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ABSTRACT

Stimulus-response properties of neurons in primary visual cortex exhibit intriguing

spatial organization. Models for the development of ocular-dominance stripes, stimu-

lus orientation preference, the retinotopic map, cytochrome oxidase distribution and

spatial frequency–preference maps fall into two families: “feature” models, which

treat the map properties abstractly, divorced from direct connection to biological

structures, and “synaptic” models, which capture important biological detail but

give little analytical insight into the nature of pattern formation in the cortex. In

this work I derive a feature model for cortical pattern formation from a detailed synap-

tic model and show how to apply analytical techniques developed for the study of

pattern formation in condensed-matter physics to cortical maps. First, I examine the

pattern-forming properties of several of the common cortical-feature models. Then I

explore the properties of an alternative model adapted from Heisenberg’s XY mag-

netic spin model. The statistical-physics framework is used to quantify the disorder

measured in the orientation map, which is shown to lie at the edge of a continuous

phase-transition to a disordered state. I derive this spin model from a biologically

detailed synaptic model first in a simplified case and then in a general setting. The

receptive field properties fan-in weight, retinotopy, orientation tuning and receptive-

field width, are encoded in the geometry of the thalamocortical synaptic weights. I

show that adding a soft constraint on the feedforward fan-out from the thalamus in-

duces coupling between different components of the cortical map. Finally I show how

to apply the techniques of equivariant bifurcation theory and group-representation

theory to study the patterns formed by the generalized XY model. The symmetry

structure of the cortical-map problem forces the coupling of certain map elements and

not others: for instance the orientation preference couples to the direction of retino-

topic shear. In addition, I predict a relationship between the orientation gradient and

local anisotropy in retinocortical magnification.
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CHAPTER 1

INTRODUCTION

1.1 Overview

The architecture of the visual cortex exhibits intriguing spatial organization. Neurons

in primary visual cortex respond selectively to a variety of features of visual stimuli,

including orientation, ocularity, retinotopic position, direction of motion and spatial

frequency. For most of these features, nearby neurons are organized into columns:

cell populations extending perpendicular to the cortical surface and exhibiting similar

response preferences, for example, for vertical over horizontal contour orientations.

At the same time any local region of cortex of the size of a hypercolumn (about

2 square mm in humans) contains columns representing all stimulus features: all

orientations, right and left eye input, high and low spatial frequency. The resulting

cortical architecture is a superposition of quasi-regular mosaics showing short-range

order and long-range disorder.

The study of the nature and origin of these topographic cortical maps serves three

purposes. Whereas topographic maps are ubiquitous throughout sensory and mo-

tor structures of the central nervous system, mechanisms underlying their formation

should be generally applicable to understanding the interplay of genetic regulation

and spontaneous pattern formation in development. Whereas map formation emerges

as a collective property formed by many interacting parts of a complex system, the

effort to build biologically realistic models of the underlying mechanism provides a

test bed for our understanding of the neurobiological basis of learning and develop-

ment in the visual system. Finally, whereas the map-formation problems constitute a

many-dimensional dynamical system with complex interactions, nontrivial symmetry-

effects, and noise-driven phenomena, they pose a challenge arena for the application

1
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of the methods of applied mathematics and statistical physics as well as theoretical

biology.

Models of cortical-map formation fall into two classes: synaptic models and feature

models. The former describe explicitly the development of synaptic weights underlying

cortical-stimulus preferences. Rich in biological detail, they are typically difficult to

analyze and yield only modest theoretical insight. Feature models, on the other hand,

dispense with biological realism and approach cortical maps as abstract vector fields

over the plane. These abstract models concoct heuristic update rules to account for

the organization of cortical features. A principal innovation in this work is to construct

a realistic synaptic model from which a corresponding feature-level dynamical system

may be derived. I thereby justify the analytically more tractable cortical-feature map.

I model the inter-related cortical-feature maps as resulting from a spontaneous

symmetry-breaking process in which a uniform, isotropic geniculo-cortical architec-

ture loses stability under the influence of lateral cortical competition and correlation-

based weight modification. The cortical-map features jointly comprise a vector de-

rived from various moments of the receptive field profiles. The center-surround lateral

architecture influences all cortical-map vectors in the same way, providing a common

wavelength for pattern formation in the different features. The geometrical nature

of the features—total input weight, center-of-mass, covariance matrix—mean that

departures from uniformity in the lower moments influence the subsequent formation

of patterns in the higher moments. Conversely, smooth nonlinear constraints on the

total synaptic weight projecting from geniculate loci determine additional influences

of each feature on the others.

The entire feature-development dynamics may be captured, to first order, in a

linear integro-differential equation that possesses the symmetries of the Euclidean

planar motions under a novel group action. I prove equivariance of the model system

under this action. After restricting the search for solutions to plane-periodic func-

tions I calculate the reduction of the restricted group action to a sum of irreducible

representations. The isotypic components of the solution space provide a classifi-

cation of interacting features in cortical maps that has been previously overlooked.

The analysis of these symmetries leads to the identification of certain patterns of
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interaction between the features. For example, because they exhibit different types

of symmetry, compression waves of retinotopic distortion (including those running

perpendicular to the ocular dominance stripes) and transvere waves of retinotopic

distortion couple to different kinds of orientation-preference patterns. As a result of

symmetry-forced interactions, local anisotropies in magnification should couple with

local orientation-preference.

By representing the cortical-map features as moments of the receptive fields, I ob-

tain, in a completely natural way, a derivation of a vector model for map development.

This vector model is in the same family as the XY and Ising models familiar from

the physics of magnetic spin lattices. In particular, for the orientation map there is

a direct connection to the XY model with a mixed ferro-antiferromagnetic Hamil-

tonian. The statistical-physics framework affords a natural treatment of disorder in

cortical maps,lacking in other feature models. Using dynamical Monte-Carlo tech-

niques to simulate the finite-temperature Gibbs ensemble of a vector model connects

it to statistical measures of disorder in the architecture of visual cortex. I find that

the distribution of orientation preference in the cortex lies at the edge of a continuous

phase-transition to a disordered state.

Situated at the interface of neurobiology, applied mathematics and statistical

physics, this work draws on Hebb’s theory of synaptic modification [32], Turing’s bio-

logical pattern-formation mechanism [77], the symmetry analysis pioneered by Busse

[10] and the magnetic spin models introduced by Heisenberg [11, 61]. Other models

of cortical-map formation beginning from some form of explicit synaptic learning-rule

have been developed by von der Malsburg [83] and Miller [56] and are reviewed in

section 1.3. The application of spontaneous symmetry-breaking to cortical pattern-

formation was pioneered by Cowan and Ermentrout [22], in the context of geometric

visual hallucinations, and remains an active research topic in parallel with these stud-

ies in cortical-map formation [7, 8, 9].



4

1.2 Biology of Cortical Maps

The vertebrate nervous system shows a striking combination of orderly and disor-

derly architectures. The image below shows the averaged activity of local neuron

populations in a 3x4 mm region of primary visual cortex, color-coded for the angle

at which a moving grating elicits the maximal response. It appears that nearby neu-

Figure 1.1: Orientation-preference map obtained by differential imaging with voltage-
sensitive dyes [3]. Colorbar runs from 0 to π. Courtesy G. Blasdel.

rons (100-200 µ distant) have highly correlated orientation preferences while no order

persists at longer scales (500-1000 µ)1 At the same time, the preferred orientations of

individual cells may vary widely within an apparent iso-orientation region, indicating

short-range disorder [49].

To understand the origin and functional significance of this and other spatial struc-

tures in the visual system it is necessary to develop mathematical models constrained

by the known anatomy and physiology. To orient the reader I will sketch biological

1For the auto-correlation function see Figure 3.2.
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background pertaining to the mammalian visual system from the eye to the primary

visual cortex (V1). I will then describe in more detail the patterns of orientation

preference, ocular dominance and retinotopic organization manifest in V1.

1.2.1 Anatomy and Physiology of the Mammaliam Visual System

Visual System Anatomy: Eye and Thalamus

The visual system is the most thoroughly studied sensory system in vertebrates. It

has an obvious spatial structure, with the two-dimensional organization of each level

in the eye, thalamus and cortex corresponding to the two-dimensional projection of

the visual field. Visual stimuli lend themselves to ready manipulation, more so than

tactile, olfactory or even auditory stimuli, and the visual cortex—located at the back

of the mammalian brain (the rostral end of the occipital lobe, see Figure 1.2)—allows

easy access for imaging and electrophysiology studies.

Visual stimuli affect the nervous system through the light-sensitive pigments in

the rods and cones of the retina. The rods and cones activate a network of neurons

with a center-surround architecture that suppresses the response to areas of uniform

luminosity and enhances the response to high-contrast features such as a dark spot

on a light background or a light spot on a dark background.

The mammalian thalamus, part of the midbrain, is a composite organ through

which sensory signals of all modalities pass before entering the cortex. Afferent nerve

fibers from the retinae contact neurons in the lateral geniculate nucleus (LGN) of the

thalamus, forming layers segregated by eye of origin and response properties. “ON”

cells in the LGN respond selectively to bright spots on dark backgrounds, and also

to sudden uniform increases in light intensity. “OFF” cells respond to dark spots

on light backgrounds and to sudden decreases in uniform light intensity. Both types

of cells have very weak or no tuning for oriented stimuli. Although the thalamus

plays a major role in regulating alertness and attention to signals from different sense

organs, and may play a significant role in integrating the animal’s representation of

the outside world, it has frequently been viewed as a passive transmitter of the visual

image—coded in terms of spike rate—along the way to the cortex.
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Figure 1.2: Visual pathway from the eye to the dorsal lateral geniculate of the tha-
lamus to striate cortex, also known as V1, primary visual cortex or area 17. From
Kandel et al., [42].
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Visual Anatomy: Primary Visual Cortex

In an attempt to discover the primary building blocks of sensory perception, neuro-

physiologists have recorded the selective responses of cortical cells to a collection of

“elementary” visual stimuli. These stimuli may, up to a point, be ranked in order of

salience.

Neurons of primary visual cortex lie in a multi-layered sheet, covering an area

roughly 36 mm by 54 mm in the adult human brain, which corresponds to a distorted

topographic representation of two-dimensional visual space. The location of a stimulus

in the visual field determines most strongly a cell’s response or lack of response.

For example, an arbitarily bright point stimulus on a blank screen will illicit no

statistically reliable response above the background firing rate unless it lies within a

localized region of visual space, the cell’s classical receptive field.

Afferent fibers driven by the two eyes remain segregated in the thalamus and

converge for the first time in V1. “Monocular” cells respond significantly to point

stimuli only if they fall within the classical receptive field and impinge on a given eye.

Hubel and Wiesel introduced an index for binocularity ranging from one (completely

driven by the ipsilateral eye) through four (binocular) to seven (completely driven by

the contralateral eye [34].

In 1962 Hubel and Wiesel discovered the third principal determinant of V1 neuron

response: orientation tuning [35]. While measuring the receptive-field properties of

cortical neurons in area 17 of cat, they found many cells that responded only to bar

or edge stimuli oriented within a roughly thirty-degree range, centered on a preferred

orientation that elicited maximal response. In contrast to the geniculate cells that

immediately preceded them in the visual pathway, the typical cortical cells had very

weak responses to circularly symmetric high-contrast stimuli. Furthermore, Hubel

and Wiesel discovered that the cells’ response characteristics had a columnar orga-

nization [40]. Penetrating the cortex with an electrode perpendicular to the surface,

they found cells in all layers that responded to roughly the same preferred orienta-

tion, and also to the roughly the same position in visual space. When penetrating

the cortex laterally, they observed that the preferred orientation changed gradually,
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Figure 1.3: Columnar organization of orientation preference. Using microelectrode
penetrations, Hubel and Wiesel found that receptive fields in a vertical penetration
tended to align along the same axis, giving all the cells in a column of cortical tissue
a similar preference for oriented bars. Cells in a column also responded to the same
position in visual space, with some scatter. Moving tangentially along the surface the
orientation varies, changing roughly by π every millimeter, with occasional sudden
jumps (not shown). From Gilbert 1992 [29].

at a rate of roughly a full period π every mm, with occasional sudden jumps by as

much as π/2 (see Figure 1.3).

Hubel and Wiesel proposed a mechanism for the origin of cortical orientation selec-

tivity that continues to motivate theoretical and experimental efforts [28, 35]. Their

feedforward model for orientation tuning supposes that cortical cells receive synap-

tic input from elongated subregions within their receptive fields, alternating between

ON-center and OFF-center geniculate cells. A moving light (or dark) bar aligned with

the direction of elongation will excite the cortical cell as it simultaneously triggers

all the ON-center (or OFF-center) cells, and stops inhibiting the adjoining region of
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opposite polarity. A moving bar oriented in the wrong direction will simultaneously

excite some of the cells of one polarity while inhibiting others of the opposite, and the

cortical cell will not receive enough input from its receptive field to cross its threshold.

Evidence for anisotropic patterns of feedforward input has accumulated, although a

role for lateral cortico-cortical interactions in orientation selectivity have not been

ruled out [28].

1.2.2 Physiology: Cortical Maps

The primary determinants of neural response within the classical receptive field—

topography (or retinotopy), ocular dominance and orientation preference—have well-

characterized spatial organization across the cortical surface.

The efferent fibers from the LGN converge on the visual cortex in a topograph-

ically ordered fashion, preserving neighborhood relations originating in the retina.

The topography of the cortical representation of space, defined as the map from the

location of a cell in the cortex to the center of its classical receptive field in visual-field

or retinal coordinates, is determined in part by the decrease in the packing density

of retinal ganglion cells with eccentricity in the visual field. Taking (r, θ) as polar

coordinates in the retina, the packing density decreases as roughly 2:

ρ ∝ k1

(1 + k2r)2
.

Meanwhile, the cell density is very nearly constant across V1. Rays extending from

the center of the visual field correspond to medial-to-lateral (horizontal) lines in V1

away from the foveal area, and concentric circles in the visual field correspond to

dorso-ventral (vertical) lines in the cortex. Assuming that each retinal ganglion maps

to the same number of cortical cells, the differential packing density determines a

magnification factor µ = 1/ρ from which we can infer the coarse retino-cortical map.

Near the foveal representation this map approximates the identity x1 = r cos θ;x2 =

2This approach to deducing the retinotopic map was introduced by Schwartz [65].
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Figure 1.4: Retino-cortical map visualized by deoxyglucose autoradiograph. After
injection of the metabolic indicator, the animal viewed the pattern on the left as
it was inverted (black-to-white) at full contrast. From Tootell [75], as modified by
Swindale [72]. ‘S’ indicates superior visual field, ‘I’ indicates inferior. ‘F’ indicates
foveal region, ‘H’ indicates horizontal meridian. The concentric circles were located
at 1◦ (‘1’), 2.3◦ (‘2’) and 5.4◦ (‘3’) eccentric to the fovea, respectively.

r sin θ, to first order; in the periphery it approximates the complex logarithm 3:

x1 = log r

x2 = θ

This map may be visualized using metabolic markers such as cytochrome oxidase

immunoreactive stains or deoxyglucose autoradiograph techniques (see Figure 1.4).

On a smaller scale, say a two or three mm–square region of cortical surface, the

topography may be taken to be a linear map of retinotopic coordinates. On this scale

3See [15].
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we may approximate the cortical sheet as a plane with coordinates4

x := [x1, x2]tr ∈ X .

Similarly a small region of the LGN may be represented by its retinotopic coordinates

r := [r1, r2]tr ∈ R

The retinotopic map of the cortex, R : X → R is smooth and 1 : 1 on this scale and

so we can impose coordinate systems on X and R such that the Jacobian of the map

is always positive. Therefore we may locally approximate the retino-cortical map as

a linear mapping from R2 to itself.

Given a linear map from R2 to R2, we can represent the local anisotropy in the

map as a vector, the magnitude of which represents the ratio of the eigenvalues of J =

∂R/∂x, and the direction of which indicates the cortical direction corresponding to the

greatest retinotopic stretching. This direction parallels the first principal eigenvector

of J (see Appendix A.3). The determinant of J is the retinocortical magnification,

the retinal (or thalamic) area represented per unit cortical area. On a sufficiently

coarse scale the curvature of the cortical surface and of the complex logarithmic map

invalidate the affine linear description of the mapping.

The retinotopic position map assigns nearby cortical cells to nearby points in the

visual field—it is topographically organized. The ocular-dominance characteristic of

a cortical cell, a scalar quantity, is also topographically mapped. Experiments with

dyes that trace the anatomical connectivity from the right or left eye, metabolic

tracers that are taken up selectively by some cortical cells when one eye is closed,

and electrophysiological recordings all indicate a topographic arrangement of ocular

4Vectors in the idealized cortical, thalamic and/or retinal plane will be implied by x, r, etc.

Consistent with MATLAB conventions, I take vectors to be column vectors, x =

[
x1
x2

]
, unless

indicated otherwise. The transpose of a matrix or a vector will be denoted by superscript “tr”.

Hence x
tr

:= [x1, x2], and

(
a b
c d

)tr

=

(
a c
b d

)
. Cortical map vectors will occasionally be

denoted via bold face, such as v(x).
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dominance in V1 [40]. Nearby cells tend to be driven by the same eye (continuity)

while both eyes are present within any 800-micron–wide region. The underlying

pattern resembles zebra stripe in some species, or spot patterns in others (see Figure

1.5).

The local shear in the retinotopic map of Macaque monkeys, at the scale of ocular

dominance columns, has been estimated at η ≈
√

2. It is believed that this anisotropy

may reflect the interaction of the retinocortical map with the arrangement of ocular

dominance stripes on the cortical surface 5. In addition to this locally uniform shear,

there is finer-scale distortion of the retinotopic map at the hypercolumn and sub-

hypercolumn level.

On a sub-millimeter scale, Das and Gilbert have recently succeeded in measur-

ing distortions and discontinuities in the retinotopic map that seem to coincide with

locations of rapid variation of preferred stimulus orientation[18]. The mapping prop-

erties of the cortex require attention at different scales, from tens of millimeters to

a hundred microns. At each scale it is of interest what the shape of the coarse map

is and what the deviations of the average retinotopy are on one scale from the av-

erage retinotopy on a larger scale. In principle we can represent the deviation from

the mean retinotopy as the difference between the local retinotopy R(x) and a mean

retinotopy averaged over an appropriate scale, (gσ ∗R)(x), i.e.6

s(x) = R(x)−
∫
x′
gσ(x− x′)R(x′) dx′

gσ(x) =
1

2πσ2
exp(−||x||2/2σ2)

In 1986, Blasdel and Salama pioneered the measurement of orientation and ocular-

dominance maps by direct observation of the cortical surface during stimulation of

the visual system [5]. First with voltage-sensitive dyes, and later through imag-

ing of intrinsic metabolism-related optical signals, researchers were able to construct

5G. Blasdel, personal communication.

6Recall that x and x′ are planar vectors, so we are convolving with the product of two one-
dimensional Gaussians.
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Figure 1.5: Ocular dominance maps in cat and monkey. Cytochrome oxidase tech-
niques reveal the pronounced spatial structure for ocular dominance. Marker injected
into one eye was carried up the visual pathway to the cortex where it stained cells
predominantly driven by that eye but not the other. The resulting patterns show
irregular stripes at a typical wavelength of 300-400 microns in macaque monkey, and
blobs with a similar spacing in cat. From Swindale 1996 [72].
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vector maps of orientation preference and selectivity over cortical regions many hy-

percolumns in extent [2, 3, 6] (see Figure 1.1). These maps showed quasi-regular

lattices of orientation singularities separated by linear zones where orientation varied

continuously, and fractures where orientation changed suddenly.

The differential imaging techniques for boosting the optical signals above noise

require smoothing the data by spatial and temporal averaging. Therefore, while the

resulting image appears quite smooth and the centers of the pinwheels seem precisely

defined, the underlying distribution of individual cellular responses could in principle

be quite heterogeneous. The magnitude of the vector field obtained by optical meth-

ods, representing the sharpness of the orientation tuning at a given position, drops

smoothly to zero orientation preference at the centers of the singularities. From this

data it is impossible to infer the variance of the local distribution of individual cells’

peak orientation preferences. Because of these statistical ambiguities it is essential

that a model for the organization of the system be flexible enough to incorporate

a variable amount of local scatter in orientation preference (or ocular dominance,

topography, etc.) as part of the descriptive parameters.

