17,18,20,24,27,29,30,32,0,0,0,0,0]

C=[.05,.1,.15,.25,.35,.4,.45,.55,.6,.65,1,1,1,1,1;
.1,.2,.25,.3,.4,.5,.55,.6,.65,.7,1,1,1,1,1;
.05,.1,.15,.2,.25,.35,.4,.5,.55,.6,1,1,1,1,1;
.1,.15,.2,.25,.3,.35,.45,.5,.55,.65,.7,.75,1,1,1;

.05,.1,.15,.25,.3,.35,.4,.45,.5,.6,.65,.7,.75,1,1;

.05,.1,.15,.2,.3,.35,.4,.45,.5,.55,.6,.65,1,1,1;

.1,.15,.2,.35,.4,.45,.5,.55,.6,1,1,1,1,1,1;

.05,.1,.2,.25,.3,.35,.4,.45,.6,.65,.7,1,1,1,1;

.05,.1,.15,.2,.35,.45,.5,.55,.6,.65,.7,.75,.8,1,1;

.05,.1,.15,.2,.3,.4,.5,.55,1,1,1,1,1,1,1;

.05,.1,.15,.2,.25,.3,.35,.4,.45,.5,.6,.65,.7,1,1;

.1,.2,.35,.4,.5,.55,.6,.65,.7,.8,1,1,1,1,1;

.1,.2,.25,.3,.35,.4,.45,.5,.55,.6,.65,.7,1,1,1;

.1,.15,.2,.25,.3,.35,.45,.55,.7,1,1,1,1,1,1;

.05,.1,.15,.2,.25,.3,.35,.4,.45,.5,.55,.6,1,1,1;

.05,.2,.3,.35,.4,.45,.5,.55,.6,.65,1,1,1,1,1;

.05,.1,.15,.2,.25,.35,.4,.45,.5,.55,.6,.65,.75,.8,1;

.1,.2,.25,.3,.35,.4,.45,.5,.55,.6,.65,.7,1,1,1;

.05,.1,.15,.2,.25,.3,.4,.45,.5,.55,.6,.7,.75,1,1;

.1,.15,.2,.25,.3,.4,.45,.5,.55,.6,.65,.7,.8,1,1;

.05,.1,.15,.2,.25,.3,.35,.45,.5,.65,.7,.75,1,1,1;

.05,.15,.25,.3,.35,.4,.5,.55,.6,.7,.75,1,1,1,1;
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.05,.1,.15,.25,.3,.35,.4,.45,.55,.6,1,1,1,1,1;

.05,.1,.2,.25,.3,.35,.4,.55,.6,.65,.7,.8,1,1,1;

.05,.1,.15,.25,.3,.35,.4,.45,.5,.55,.6,.65,1,1,1;

.05,.15,.2,.25,.3,.35,.45,.5,.55,.6,.65,.7,1,1,1;

.1,.15,.3,.35,.4,.45,.5,.55,.6,.65,.7,.75,1,1,1;

.1,.15,.2,.25,.3,.35,.4,.45,.5,.55,.6,.65,1,1,1;

.05,.1,.15,.2,.25,.3,.4,.45,.5,.6,.7,.75,.8,1,1;

.05,.1,.15,.2,.25,.3,.35,.4,.45,.5,.55,.6,.65,.7,1;

.05,.1,.15,.3,.35,.45,.5,.55,.6,.65,.7,.75,.8,1,1;

.1,.15,.2,.25,.35,.45,.5,.55,.6,1,1,1,1,1,1]

%to verify things are ok, two things:
sum(sum((C-[zeros(32,1),C(:,1:14)]).*B)) %magic numbers

%i’m afraid

% C - also check for weird rows
% (sort each row somehow, subtract
% from C, see if all are 0

%it’s going to be harder to do it that way, so i’ll just:
max(C-[zeros(32,1),C(:,1:14)])
min(C-[zeros(32,1),C(:,1:14)])
%should weed out any weird things like 5 instead of .5 that
%the sum wouldn’t catch

entry=4;
eye=32;

elseif (cg==4)

B=[2,1;
1,2]

C=[.025,1;
.025,1]

entry=1;
eye=2;

elseif (cg==5)