Studies by Maldonado and Gray attempted to quantify the typical amount of

nearest-neighbor scatter in preferred orientation by simultaneous recording of the

responses of nearby cells. They confirmed that significantly more scatter might be

present than suggested by the smooth appearance of the optical imaging maps. Unfor-

tunately they could not give decisive bounds on the variance of the local distributions

of preferences.

Spatial-Frequency Preference

In 1997 Hübener and colleagues reported using optical imaging to identify the spatial

distribution of spatial-frequency preference [41]. After recording the optical images

generated when cats viewed grating patterns of different orientations and different

stripe widths, Hübener et al. pooled the response magnitudes to higher and lower

sets of spatial frequencies and compared the differences in response, averaging over

all orientations. They reported finding isolated regions of V1, roughly the size of
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Figure 1.6: Spatial-frequency preference map: from Hübener et al., [41].

orientation columns, that were more responsive to low spatial frequencies. More-

over, roughly half the orientation singularities measured were located inside these

low-spatial–frequency zones, while the other half were in the connected region more

responsive to higher spatial frequencies 7. The distribution of orientation preference

and high-vs.-low s.f. regions measured by Hübener et al. are shown in Figure 1.6.

Interactions between map components

Perhaps the most striking characteristic of these cortical maps is the degree of co-

ordination between them. In monkeys the ocular-dominance bands are elongated

and “stripelike”, and the orientation pinwheels show a strong tendency to lie at the

centers of these stripes [60]. In cats, the ocular dominance bands are more compact

and “bloblike”, and the orientation pinwheels are typically located near the extremal

points of the ocular dominance [17]. Consistent with this arrangement, the gradi-

ent of the ocular dominance tends to lie orthogonal to the gradient of the preferred

orientation[25]. The orientation pinwheels are reported to coincide with the fine-scale

retinotopic dislocations reported by Das and Gilbert, and while spatial maps of chro-

matic preference have not yet been published, the color-sensitive cells are thought to

7The connectedness of the high-sf population is of course dependent on the spatial frequency
chosen to distinguish “low” from “high”.
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be concentrated in regions of higher metabolic activity which also coincide with the

pinwheels (cytochrome oxidase “blobs”).

1.2.3 Development of the Mammalian Visual System

Time-Course of Development

As the animal develops embryologically, nerve fibers from the contralateral (opposite-

side) eye project to the LGN, and then to the cortex, before the corresponding fibers

from the ipsilateral (same-side) eye. In cats, orientation-selective cells can be observed

as early as the eighth day after birth, and orientation maps can be obtained from

optical imaging as early as the twelfth postnatal day. If stimuli are presented through

the ipsilateral eye, the optical imaging reveals a very disordered map [16]. At the

same time, the response to stimuli presented to the ipsilateral eye is weak overall—

that is, the entire V1 is approximately monocular. Under normal developmental

circumstances, the ipsilateral fibers become established between postnatal days 7

and 21, with the second eye’s orientation map matching the already extant map.

Gradually the influence of the two eyes evens out until there are ocular dominance

regions of equal size for each eye. If the eyelids are sutured so that no patterned

visual experience occurs through the second eye, the orientation preferences develop

normally until sometime in the third week after birth at which point they decay until

the ipsilateral eye has no recognizable orientation pattern. Simultaneously the net

input weight from the deprived eye appears to decay as well.

Correlation-Based Learning

The functional interaction of different parts of the brain depend in large part on the

extent and arrangement of synaptic connections between them. A given synapse be-

tween an axon and a dendrite or cell body may be more or less potent, as the amount

of neurotransmitter typically released for every action potential in the axon is not a

fixed quantity. Furthermore, a given axon may make multiple synapses onto the den-

dritic arbor and soma of the postsynaptic cell. These two sources of variability lend
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a continuous nature to the synaptic efficacy with which one cell influences another,

represented in models as the synaptic weight. In much of theoretical neuroscience the

problems of learning, memory, computation and development may be cast as prob-

lems of the variation of synaptic weights appropriate to some task between different

neural tissues. The patterns of ocular dominance, orientation preference and topog-

raphy have their origin in patterns of the distribution of synaptic weights between

the LGN and the cortex, or within and between different cortical layers, although

they may also arise in part through dynamical effects which have more to do with

spatiotemporal patterns of spiking than with quasi-static synaptic weights. In the

case of ocular dominance it is especially clear that the phenomenon involves inho-

mogeneous distribution of synaptic weight, preferentially coming from one eye or the

other; metabolic labeling and biocytin injection experiments which trace out connec-

tivity patterns come close to measuring the synaptic weights – as in the number and

size of synapses—directly.

The synaptic weights may vary in the organism by the growth of new synapses, ex-

pansion and reinforcement of existing ones, and weakening or elimination of synapses.

Such a rule could be based for example on strengthening or weakening the synaptic

strength from a particular cell when that cell’s incoming action potentials are more

strongly correlated with the recipient cell’s firing than those of the other synapses.

Alternatively the cell could weaken correlated synapses and strenghten uncorrelated

ones, or strenghten both the most highly correlated excitatory synapses and the most

highly anti-correlated inhibitory synapses. All these variants amount to correlation-

based learning, first clearly stated by Donald Hebb in his 1949 book The Organization

of Behavior.

When an axon of cell A is near enough to excite a cell B and repeatedly

or persistently takes part in firing it, some growth process or metabolic

change takes place in one or both cells such that A’s efficiency, as one of

the cells firing B, is increased. [32, page 62]

This reasoning leads naturally to the hypothesis that the synaptic strength be-

tween two cells should be affected by cross-correlations in their firing. If impulses from
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a presynaptic cell regularly participate in firing a postsynaptic cell, then the strength

of that synapse should tend to increase; negative correlations in firing should force

a synapse to lose strength. Thus a network of interacting neurons could “learn” the

correlation structure of an ensemble of inputs by following some variant of a Hebbian

developmental rule. With various modifications, Hebb’s rule has remained a center-

piece of our understanding of the physiology of learning and self-organization, and

remains the basis of the models to be discussed in the next section.
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1.3 Correlation-Based Models of Cortical-Map Formation

1.3.1 Hebb’s Rule

In its simplest incarnation, Hebb’s rule sets the adjustment of weights proportional

to the correlation over a learning interval

∆w(x, r) ∝< I(r)a(x) > . (1.1)

Here r denotes the location of a cell sending out ascending fibers, such as retina

or LGN, which then synapse on tectum or cortex at x. I(r) is the activity in the

lower level (or the input) and a(x) is the activity in the higher level. In this form

the rule may be unstable: once the synaptic weights find an optimal pattern so that

< I(r)a(x) > is everywhere positive, they are liable to grow without bound. To

remedy this instability, various means of constraining the synaptic weights have been

introduced. It is also common to construct some form of competition for synaptic

weight between cells in a given neural network layer.

Synaptic Models vs. Feature Models

Models based on competitive Hebbian learning generally take two forms: Synaptic

models treat the formation of cortical maps in terms of developmental rules for the

synaptic weights that underlie a cortical cell’s receptive field properties. Feature mod-

els use heuristically derived rules to treat the development of cortical maps directly

in terms of abstracted quantities such as orientation and ocular dominance. These

models barter realism for complexity, with the synaptic model making explicit use

of correlated thalamic and cortical activity and dynamics based directly on Heb-

bian mechanisms. In order to prevent the unbounded growth of a rule such as 3.3,

synaptic models must incorporate explicit constraints on the growth or decline of

synaptic weights. Most modeling efforts have used hard saturations in which the

weight dynamics are discontinuous at an upper or lower boundary. In these cases

the analysis of pattern formation, as spontaneous destabilization of a rapidly grow-



20

ing mode, may only be applied in a small neighborhood of some initial homogeneous

configuration (such as unoriented receptive fields). A more thorough analysis of the

systems’s behavior is usually possible for abstract models that dispense with detailed

constructions of cortical cell properties from synaptic weight distributions. But while

pattern formation may be more readily studied in feature models, their biological

interpretations can be unconvincing [54, p. 69].

Comprehensive reviews of modeling approaches to cortical maps are presented in

[25] and [72].

1.3.2 Turing Mechanism for Pattern Formation

Mathematically, both the feature and synaptic models exploit a simple mechanism for

spatial pattern formation. A homogeneous initial state—be it unoriented receptive

fields, uniform input from both eyes, or a zero vector field in some abstract space—

loses stability to an eigenmode of the linearized correlation-based dynamics. In some

models, nonlinearities serve to select between different modes or combinations of

modes and stabilize an inhomogeneous steady state, but in most, this stabilization is

either implicit or forced by nonanalytic constraints.

The visual cortex is not the first biological tissue to attract attention to its spot

and stripe patterns (see Figure 1.7). In 1952, Turing introduced a theory for the

formation of spatially inhomogeneous patterns by a spatially homogeneous system

of equations [77, 59]. Turing proposed a reaction between two morphogens in the

embryonic skin, one of which would serve as a precursor for local pigmentation. If

both morphogens were autocatalytic and one inhibited the production of the other—

which in turn promoted the production of the first—then a steady-state uniform

admixture of the two could lose stability if the inhibitor diffused more quickly than

the promoter. The basic mechanism was a linear instability favoring a particular

wavelength, determining the size of the ensuing stripe or spot periodicity.

The essence of the mechanism may be illustrated in the neural context with a
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Figure 1.7: Animal Coat Patterns. Top: Zebra. Middle: Leapord. Bottom:
Cattle.
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single-variable integral equation:

∂a(x, t)

∂t
= f(a) +

∫
x′
A(x− x′)a(x′, t) dx′ (1.2)

Here a(x, t) represents the time-varying activity at cortical location x, A(|y|) is an

intracortical interaction between cortical units separated by distance |y|, presumed

to be an even function, and f(a) is a local cortical dynamics in the absence of lateral

influence. For example, f(a) may have the form a(a− au)(a− as), au < as. For this

function a = 0 and a = as are stable fixed-points, while a = au is unstable. Suppose

that we begin with initial conditions smooth enough to expand a in a Taylor series

in x. Integrating by parts, we may write

∂a(x, t)

∂t
= f(a) + a(x, t)

∫
y
A(y) dy +

∂2a(x, t)

∂x2

∫
y

y2

2!
A(y) dy + (1.3)

∂4a(x, t)

∂x4

∫
y

y4

4!
A(y) dy + · · · (1.4)

= f(a) + A0a(x, t) + A2
∂2a(x, t)

∂x2
+ A4

∂4a(x, t)

∂x4
+ · · · (1.5)

If the lateral interaction has a nonzero sum it can be incorporated into f(a), so we

can assume that A0 = 0. Now make the ansatz that there is a mode of inhomogeneity

about the steady state described by a(x, t)− as ≈ εeσteikx, where k is a wave-vector

and 0 < ε� 1. Substituting into equation 1.3 gives

σ = −f ′(as) + |k|2A2 − |k|4A4 + · · · .

Positive σ for a given k indicates decay of that mode toward the steady state. If A2

and A4 are both negative, the dispersion curve σ(|k|2) has a minimum at a nonzero

value of |k|2. When the local dynamics has a sufficiently robust steady state, i.e.

f ′(as) � 0, all modes decay and the homogeneous state is stable. Should f ′(as)

weaken, there is a critical mode k∗ at which the homogeneous state first loses stability,

as shown in Figure 1.8.

For a typical center-surround lateral interaction such as a difference of Gaussians
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Figure 1.8: Schematic Turing mechanism for pattern formation.
Left: Lateral cortico-cortical interaction A(x), modeled as a broad Gaussian sub-
tracted from a narrow one.
Center: Local steady-state dynamics f(a). When the derivative of f at the steady
state is not sufficiently negative to damp all modes, instability sets in (lower curve).
Right: Dispersion curve σ(|k|2). The critical wavelength occurs at the minimum of
the curve.

(see Figure 1.8) all the even moments are negative except A0. The instability of

the homogeneous state arises because of the “anti-diffusion” term A2 < 0, while the

wavelength is determined by both A2 and A4.

1.3.3 Turing Analysis of Competitive Hebbian Learning

Tea-Trade Model

In 1977 Willshaw and von der Malsburg introduced the “tea-trade” model for the

establishment of a globally ordered topographic map from the eye to the brain, based

on an analogy to Hebbian learning and chemical markers [78]. Imagine local tea

growers in India each with a slightly different blend of flavors than her neighbors. The

concentrations of the different ingredients of tea we suppose vary continuously across

the face of the subcontinent. Traders from Britain buy the local teas and distribute

them around England. Local tastes in tea we also suppose vary topographically across

the island so that nearby towns prefer flavors from nearby towns in India. Further

assuming that each trader can carry only a limited tonnage of tea, we suppose that
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each will tend to strengthen contacts with the best customers while weakening ties

with the rest. Gradually each trader gets more specialized both in collecting and

distributing according to local flavors and local tastes, and eventually the network of

traders establishes a topographic reproduction of India within the borders of Britain,

and vice versa.

Replacing the teas by (unidentified) chemical markers which diffuse across the

retina, and traders by fibers synapsing on various parts of the tectum, this heuristic

model suggests how a topographic map of the retina may be established [78, 83].

Häussler and von der Malsburg’s Analysis

Expanding on the tea-trade model, Häussler and von der Malsburg analyzed the de-

velopment of a one-to-one retinotopic mapping between a one-dimensional retina and

tectum [31]. Their model incorporates local correlation or smoothing and competition

mediated by saturating the net input or output weight at a point. Beginning from

diffuse initial weights Häussler and von der Malsburg model the retinotectal map as

a spontaneous symmetry-breaking phenomenon. An ordered map forms due to the

selection of an appropriate mode in a Turing-like pattern-forming process (Figure

1.9).

Häussler and von der Malsburg’s system obeys the differential equation

d

dt
w(x, r) = α(1− w(x, r)) + (1.6)

βw(x, r)



∫
x′∈X

∫
r′∈ΩCx(x− x′)Cr(r − r′)w(x′, r′) dx′ dr′

−1
2


cx
∫
r′∈ΩCr(r − r

′)
∫
x′∈X w(x′, r′) dx′ dr′+

cr
∫
x′∈X Cx(x− x′)

∫
r′∈Ωw(x′, r′) dr′ dx′




where cr =

∫
r∈ΩCr(r) dr, cx =

∫
x∈X Cx(x) dx, and Ω = [0, 1) and X = [0, 1) are the

retinal and tectal domains, respectively. They impose periodic boundary conditions

for both x and r, and assume a Gaussian form for both the correlation-based terms

Cr(r) and Cx(x). The double convolution in x and r smooths the existing map locally,
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Figure 1.9: Illustration of one-dimensional retinotectal map formation. Figure from
Häussler and von der Malsburg, “Development of Retinotopic Projections: an Ana-
lytical Treatment” [31]. The synaptic strengths connecting a one-dimensional retina
and tectum form a matrix whose entries are represented by the size of the small
squares. The initial conditions were biased to select the “correct” diagonal. Abscissa:
retinal position. Ordinate: tectal position.
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effecting local cooperation in forming connections. The subtraction of the two single

convolution terms guarantees that neither the net fan-in weight to any tectal point x

f(x) =

∫
r∈Ω

w(x, r) dr

nor the net fan-out weight from any retinal point r

g(r) =

∫
x∈X

w(x, r), dx

can grow without bound. These saturation terms effect a lateral competition between

different points on the retina and tectum. This combination of local facilitation and

lateral competition is the heart of the Turing pattern-formation mechanism.

For α � β the homogeneous state w(x, r) ≡ 1 is stable. At a critical value of

β/α this homogeneous state loses stability and a critical mode appears. Nonlinear

stability analysis of small plane-wave perturbations of the steady state,

w(x, r) = 1 + ε (exp(i2π(krr + kxx)) + c.c.) , (kr, kx) ∈ Z2, (1.7)

shows that the higher-order terms select the modes kr = ±kx = ±1, corresponding to

a one-to-one retinotectal map. The selection of the +1 orientation over −1 requires

an additional mechanism such as a chemical marker or bias in the initial conditions.

Miller’s Model for Receptive-Field Formation

The most comprehensive approach to cortical-map formation through synaptic mod-

els has been the work of Miller and colleagues [55, 54, 86, 87, 24, 52, 56, 53]. As in

the work of Willshaw, Häussler and von der Malsburg, the map of cortical selectivity

is determined by the pattern of thalamocortical afferents. Miller assumes a linear

dynamics, derived from the linearization of a nonlinear Hebb rule about a homoge-

neous steady state, with hard upper and lower-bound synaptic limits to the growth

or decay of synaptic weights. Weight development is determined by a fixed pattern of

lateral cortical interactions I(x−x′), typically with a center-surround architecture, a
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distance-dependent correlation function C(r − r′) describing the statistics of genicu-

late activity, and a proscribed arbor function Arb(x− r). The arbor function defines

a rough retinotopic map on the cortex by restricting the total synaptic weight to lie

under a Gaussian-like envelope8. This retinotopic map is assumed to be linear and

isotropic.

Miller achieves pattern formation by setting up competition between different

thalamic (input) cell types j distinguished by their mutual correlation functions. In

modeling ocular dominance, the cell types represent the right and left eyes, with

cross-eye correlations CRL(r − r′) weaker than same eye CRR(r − r′) = CLL(r − r′)
or even negative. In modeling orientation, the cell types represent inputs from ON-

center and OFF-center cells. In modeling the emergence of directional-selective cells,

the eye classes include lagged and non-lagged geniculate cells.

The dynamics are typically given by an equation such as:

d

dt
wj(x, r) = ηArb(x− r)

(
FUj [w](x, r)−

∑
j

∫
r F

U
j [w](x, r) dr

4|Arb|

)
(1.8)

FUj [w](x, r) =

∫
x′
I(x− x′)

∑
j′

∫
r′
Cjj′(r − r

′)wj(r
′, x′) dr′ dx′ (1.9)

Here j runs through the different eye classes. The unconstrained update rule 1.9

reflects a fixed retinotopy imposed by the arbor function, which also provides hard

upper bounds for the synaptic weight from r to x.

The formation of orientation-selective cortical cells is achieved as the receptive field

selectively boosts synapses from elongated ON-center and OFF-center subregions, just

as in the Hubel-Wiesel feedforward model. A dispersion curve determined by I(x−x′),
the intracortical interaction function, determines a length scale for the fastest-growing

orientation-tuning mode. The selection of a most-unstable wavelength gives spatial

frequency selection in the ON/OFF-center competition case; in the Right/Left-eye

case wavelength selection determines the periodicity of the ocular dominance stripes.

8Miller’s I(x− x′) corresponds to the center-surround convolution kernel A(x− x′) I will use in
the following Chapters to denote the intracortical interaction. To avoid confusion I will substitute
“Arb(x− r)” for Miller’s A(x− r).
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For certain parameter values it is possible to model the development of ocular dom-

inance and orientation simultaneously by including both Right/Left and ON/OFF-

center eye classes. The maps developed in this fashion do not quite reproduce the

observed relationship between ocular dominance and orientation. Because the model

uses a fixed arbor shape, within which individual synaptic units may be relatively

stronger or weaker, it is inflexible with respect to retinotopic distortions or anisotropy.

In simulations the orthogonality of iso-orientation and ocular dominance contours

emerges as a consequence of the hard constraints, and cannot be investigated analyt-

ically.

1.3.4 Feature Models

Feature models seek to avoid the analytical limitations inherent in explicit modeling

of intricate biological phenomena such as the sculpting of receptive fields by Hebbian

modification of each individual synapse. Instead, these more abstract models deal

with map variables such as orientation or spatial frequency directly, and attempt

to formulate heuristic update rules reflecting the underlying mechanisms of local

cooperation and lateral competition. A good example is Swindale’s model for the

joint formation of orientation and ocular dominance.

Swindale’s Model for the Joint Development of Ocular Dominance and

Orientation Preference

In 1980, Swindale [68] derived a dynamical system for the organization of ocular dom-

inance columns from a set of heuristic rules. Whatever mechanism might underlie

the establishment of ocular dominance, he reasoned that nearby neurons should de-

velop similar eye preferences while those further apart should develop opposite. By

following such guidelines, the cortex could achieve the competing goals of continuity

of representation and local coverage of all stimulus attributes. Swindale studied the
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behavior of the integro-differential equation

∂n(x, t)

∂t
=

(∫
x′
A(x− x′)n(x′, t) dx′ +K

)
(1− n2(x, t)) (1.10)

as a model for ocular dominance development. A(y) is the effective lateral cortical

interaction between cells of the same eye class (typically a difference of Gaussians),

−1 ≤ n(x) ≤ 1 represents the ocular dominance, and K represents possible asym-

metry in the interaction between the different eye classes. The term (1 − n2) is a

multiplicative constraint that effectively shuts down the development at x when n(x)

reaches ±1. For K = 0 this system forms stripelike patterns from random initial

conditions, and for K 6= 0 it can form blob or spot patterns.

Motivated by the observation that 2-deoxyglucose labeling experiments revealed

stripelike organization of vertical orientation preference in the striate cortex of the

tree shrew, Swindale investigated the possibility that similar heuristic rules might

underlie the formation of spatial patterns of orientation preference [70]. He derived

another dynamical equation for an orientation vector

χ(x) =

[
q(x) cos(2φ(x))

q(x) sin(2φ(x))

]

in which the π-periodic orientation preference at cortical location x is φ(x), and the

strength (alternatively, the sharpness) of the orientation response is q(x):

∂χ(x, t)

∂t
=

(∫
x′
A(x− x′)χ(x′) dx′

)
(qM − q(x)). (1.11)

The multiplicative constraint prevents q(x) from exceeding a maximum value qM .

This system forms pinwheel singularity patterns when started from random initial

conditions, and successfully mimics the development of the orientation maps.

Finally, it is possible to knit together the orientation and ocular-dominance maps

with such an abstract model more readily than in the synaptic models. By weighting

the growth weight of χ(x) with a term involving a pre-established ocular dominance,

Swindale showed that the orientation map could be made to locate its pinwheels
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generally at the centers of the ocular dominance columns, as observed in vivo [74]:

∂χ(x, t)

∂t
=

(∫
x′
A(x− x′)χ(x′) dx′

)(
1− |

∫
x′
A(x− x′)n(x′) dx′|

)α
(qM − q(x)).

(1.12)

The positive constant α slows the growth of orientation selectivity at the centers

of the ocular dominance regions, allowing the surrounding regions to form without

pinwheels, and forcing the pinwheel defects into the central regions.

Kohonen’s Self-Organizing Map

In 1982 Teuvo Kohonen pioneered a Self-Organizing Map [43, 44], abstracted from

competitive Hebbian learning, which learned to approximate a density function on

one space by a lattice on another (in a way that could be efficiently implemented

on a serial computer). When one views one space as representing the “world” or

the presynaptic sheet, and the approximating lattice as a discrete “representation”

or postsynaptic sheet, one recovers the sort of topographic representation achieved

by the Hebbian rule. What is important for my purposes here is that Kohonen’s

algorithm can produce stripes or spirals in a two-dimensional geometry. As Kohonen

puts it:

Stripes occur whenever a two-dimensional map tries to approximate

a higher-dimensional signal distribution which has significant variance in

more than two dimensions. [44, page 00]

Kohonen’s algorithm uses a stochastic sampling of the feature space X; this space

is “represented” by a map {yj} from the vertices of a lattice {j} ⊂ Zn to points yj in

the feature space X. For the retino-tectal application we take X to comprise points

the visual field and yj the visual field location represented by the tectal location

j ∈ Z2. Of course in practice we only consider finite subsets of the lattice, i.e. finitely

many representing cells or nodes.

Over time, the learning rule varies from coarse- to fine-grained. A neighborhood

function hcj(t) modulates the effect of each node on its neighbors, narrowing, as time
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Figure 1.10: Kohonen’s self-organizing map. The feature space X is the triangular
region from which points are randomly drawn. The representing map takes points on
the line to points on the plane. As the neighborhood function narrows (left to right)
the map becomes more convoluted.

advances, to a delta function. A Gaussian in |c − j| with decreasing variance is a

typical choice. Figure 1.10 shows the evolution of a map with n = 1 and X a subset

of the plane. As the neighborhood function contracts, the mapping becomes more

convoluted and the region covered by the map becomes a better representation of the

triangular region, given the limits of the topological mismatch.

The feature space X will carry a probability distribution p(x) which we are to

capture as faithfully as possible with {yj}. Starting from arbitrary initial conditions

on the {yj} (either scattered over X or lumped together), a topographic map will form

if the variance in hcj(t) is reduced slowly enough (width ∝ 1/t). At each timestep

the algorithm reads:

1. Draw x ∈ X from the distribution p(x).

2. Find a closest node given the current map {yj}. I.e., set c = argmin{j; ||x−yj ||}.

3. Learning step: update ∆yj = (x− yj)hcj(t)

4. Advance t (shrink hcj) and repeat.

Given sufficiently slow schedule for shrinking hcj this formula can be shown to

converge to a topographic representation of the density p(x), with a magnification fac-

tor at corresponding j given by M(j) = 1/|det(∂yj/∂j)| ∝ p(x)2/3[63]. Lin recently

showed how a modification of the update rule leads to a correct faithful representation

of p(x) [46].
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The algorithm can be implemented efficiently on a serial computer, which is its

greatest advantage over explicit Hebbian learning. The biological motivation is thus:

a stimulus drawn from the ensemble p(x) excites all cells to some degree but due

to lateral competition in the postsynaptic sheet a single winner cell yc—chosen as

the best current approximation of the stimulus – dominates the response. This cell9

adjusts its representation of the outside world by unspecified means. Likewise its

neighbors, to greater or lesser degree as specified by the interaction term hcj , adjust

their representations of the outside world accordingly.

The algorithm lacks a plausible biological scheme for the representation of the

outside world and must be preassigned both the “right” dimension and topology.

In addition, the analysis of the stripe-formation mechanism is complicated by the

nonlinearity of the system.

Ritter and Schulten write a Markov-model description of the algorithm and derive

a Fokker-Planck equation for fluctuations about the homogeneous steady state. The

formation of stripes in a two-dimensional medium, which could represent e.g. ocular

dominance, high- vs. low- spatial frequency, color preferences or orientation etc.

corresponds to taking for example, a square grid of n2 nodes indexed as j ∈ Z2
n

and the input distribution to be uniform on a rectangular solid X = [0, 1] × [0, 1] ×
[−s, s]. With periodic boundary conditions in the plane, there is an homogeneous

state in which the nodes j regularly tile the square [0, 1] × [0, 1] at zero vertical

displacement. This configuration is a steady-state solution of the Markov process

in the sense that its mean displacement under the algorithm is zero, by symmetry.

Ritter and Schulten showed through a linear stability analysis that this steady state

is unstable to long-wavelength perturbations that are confined to the plane. These

may be either transverse or longitudinal.

For sufficiently small s, however, the planar solution is stable to normal perturba-

tions. There is a dispersion curve for the decay of perturbations perpendicular to the

9Throughout, references to a “cell” may generally be replaced by “local cell collective” or “unit”
at the reader’s discretion. Due to individual variability in cell behavior it may be a matter of
sound design to have local redundancy in the microstructure of the circuit, i.e. several cells together
forming an ensemble representation as more or less one unit. See for comparison [14].
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plane, which varies with s and which has a peak at a wavenumber proportional to

the width of the neighborhood function. If one were to increase s to a critical value

scr the steady state would lose stability to oscillations at a particular wavelength

λcr. As the width of the neighborhood function goes to zero, the instability occurs

at smaller and smaller wavelengths; the critical value of s, however, is independent

of the neighborhood function’s width in the linearized system.

Elastic-Net Algorithm

Another model based on competitive Hebbian learning was introduced in 1987 by

Richard Durbin and David Willshaw. Their elastic net is a deterministic algorithm for

establishing a topographic mapping between spaces. Instead of Kohonen’s continuous

space X discretely sampled according to p(x) the elastic net takes N points in X to

be fixed. In their original application [21] these points are the N cities which the

traveling salesman must each visit once on his route. For the traveling salesman

problem (TSP) the “route” comprises the M nodes {y0, ..., yM−1} endowed with the

topology of the circle (y0 ≡ yM ). To make it possible to visit each city, assume

M > N . 10

The configuration of the {yj} evolves down the gradient of an energy function with

terms representing forces pulling each node toward each city, and internal elasticity

of the network.

E = −αK
∑
i

log
∑
j

h(|xi − yj |, K) +
β

2

∑
j

|yj+1 − yj |2 (1.13)

Durbin and Willshaw choose the neigborhood function to be a Gaussian of width K:

10The salesman must visit every city following the shortest possible route. This problem belongs
the class of NP-complete computations, which is to say that the computational complexity of every
known algorithm for finding the globally optimal solution grows faster with increasing N than Np

for all p.
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h(d,K) = exp(−d2/2K2), which gives an update rule ∆yj = −K∂E∂yj

∆yj = α
∑
i

wij(K) (xi − yj) + βK(yj+1 − 2yj + yj−1)

wij(K) =
1

Zi(K)
exp[−|xi − yj |2/2K2]

Zi(K) =
∑
j

exp[−|xi − yj |2/2K2].

The first term in ∆yj is an elastic force, which obeys Hooke’s law with a coefficient

of “fitting” elasticity αwij , which depends on the width parameter K and on the

configurations of all the N cities and M nodes. In the context of the tea-trade model

for synaptic plasticity we recognize wij as the synaptic weights between N presynaptic

and M postsynaptic cells. The second term in ∆yj represents a “smoothing elasticity”

with coefficient βK, pulling adjacent nodes along the route towards each other.

When K is sufficiently large, the smoothing energy dominates and all nodes col-

lapse onto the centroid of the cities. As K decreases, this equilibrium becomes un-

stable to a series of bifurcations [20]. First, the chain begins to stretch out along the

direction of the first principal component of the distribution of cities. As K dimin-

ishes, there is a second bifurcation in which the chain opens up into a loop. As K

is gradually decreased, subsequent bifurcations occur until the loop passes near each

city, and as K → 0 each city comes to coincide with (at least) one of the nodes yj .

The tours derived in this manner were not more than about 1% longer than tours

derived by other heuristic methods for identical sets of cities.

Durbin, Yuille and Szeliski also show that the energy function 1.13 has a proba-

bilistic interpretation [20]. They take the energy function to define a Gibbs distribu-

tion

L({yj}, K) =
1

(2π)NK2NMN
exp

[
− E

αK

]

=
N∏
i=1

1

M


M∑
j=1

1

2πK2
exp

[
−
|xi − yj |2

2K2

]
M∏
j=1

exp

[
−
β(yj − yj+1)2

αK

]
,
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which is the product of a conditional likelihood of the positions of the cities given a

particular tour, or P ({xi}|{yj}), with an a priori estimate of the likelihood of a tour,

P ({yj}). The a priori distribution for the tours favors shorter total tour lengths. The

conditional probability P ({xi}|{yj}) arises if one infers the location of each city xi

independently from the set of tour points—not knowing which tour point corresponds

to which city—with an assumed Gaussian error in the representations of positions of

variance K2. It is the product of N independent conditional probabilities

P (xi|{yj}) =
1

M


M∑
j=1

1

2πK2
exp

[
−
|xi − yj |2

2K2

]
M∏
j=1

[20].

From Bayes’ Theorem we know the contitional probability of a tour given a set of

cities, P ({yj}|{xi}) is proportional to the product P ({xi}|{yj})P ({yj}). Minimizing

E corresponds to maximizing L, or finding the most likely tours given the city con-

figuration. Lowering K corresponds to lowering the temperature governing the Gibbs

distribution.

Spin Models

Another class of feature models, derived from the magnetic models of classical condensed-

matter physics, are the “XY” models described in the next chapter. Because they

provide a bridge between the biological detail of the synaptic models and the an-

alytic insight of the feature models, they will form the subject of the rest of the

thesis. Spin models are closely related to Swindale’s heuristic feature model, which

may be regarded as a gradient-descent version of the mean-field of the XY-type mod-

els. Chapter 2 will introduce the XY and Ising spin models and their adaptations to

modeling cortical maps. Chapter 3 will illustrate how such spin models arise natu-

rally from the reduction of a Hebbian synaptic model. Chapters 4 and 5 extend the

XY models to capture the interactions between multiple cortical-map features and

analyse the pattern-formation properties of the resulting systems.



CHAPTER 2

MONTE CARLO SIMULATIONS OF THE XY FEATURE

MODEL

Cowan and Friedman [13] demonstrated that a simple Hamiltonian model for a lattice

of interacting magnetic spins could be adapted to capture the phenomenology of the

ocular dominance and orientation maps. Within the spin lattice framework it is also

possible to model, phenomenologically, interactions between maps, the critical time

windows in map development and the local variation of orientation between adja-

cent neurons. The spin model framework may also be extended to multidimensional

pattern formation.

2.1 The Classical Ising and XY Models

2.1.1 Definitions of the Classical Models

The Ising model for a lattice of interacting magnetic spins is the paradigmatic condensed-

matter system for the study of critical phenomena (phase transitions). Each site of a

lattice {i ∈ Z2
N} has a spin that can be “up” (zi = +1) or “down” (zi = −1). Each

pair of neighboring sites 〈i, j〉 makes a contribution to the total energy of zizj . In

addition, an external magnetic field hi may be applied to site i. The total energy is

given by the Hamiltonian function

H[z] = −1

2

∑
ij

Jijzizj +
∑
i

hizi. (2.1)

Here Jij is one when i and j are adjacent neighbors and zero otherwise, and z denotes

a particular configuration of all the zi. The interaction Jij wraps around the edges

36



37

of the lattice to give periodic boundary conditions. As an alternative to nearest-

neighbor coupling Jij may be taken to have the form of a Gaussian in the distance

between sites i and j:

Jij = Jg(|i− j|, σ2
J ). (2.2)

(See A.3 for notational conventions regarding Gaussians.)

In thermal equilibrium at a given inverse temperature β = 1/kT , any one of the

2(N2) possible spin configurations z has probability given by the Gibbs distribution

P (z) =
exp(−βH[z])∑
z exp(−βH[z])

. (2.3)

The denominator in equation 2.3 is the partition function Z(β).

At low temperature (β � 1) the system approaches a ground state in which

all spins are coaligned (for hi ≡ 0), corresponding to maximal magnetization. For

large β, the partition function sum is dominated by the lowest energy states. As

the temperature increases, nearly optimal energy states—those with relatively small

numbers of misaligned spins—grow in probability relative to the pure +1 or −1 state.

Although the pure state is always more likely than any other single configuration,

the larger numbers of energetically equivalent possible disorderly states makes them

more and more likely to appear at nonzero temperatures.

At high temperature (β � 1) the highly disordered states, with no correlation be-

tween neighboring spins, dominate. At the extreme of β → 0, all configurations have

the same probability 1/N2. As β increases from zero, correlations begin to appear be-

tween nearby spins. At a critical temperature βc there is a phase transition at which

the correlation length diverges and beyond which the spontaneous magnetization is

nonzero.

In the closely related XY model, the binary spins zi are replaced by planar unit

vectors

χi =

(
cos θi

sin θi

)
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that interact according to the Hamiltonian

H[χ] =
∑
ij

Jijχi · χj (2.4)

=
∑
ij

Jij cos(θi − θj). (2.5)

Unlike the Ising model, the XY model does not exhibit spontaneous magnetization

(alignment of the spins) even as β → 0 because the θi are continuously variable

[11, 45, 51]. A point about which path integration of ∇θ(x) gives ±2π is a vortex

or a spin singularity (see Figure 2.1). The system develops vortex-antivortex pairs

which are stable even at low temperatures. As the temperature increases, the phase

transition occurs through the unbinding of vortex pairs; at high temperature the

correlation length drops as in the Ising model.

Figure 2.1: Topological point defects in the π–periodic orientation variable φ(x).
Left: +1. Right: −1. Both defect patterns approach local constancy as |x| → ∞.

2.1.2 Dynamical Monte Carlo Simulation

Monte Carlo simulation techniques are commonly used to generate sample spin con-

figurations from the equilibrium distribution of a Hamiltonian system at a given

temperature [1]. Beginning with some initial configuration of planar spins on an

N ×N lattice θ = {θj |j ∈ Z2
N}, a single spin θi is given a chance to change its value
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by choosing an alternative θ′i according to a sampling probability conditional on θi,

Psamp(θ′i|θi). In simulations, I used a wrapped Gaussian distribution on the circle

(see Appendix A.3):

Psamp(θ′|θ) = gwr(|θ − θ′|, σ2
θ) (2.6)

The change in energy, should the new value be accepted, would be ∆H = H[θ′]−H[θ].

The change will be accepted with probability Pacc(θ′|θ) given by Glauber’s function:

Pacc(θ′|θ) = Sβ(∆H) (2.7)

=
1

1 + exp(β∆H)
.

Thus a change in configuration that yields the same total energy is accepted with

probability 1/2; unfavorable (energy-increasing) alterations are accepted less often

and favorable (energy-decreasing) ones more often. The acceptance criteria become

stricter at lower temperatures (see figure 2.2 ).

The transition probability is given by the product

Ptrans(θ → θ′) = Psamp(θ′|θ)Pacc(θ′|θ). (2.8)

Executing this scheme yields a random walk in θ that is ergodic in the hypertorus

Θ = {0 ≤ θj < 2π|j ∈ Z2
N}, meaning that every state θ is reachable from every other

state θ′ with a finite probability by some path in the random walk. Furthermore,

the steady-state probability distribution of this Monte Carlo process is the Gibbs

distribution

P (θ) =
exp(−βH[θ])∫

Θ exp(−βH[θ]) dθ
. (2.9)

Let P (θ) be a steady-state probability distribution for the Monte Carlo algorithm.

At equilibrium, the net probability of transition from θ to θ′ must equal the net

probability of the reverse transition (the “detailed balance” condition), i.e.

P (θ)Ptrans(θ → θ′) = P (θ′)Ptrans(θ′ → θ). (2.10)
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Substituting 2.6–2.8 into 2.10 yields

P (θ)gwr(|θ − θ′|, σ2
θ)

1

1 + exp(β∆H)
= P (θ′)gwr(|θ′ − θ|, σ2

θ)
1

1 + exp(−β∆H)

P (θ)

P (θ′)
=

1 + exp(+β∆H)

1 + exp(−β∆H)
(2.11)

=
exp(−β(H[θ]))

exp(−β(H[θ′]))
.

Normalization of the probability distribution ensures that 2.9 holds.

In practice, it is preferable to execute the Monte Carlo algorithm ”in parallel”: at

a given time step t a candidate new spin θ′j is selected at each site j ∈ Z2
N and all the

transitions are decided simultaneously and independently by evaluating the change

against the existing configuration θ. The new configuration is given by

(θ)t+1 = α(θ′)t + (1− α)(θt)

where αj is 1 with probability Ptrans(θ′j |θj) and 0 otherwise.

The algorithm converges to the Gibbs distribution in the infinite time limit, but

for short time intervals it produces highly correlated states. Especially at low tem-

peratures, it may take an extremely long time to wander through the phase space

Θ. If H[θ] has suboptimal local minima the algorithm may become ”trapped” for

times longer than the time available for computation, yielding metastable states. It

is these states which are of interest for the cortical modeling as described below. In

the low-temperature regime, the sigmoid acceptance function Sβ(∆H) approaches

Heaviside’s step function (see figure 2.2) so that sample points achieving a lower

energy are almost invariably chosen, while those raising the energy are almost all

discarded. In this extreme the algorithm’s random walk is strongly biased down the

energy gradient, yielding the approximate update rule

∆θk ≈ −η
∂H[θ]

∂θk
= −η ∂

∂θk

−1

2

∑
ij

Jij cos(θi − θj) (2.12)

= −η
∑
j

Jkj sin(θk − θj) (2.13)
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Figure 2.2: Sigmoid acceptance function for different inverse temperatures β. In-
creases in energy are less likely to be accepted than decreases.

where the effective rate constant η depends on σθ and other parameters of the simu-

lation. Thus the metastable states are characterized by

∑
j

Jij sin(θi − θj) = 0,∀i ∈ Z2
N . (2.14)

2.2 Extension of the Classical Models to Cortico-Cortical

Interaction

Two considerations make the XY model interesting for modeling the cortical maps.