B = [2,9,1,0,0;
1,3,10,2,0;
2,4,11,3,0;
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3,5,12,4,0;
4,6,13,5,0;
5,7,14,6,0;
6,8,15,7,0;
7,16,8,0,0; %end col 1
10,1,17,9,0;
9,11,2,18,10;
10,12,3,19,11;
11,13,4,20,12;
12,14,5,21,13;
13,15,6,22,14;
14,16,7,23,15;
15,8,24,16,0; %end col 2
18,9,25,17,0;
17,19,10,26,18;
18,20,11,27,19;
19,21,12,28,20;
20,22,13,29,21;
21,23,14,30,22;
22,24,15,31,23;
23,14,32,24,0; %end col 3
26,17,25,0,0;
25,27,18,26,0;
26,28,19,27,0;
27,29,20,28,0;
28,30,21,29,0;
29,31,22,30,0;
30,32,23,31,0;
31,24,32,0,0]

C = [.2,.25,1,1,1;
.2,.4,.45,1,1;
.2,.4,.45,1,1;
.2,.4,.45,1,1;
.2,.4,.45,1,1;
.2,.4,.45,1,1;
.2,.4,.45,1,1;
.2,.25,1,1,1;

.2,.25,.3,1,1;

.2,.4,.45,.5,1;

.2,.4,.45,.5,1;

.2,.4,.45,.5,1;

.2,.4,.45,.5,1;

.2,.4,.45,.5,1;
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.2,.4,.45,.5,1;

.2,.25,.3,1,1;

.2,.25,.3,1,1;

.2,.4,.45,.5,1;

.2,.4,.45,.5,1;

.2,.4,.45,.5,1;

.2,.4,.45,.5,1;

.2,.4,.45,.5,1;

.2,.4,.45,.5,1;

.2,.25,.3,1,1;

.2,.25,1,1,1;

.2,.4,.45,1,1;

.2,.4,.45,1,1;

.2,.4,.45,1,1;

.2,.4,.45,1,1;

.2,.4,.45,1,1;

.2,.4,.45,1,1;

.2,.25,1,1,1]

entry=4;
eye=28;

end

decay=.01;
seenv=[];

T=256; %remember that the actual period is double this
w=(0:(T/2))*2*pi/(2*T);
w = w(2:5);

for type=(1:typemax)
for iter=(1:imax)
amp = Amp(type,:);

t=0;seenv=[];A=[];
rvec=[];

a=150;
b=150*ones(size(w))’; %ignore this
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r = inline(’poissrnd(max([0,(1+amp*cos(w*t)’’)*a]))’,’t’,’a’,’w’,’amp’);

while(t<=3071)
count=max([0,round(r(t,a,w,amp))]);
for i=1:count

A=[A;entry];
end

rvec=[rvec;count];

%diffuse
D=rand(size(A(:,1))); %how can i just get the number of rows easily
for n=(1:size(A(:,1)));

A(n) = B(A(n), min(find(C(A(n),:)>D(n))));
end;

%decay
D=rand(size(A(:,1)));
A=A(find(D>decay),:);

if (cg==4) %need to divide by 64
seen = sum(A==eye)/64; %64 CG nodes per node

else
seen = sum(A==eye)/4; %4 CG nodes per node

end

switch seen
otherwise

seenv=[seenv;t,seen];
end
t=t+1;

end

svminusmean=seenv(:,2)-mean(seenv(1025:3072,2));
Z=fft(svminusmean(1025:3072,:),2048);

Pzz = [Pzz,2*Z/2048]; %see thesis text for doubling explanation
rtotal=[rtotal,rvec];
seenvtotal=[seenvtotal,seenv(:,2)];

iter
end %end iter
amp
end %end amps
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To do probabilistic counts, apply a method like this. Here 3072 and 480

are based on the size of seenvtotal; the 4 and .25 must be changed to 64

and 1/64 for the 2-node version.

seenvtotalp=seenvtotal;
for i=(1:3072);
for j=(1:480);
seen=4*seenvtotal(i,j);
seenvtotalp(i,j)=sum(rand(seen,1)<.25);
end;

end;

To obtain the Fourier transform, which is usually done in the script, this

code works. (It’s a little nicer than doing it at each iteration as well.) Note

that the mean is not subtracted before performing the transform, so the

first row is set to 0 manually here. Again, 1025 and 3072 are based on the

timesteps used, and the division by 1024 stands for the division by 2048

(number of timesteps) and multiplication by 2 (see Methods).