The available data on the structure of these maps is inherently statistical. Optical

imaging data gives bulk behavior of local populations of cells, averaged together both

under the optical and temporal resolution of the experimental devices. Microelectrode

recordings give detailed information on the behavior of individual cells but cannot

determine the spatial organization of the behavior, except along one-dimensional

penetrations. As Maldonado and Gray wrote in their 1996 paper, ”the variance of

receptive-field properties within local clusters of cells is largely unknown”[49]. Unlike

the Kohonen map and elastic net models, Monte Carlo simulations of the XY model

naturally incorporate a variable degree of disorder in local receptive field properties

under the guise of the thermodynamic temperature. Stretching the analogy a bit, one
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may even speculate that the critical period in development corresponds to a phase

transition occurring in the model as an effective temperature falls.

In addition to the advantages of a statistical model, the existence of vortices in

the XY model makes it an interesting candidate for modeling the orientation map in

primary visual cortex: the orientations of cells φi ∈ [0, π) may be mapped onto spin

vectors

χi =

(
cos 2φi

sin 2φi

)
and the lateral interaction Jij may represent lateral interactions between neurons

in the cortical network. The orientation maps observed in vivo exhibit a particular

length scale related to the typical spacing of the orientation singularities. As con-

firmed by computing the autocorrelation of one of Blasdel’s maps, in addition to

local correlation there is lateral anticorrelation in preferred orientation peaking at

approximately 300 microns [25].

Lateral connectivity within the cortical network involves different populations

of cells with both excitatory and inhibitory interactions on different length scales.

Pioneering modeling work by Wilson and Cowan [84, 85] showed how biologically

plausible cortical circuits could exhibit effective lateral interactions that were locally

excitatory but laterally inhibitory. Replacing the standard XY model interaction Jij

with a circularly-symmetric difference of Gaussians1

Aij = g(i− j, σ2
+)− g(|i− j|, σ2

−),

where σ− ≈ 3σ+, Cowan and Friedman generated orientation maps that bore good

qualitative resemblance to the Blasdel maps [13]. Using this same Aij in place of Jij

in the Ising and XY models generate reasonable simulations of ocular dominance and

orientation maps. Examples are shown in figure 2.3.

1Gaussian notation defined in appendix A.3. For u ∈ R2, g(u, σ2) := 1
2πσ2

exp

(
− ||u||

2

2σ2

)
.
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Figure 2.3: Examples of Ising and XY patterns. Sample patterns generated by the
Ising and XY Models with ferromagnetic interaction Jij and center-surround inter-

action Aij . Top: XY models. Bottom: Ising models. Left: Jij = g(|i− j|, (60µ)2).

Right: Aij = g(|i− j|, (100µ)2)− g(|i− j|, (300µ)2). Box size: 2mm.
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Figure 2.4: Locally optimal orientation pattern. Optimal configuration of spins sur-
rounding a single spin in the difference-of-Gaussians XY model. The inner circle has
radius σ+, the outer has radius σ−, and the heavy circle indicates where A(x) ≡ 0.
Scale units in microns.

Energy Analysis

Whereas the ground state of the classical XY model in the absence of an applied field

is φi ≡ φ0, for arbitrary φ0, this state has zero total energy when∫
x
A(x) dx = 0.

In the former case, a spin coaligned with its neighbors contributes as much as−
∫
x J(x) dx

to the energy. In the latter case, the greatest possible contribution from a sin-

gle spin φ(x) is H0 = −J
∫
x |A(x)| dx, which occurs only if all spins φ(x′) within

the ferromagnetic range |x − x′| < r+ coalign with the spin at x, and all those in

the antiferromagnetic range |x − x′| > r+ anti-align, as shown in figure 2.4. For

A(x) = g(x, σ2
+)− g(x, σ2

−) with σ− = ασ+, r+ is found to be

r+ = 2σ+

√
α2 log(α)/(α2 − 1) ≈

{
0.96, α = 2

1.11, α = 3.
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The maximum possible energy contributed by one spin is then found to be

H0 = −J
(
α2 − 1

α2

)
exp

(
−2 logα

α2 − 1

)
.

The arrangement in figure 2.4 is optimal only for the central cell. A better global

configuration is given by the stripe or roll pattern

φ(x) = k · x mod π

in which every unit contributes the same energy

H(k) = −J
2

(
exp

(
−
|k|2σ2

+

2

)
− exp

(
−
|k|2σ2

−
2

))
.

The lowest-energy stripe configuration occurs when

|k| = 2

σ+

√
logα

α2 − 1
,

corresponding to an optimal stripe width dopt of

dopt =
π

2

√
α2 − 1

logα
σ+ ≈

{
3.27σ+, α = 2

4.24σ+, α = 3

and energy

H[φopt] ≡ 1

2
H0 ≈

{
−0.473J/2, α = 2

−0.675J/2, α = 3.

See figure 2.5.

Topological Defects

In the classical XY model, a single vortex defect is energetically unfavorable, and this

is again the case with the center-surround interaction. A pair of defects with opposite

polarity may be superimposed on a roll pattern background as in figure 2.6. This con-



46

Figure 2.5: Globally optimal orientation roll pattern. Optimal roll pattern for the
XY model with difference-of-Gaussians interaction. In this configuration each spin
contributes H0/2 to the total energy, where H0 is the maximal possible contribution
of a single spin. Scale units in microns.

figuration is not stable, however. Generating a series of defect patterns with different

spacing shows that defect energy grows monotonically with increasing separation be-

tween the defects (see figure 2.6). Under a low-temperature dynamical Monte Carlo

simulation, the two defects approach one another and annihilate, returning φ(x) to

the optimal stripe pattern. In case the initial defect spacing is too large, the inverted

strip between the singularities will break down into a string of vortex pairs, each of

which collapses and annihilates.

The dynamics governing the interaction of vortex defects is more complicated than

a simple Coulomb-type attraction: a combination of four defects in a rectangular

configuration with two positive defects on one side and two negative on the other, su-

perimposed on a roll-pattern background, is stable under the low-temperature Monte

Carlo dynamics. Figure 2.7 shows such a configuration. This pattern of four defects

occurs commonly in the biological maps, and comprises an area of cortex roughly

corresponding to a single hypercolumn.

Another simple configuration is a periodic lattice of defects alternating as on a
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Figure 2.6: Energy as a function of defect spacing: vortex-antivortex pair.
Top: Energy as a function of separation distance for sample XY configurations with
two pinwheel defects superimposed on an optimal stripe pattern. Configurations were
generated inverting the direction of increasing φ in a rectangle one half-wavelength
wide, followed by Monte Carlo relaxation at low temperature.
Bottom: A sample two-pinwheel orientation defect pattern.
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Figure 2.7: Simplest stable defect configuration, XY model. Note the configuration

of singularities:

(
−π +π
−π +π

)
.
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Figure 2.8: Energy as a function of defect spacing: vortex lattice. Optimal checker-
board orientation defect lattice for difference-of-Gaussians XY model.
Left: Average energy per unit of checkerboard configurations as a function of defect
spacing. Orientation configuration was relaxed at low temperature with difference-
of-Gaussians interaction, σ− = 3σ+.
Right: Zero contour of interaction superimposed on the optimally spaced defect
lattice for size comparison.

checkerboard: 
+ − + −
− + − +

+ − + −
− + − +

 .
Figure 2.8 shows the energy of this defect lattice configuration as a function of de-

fect separation, and the optimal checkerboard pattern with the zero contour of A

superimposed for scale reference.

2.2.1 Continuous Phase Transition

Like its pure ferro-magnetic cousin, our mixed ferro-antiferromagnetic XY model ex-

hibits a continuous phase transition as the temperature decreases. However because

of the center-surround interaction structure, when local order begins to set in, it does

so at an intermediate length-scale corresponding to the optimal roll-pattern wave-

length. On this scale the attraction of local roll patterns is strongest, leading to the
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formation of “linear zones”. But because the orientation and phase of neighboring

linear zones is random, as they form they generate topological defects at their inter-

sections. As this pattern of linear zones and pinwheels takes shape, a complicated

dynamics governs the collision and annihilation of some pinwheel configurations and

the stabilization of those that remain. At the same time that the pattern forms on the

center-surround length scale dopt, there remains a significant lack of order on both

the smaller (nearest-neighbor) and larger scales. As in the purely ferromagnetic XY

model, at finite temperature there is no long-range order, no global magnetization.

But there is local magnetization that grows or decreases with the inverse temperature

β.

Local Order and Disorder

To assess the degree of local order we may choose one of several measuring sticks,

such as the average deviation of χi from the local field at site i, or else the average

difference between nearest neighbor spins.

Given a particular configuration of spins surround a site i,

{φj |j 6= i},

we may calculate the local field χloc
i , which has magnitude qloc

i and orientation φloc
i :

χloc
i :=

∑
j 6=i

Aij

[
cos 2φj

sin 2φj

]
=

∑
j 6=i

Aijχj

=: qloc
i

[
cos 2φloc

i

sin 2φloc
i

]
(2.15)

Were these surrounding spins {φj 6=i} fixed in place, the distribution of φi in thermal
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equilibrium would be given by

Pi(φi|{φj 6=i}) =
exp(β J2 q

loc
i cos(2(φi − φloc

i )))

I0(β J2 q
loc
i )

where J is a constant determining the units of conversion from energy to temperature,

generally taken to be unity. I0(κ) is the modified Bessel function of order zero, the

integral of exp(κ cos 2φ) (see Appendix A.3 for a discussion of statistical measures for

functions taking on angular values). The strength of the field, which indicates the

degree of local order, may be determined by taking the circular variance of φi, the

expectation of | exp(2iφi)|. By symmetry the circular mean of Pi(φi|{φj 6=i}) is just

φloc
i , so the circular variance is:

E[|e2iφi |] =

∫
φi

cos(2(φi − φloc
i ))Pi(φi|{φj 6=i}) dφi

=
I1(β J2 q

loc
i )

I0(β J2 q
loc
i )

=: S(β
J

2
qloc
i )

The population response function S(κ) is sigmoidal on a log scale, going to 0 as κ→ 0

and going to 1 as κ → ∞ (see Appendix A.3). Given a sample configuration from a

Monte Carlo simulation at a given temperature β we can find E[|e2iφi |] by averaging

χi · χloc
i over the entire population, and numerically inverting S.

Another natural measure of local order at thermal equilibrium is given by the

circular variance of the distribution of nearest-neighbor angle differences,

E{‖i−j‖=1}[cos(2(φi − φj))].

This measure does not go to one as β approaches ∞, because the low-temperature

metastable steady states have a finite rate of change of orientation between neighbors,

corresponding roughly to the rate of change in the optimal roll pattern.

In their paper on the local scatter of orientation tuning properties, Maldonado
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and Gray use a third measure, the average of the absolute difference in angle between

pairs of nearby neurons.

Monte Carlo Simulation

The three measures given above behave similarly for model data generated by the

Monte Carlo simulation. Figure 2.9 shows the “average angle difference” correspond-

ing to each of the three measures at thermal equilibrium for a range of inverse temper-

atures β. At high temperatures (small β) all three measures give an expected angle

difference of π/4—there is no expected correlation, either between nearest neighbors

or between spins and the local field. At low temperature, the nearest-neighbor differ-

ences asymptotically approach the roll-pattern minimum difference while the expected

difference between φi and φloc
i drops to zero.

Figure 2.10 shows the effective local field strength κ (determined from the circular

variance of φi−φloc
i ) as a function of inverse temperature β, and the logarithmic rate

of change of κ with respect to β. The two are roughly proportional at the extremes

of temperature, with κ ≈ 0.0010β for β � 1 (high temperature equilibrium) and

κ ≈ 0.012β for β � 1 (low temperature equilibrium). In between these ranges there

is a sharp spike in ∂ log(κ)/∂ log(β), indicating the existence of a phase transition.

Figure 2.11 shows equilibrium steady states generated from random initial con-

ditions at various values of β. Note that at the higher-temperature samples, the

underlying pattern (on the length scale dopt) has fewer latent topological defects

than those “annealed” more quickly, i.e. held at lower temperatures throughout the

simulation.

2.2.2 Comparison with Cortical Data

Orientation Map at the Edge of Disorder

Maldonado and Gray and Maldonado et al. investigated the variance of orientation

preferences in cat V1. In contrast to the uniform map produced by the optical imaging

techniques, they found significant amounts of scatter even in linear zones. Near
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Figure 2.9: Orientation scatter at different inverse temperatures β. Variability of
orientation in equilibrium steady-state at different temperatures β. Shown is the
average of cos 2(φi−φj) where i, j are adjacent neighbors (+) at equilibrium; and the
average of cos 2(φj − φ′j) where φj is the orientation and φ′j is the local orientation

calculated as the field average with interaction Aij , (◦).
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Figure 2.10: Phase transition in center-surround XY model.
Top: Effective local field strength κ versus inverse temperature β. Data from Monte
Carlo simulations with random initial conditions.
Bottom: Rate of change of log κ with respect to log β. The sharp peak in ∂ log κ

∂ log β
indicates the phase transition.
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Figure 2.11: XY Configurations near the phase transition. Sample configurations
drawn from the XY equilibria at different inverse temperatures β. Simulations began
from random initial conditions.



56

pinwheel sites they found an even larger scatter of orientation preferences between

nearby cells. They estimate that their tetrode technique picks up neighboring cells

within a 65-micron seeing radius of the electrode tip.

Ignoring the finite volume taken up by each cell, if pairs of points are chosen from

a uniform distribution inside a sphere of radius 65µ, the expected distance between

the points is 66.9 ± 0.1µ (estimated with a simple Monte Carlo sampling scheme).

For computational convenience the simulations reported here are designed so that

one pixel corresponds to roughly 50 microns distance in the model cortex, so the

nearest-neighbor results should be comparable.

Maldonado and Gray report a mean absolute angle difference between simulta-

neously recorded cells of 19.7◦, or 0.438π/4. Consulting Figure 2.10, we see this

mean absolute nearest-neighbor difference corresponds closely to the simulation value

at log10(β) ≈ 2.2. This temperature, from Figure 2.11, lies just below the critical

temperature marking the phase transition. Thus the organization of the cortical ori-

entation map appears to lie just outside the threshold of disorder.

Orientation Scatter and Optical Imaging

In light of the disorder in V1 it is worth noting a potentially misleading artifact

of the differential imaging of intrinsic optical signals used by Blasdel and others to

generate the orientation maps. Each pixel in the CCD camera used to collect optical

signals combines signals resulting from the activities of perhaps dozens of cortical

cells. To improve the signal-to-noise ratio, Blasdel and coworkers digitally average

together 4 × 4 blocks of adjacent pixels. If the orientation preferences of single cells

is given by φ(x), and the individual response of each cell to a grating stimulus with

orientation φ0 is modeled to be q0 cos 2(φ0 − φ(x)), and the network interaction is

given by convolution with a center-surround kernel A, and the spatial averaging in the

experiment amounts to filtering with a Gaussian g(x, σ2
0), then the recorded responses
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will be given by 2

q0

∫
x′
g(x− x′, σ2

0)

∫
x′′
A(x′ − x′′) cos 2(φ0 − φ(x′′)) dx′′ dx′ = 〈q〉 cos 2(φ0 − 〈φ〉).

(2.16)

The signal strength 〈q〉(x) will be larger or smaller depending on the amount of

scatter in φ, except at the pinwheel centers where it will go smoothly to zero, but

there is no independent way to determine its strength relative to a standard measure.

The optically obtained orientation preference, 〈φ〉(x), will vary smoothly with sharply

defined pinwheel singularities regardless of the disorder of the underlying distribution.

Points that appear as highly localized singularities in the orientation map may in fact

be broad regions with salt-and-pepper admixtures of all orientations. This intuition

may be checked by taking the noisy maps derived above and processing them in a

simulated reproduction of Blasdel’s differential imaging method (see the MATLAB

function diffim.m in Appendix D.9). Recently, Maldonado, Gödecke, Gray and

Bonhoeffer have measured the scatter in orientation tuning in pinwheel vs. linear

zones, as well as individual cells’ tuning characteristics in these different regions.

They concluded that indeed the situation of cells near pinwheel centers does not

dictate that they have broader tuning than their linear-zone counterparts, and they

found no strong indication that the local variability against the background pattern

is larger in one kind of region than another [48].

2.2.3 Higher-Dimensional Maps

The generalized XY model may be extended in an ad hoc fashion to higher dimen-

sional maps such as orientation and ocular dominance, orientation and directional

preference, or orientation and spatial frequency.

The simplest extension of the XY model is to replace the XY vector confined to a

plane with an n-vector mapping points on the cortical surface to vectors in Rn. The

2c.f. Appendix A.3
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XY Hamiltonian is replaced by

H = −J
2

∑
i,j

Aij

(
x

(1)
i x

(1)
j + x

(2)
i x

(2)
j + · · ·+ x

(n)
i x

(n)
j

)
(2.17)

where Aij is the usual difference-of-Gaussians interaction in the plane and∑n
k=1

(
x

(k)
i

)2
= 1.

In contrast to the case in which the spin vector is confined to the plane, no

topological defects develop in the n-vector case for n ≥ 3. The projection into the

plane of two of the components will show singularities while the full vector field courses

smoothly “over” or “under” the singularity, as shown in Figure 2.12. In sufficiently

high dimensions, the pattern loses coherence as the volume “close” to a given vector

expands.

Orientation and Ocular Dominance

For a model of the joint development of ocular dominance and orientation, the spin

vector may be taken to lie on the surface of a sphere in R3—the “XYZ model”. We

may interpret xi, yi as the coordinates of an orientation vector and zi as the ocular

dominance. We obtain patterns in which the orientation singularities predominantly

lie near the extrema of the ocular dominance pattern (see Figure 2.13), out of geo-

metric necessity. This model is biologically opaque, however.

Directional Preference and the Orientation Map

Visual area 18 of the cat exhibit a map not only for stimulus orientation but also

for direction-of-motion preference [73, 66]. The familiar orientation map in this area

couples to the map for stimulus motion in such a way that the preferred direction of

motion lay perpendicular to the preferred orientation. Direction forms a 2π-periodic

quantity while orientation is only π-periodic. Therefore, if the orientation-preference

map only forms singularities of topological charge ±1, then there will necessarily be

line-singularities or fractures in the direction-preference map. These line singularities
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Figure 2.12: Vector field generated by XYZ model.
Top: Vector field generated with difference-of-Gaussians interaction. All arrows have
approximately uniform length. The vector field is smooth—there are no singularities
comparable to the topological defects in the XY model. Note the small square ac-
cented on the plane.
Bottom Left: Vectors over the small square region viewed in a projection in which
there appears to be a singularity at the center of the region.
Bottom Right: Vectors over the same region viewed in a different projection. Rather
than a exhibiting a singularity, the vectors at the center of the square are normal to
the plane of the first projection.
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Figure 2.13: Spin model for orientation and ocular dominance.
Left: Orientation-Preference Map, taken from the first two components of the
3-vector. Stars mark orientation singularities.
Right: Ocular Dominance Map, taken from the third component of the 3-vector.
Stars mark the same orientation singularities as on the Left. Diagram 1 mm x 1 mm.

end in half-charge point singularities in the direction field that coincide with the full

singularities in the orientation field, and were observed experimentally.

If the directional-preference map dominated the pattern formation process we

would expect to see double singularities in the orientation map and single singularities

in directional preference, without line singularities. It is straightforward to model the

development of a directional-preference vector [p, θ] under the influence of a pre-

established orientation map [q, φ] by using the Hamiltonian

H[θ|φ] = −1

2

∑
ij

Aij
{
J1pipj cos(θi − θj) + J2qipj cos 2(φi − θj)

}
with [qi, φi] in a fixed pattern. When the self-coupling of the directional vector is

sufficiently strong, J1 � J2, the directional map forms unit singularities (charge

±2π) in locations only weakly correlated with the orientation singularities. For suf-

ficiently strong J2 � J1, the orientation map forces the directional map to form line

singularities such as those shown in Figure 2.14.
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Figure 2.14: Orientation and directional motion maps.
Top Left: Directional Motion–Preference Map generated by coupling a 360◦ vector
both to itself and to an established orientation field. The box intersects a line singu-
larity running vertically down the left side of the pattern.
Top Right: Close-up view of the box from the top left image. The color indicates
the directional preference, as do the arrow heads. The arrow-less line segments indi-
cate the underlying orientation preference, which varies continuously across the line
singularity in directional preference.
Bottom Left: Orientation Preference Map, fixed during development of the direc-
tional field.
Bottom Right: Close-up of boxed area. Note continuity of the orientation map, in
contrast to the fracture in the direction map.
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Spatial Frequency Distribution

Given a vector map over the plane, we may choose to interpret the scalar magnitude of

the map as the preferred spatial frequency rather than the strength of the orientation-

tuning preference. We may then represent cortical cells as Gabor filters with spatial

frequency vector k acting on the feedforward signal:

fk(y) = cos(k · y) exp(−||By||2). (2.18)

We will take the Gaussian envelope to be circularly symmetric, i.e. B =

(
1/d

1/d

)
.

The response to an input signal with luminosity profile cos(k′ · y) is then the inner

product of this function with the filter 2.18:

R(k, k′, B) =

∫
y
fk(y) cos(k′ · y) dy (2.19)

=
d2π

2

[
exp

(
−d2||k + k′||2

4

)
+ exp

(
−d2||k − k′||2

4

)]
= d2π exp

[
−d

2

4

(
||k||2 + ||k′||2

)]
cosh

[
d2

2
k · k′

]
. (2.20)

For a fixed window size d, the response falls off rapidly if either k or k′ are too large,

or if the angle difference φ− φ′ is too large. Also, the response falls off more quickly

with angle difference if the spatial frequency is large.

I recreate the algorithm used by Hübener et al. to determine spatial-frequency

preference as follows. Taking a sample distribution of orientation and accompanying

scalar (Figure 2.15), I “present” stimuli with either “high” spatial frequency (5 on the

scale of 0 to 5.5 given by the extrema of the magnitude) and “low” spatial frequency

(3 on the same scale). The orientations of the stimuli are kπ/4, k ∈ {0, 1, 2, 3}. I sum

the responses to all orientations at each point and take the difference between “high”

and “low”. This ”raw data” I then convolve with a Gaussian of four-pixel radius

to simulate the optical and/or digital averaging used. The resulting quantity varies

within ±6 in arbitrary units. By placing a contour line at the level -5, I reproduce



63

Figure 2.15: Orientation and magnitude interpreted as spatial frequency.
Left: Orientation-preference map generated on a 50× 50 grid with cylindrical inter-
action function (6 pixels positive radius, 12 pixels negative radius).
Right: Magnitude for same simulation, which used magnitude decay rate of 10%.
Dark indicates lower magnitude; the color scale runs roughly from 0 to 5.5.

Figure 2.16: Preference for high vs. low spatial frequency. Interpreting the scalar
magnitude in Figure 2.15 as local spatial frequency–preference, the averaging scheme
described in the text resulted in this distribution of preference for higher over lower
spatial frequencies, averaged over all orientations. Small “X”s indicate the positions
of the singularities in Figure 2.15. See text for details.
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Hübener’s result that low spatial frequency–preference cells reside in isolated “islands”

in a “sea” of high spatial–frequency preference.

The desire to justify such seemingly artificial extensions of the XY model moti-

vated the search for a reduction from a synaptic to a feature-level learning rule, the

results of which are presented in the next Chapter.



CHAPTER 3

DERIVATION OF A GENERALIZED XY-MODEL FROM

COMPETITIVE HEBBIAN LEARNING

Chapter 2 described an application of the XY model to the study of cortical map

structure. In the form presented it is merely a phenomenological model like other

feature models: orientation is treated as an abstraction bearing little direct relation

to cortical architecture. To remedy this lack of biological significance it is desirable

to develop a model that does more justice to the biological underpinnings of these

maps, insofar as they have been characterized. To this end I introduce a model for

the development of the synaptic connections carrying visual information to V1 from

the thalamus, and show that under a biologically appopriate developmental dynamics

the synaptic weights embody the XY rule defined abstractly in Chapter 2:

φ̇(x) = η′
∫
x′
A(x− x′) sin 2(φ(x′)− φ(x)) dx′ (3.1)

where A(x) is the center-surround lateral cortical interaction, φ(x) is the π-periodic

orientation variable, and η′ is a rate constant.

3.1 Geometry of Geniculo-Cortical Weights

The fundamental conceptual issue for the biological justification of the XY-type mod-

els is finding the appropriate reduction from a high-dimensional description of the

synaptic weights to a low-dimensional feature description such as preferred orienta-

tion. The synaptic-weight function from geniculate locations r to cortical locations

x, denoted w(x, r), specifies an L2 (square integrable) function of r for each point

x corresponding to the classical receptive field of the neuron at x. That is, for fixed

x, geniculate activity at points r in the support of w(x, r) affect the cortical activity

65
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at a(x) while those at points r outside the support of w(x, r) do not. Conversely we

can also define the projective field of a geniculate neuron at location r as the support

(in x) of w(x, r). For convenience it is common to represent w(x, r) as a Gaussian

in r with mean varying as a function of x, in which case the support would strictly

be unbounded; in this case there is an implicit threshold weight below which single

units could not excite any activity, so the receptive fields are actually finite. I will

assume that at each point x the receptive field profile w(x, r) is bounded, L2, and has

defined first and second moments. These moments provide the reduction from the

infinite-dimensional to the finite-dimensional description because they are the quan-

tities of primary interest. I define the net fan-in f(x) or input mass of the receptive

field, the retinotopy R(x) or center of mass of the receptive field, the receptive field

size σ(x), the preferred orientation φ(x) and tuning strength q(x) in terms of the first

two moments, as given in table 3.1. I will refer to the net input mass interchangeably

as f(x) or as m(x). (In Chapter 4 I will introduce the complementary term, the net

fan-out g(r) from a geniculate site r.) The covariance matrix Q(x) is defined by

integrating the outer product uu
tr

, where u = r−R(x) is the displacement from the

center of mass.

Q(x) =

(
Q11 Q12

Q21 Q22

)
=

∫
uw(x, u+R(x))

(
u2

1 u1u2

u2u1 u2
2

)
du

m(x)

Define w̃(x, r) as the Gaussian with the same zeroth, first and second moments as

w(x, r):

w̃(x, r) =
m(x)

2π
√

detQ(x)
exp

(
−1

2
u

tr
Q(x)−1u

)
.
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Quantity Definition Interpretation Restriction

m(x)
∫
r w(x, r) dr Fan-In (input mass) m0

R(x)

∫
r w(x,r)r dr
m(x)

Retinotopy µx

Q(x)

∫
u w(x,u+R(x))uu

tr
du

m(x)
Covariance Matrix

σ20
2 I2 +

q0
2 Φ2(φ)

σ(x) TrQ(x) Receptive Field Width σ0

q(x)
√

(Q11 −Q22)2 + (2Q12)2 Orientation Selectivity q0

φ(x) 1
2 tan−1

(
2Q12

Q11−Q22

)
Preferred Orientation (free)

Table 3.1: Geometrical reduction of synaptic weight w(x, r). The zeroth and first
moments of the receptive field at x, w(x, r), define the input mass (fan-in) and the
retinotopy (center-of-mass). The 2 × 2 symmetric matrix of second moments Q(x)
defines the receptive field width, preferred orientation and orientation tuning strength.

I2 denotes the 2× 2 identity matrix, and Φ2(φ) is the matrix

 cos 2φ sin 2φ

sin 2φ − cos 2φ

.

In the simplest case I restrict m,R,Q, σ and q to constant values as indicated, allowing
only the orientation preference φ(x) to vary freely.
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As shown in Appendix 6.2.3, the level curves of w̃ in the r-plane form ellipses with

major axis oriented along the direction φ(x) given by

2Q12(x) = q(x) sin 2(φ(x) +
π

2
)

Q11(x)−Q22(x) = q(x) cos 2(φ(x) +
π

2
)

2Q12(x)

Q11(x)−Q22(x)
= tan 2(φ(x) +

π

2
) (3.2)

The φ(x) direction is the principal axis of the weight distribution of the receptive field

afferent to x. Hence to the extent that the direction of orientation preference is deter-

mined by the geometry of feedforward connections (as in the Hubel-Wiesel scheme)

φ(x) will also determine the preferred orientation of the unit at x. The quantity

q(x) is closely related to the eccentricity of the receptive field profile, with q = 0

indicating circularly symmetric or nonselective receptive fields, so I will consider it

as the magnitude of the orientation tuning vector χ(x) = q(x) (cos 2φ(x), sin 2φ(x))
tr

.

The width of the receptive field σ(x) is given by the trace of the covariance matrix:

σ(x) =
√

TrQ(x)/2. The quantities of net input m(x), retinotopy R(x), width σ(x),

orientation and magnitude φ(x), q(x) determine the shape of the receptive field profile

up through the second moments, as illustrated in Figure 3.1.

3.2 The Hebbian Model

The mechanism of Hebbian learning specifies a rule for modifying synaptic weights

based on the correlation of pre- and post-synaptic activity. In its simplest form, the

changes in the weights are directly proportional to the correlations:

∆w(x, r) = η〈I(r)a(x)〉. (3.3)

I will assume that an input pattern at the LGN, I(r), gives rise to activity a(x) in

the cortex given by filtering the feedforward signal
∫
r w(x, r)I(r) dr by a difference-
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Figure 3.1: Feed-forward weights from the LGN to the cortex. Shown are w(x, r)
for two different locations in the cortex, x = A and x = B. We can approximate
the weights from the LGN to x as an ellipsoidal Gaussian with major axis aligned
along the preferred orientation φ(x). Here φ(A) = π/6 while φ(B) = 3π/4. The
vertical bars denote the centers of the receptive fields for A and B, respectively. Both
Gaussians have the same input mass, width and orientation magnitude.

of-Gaussians center-surround function A(x) = g(x, σ2
+)− g(x, σ2

−):

a(x) =

∫
x′
A(x− x′)

∫
r
I(r)w(x′, r) dr dx′. (3.4)

The center-surround filter approximately represents the effects of competition medi-

ated by lateral inhibition in the cortex. From studies of tracer dye injections, the

lateral connectivity in cortex is known to be roughly isotropic on the hypercolumn

length scale (below 1000 microns). Excitatory pyramidal neurons in V1 are believed

to project further within the hypercolumn than inhibitory basket cells, but depending

on delays, threshold levels and disynaptic connections these longer-range connections

may be effectively inhibitory under normal cortical conditions. Solutions to the two-

population Wilson-Cowan equations also indicate center-surround–type behavior is

possible in regimes in which inhibitory self-interaction is shorter than excitatory self-

interaction, provided crossover interactions between the excitatory and inhibitory
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Figure 3.2: Orientation map auto-correlation function. Data provided courtesy of G.
Blasdel. The auto-correlation function of the orientation map was calculated using
matlab’s xcorr2 function with the map represented as a complex field z = qe2iφ.
Left: Magnitude of c(x), where c(x) =

∫
x′ z(x′ + x)z(x) dx.

Right: Signed auto-correlation function, the magnitude of c(x) times the sign of the
real part of c(x). This function illustrates that the first ring of correlation outside the
central region represents anticorrelation. Scale bars, one mm.

populations is strong enough [85]. Finally, an effective lateral circuit that imposes

short-range correlation and lateral anti-correlation matches the correlation structure

seen in Blasdel’s orientation-map data (see Figure 3.2).

The Hebb rule update of w(x, r) depends on the correlation function 〈I(r)a(x)〉,
which is given by

〈I(r)a(x)〉 =

∫
x′
A(x− x′)

∫
r′
〈I(r)I(r′)〉w(x′, r′) dr′ dx′.

It is natural to assume that the auto-correlation function G(r, r′) of the inputs is

invariant under translations r → r+ r0, reflections r → −r and rotations r → Rotθr.

Let G(r− r′) = 〈I(r)I(r′)〉 denote such a correlation function. Then the update rule

(3.3) becomes a double convolution

∆w(x, r) = η

∫
x′
A(x− x′)

∫
r′
G(r − r′)w(x′, r′) dr′ dx′. (3.5)
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The learning rate η is taken to be small enough that the weight changes are based on

the entire ensemble of input patterns I(r) rather than being driven by a small num-

ber of them. While the Hebbian update rule specifies the change in every geniculo-

cortical connection, I will restrict consideration to the changes occurring in the re-

duced variables m,RandQ. In this way I reduce the dynamical problem from the

high-dimensional synaptic-weight space to the low-dimensional “feature” space. Be-

cause the moment variables and the update rule are all linear in w, the derivation

of update rules for the reduced quantities is straightforward. (In Chapter 4, I will

consider some effects of nonlinear constraints.) In order to derive the XY model for

the orientation map, assume that the input mass and retinotopy are uniform, i.e.

m(x) = m0 (3.6)

R(x) = R0 + (x− x0)/µ. (3.7)

The effect of a small change ∆w in the weights on the orientation at x is felt through

the changes in the elements of the covariance matrix ∆Qij . Differentiating 3.2 gives

2∆φ(x) =

(
cos(2(φ(x) + π

2 ))2∆Q12(x)− sin(2(φ(x) + π
2 ))(∆Q11 −∆Q22)

q(x)

)
.

(3.8)

The changes induced in Q by ∆w are found by taking the second moments of equation

3.5.

∆Q(x) =
1

m0

∫
u
uu

tr
∆w(x, u+R(x)) du

=
η

m0

∫
u
uu

tr
∫
x′
A(x− x′)

∫
r′
G(u+R(x)− r′)w(x′, r′) dr′ dx′ du

=
η

m0

∫
x′
A(x− x′)

∫
r′
w(x′, r′)

∫
u
uu

tr
G(u+R(x)− r′) du dr′ dx′

In addition to the symmetry properties ofG, I takeG to be normalized, i.e.
∫
rG(r) dr =

1. This may be arranged by changing the constant η if necessary. Together with the
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symmetry of G this condition guarantees the center-of-mass of G is at 0:∫
u
G(u+ v) du = −v. (3.9)

Exploiting 3.9 we can calculate the inner integral:∫
u
uu

tr
G(u+R(x)− r′) du

=

∫
u

(
(u+R(x)− r′)(u+R(x)− r′)

tr
− u(R(x)− r′)

tr

−(R(x)− r′)u
tr
− (R(x)− r′)(R(x)− r′)

tr
)
G(u+R(x)− r′) du

= σ2
GI2 + (R(x)− r′)(R(x)− r′)

tr

where σG is the width of G. Similarly, the center of mass of w(x′, r′) is R(x′).

Denoting the difference in retinotopy R(x)−R(x′) by ∆R, we find∫
r′
w(x′, r′)

∫
u
uu

tr
G(u+R(x)− r′) du dr′

=

∫
r′

w(x′, r′)
m0

(
σ2
GI2 + (R(x)− r′)(R(x)− r′)

tr
)
dr′

= σ2
GI2 +

∫
r′

w(x′, r′)
m0

(
∆R +R(x′)− r′

) (
∆R +R(x′)− r′

)tr
dr′

= σ2
GI2 +

∫
r′

w(x′, r′)
m0

(
∆R∆R

tr
+ ∆R(R(x′)− r′)

tr

+(R(x′)− r′)∆R
tr

+ (R(x′)− r′)(R(x′)− r′)
tr
)
dr′

= σ2
GI2 + ∆R∆R

tr
+Q(x′)

= σ2
GI2 +

1

µ2
(x− x′)(x− x′)

tr
+Q(x′) (3.10)
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We can now finish the outer integral in 3.9:∫
x′
A(x− x′)

∫
r′
w(x′, r′)

∫
u
uu

tr
G(u+R(x)− r′) du dr′ dx′

= m0

∫
x′
A(x− x′)

(
σ2
GI2 +

1

µ2
(x− x′)(x− x′)

tr
+Q(x′)

)
dx′

= m0

(
1

µ2

∫
y
yy

tr
A(y) dy +

∫
x′
A(x− x′)Q(x′) dx′

)
=

m0

µ2
(σ2

+ − σ2
−)I2 +m0

∫
x′
A(x− x′)Q(x′) dx′.

Thus the update rule for the elements of Q(x) is given by

∆Q(x) = η

(
σ2

+ − σ2
−

µ2
I2 +

∫
x′
A(x− x′)Q(x′) dx′

)
. (3.11)

In terms of the quantities in equation 3.8 we can write

∆(Q11 −Q12)(x) = ηA ∗ (Q11 −Q22) = ηA ∗ (q(x) cos 2(φ(x) +
π

2
))

2∆Q12(x) = ηA ∗ (2Q12) = ηA ∗ (q(x) sin 2(φ(x) +
π

2
))

were we use the notation (f ∗ g)(x) =
∫
x′ f(x− x′)g(x′) dx′ to denote convolution. If

we take our orientation “spin” vectors to have uniform magnitude q(x) = q0 as in the

classical XY model, we have

2∆φ(x)

= η
q0
(
cos 2(φ(x) + π

2 )A ∗ sin 2(φ(x) + π
2 )− sin 2(φ(x) + π

2 )A ∗ cos 2(φ(x) + π
2 )
)

q0

= η

∫
x′
A(x− x′)(

cos 2(φ(x) +
π

2
) sin 2(φ(x′) +

π

2
)− sin 2(φ(x) +

π

2
) cos 2(φ(x′) +

π

2
)
)
dx′

= η

∫
x′
A(x− x′) sin(φ(x′)− φ(x)) dx′

which is the low-temperature XY update rule 3.1. This derivation exemplifies the

extreme case of reduction of a full synaptic model to a model for the develop-



74

ment of a single feature map, φ(x). We may instead choose to let both φ(x) and

q(x) vary, in which case the update rule specifies a change in the vector χ(x) =

q(x)(cos 2φ(x), sin 2φ(x))
tr

:

∆χ(x) = η

∫
x′
A(x− x′)χ(x′) dx′. (3.12)

3.3 Orientation and Retinotopy

Observations by Das and Gilbert demonstrated strong correlations between the ori-

entation map and the pattern of retinotopic distortion in cat V1 [18]. If we relax

the uniform retinotopy condition 3.7 then we can study the influence that retinotopic

distortions have on the orientation vector χ. We assume a uniform “background” or

“average local” retinotopy with respect to which the fine-grained retinotopic distor-

tion may be defined. On the scale of a few hypercolumns, this background retinotopy

is approximately uniform [4] and may be taken to be the identity map (up to rota-

tion and translation) if binocular effects are neglected. Therefore we take the local

retinotopic distortion s(x) to be defined as:

s(x) = R(x)−R0 −
x− x0

µ
. (3.13)

Introducing s(x) 6= 0 modifies the consequences of equation 3.5. In place of equation

3.10 we now have∫
r′
w(x′, r′)

∫
u
uu

tr
G(u+R(x)− r′) du dr′

= σ2
GI2 +

1

µ2
(x− x′ + ∆s)(x− x′ + ∆s)

tr
+Q(x′) (3.14)
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where ∆s = s(x) − s(x′). The update rule for Q, equation 3.9, is modified by the

addition of several terms that depend on the pattern of retinotopic distortion s(x).

∆Q = η

(
σ2

+ − σ2
−

µ2
I2 +

∫
x′
A(x− x′)x− x

′

µ
(s(x)− s(x′))

tr
dx′

+

∫
x′
A(x− x′)(s(x)− s(x′))

(
x− x′

µ

)tr

dx′ (3.15)

+

∫
x′
A(x− x′)(s(x)− s(x′))(s(x)− s(x′))

tr
dx′ + A ∗Q

)
The new terms are independent of Q(x), so they act as forcing terms driving the

orientation vector pattern away from what would otherwise be a steady state pattern.

Extracting the components of change of the orientation vector

χ1 = Q11 −Q22

χ2 = 2Q12

gives the expression:

∆χj = A ∗ χj + 2

(
A
x

tr

µ

)
∗ Sjs− 2s

tr
Sj (A ∗ s) + A ∗

(
s
tr
Sjs

)
(3.16)

for j = 1, 2. Equation 3.16 uses the notation

S1 =

(
1 0

0 −1

)
(3.17)

S2 =

(
0 1

1 0

)
(3.18)(

Ax
tr
)
∗ v =

∫
x′
A(x− x′)

{
(x1 − x′1)v1(x′) + (x2 − x′2)v2(x′)

}
dx′

To see the effects of the extra terms in equation 3.16, consider the arbitrary pattern

of retinotopic distortion shown in Figure 3.3. Recall that s(x) is the deviation of the

retinotopic position from a uniform background grid. It is a vector field with a 2π
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Figure 3.3: Sample retinotopic distortion pattern. A periodic pattern of retinotopic
distortion.
Left: The retinotopic distortion vector field s(x) with a lattice of positive and nega-
tive singularities.
Right: The distorted retinotopic map R(x). Note the negative singularities corre-
sponding to both horizontal shear (upper left) and vertical shear (lower right).
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rotation symmetry, unlike the π-periodic orientation vector. Figure 3.3 shows a lattice

of positive and negative singularities in s(x). Note that a positive singularity (angle of

s(x) changes in the same sense as position about singularity) may correspond either to

a dilation, a contraction or a local twist (twist not shown). A negative singularity in

s(x) corresponds to a shear in the retinotopic map. The value of ∆χj−A∗χj for each

component j = 1, 2 is depicted in Figure 3.4. Recall that the first component χ1 gives

the excess elongation of the receptive field in the horizontal direction, or equivalently

the preference for a horizontal contour over a vertical one. The second component χ2

gives the preference for +π/4 oblique over −π/4 oblique. The s(x)-singularities giving

isotropic dilation or contraction do not contribute substantially to either component.