Pzzp=fft(seenvtotalp(1025:3072,:))/1024; Pzzp(1,:)=0;

6.1.3 Deterministic Simulations (All Models)

Before running the script, be sure the matrices are set by running the fol-

lowing. It looks odd but gets the job done without using too much space.

p=.2;
P=diag(ones(128,1)*(1-4*p))+diag(ones(112,1)*p,16)+diag(ones(112,1)*p,-16);
%main diagonal (stay still), prob going up, prob of going down
%add up/down for top/bottom rows into main diagonal
P(1:16,1:16) = P(1:16,1:16) + diag(ones(16,1)*p);
P(113:128,113:128) = P(113:128,113:128) + diag(ones(16,1)*p);

%doing the left-right motion is more difficult
%for each block representing a cell row i want to add a tridiagonal matrix
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%with p above and below, and p at each end of the main diagonal

for i=1:16:113
P(i:i+15,i:i+15)=P(i:i+15,i:i+15)+diag(ones(15,1)*p,1)+diag(ones(15,1)*p,-1);

P(i,i)=P(i,i)+p;
P(i+15,i+15)=P(i+15,i+15)+p;

end

%making transition matrices W for all 5 coarse grainings
%for each, make kind of a pattern, build one area, then repeat (except C)

%WA (2x2 blocks, row=1 to 8, 9 to 16, etc) - inject 9, eye 16
WA=zeros(32,128);
for i=1:8

j=i*2-1;
WA(i,j:j+1) = [1,1];
WA(i,j+16:j+17) = [1,1];

end
%makes a single block
WA(9:16,33:64)=WA(1:8,1:32);
WA(17:32,65:128)=WA(1:16,1:64);
%duplicates it to the rest

%WB (vertical chunks, row = 1 to 16, 17 to 32) - inject 1, eye 16
WB=zeros(32,128);
%make first half, which is 4 diagonals
for i=0:3

WB(1:16,16*i+1:16*(i+1))=diag(ones(16,1));
end
WB(17:32,65:128)=WB(1:16,1:64);

%WC (random) - oh god (inject 4, eye 32)
WC=zeros(32,128);
%i guess i’ll just have to through the list and add 128 1s
WC(3,1)=1;
WC(5,2)=1;
WC(11,3)=1;
WC(14,4)=1;
WC(13,5)=1;
WC(26,6)=1;
WC(2,7)=1;
WC(10,8)=1;
WC(10,9)=1;
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WC(22,10)=1;
WC(14,11)=1;
WC(26,12)=1;
WC(6,13)=1;
WC(13,14)=1;
WC(21,15)=1;
WC(15,16)=1;
WC(11,17)=1;
WC(15,18)=1;
WC(13,19)=1;
WC(10,20)=1;
WC(24,21)=1;
WC(21,22)=1;
WC(8,23)=1;
WC(17,24)=1;
WC(22,25)=1;
WC(20,26)=1;
WC(7,27)=1;
WC(7,28)=1;
WC(13,29)=1;
WC(1,30)=1;
WC(29,31)=1;
WC(18,32)=1;
WC(25,33)=1;
WC(12,34)=1;
WC(32,35)=1;
WC(24,36)=1;
WC(21,37)=1;
WC(19,38)=1;
WC(31,39)=1;
WC(9,40)=1;
WC(26,41)=1;
WC(14,42)=1;
WC(2,43)=1;
WC(16,44)=1;
WC(16,45)=1;
WC(28,46)=1;
WC(20,47)=1;
WC(32,48)=1;
WC(4,49)=1;
WC(2,50)=1;
WC(12,51)=1;
WC(29,52)=1;
WC(22,53)=1;
WC(29,54)=1;

92



WC(23,55)=1;
WC(12,56)=1;
WC(4,57)=1;
WC(31,58)=1;
WC(14,59)=1;
WC(22,60)=1;
WC(30,61)=1;
WC(31,62)=1;
WC(27,63)=1;
WC(32,64)=1;
WC(6,65)=1;
WC(21,66)=1;
WC(9,67)=1;
WC(16,68)=1;
WC(9,69)=1;
WC(6,70)=1;
WC(19,71)=1;
WC(24,72)=1;
WC(26,73)=1;
WC(17,74)=1;
WC(31,75)=1;
WC(15,76)=1;
WC(25,77)=1;
WC(18,78)=1;
WC(8,79)=1;
WC(30,80)=1;
WC(28,81)=1;
WC(3,82)=1;
WC(3,83)=1;
WC(27,84)=1;
WC(12,85)=1;
WC(23,86)=1;
WC(29,87)=1;
WC(32,88)=1;
WC(20,89)=1;
WC(5,90)=1;
WC(25,91)=1;
WC(19,92)=1;
WC(11,93)=1;
WC(27,94)=1;
WC(8,95)=1;
WC(6,96)=1;
WC(10,97)=1;
WC(17,98)=1;
WC(18,99)=1;
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WC(3,100)=1;
WC(4,101)=1;
WC(24,102)=1;
WC(11,103)=1;
WC(17,104)=1;
WC(30,105)=1;
WC(9,106)=1;
WC(20,107)=1;
WC(5,108)=1;
WC(4,109)=1;
WC(8,110)=1;
WC(5,111)=1;
WC(1,112)=1;
WC(15,113)=1;
WC(28,114)=1;
WC(1,115)=1;
WC(30,116)=1;
WC(2,117)=1;
WC(7,118)=1;
WC(16,119)=1;
WC(7,120)=1;
WC(18,121)=1;
WC(1,122)=1;
WC(19,123)=1;
WC(27,124)=1;
WC(28,125)=1;
WC(23,126)=1;
WC(23,127)=1;
WC(25,128)=1;