The singularities giving horizontal shear drive χ1 positive while those giving vertical

shear drive χ1 negative—these singularities force the receptive fields to lie along the

direction of the shear. Since this particular distortion pattern has little oblique shear

there is almost no effect on χ2. Hence the model predicts a relationship between the

direction of shear in the retinotopic map in V1 and the preferred orientation. (See

section A.3 for further discussion of retinotopic shear.) We shall see in Chapter 5

that this relation between retinotopic shear and the orientation vector persist in a

more complete model for interaction between cortical map components, and may be

understood in terms of the symmetry properties of the different feature components.
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Figure 3.4: Effect of retinotopic distortion on the orientation map.
Left: Contribution of distortion terms to ∆χ1. Positive (light) indicates forcing
orientation vector towards the horizontal. Negative (dark) indicates forcing χ towards
vertical. Compare Figure 3.3.
Right: Contribution of distortion terms to ∆χ2. Note the largest effects come form
regions with pronounced vertical and horizontal retinotopic shear, and most of the
effect is on χ1.



CHAPTER 4

THE GENERALIZED XY MODEL: MONOCULAR CASE

The last chapter derived the XY rule for the orientation map from a Hebbian synap-

tic model with difference-of-Gaussians lateral interaction, assuming regular retino-

topy R(x) = x
µ and uniform input weight f(x) ≡ 1. In striate cortex, the input

weight to any layer is not necessarily uniform. It has been suggested, for example,

that the cytochrome oxidase “blob” regions, which have higher levels of activity than

the surrounding regions, represent loci of greater-than-average net input [47]. Some

researchers report that the blob patterns obtained histologically coincide with the

centers of the orientation singularities obtained optically, indicating that net input

weight may be linked to the orientation map. The retinotopic map is also not uniform

on a fine scale, but has deviations from the coarse background retinotopy. Although

globally the retinotopy obeys an approximate complex logarithmic mapping from

visual-field to cortical coordinates, on the scale of a few hypercolumns this map is

approximately the identity (up to a locally uniform rotation and translation). But

on a finer-grained scale, within a single hypercolumn, neighboring cells’ retinotopic

positions deviate from this identity map by small displacements that I will represent

with the (small) planar vector s(x). Das and Gilbert showed in 1997 that this retino-

topic distortion vector is significantly correlated with the orientation map [18]. In

addition, the ocular dominance map, which arises from differences in the net input

weight from the two eyes, is strongly related to the orientation map, with the ori-

entation singularities situated centrally within the OD stripes (or OD blobs, in the

case of cats [17]). In order to study the joint development of different cortical maps

it is necessary to relax the constraint on uniform input weight and retinotopy. In this

chapter, I derive a model for the linear interactions of different cortical-map features

(in the monocular case). To do this I modify the Turing-kernel equation that moti-

vated Chapter 3 to include constraints on the net fan-in weight to any cortical site

79
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and the net fan-out weight from any geniculate site. I posit an homogeneous initial

state with uniform fan-in and fan-out weights, uniform retinotopy and no orientation

preference. The cortical map appears through spontaneous breaking of the symmetry

of this homogeneous state. The coupling between different map features arises in two

ways: because lower moments of the receptive field profiles appear in the definitions of

the higher moments, nonuniformities in retinotopy (the first moment) directly affect

the development of the orientation vector (a second moment), while nonuniformities

in the input weight affect all higher moments. Additionally, all quantities are coupled

through the fan-out constraint, which thus plays a crucial role in determining the

joint feature maps. The importance of this constraint has been overlooked in earlier,

less geometrically motivated models.

4.1 The Cortical-Map Vector

The rough background retinotopy with globally correct orientation assumed in Chap-

ter 3, R(x) = x
µ , can arise from a combination of correlation-based learning and

chemical markers. The former was shown in a one-dimensional model analyzed by

Häussler and von der Malsburg [31] (see Chapter 1.3). In the absence of an additional

selection mechanism such as a chemical marker biasing the location of retinotectal

connections, the Häussler-von der Malsburg model will form either a right-to-left or

a left-to-right map with equal probability. In the two-dimensional case, the map

formation process is neutrally stable to any rotation or reflection of the respective

coordinate axes

R(x) =

(
cos(θ) − sin(θ)

± sin(θ) ± cos(θ)

)
· x
µ
.

Hence unless the initial conditions are somehow biased toward forming a global map

of the correct orientation, one may expect continuous deformations in the cardinal

directions by θ for different locations x. In order to establish a map of the correct

orientation, it is necessary to include a term describing some sort of location- or axis-

specific marker [82, 79]. Such a marker need only be present long enough to add

a slight asymmetry to random initial conditions, and removed after a brief initial
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Map Component Definition Name
f̂(x) f(x)−f0 Input Weight Deviation
s(x) R(x)− x

µ Retinotopic Distortion Vector

χ(x)

(
Q11(x)−Q22(x)

2Q12(x)

)
Orientation Tuning Vector

ρ(x) σ2(x)− σ2
0 R.F. Width Deviation

Table 4.1: Components of the cortical-map vector. See Table 3.1 for definitions of
f, R,Q.

period [33]. I will assume for the remainder a uniform coarse retinotopy given by

R(x) = x
µ + s(x), |s(x)| � 1. All spatial quantities such as R, s and x are taken to

represent vectors in the plane. The retinocortical magnification µ has units of either

(cortical) millimeters per degree of visual angle or (cortical) millimeters per (genic-

ulate) millimeters, as appropriate. Against this background, I define the following

quantities geomtrically given the feedforward weights w(x, r): The net deviation in

input mass, f̂(x)/f0 = (f(x) − f0)/f0, the retinotopic distortion vector s(x), the

orientation tuning vector χ(x) (from the axes and elongation of the covariance matrix,

see Appendix 6.2.3) and ρ(x), the deviation of the receptive field width (trace of the

covariance matrix) from its uniform value (see Table 4.1).

4.2 Dynamical Equation for w(x, r)

4.2.1 Constrained Hebb Rule

The basic pattern-forming mechanism for cortical-map development in the orientation-

XY model was the difference-of-Gaussians convolution kernel in equation 3.4. By

modifying this equation in order to constrain the total cortical input and geniculate

output weights at each location, I derive a dynamical equation that couples together

the patterns formed by different components (for example, orientation and retino-

topy). The unconstrained dynamics will be given by

Funcon[w](x, r) = λ

∫
x′
A(x− x′)

∫
r′
G(r − r′)w(x′, r′) dr′ dx′ − αw(x, r) + Ch(x, r)

(4.1)
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where α is a decay constant, λ determines the strength of the pattern-forming mech-

anism and Ch(x, r) is a small term biasing the retinotopic map to the correct orien-

tation, representing chemical markers. Limits to the physical size of dendritic arbors

and the packing density of afferent fibers, and limitations to the amount of stimula-

tion a cell can tolerate, prevent the net feedforward input to a given cortical location

f(x) from growing without bound. I assume an equilibrium level of input f0 to which

each cortical cell tends. Similarly, physiological and geometric constraints limit the

amount of outgoing synaptic weight that a given geniculate cell can project to the

cortex. The net output weight or fan-out, given by

g(r) =

∫
x
w(x, r) dx, (4.2)

also tends toward a preferred level g0 = µf0. I model this soft uniformity constraint

in both f(x) and g(r) with logistic growth terms:

Fcon[w](x, r) = w(x, r) {Kf(f(x)−f0) +Kg(g(r)−g0)} . (4.3)

These constraint terms are just in balance when every geniculate cell has the same

representation in the cortex and every cortical cell has the same average input activity.

4.2.2 Existence of an Homogeneous Steady State

I will assume that the dynamical system

1

η

d

dt
w(x, r) = F[w](x, r) := Funcon[w](x, r) + Fcon[w](x, r)

= λ

∫
x′
A(x− x′)

∫
r′
G(r − r′)w(x′, r′) dr′ dx′

−αw(x, r) + Ch(x, r) (4.4)

+w(x, r) {Kf(f(x)−f0) +Kg(g(r)−g0)}

w(x, r) ≥ 0
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has a homogeneous steady state of the form

w0(x, r) = f0f(|x
µ
− r|) (4.5)

where f(|u|) . exp(−k||u||2) as |u| → ∞, and the moments of f satisfy
∫
u f(u) du =

1,
∫
u f(u)u du = 0, and

∫
u f(u)uu

tr
du = σ2

0I2. This steady-state receptive-field

profile f(u) is circularly symmetric, so the orientation tuning vector χ(x) ≡ 0. It

represents an undistorted retinotopy, s(x) ≡ 0, and uniform input mass f̂(x)/f0 ≡
0 and output g(r)/g0 ≡ 1. I will further assume that at a critical value of λ

this homogeneous steady state loses stability to an inhomogeneous patterned state,

representing the initial development of a cortical map. The patterns of orientation,

retinotopy, etc., that emerge through such symmetry-breaking bifurcations may be

analyzed using techniques from group-representation theory in Chapter 5. To argue

that a steady state of the form described exists for equation 4.4, I will show explicitly

a steady state for a generalized dynamical system of similar form. Consider the

generalized equations

1

η

d

dt
w(x, r) = κ


λw(x, r)p

∫
x′ A(x− x′)

∫
r′ G(r − r′)w(x′, r′) dr′ dx′

−αw(x, r) + Ch(x, r)


+w(x, r) {Kf(f(x)−f0) +Kg(g(r)−g0)} , (4.6)

0 ≤ p ≤ 1

This form is very close to the Häussler-von der Malsburg equations, for which p = 1

(see section 1.3.3). By choosing particular forms for A,G and Ch it is possible to tailor-

make a steady state w0(x, r) = f(xµ − r) that is a circularly symmetric Gaussian with

receptive field width σ0:

f(u) = g(u, σ2
0) :=

1

2πσ2
0

exp(−||u||
2

2σ2
0

). (4.7)
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For analytical tractability I take each of the quantities to be composed of Gaussians:

A(x) = g(x, σ2
+)− g(x, σ2

−) (4.8)

G(r) = g(r, σ2
r ) (4.9)

Ch(x, r) = KChg
(
x

µ
− r, σCh

)
, (4.10)

where σ+ < σ−. Substituting these forms into equation 4.6, I calculate (see identities

for Gaussians in appendix A.3):

A ∗x G ∗r w0 =

∫
x′
A(x− x′)

∫
r′
G(r − r′)w0(x′, r′) (4.11)

= f0µ
2

{
g

(
x

µ
− r, σ2

0 + σ2
r +

σ2
+

µ2

)
− g

(
x

µ
− r, σ2

0 + σ2
r +

σ2
−
µ2

)}

λw
p
0A ∗x G ∗r w0 =

λµ2 f1+p
0 (2πσ2

0)1−p

2π



g

(
x
µ−r,

σ20(σ
2
0+σ

2
r+(σ+/µ)

2)

(1+p)σ20+σ
2
r+(σ+/µ)

2)

)
(1+p)σ20+σ2r+(σ+/µ)2

−
g

(
x
µ−r,

σ20(σ
2
0+σ

2
r+(σ−/µ)2)

(1+p)σ20+σ
2
r+(σ−/µ)2)

)
(1+p)σ20+σ2r+(σ−/µ)2


(4.12)

By choosing σ0 and p to satisfy

σ2
0 =

1− p
p

(
σ2
r +

(
σ+

µ

)2
)
, (4.13)

I make σ0 equal the width of the Gaussian in the first (positive) term of equation 4.12.

For reasonable choices of σr (100 microns) and σ+/µ (100 microns—this is the spread

of local cortical excitation converted to geniculate distances by the magnification

factor) and the convenient value of p = 0.5 I obtain the reasonable value σ0 ≈
140 microns for the steady-state geniculate receptive-field width. If I now set the

decay constant α appropriately then the decay term will just cancel the positive term
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from equation 4.12:

α =
µ2

2σ2
0

√
f0

2π
. (4.14)

I now choose KCh and σCh to match the remaining negative term from equation 4.12:

σ2
Ch =

2σ2
0

(
σ2

0 + σ2
r +

σ2−
µ2

)
3σ2

0 + σ2
r +

σ2−
µ2

(4.15)

KCh =
1

2π

(
3σ2

0 + σ2
r +

σ2−
µ2

) . (4.16)

With these ad hoc choices for the terms in the modified dynamical equation 4.6

the weight profile w0(x, r) = f0g
(
x
µ − r, σ

2
0

)
exactly cancels the “unconstrained”

terms. At the same time the constraint terms are balanced because f(x) ≡ f0

and g(r) ≡ g0 = µf0. The Gaussian form for Ch(x, r) is not unrealistic for a

chemical marker subject to diffusion, although the tightness of its distribution may

be unreasonable (given the widths stated above for σr, σ+ and σ− = 3σ+, I have

σCh ≈ 170 microns). The purpose of this construction is merely to make plausible a

localized isotropic, homogeneous steady-state receptive-field distribution for equation

4.4. To obtain the dynamical equation (4.4) of interest we decrease p from 0.5 to

0. Note that the steady-state Gaussian distribution w0 narrows to Dirac’s delta

function as p → 1. As p → 0 with κ = 0 the steady-state receptive field width

σ0 → ∞, according to equation 4.13. But the Mexican hat tends to contract the

receptive-field width. The receptive field width is taken to be the variance of the

receptive field distribution,

σ2 =
1

2
Tr

(∫
u
w(x, u+R(x))uutr du

)
(4.17)

=
1

2

∫
u
w(x, u+R(x))||u||2 du. (4.18)

Because σ2 is a linear functional of w, a dynamical expression for σ may be derived

directly from the full dynamical system for w. Taking w(x, r) to be of the form
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f0g(r − x/µ, σ2) for a time-dependent σ2, I calculate:

d

dt
σ2 =

1

2

∫
u

(
d

dt
w(x, u+R(x))

)
||u||2 du (4.19)

=
1

2

∫
u
ηFuncon[w](x, u+R(x))||u||2 du

=
η

2

∫
u


λ
∫
x′ A(x− x′)

∫
r′ G(u+R(x)− r′)w(x′, r′) dr′ dx′

−αw(x, u+R(x)) + Ch(x, u+R(x))

 ||u||2 du

=
η

2

∫
u


λ
(
f0g(u, σ2 + σ2

r + σ2
+)−f0g(u, σ2 + σ2

r + σ2
−)
)

−α f0 g(u, σ2) +KChg(u, σ2
Ch)

 ||u||2 du
= η

(
λf0 (σ2

+ − σ2
−)− α f0 σ

2 +KChσ
2
Ch

)
.

For reasonable parameter values and KCh ≈ 1, d
dtσ

2 < 0 for λ & 0.4, even if α = 0.

For α > 0 and large initial receptive field size, σ2 decreases rapidly. Indeed it is even

possible to have d
dtσ

2 < 0 when σ2 reaches zero! This conclusion renders irrelevant

the existence of a σ = ∞ steady state. It is the w ≥ 0 constraint that prevents

the collapse of the receptive fields to zero width distributions: as σ decreases, the

inhibitory surround in equation 4.4 would drive w negative away from the central

region. Because w is not allowed below zero weight, there is a net increase in the

fan-in weight f above f0 (see Figure 4.1). With the constraint in effect, the central

area of greatest interest for my purposes remains well approximated by a Gaussian,

while the periphery has a sharp edge at w = 0. Because the shape of this steady-state

receptive field cannot be determined analytically, I will approximate the homogeneous

state with the Gaussian w0 defined in equation 4.7. In the following, I will ignore

the small difference between f0 and fss, which can be incorporated with a change

in scale.
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Figure 4.1: Constrained receptive-field dynamics and steady-state.
Left: Steady-state shape of a single receptive field under a simplified dynamics,
involving only convolution with A and G, and the logistic constraint.
Right: Development of receptive field shape from initial Gaussian.
Initial receptive field profile: +++ . Intermediate r.f. profile: ∗∗∗ . Final r.f. profile:
◦ ◦ ◦ . The nonnegativity constraint forces the total fan-in mass fss higher than f0.
For this simulation fss ≈ 1.189f0.

4.3 Derivation of Linear Interactions Between Cortical-Map

Components

In the homogeneous steady state

w0(x, r) = f0g

(
x

µ
− r, σ2

0

)
:=
f0

2πσ2
0

exp

(
−
|xµ − r|

2

2σ2
0

)

the receptive fields are assumed to have uniform fan-in weight

f̂(x)

f0
=
f(x)−f0

f0
= 0,

regular retinotopy

s(x) = R(x)− x

µ
= 0,

circularly symmetrical profiles

χ(x) =

(
Q11 −Q22

2Q12

)
= 0
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and uniform widths

ρ(x) = σ2(x)− σ2
0 = 0.

Thus the cortical-map vector for the homogeneous Gaussian state is identically zero:

v =



f̂(x)/f0(
s1(x)

s2(x)

)
(
χ1(x)

χ2(x)

)
ρ(x)


≡ 0. (4.20)

Rather than study the linearization of equation 4.4 about w0(x, r) with respect to

arbitrary perturbations w0(x, r) + εh(x, r), I will restrict attention to the geometrical

properties of a perturbation h(x, r) corresponding to the cortical maps of interest. As

an inhomogeneous pattern in w develops from the homogeneous state, I will study

interactions between the components of v when all are of order ε:

|vi(x)| � 1, ∀i = 1, · · · , 6,∀x ∈ X. (4.21)

Each cortical-map “feature” vi(x) is a linear functional of w(x, r), hence of h(x, r) =

(w(x, r) − w0(x, r))/ε corresponding to a component of one of the zeroth, first or

second vector moments of w with respect to r at cortical location x. Therefore the

dynamical behavior of each is described by the corresponding “moment” of equation

4.4 (see Table 3.1 for the moment definitions):

d

dt
f̂(x) =

∫
r∈R2

ηF[w](x, r) dr (4.22)

d

dt
(f(x)s(x)) =

∫
r∈R2

ηF[w](x, r)

(
r − x

µ

)
dr (4.23)

d

dt
(f(x)χ(x)) =

∫
u∈R2

ηF[w](x, u+R(x))

(
u2

1 − u
2
2

2u1u2

)
du (4.24)

d

dt
(f(x)ρ(x)) =

∫
u∈R2

ηF[w](x, u+R(x))
||u||2

2
du (4.25)



89

Recall that the retinotopy R(x) = s(x) + x/µ includes the order ε retinotopic dis-

tortion. There is a cascade of perturbation effects from lower moments to higher

moments. Inhomogeneities in f(x) affect all the higher moment, as evident in equa-

tion 4.22. Inhomogeneities in the retinotopy vector s(x) affect the dynamics of the

orientation vector and the receptive field width. The dynamical constraints on weight

evolution (equation 4.3) include a logistic constraint on the net fan-out weight g(r)

from each geniculate location r. In the homogeneous state the fan-out has a uniform

value g0 = µ2f0, where µ is the geniculocortical magnification factor. Variation of

the fan-in weight, the centers of the receptive fields or their elongation in various direc-

tions spoil the uniformity of the fan-out, inducing a perturbation ĝ(r) = g(r)−g0.

For example, if the receptive fields of two nearby cortical cells move their centers

closer together than would be dictated by the homogeneous spacing |∆r| = |∆x|/µ,

the geniculate locations in the region of increased overlap gain net fan-out weight

while those just beyond the original cell centers lose fan-out weight. In this way the

uniform representation of all geniculate locations becomes compromised, so the lo-

gistic g-term provides reinforcement of the homogeneous state. In order to account

for the mutual interactions of perturbations in vector components arising from differ-

ent moments of the synaptic-weight profile, I develop a Taylor expansion of w(x, r)

about w0(x, r) = f0g
(
r − x

µ , σ
2
0

)
given v 6= 0. In order to express deviations of the

Gaussian profile from circular symmetry I introduce the bivariate Gaussian notation:

g(u,Q) =
1

2π
√

det(Q)
exp

(
−1

2
utrQ−1u

)
, (4.26)

where Q(x) =

(
Q11(x) Q12(x)

Q12(x) Q22(x)

)
is the (symmetric) covariance matrix of the

receptive field profile for w at x. When Q is a multiple of the identity matrix,

Q = σ2I2, the two notations g(u, σ2) and g
(
u, σ2I2

)
coincide. I also remind the

reader of the following notation: two matrices that arise frequently in calculations
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with the orientation vector are

S1 =

(
1

−1

)
(4.27)

S2 =

(
1

1

)
. (4.28)

Thus utrS1u and utrS2u are shorthand for u2
1 − u

2
2 and 2u1u2, respectively. To first

order in f̂/f0, s, χ and ρ, a perturbed receptive field profile for cortical location x is

given by:

w(x, r) = (f0 + f̂(x)) ·

g

(
r − x

µ
− s(x), (σ2

0 + ρ(x))I2 +
1

2

(
χ1(x) χ2(x)

χ2(x) −χ1(x)

))
= f0g(r − x

µ
, σ2

0) ·{
1 +
f̂(x)

f0
+

(r − x/µ) · s(x)

σ2
0

+
ρ(x)

σ2
0

(
||r − x/µ||2

2σ2
0

− 1

)
+ (4.29)

1

4σ4
0

(
χ1(x)(r − x/µ)trS1(r − x/µ) + χ2(x)(r − x/µ)trS2(r − x/µ)

)}
+O((f̂, s, χ, ρ)2)

(4.30)

Substituting the first-order perturbed weights 4.29 and 4.38 into the dynamical sys-

tems 4.4 and calculating the moments as in equation 4.22 yields equations for the

interactions mediated by the direct “geometrical” effects of lower moments on higher.
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For Gaussian identities used in calculating the moment integrals see Appendix A.3.

1

η

d

dt

f̂(x)

f0
= λA ∗

(
f̂
f0

)
− α

(
f̂
f0

)
−Kff̂

−Kg
∫
u
ĝ(u+R(x))g(u, σ2

0) du (4.31)

1

η

d

dt
s(x) = λA ∗ s− αs− λ

(
A
x

µ

)
∗
(
f̂
f0

)
−Kg

∫
u
ĝ(u+R(x))g(u, σ2

0)u du (4.32)

1

η

d

dt
χ1(x) = λA ∗ χ1 − αχ1 + λ

(
A
xtrS1x

µ2

)
∗
(
f̂
f0

)
+ 2λ

(
A
xtr

µ

)
∗ (S1s)

−Kg
∫
u
ĝ(u+R(x))g(u, σ2

0)
(
utrS1u

)
du (4.33)

1

η

d

dt
χ2(x) = λA ∗ χ2 − αχ2 + λ

(
A
xtrS2x

µ2

)
∗
(
f̂
f0

)
+ 2λ

(
A
xtr

µ

)
∗ (S2s)

−Kg
∫
u
ĝ(u+R(x))g(u, σ2

0)
(
utrS2u

)
du (4.34)

1

η

d

dt
ρ(x) = λA ∗ ρ− αρ+

(
A

(
λ
||x||2

µ2
+ σ2

r

))
∗
(
f̂
f0

)
+ 2λ

(
A
xtr

µ

)
∗ s

−Kg
∫
u
ĝ(u+R(x))g(u, σ2

0)
(
||u||2 − σ2

0

)
du (4.35)

Each quantity v̇i/η has a term λA ∗ vi−αvi pitting Turing-type pattern growth due

to the difference-of-Gaussians lateral interaction A against the decay rate α. Here ∗
denotes convolution in the x variable:

((f) ∗ (g)) (x) :=

∫
x′∈R2

f(x− x′)g(x′) dx′.

Therefore each component of the vector separately obeys dynamics that can form pat-

terns when λ increases beyond a critical value—although this value may be different

for different components vi. Because each of these self-interaction terms arises from

the same underlying pattern-forming mechanism A∗, each component of the cortical

map will become unstable to patterns at a common wavelength. This common length

scale allows the assumption in Chapter 5 of plane-periodic solutions in all compo-
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nents at once, and thus simplifies the search for bifurcating solutions considerably.

The logistic fan-in constraint makes the fan-in deviation f̂(x) decay at a rate Kf. If

there is a finite deviation of the net input weight from its uniform equilibrium value

f0, then each of the other v̇i is influenced by a convolution term of the form

λ

(
Af ′i

(
x

µ

))
∗
(
f̂
f0

)
:= λ

∫
x′∈R2

A(x− x′)f ′i
(

(x− x′)
µ

)(
f̂(x)

f0

)
dx′

where f ′i(u) generates a vector moment:

f ′i(u) =



u1, i = 2

u2, i = 3

utrS1u, i = 4

utrS2u, i = 5

||u||2 + σ2
r/λ, i = 6

. (4.36)

The various convolution kernels A(x)f ′i(x/µ) are pictured in Figure 4.2. Also shown

is A(x), corresponding to f ′1(x) := 1. Just as deviations in the zeroth moment or

fan-in weight affect the evolution of all higher moments, so do deviations in the first

moment, s(x), affect the second-order moment components χ1(x), χ2(x) and ρ(x).

The fourth terms in equations 4.33, 4.34 and 4.35 combine convolution with an inner

product. For example, the 4th term for the ρ̇ expression is interpreted as(
A
xtr

µ

)
∗ s =

∫
x′∈R2

A(x− x′)
(
(x1 − x′1)s1(x′) + (x2 − x′2)s2(x′)

)
dx′.
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Figure 4.2: Convolution kernels for the first-order interactions in equations 4.31–
4.35 induced by dependence of higher moments on lower moments. A: A(x).

B: A(x)
x1
µ . C: A(x)

x2
µ . D: A(x)

xtrS1x
µ2

. E: A(x)
xtrS2x
µ2

. F: A(x)

(
λ
||x||2
µ2

+ σ2
r

)
.

Dark indicates positive values.
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The terms for the two χ components are interpreted similarly. Each expression for v̇i

ends with a term, resulting from the fan-out constraint, of the form

−Kg
∫
u
ĝ(u+R(x))g(u, σ2

0)fi(u) du, fi(u) =



1, i = 1

u1, i = 2

u2, i = 3

utrS1u, i = 4

utrS2u, i = 5

||u||2 − σ2
0, i = 6

. (4.37)

With the exception of f6 these functions are identical to the f ′i that arose from

the fan-in constraint term. To obtain the full interactions I eliminate the fan-out

terms by rewriting the fan-out explicitly in terms of cortical-map components v. The

fan-out deviation ĝ(r) induced by f̂/f0, s, χ and ρ is found by integrating the first-

order Taylor expansion of the perturbed weight profile w(x, r), equation 4.29, in the

x variable. Once ĝ(r) is obtained the integrals in 4.37 may be computed, via the

Gaussian identities in appendix A.3. Substituting these integrals back into equations

4.31—4.35 completes the calculation. To first order in f̂/f0, s, χ and ρ the perturbed

fan-out is given by:

ĝ(r) =

∫
x′
g(r − x′/µ, σ2

0)f̂(x′) dx′ +

f0

σ2
0

∫
x′
g(r − x′/µ, σ2

0)(r − x′/µ) · s(x′) dx′ +

f0

4σ4
0

∫
x′
g(r − x′/µ, σ2

0)(r − x′/µ)trS1(r − x′/µ)χ1(x′) dx′ + (4.38)

f0

4σ4
0

∫
x′
g(r − x′/µ, σ2

0)(r − x′/µ)trS2(r − x′/µ)χ2(x′) dx′ +

f0

σ2
0

∫
x′
g(r − x′/µ, σ2

0)

(
||r − x′/µ||2

2σ2
0

− 1

)
ρ(x′) dx′

+O((f̂/f0, s, χ, ρ)2).
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The integrals arising from the fan-out perturbation terms in 4.37 are given in Table

4.2. For convenience I adopt the following shorthand:

G(x) := g

(
x

µ
, 2σ2

0

)

where g(u, σ2
0) is the normal distribution with width σ0 as defined by equation 4.7.

Also, given planar vectors a, b and c I will adopt the notation

(

[
a1

a2

]
,

[
b1

b2

]
) ∗

[
c1

c2

]
=


[a1, b1] ∗

[
c1

c2

]

[a2, b2] ∗

[
c1

c2

]


=

[
(a1 ∗ c1 + b1 ∗ c2)

(a2 ∗ c1 + b2 ∗ c2)

]
(4.39)

This combination of vectors and convolution appears in the last term for the ĝ-

integral of f(u) = u. Combining Table 4.2 and equations 4.31–4.35 gives the full

interactions, to first order in f̂/f0, s, χ and ρ. The resulting expressions take the

following form:
1

η

d

dt
v = −αv + λA ∗ v + K ∗ v (4.40)

where K is a six-by-six matrix of convolution kernels and

(K ∗ v)i :=
6∑
j=1

(∫
x′∈R2

Kij(x− x′)vj(x′) dx′
)
.

The convolution kernels composing K are given in Tables 4.3, 4.5 and 4.6. Each

convolution kernel Kij gives the first-order influence of the jth component of the

cortical-map vector vj(x) on the development of the ith component vi(x). The influ-

ence of the two retinotopic-distortion components on the two-vector representing the
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f(u)
∫
u ĝ(u+R(x))g(u, σ2

0)f(u) du

1 f0G ∗
(
f̂
f0

)
+
f0
σ20

(
xtr
2µ G

)
∗ s

+
f0
4σ40

([
xtrS1x

4µ2
,
xtrS2x

4µ2

]
G

)
∗ χ

+
f0
2σ40

((
||x||2
4µ2

+
σ20
2

)
G

)
∗ ρ

u f0

(
x
2µG

)
∗
(
f̂
f0

)
+
f0
σ20

((
σ20
2 I2 −

xxtr

4µ2

)
G

)
∗ s

+
f0
4σ40

([(
σ2

0I2 −
xxtr

4µ2

)
S1

x
2µ ,

(
σ2

0I2 −
xxtr

4µ2

)
S2

x
2µ

]
G

)
∗ χ

+
f0
2σ40

((
2σ2

0 −
||x||2
4µ2

)
x
2µG

)
∗ ρ

utrSiu f0

(
xtrSix

4µ2
G

)
∗
(
f̂
f0

)
+
f0
σ20

((
xtrSixx

tr

8µ3
− σ2

0
xtr
2µ Si

)
G

)
∗ s

(i = 1, 2) +
f0
4σ40

{([
xtrSixx

trS1x
16µ4

,
xtrSixx

trS2x
16µ4

]
G

)
∗ χ

−
((

2σ2
0
||x||2
4µ2
− σ4

0

)
G

)
∗ χi

}
+
f0
2σ40

(
xtrSix

4µ2

(
||x||2
4µ2
− 3σ2

0

)
G

)
∗ ρ

||u||2 f0

((
||x||2
4µ2

+ σ2
0

)
G

)
∗
(
f̂
f0

)
+
f0
σ20

(
||x||2xtr

8µ3
G

)
∗ s

+
f0
4σ40

([
xtrS1x

4µ2
,
xtrS2x

4µ2

](
||x||2
4µ2
− σ2

0

)
G

)
∗ χ

+
f0
2σ40

((
||x||2
4µ2
− 2σ2

0

)
G
||x||2
4µ2

)
∗ ρ

Table 4.2: Integrals of fan-out constraint terms, monocular model.



97

Kij j = 1

i = 1 −f0 (KgG+Kfδ)
i = 2

i = 3

 −λ
(
x
µA
)
−f0Kg

(
x
2µG

)

i = 4 λ
xtrS1x
µ2

A−f0Kg
xtrS1x

4µ2
G

i = 5 λ
xtrS2x
µ2

A−f0Kg
xtrS2x

4µ2
G

i = 6

(
λ
||x||2
µ2

+ σ2
r

)
A−f0Kg

||x||2
4µ2

G

Table 4.3: First-order influence Kij of fan-out on cortical-map vector. Monocular
model.

orientation map, for example, is given by the four convolution kernels(
K42 K43

K52 K53

)

in Table 4.5. Each component also interacts with itself through convolution with the

difference-of-Gaussians λA, as well as obeying intrinsic decay at rate α.

Euclidean symmetry of the linear system and the steady state leads to degeneracy

of the eigenvalues at a symmetry-breaking bifurcation. The analysis of solutions of

the pattern-formation problem depends on the techniques of equivariant bifurcation

theory, developed in the next chapter.
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Kij (j = 2, j = 3)

i = 1 −Kgf0
σ20

(
xtr
2µ G

)


i = 2

i = 3

 −Kgf0
σ20

((
σ20
2 I2 −

xxtr

4µ2

)
G

)

i = 4 2λx
tr
µ AS1 −

f0Kg
σ20

xtr
2µ S1

(
xxtr

4µ2
− σ2

0I2

)
G

i = 5 2λx
tr
µ AS2 −

f0Kg
σ20

xtr
2µ S2

(
xxtr

4µ2
− σ2

0I2

)
G

i = 6 2λx
tr
µ A− f0Kg

σ20

(
||x||2
4µ2
− σ2

0

)
xtr
2µ G

Table 4.4: First-order influence Kij of retinotopic distortion on cortical-map vector.
Monocular model.
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Kij j = 4 j = 5

i = 1 −Kg f0
4σ40

xtrS1x
4µ2

G −Kg f0
4σ40

xtrS2x
4µ2

G
i = 2

i = 3

 −Kg f0
4σ40

((
σ2

0 −
xxtr

4µ2

)
S1

x
2µG

)

−Kg f0
4σ40

((
σ2

0 −
xxtr

4µ2

)
S2

x
2µG

)
i = 4 −Kg f0

4σ40

(
(xtrS1x)2

16µ4
− 2σ2

0
||x||2
4µ2

+ σ4
0

)
G

−Kg f0
4σ40

xtrS1xx
trS2x

16µ4
G

i = 5 −Kg f0
4σ40

xtrS1xx
trS2x

16µ4
G

−Kg f0
4σ40

(
(xtrS2x)2

16µ4
− 2σ2

0
||x||2
4µ2

+ σ4
0

)
G

i = 6 −Kg f0
4σ40

xtrS1x
4µ2

(
||x||2
4µ2
− 2σ2

0

)
G

−Kg f0
4σ40

xtrS2x
4µ2

(
||x||2
4µ2
− 2σ2

0

)
G

Table 4.5: First-order influence Kij of orientation components on cortical-map vector.
Monocular model.
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Kij j = 6

i = 1 −Kg f0
2σ40

((
||x||2
4µ2

+
σ20
2

)
G

)


i = 2

i = 3

 −Kg f0
2σ40

((
2σ2

0 −
||x||2
4µ2

)
x
2µG

)

i = 4 −Kg f0
2σ40

(
xtrS1x

4µ2

(
||x||2
4µ2
− 3σ2

0

)
G

)
i = 5 −Kg f0

2σ40

(
xtrS2x

4µ2

(
||x||2
4µ2
− 3σ2

0

)
G

)
i = 6 −Kg f0

2σ40

(
||x||4
16µ4

− 3σ2
0
||x||2
4µ2
− σ40

2

)
G

Table 4.6: First-order influence Kij of receptive-field width deviation on cortical-map
vector. Monocular model.



CHAPTER 5

SYMMETRY ANALYSIS OF CORTICAL-MAP

FORMATION: MONOCULAR CASE

Chapter 4 presented a nonlinear developmental dynamics for geniculo-cortical weights

derived from a Hebbian learning rule for feed-forward connections and a center-

surround lateral interaction within cortex:

1

η

d

dt
w(x, r) = F0[w](x, r)

= −αw(x, r) (5.1)

+λ

∫
x′
A(x− x′)

∫
r′
G(r − r′)w(x′, r′) dr′ dx′ + Ch(x, r)

+w(x, r) {Kf(f(x)−f0) +Kg(g(r)−g0)}

w(x, r) ≥ 0

This equation has a steady state of the form

wss(x, r) = f0f(|r − x

µ
|) (5.2)

which is stable for sufficiently small values of λ/α. When a critical eigenvalue crosses

the imaginary axis, either as the decay α decreases or the pattern-forming feedback

λ increases, we have the growth of a pattern of deviations from the steady-state

receptive field profiles wss. The zeroth, first and second moments of the deviation of

w(x, r) from the isotropic, homogeneous steady-state profile forms the cortical-map

vector with components v1, · · · , v6 as defined in Table 5.1.

From the underlying dynamical system 5.1, Chapter 4 shows how to derive a

reduced dynamical system governing the development of the cortical-map vector,

101
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Vector
Component

Model
Variable Description

v1(x)
f̂(x)
f0

Deviation of the total input mass from the homo-
geneous steady state value.

[
v2
v3

]
s(x)

Deviation of the retinotopy from the average back-
ground R(x) = x

µ .

[
v4
v5

]
χ(x)

Orientation preference vector: deviation of recep-
tive field profile from circular symmetry.

v6(x) ρ(x)
Deviation of receptive field size from uniform
steady state value.

Table 5.1: Components of the cortical-map vector.

including interactions between its components, through first order in |v|:

1

η

d

dt
v = F[v] = −αv + λA ∗ v + K ∗ v (5.3)

It is then possible to study the formation of cortical-map patterns as a bifurcation

from the homogeneous steady state 5.2 in terms of the dynamical system 5.3.

The bifurcation picture is complicated by the high degree of symmetry in the

system. As described in Appendix A.3, when a dynamical system commutes with

a set of symmetries, the bifurcation problem becomes degenerate and the symmetry

group of the system must be exploited to find bifurcating solution branches. The

“spontaneous” appearance of solutions with symmetry less than that of the under-

lying dynamical system (i.e. the symmetry of a proper subgroup of the group of

symmetries of the dynamical system) is called spontaneous symmetry breaking and

provides the mechanism for creating structured solutions in an otherwise structureless

system—such as the creation of an anisotropic cortical map from an initially isotropic



103

architecture.

The first task in bringing to bear group-theoretic methods for the identification

of solutions of equations 5.3 is to sort out their symmetries. The symmetry relations

between different components of the cortical-map vector, such as orientation and

retinotopy, will govern the interactions between these components in the bifurcating

patterns.

The underlying system from which 5.3 derives already has significant symmetry

which is preserved by the reduction process. I will first describe these symmetries,

describe the symmetry relations of orientation, mass and retinotopy, and then show

the group action under which 5.3 is equivariant (section 5.1). Then I will impose

certain periodicity assumptions on the solutions to 5.3 in order to study fundamental

properties of the solutions, in 5.2. In section 5.3.1, I will use the irreducible rep-

resentations of the group of symmetries of the restricted solutions to simplify the

eigenvalue problem associated with 5.3, and classify the kinds of bifurcating patterns

that may be expected generically. Finally, in section 5.4, I will display samples of the

kinds of cortical-map patterns formed by this system for the particular convolution

kernels used earlier (those derived in Chapter 4). Background material on equivariant

bifurcation theory with tutorial examples may be found in Appendix A.3.

5.1 Equivariance

To a first approximation, the local architecture of V1 is invariant under the group of

rotations, translations and reflections of the plane—or E2, the Euclidean symmetries

of the plane. E2 is the semi-direct product of the circle group O2 (the rotations and

reflections of the plane about the origin) with the translation group T2. These groups

act on functions f(x, r), f : R2 × R2 → R as follows:

Translation: T(δx,δr)[f ] = f(x− δx, r − δr)
Rotation: Rotψ[f ] = f(R−ψx,R−ψr)

Reflection: Ref [f ] = f(S1x, S1r)
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where Rψ =

(
cosψ − sinψ

sinψ cosψ

)
is a 2 × 2 rotation matrix and S1 =

(
1 0

0 −1

)
reflects about the horizontal axis. The translation operator has two indices δx, δr.

The uniform background retinotopic map that we assume will have a magnification

µ, in which case the dynamical system 5.1 should be invariant under the translation

action when the translations have the form T(µδr,δr).