%WD (two-cell, except that node 1 has 1 to 8, 17 to 24, etc.)
WD=zeros(2,128);
WD(1:2,1:16)=[1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0;

0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1];
WD(:,17:32)=WD(:,1:16);
WD(:,33:64)=WD(:,1:32);
WD(:,65:128)=WD(:,1:64);

%WE (horizontal chunks, but COLUMNS = 1 to 8, etc.) - inject 4, eye 28)
WE=zeros(32,128);
for i=1:8

j=i*16-15;
WE(i,j:j+3)=[1,1,1,1];

end
WE(9:16,5:128)=WE(1:8,1:124);
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WE(17:32,9:128)=WE(1:16,1:120);

%creating actual transition matrices now:
sP=sparse(P);
WPA=WA*P*pinv(WA);
WPB=WB*P*pinv(WB);
WPC=WC*P*pinv(WC);
WPD=WD*P*pinv(WD);
WPE=WE*P*pinv(WE);

The variable cg needs to be set first, as noted above. 0 may be used for

the original model.

As before, Amp is amplitude fractions for the injector (currently for the

first four multiples of f = 1/512). Since this script was used for additional

frequencies, this would be the place to adjust T and w for a period of 2048

and more frequencies; Amp needs as many columns as the length of w as well.

See additional comments in the original model’s code.

switch(cg)
case 0

trans=sP; %sparse P
entry=49;
eye=64;

case 1
trans=WPA;
entry=9;
eye=16;

case 2
trans=WPB;
entry=1;
eye=16;

case 3
trans=WPC;
entry=4;
eye=32;

case 4
trans=WPD;
entry=1;
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eye=2;
case 5

trans=WPE;
entry=4;
eye=28;

end

%NOTE: 1 runthrough, NO POISSON, NO ROUNDING

Amp = [1,0,0,0;0,1,0,0;0,0,1,0;0,0,0,1;
2/3,0,0,0; 0,2/3,0,0; 0,0,2/3,0; 0,0,0,2/3;
1/3,0,0,0; 0,1/3,0,0; 0,0,1/3,0; 0,0,0,1/3;
0,0,0,0;
2/3,1/3,0,0; 1/3,2/3,0,0; 1/3,1/3,0,0];

typemax=size(Amp);
typemax=typemax(1);
imax=1; %only needs to be run once

t=0;
%instead of position array, vector
xt=zeros(size(trans,1));

Pzz=[]
rtotal=[];
rvec=[];
seenvtotal=[];

decay=.01;

seenv=[];

T=256; %NOTE this is still half the actual period
w=(0:(T/2))*2*pi/(2*T);
w = w(2:5);

for type=(1:typemax)
for iter=(1:imax)
amp = Amp(type,:);

t=0;seenv=[];xt=zeros(size(xt));
rvec=[];

a=150;
b=150*ones(size(w))’; %ignore this
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r = inline(’max([0,(1+amp*cos(w*t)’’)*a])’,’t’,’a’,’w’,’amp’);

while(t<=3071)

count=max([0,r(t,a,w,amp)]);
xt(entry)=xt(entry)+count;

rvec=[rvec;count];

%instead of diffuse and decay...
xt=(1-decay)*trans*xt;

%and instead of below...
seen=xt(eye)*(size(trans,1)/128);

switch seen
otherwise

seenv=[seenv;t,seen];
end

t=t+1;
end

svminusmean=seenv(:,2)-mean(seenv(1025:3072,2));
Z=fft(svminusmean(1025:3072,:),2048);

Pzz = [Pzz,2*Z/2048]; %2 is for neg freq
rtotal=[rtotal,rvec];
seenvtotal=[seenvtotal,seenv(:,2)];

iter
end %end iter
amp
end %end type of amps to use
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