For each operator γ I demonstrate equivariance, i.e.

γ [F0[w]] = F0 [γ[w]] (5.4)

Translation Invariance

Translation invariance follows from the convolution structure of the second term of

equation 5.1, the form of the chemical marker term Ch(x, r) = Ch(‖r − x/µ‖), and

the other terms’ linear dependence on w or integrals of w. Note that without the

chemical marker term the system is invariant under both translations in x and in r

separately.

To be shown:

T(µδr,δr) [F0[w]] = F0

[
T(µδr,δr)[w]

]
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T(δx,δr) [F0[w]]

= −αw(x− δx, r − δr)

+λ

∫
x′
A(x− δx− x′)

∫
r′
G(r − δr − r′)w(x′, r′) dr′ dx′

+Ch(x− δx, r − δr)

+w(x− δx, r − δr)Kf
(
f0 −

∫
r
w(x− δx, r) dr

)
+w(x− δx, r − δr)Kg

(
g0 −

∫
x
w(x, r − δr) dx

)
= −αw(x− δx, r − δr)

+λ

∫
x′
A(x− x′)

∫
r′
G(r − r′)w(x′ − δx, r′ − δr) dr′ dx′

+Ch(‖x− δx
µ

− (r − δr)‖)

+w(x− δx, r − δr)Kf
(
f0 −

∫
r
w(x− δx, r − δr) dr

)
+w(x− δx, r − δr)Kg

(
g0 −

∫
x
w(x− δx, r − δr) dx

)
= F0

[
T(δx,δr)[w]

]
– when δr = µδx.

�

Rotation and Reflection Invariance

To be shown:

Rotψ [F0[w]] = F0
[
Rotψ[w]

]
Ref [F0[w]] = F0 [Ref [w]]

Let M be a 2 × 2 matrix representing either a rotation M = Rψ or a reflection

M = S1Rψ. In either case | detM | = 1. Invariance follows from the O2-invariance

of the convolution kernels A and G and the chemical marker term Ch, and from the
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rotational invariance of integration:∫
x∈R2

f(Mx) dx =

∫
x∈R2

f(x)| detM | dx

For γ ∈ O2,

γ [F0[w]]

= −αw(Mx,Mr)

+λ

∫
x′
A(Mx− x′)

∫
r′
G(Mr − r′)w(x′, r′) dr′ dx′

+Ch(Mx,Mr)

+w(Mx,Mr)

(
f0 −

∫
r
w(Mx, r) dr

)
+w(Mx,Mr)

(
g0 −

∫
x
w(x,Mr) dx

)
= −αw(Mx,Mr)

+λ

∫
x′
A(x−M−1x′)

∫
r′
G(r −M−1r′)w(x′, r′) dr′ dx′

+Ch(‖M
(
r − x

µ

)
‖)

+w(Mx,Mr)

(
f0 −

∫
r
w(Mx,Mr)

dr

| detM |

)
+w(Mx,Mr)

(
g0 −

∫
x
w(Mx,Mr)

dx

| detM |

)
= −αw(Mx,Mr)

+λ

∫
x′
A(x− x′)

∫
r′
G(r − r′)w(Mx′,Mr′)

dr′

| detM |
dx′

| detM |
+Ch(x, r)

+w(Mx,Mr)

(
f0 −

∫
r
w(Mx,Mr) dr

)
+w(Mx,Mr)

(
g0 −

∫
x
w(Mx,Mr) dx

)
= F0[γ[w]]

�

Not only is the dynamical system for the synaptic weights invariant under the
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Euclidean group, the steady state solution wss is as well (see equation 5.2). Because

the dynamics for the cortical-map vector, equation 5.3, derive from linearization of

E2-invariant dynamics about an E2-invariant steady state, we expect that equation

5.3 should also be Euclidean-invariant. However its invariance is not immediately

obvious: for example, the convolution kernels involved are not rotationally invariant

(see Figure 4.2). Furthermore, we now have an n-dimensional vector field over the

plane f : R2 → Rn rather than a synaptic weight-type function f : R2 × R2 → R.

We must identify the action of E2 appropriate to this new setting and show the

equivariance of equation 5.3 directly.

Consider the components of the cortical-map vector v(x) in turn. The fan-in mass

is a scalar function of cortical position f(x), so its transformation is simply governed

by changing coordinates in the underlying plane:

Tδx[f](x) = f(x− δx) (5.5)

Rotψ[f](x) = f(R−ψx) (5.6)

Ref [f](x) = f(S1x) (5.7)

The retinotopic distortion vector s(x) transforms under rotations not only due to the

rotation of the planar coordinates x but also by rotating with respect to its own axes:

Tδx[s](x) = s(x− δx) (5.8)

Rotψ[s](x) = R+ψs(R−ψx) (5.9)

Ref [s](x) = S1s(S1x) (5.10)

The orientation preference vector χ(x) also transforms both through the change of

x-coordinates and through the direct action of rotation on χ. But while a rotation

through π reverses the direction of the retinotopic distortion vector, it leaves the

preferred orientations (principal axes of the receptive fields) unchanged. Recall that
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χ is a π-periodic quantity:

χ(x) =

(
cos 2φ(x)

sin 2φ(x)

)
.

Whereas rotating space through an angle ψ rotates s(x) also by ψ, this action “ro-

tates” χ by 2ψ.

Finally, reflection sends 2φ to −2φ, so it acts on χ(x) and s(x) in the same way.

Therefore the action of E2 on χ(x) is given by:

Tδx[χ](x) = χ(x− δx) (5.11)

Rotψ[χ](x) = R2ψχ(R−ψx) (5.12)

Ref [χ](x) = S1χ(S1x) (5.13)

Figure 5.1 illustrates the transformation of s(x) and χ(x) under rotation and reflec-

tion. If we include a sixth component in the cortical-map vector denoting the devi-

ation of the receptive field widths from their equilibrium values, ρ(x) = σ2(x) − σ2
0,

it transforms in the same manner as the fan-in f(x).

Altogether, the action of E2 on v(x) may be expressed as follows:

Tδx[v](x) = v(x− δx) (5.14)

Rotψ[v](x) =


1

Rψ

R2ψ

1

v(R−ψx) (5.15)

Ref [v](x) =


1

S1

S1

1

v(S1x). (5.16)

The difference in action on the two quantities s(x) and χ(x) will determine the kinds

of patterns that can be formed when they are coupled together.
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Retinotopic Distortion Orientation Tuning

Figure 5.1: E2 action on s(x) and χ(x). Top: Initial patterns. Second Row:
Rotation by π/2. Third Row: Rotation by π. Note the retinotopic distortion field
is reversed from row 1 to row 3 (compare corner A) while the orientation field is the
same (compare corner C). Bottom Row: Reflection in horizontal.
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It remains to show the equivariance of the cortical-map vector dynamics in equa-

tion 5.3 under this action:

F[v](x− δx) = F[v(x− δx)] (5.17)
1

Rψ

R2ψ

1

F[v](R−ψx) = F




1

Rψ

R2ψ

1

v(R−ψx)




1

S1

S1

1

F[v](S1x) = F




1

S1

S1

1

v(S1x)


Translation invariance follows from the convolution structure of F as it did for F0:

F[v] = −αv + λA ∗ v + K ∗ v

Similarly, O2 invariance follows immediately for the two terms in F that are multiples

of the identity In,

Rotψ[−αv + λA ∗ v] = −αRotψ[v] + λA ∗
(
Rotψ[v]

)
Ref [−αv + λA ∗ v] = −αRef [v] + λA ∗ (Ref [v]) ,

because the convolution kernel A(x) is itself O2 invariant.

The O2 equivariance of the matrix-convolution operator K poses the only diffi-
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culty. For example, for Rotψ we must show:


1

Rψ

R2ψ

1


[∫
x′

K((R−ψx)− x′)v(x′) dx′
]

=

∫
x′

K(x− x′)




1

Rψ

R2ψ

1


∫
x′

v(R−ψx
′)

 dx′.

An analogous expression is required for Ref .

I will break down the demonstration of equivariance according to a natural block

structure for K coinciding with the block-diagonalization of the group action 5.17.

For example, the influence of retinotopic distortion s on the net fan-in deviation f̂

is given by the 1 × 2 matrix Ks→f̂ = (K12, K13). I will give examples showing

the equivariance of several components of K. (The complete list of formulae for the

different components of K are given in Tables 4.3, 4.4, 4.5 and 4.6.)

K =


Kf̂→f̂ Ks→f̂ Kχ→f̂ Kρ→f̂
Kf̂→s Ks→s Kχ→s Kρ→s

Kf̂→χ Ks→χ Kχ→χ Kρ→χ

Kf̂→ρ Ks→ρ Kχ→ρ Kρ→ρ


First consider the self-interaction terms Kf̂→f̂, Ks→s, Kχ→χ and Kρ→ρ. Two of

these represent the self-interactions of the scalar fields f̂ and ρ, on which O2 acts

trivially:

Kf̂→f̂ = −f0 (KgG(x) +Kfδ(x))

Kρ→ρ = −Kg
f0

2σ2
0

G(x)

(
‖x‖4

16µ4
− 3σ2

0
‖x‖2

4µ2
−
σ4

0

2

)

Recall that G(x) = g(xµ , 2σ
2
0) is a circularly symmetric Gaussian, and δ(x) denotes
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Dirac’s delta-function. Both Kf̂→f̂ and Kρ→ρ are thus O2-invariant, as required.

The vector self-interaction terms Ks→s and Kχ→χ are somewhat more compli-

cated. Consider first Ks→s:

Ks→s(x) = G(x)

(
c1I2 + c2xx

tr
)

c1 = −Kg
f0

2

c2 =
Kgf0

4µ2σ2
0

To be shown:

Rψ

∫
x′
Ks→s((R−ψx)− x′)s(x′) dx′ =

∫
x′
Ks→sRψs(R−ψ) dx′.

Rψ

∫
x′Ks→s((R−ψx)− x′)s(x′) dx′

= Rψ

∫
x′
Ks→s(R−ψ(x− x′))s(R−ψx′)

dx′

| detR−ψ|

= Rψ

∫
x′
G(R−ψ(x− x′))

(
c1I2 + c2R−ψ(x− x′)(x− x′)

tr
Rψ

)
s(R−ψx

′) dx′

= Rψ

∫
x′
G(x− x′)

(
c1R−ψI2Rψ + c2R−ψ(x− x′)(x− x′)

tr
Rψ

)
s(R−ψx

′) dx′

=

∫
x′
G(x− x′)

(
c1I2 + c2(x− x′)(x− x′)

tr
)
Rψs(R−ψx

′) dx′

=

∫
x′
Ks→sRψs(R−ψ) dx′

�

The demonstration for the reflection operator is identical: substitute S1 for Rψ

throughout.
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The self-interaction kernel for χ is

Kχ→χ(x)

= G(x)

c1I2 + c2‖x‖2I2 + c3

 (x
tr
S1x)2 (x

tr
S1x)(x

tr
S2x)

(x
tr
S1x)(x

tr
S2x) (x

tr
S1x)2


= G(x)

c1I2 + c2‖x‖2I2 + c3

 x
tr
S1x

x
tr
S2x

[ xtr
S1x x

tr
S2x

]
c1 = −Kg

f0

4

c2 = −Kg
f0

8µ2σ2
0

c3 = −Kg
f0

64µ4σ4
0

.

Recall that S2 =

(
0 1

1 0

)
.

To be shown:

R2ψ

∫
x′
Kχ→χ((R−ψx)− x′)s(x′) dx′ =

∫
x′
Kχ→χR2ψs(R−ψ) dx′.

We will need the following identity, which shows how rotating the x-coordinates
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by ψ “rotates” the orientation coupling matrix by 2ψ: (R−ψx)
tr
S1(R−ψx)

(R−ψx)
tr
S2(R−ψx)

 =

 x
tr
RψS1R−ψx

x
tr
RψS2R−ψx



=


x

tr
(

cos 2ψ sin 2ψ

sin 2ψ − cos 2ψ

)
x

x
tr
(
− sin 2ψ cos 2ψ

cos 2ψ sin 2ψ

)
x


=

 cos 2ψ
(
x

tr
S1x

)
+ sin 2ψ

(
x

tr
S2x

)
− sin 2ψ

(
x

tr
S1x

)
+ cos 2ψ

(
x

tr
S2x

)


= R−2ψ

 x
tr
S1x

x
tr
S2x

 (5.18)
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Using the identity 5.18 for the equality ∗ = below, we now can show equivariance:

R2ψ

∫
x′
Kχ→χ((R−ψx)− x′)χ(x′) dx′

= R2ψ

∫
x′
Kχ→χ(R−ψ(x− x′))χ(Rψx

′)
dx′

| detR−ψ|

= R2ψ

∫
x′
G(R−ψ(x− x′))(c1I2 + c2‖R−ψ(x− x′)‖2I2

+c3

 (R−ψ(x− x′))trS1(R−ψ(x− x′))

(R−ψ(x− x′))trS2(R−ψ(x− x′))

[ Trans. of same
]
)χ(Rψx

′) dx′

∗ = R2ψ

∫
x′
G(x− x′)(c1I2 + c2‖x− x′‖2I2

+c3R−2ψ

 (x− x′)trS1(x− x′)

(x− x′)trS2(x− x′)

[ Trans. of same
]
R2ψ)χ(Rψx

′)) dx′

=

∫
x′
G(x− x′)(c1I2 + c2‖x− x′‖2I2

+c3

 (x− x′)trS1(x− x′)

(x− x′)trS2(x− x′)

[ Transpose of same
]
)R2ψχ(Rψx

′)) dx′

=

∫
x′
Kχ→χ(x− x′)R2ψχ(R−ψx

′) dx′

�

Equivariance of the cross-feature interactions, e.g. Ks→χ, may be shown using

similar identities to 5.18.

5.2 Restriction to Plane-Periodic Solutions

The E2-equivariance of the synaptic-weight dynamical system 5.1 and the steady state

5.2, which is inherited by the linear feature-map dynamical system 5.3 and its steady

state v ≡ 0, has significant consequences for the structure of patterns that emerge

at a bifurcation. When the homogenous steady state of a Γ-equivariant dynamical

system v̇ = F[v] loses stability, branching solutions to dF[v] = 0 that lie in fixed-
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point subspaces of isotropy subgroups of Γ may be expected to occur generically,

provided that1

1. the nullspace ker dF is finite dimensional;

2. the intersection of ker dF with a given fixed-point subspace is one-dimensional.

The second requirement picks out those patterns with the symmetry of the axial sub-

groups of Γ. If the isotropy subgroup2 under which a pattern is invariant picks out a

one-dimensional subspace then the pattern is uniquely identified up to scalar multi-

plication. In this way the different axial subgroups classify the bifurcating patterns.

The first requirement is violated a priori because of rotational invariance: if for

some nonzero v(x),dF[v](x) = 0, then for any angle ψ,dF[v](Rot−ψx) = 0 as well.

Therefore the kernel of df is infinite-dimensional. To overcome this difficulty I restrict

attention to patterns that are periodic on a planar lattice, in the hopes that these

solutions will give insight to the structure of the more irregular arrangements seen in

vivo.

I will consider solutions periodic on either the square or hexagonal lattice, i.e.

v(x) = v(x+ `1) = v(x+ `2) (5.19)

where for the square lattice

`1 = 2π

[
1

0

]
(5.20)

`2 = 2π

[
0

1

]
(5.21)

1I implicitly assume that the synaptic-weight dynamical system determines a nonlinear dynamical
system for the feature-map vector v. One should expect that this nonlinear system would preserve
the equivariance of equation 5.1, in which case the analysis of this Chapter would apply to the full
system. I have only derived the first-order terms of this dynamical system, so for the dynamical
system 5.3 it happens that dF ≡ F.

2For group theoretic terminology, see Appendix A.3.
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while for the hexagonal lattice

`1 =
4π√

3

[ √
3/2

1/2

]
(5.22)

`2 =
4π√

3

[
0

1

]
. (5.23)

I implicitly adjust the length scale in the problem so that the critical wavelength

matches the lattice vector lengths. This scaling allows me to represent the critical-

wave vectors for these lattices as unit vectors ki:

(square lattice) (5.24)

k1 =

[
1

0

]

k2 =

[
0

1

]
(hexagonal lattice) (5.25)

k1 =

[
1

0

]
(5.26)

k2 =

[
−1/2
√

3/2

]

k3 = −(k1 + k2) =

[
−1/2

−
√

3/2

]
.

The space of lattice-periodic solutions no longer has the full E2 symmetry, but

rather that of a subgroup of E2. Γsq = T 2 oD4 acts on Vsq, the space of solutions

on the square lattice, and Γhex = T 2 o D6 acts on Vsq, the hexagonal-lattice solu-

tions. T 2 is the two-dimensional torus of translations modulo the lattice and D2n

is the dihedral group with a 2nth-order rotation, the holohedry of the lattice. At

the bifurcation point the solutions will be linear combinations of plane waves cos kix

and sin kix. For each of six components of the feature-map vector v(x), there will be
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n distinct directions on the D2n lattice, so Vsq ≈ R24 and Vhex ≈ R36. Thus the

requirement for a finite-dimensional kernel is satisfied.

By choosing the kernel to contain only functions periodic on a particular lattice, I

restrict the space of possible solutions to R24 or R36 for the square or the hexagonal

lattice, respectively. The action of Γlat on the solution space Vlat splits it into smaller

invariant subspaces on each of which the group acts irreducibly. These irreducible rep-

resentations3 fall into a small number of possible types. The subspaces corresponding

to a given irrep together constitute an isotypic component of the solution space, and

bifurcating solutions will be restricted to lie within a given isotypic component. In

particular, components of the feature-map vector (such as orientation and retinotopy)

can only interact in the formation of bifurcating patterns if they occur in the same

isotypic component. Because the symmetry structure of the cortical-map vector is

independent of the details of the developmental model, the restrictions on coupling

across different isotypic components hold in any model that correctly incorporates the

cortical-map symmetries. The structure imposed on solutions by symmetry helps

classify the possible kinds of interactions that might be produced in different models.

5.3 Pattern Formation on a Square Lattice

First I consider the action of Γsq on Vsq. We may write a periodic cortical map on

the square lattice as

v(x) =
{

z1e
ik1x + z2e

ik2x + complex conjugate |z1, z2 ∈ C6
}
. (5.27)

This “naive” coordinate system will shortly be replaced with a symmetry-adapted basis

for Vsq in which the isotypic decomposition is made explicit. In the naive coordinate

system, the action of Γsq on Vsq is given by Tables 5.3 and 5.3, which I constructed

according to the E2-action given in equations 5.14–5.16. I denote rotation by π/2 by

ξ, the reflection in the k1-axis by κ, and translation by an element of T by T[α1,α2],

where 0 ≤ αi < 2π.

3Abbreviated, irreps.
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1v(x) = κv(x) =

z1
1

z2
1

z3
1

z4
1

z5
1

z6
1


eik1x +



z1
2

z2
2

z3
2

z4
2

z5
2

z6
2


eik2x + c.c.



z1
1

z2
1

−z3
1

z4
1

−z5
1

z6
1


eik1x +



z1
2

z2
2

−z3
2

z4
2

−z5
2

z6
2


eik2x + c.c.

ξv(x) = κξv(x) =

z1
2

−z3
2

z2
2

−z4
2

−z5
2

z6
2


eik1x +



z1
1

−z3
1

z2
1

−z4
1

−z5
1

z6
1


eik2x + c.c.



z1
2

−z3
2

−z2
2

−z4
2

z5
2

z6
2


eik1x +



z1
1

−z3
1

−z2
1

−z4
1

z5
1

z6
1


eik2x + c.c.

ξ2v(x) = κξ2v(x) =

z1
1

−z2
1

−z3
1

z4
1

z5
1

z6
1


eik1x +



z1
2

−z2
2

−z3
2

z4
2

z5
2

z6
2


eik2x + c.c.



z1
1

−z2
1

z3
1

z4
1

−z5
1

z6
1


eik1x +



z1
2

−z2
2

z3
2

z4
2

−z5
2

z6
2


eik2x + c.c.

ξ3v(x) = κξ3v(x) =

z1
2

z3
2

−z2
2

−z4
2

−z5
2

z6
2


eik1x +



z1
1

z3
1

−z2
1

−z4
1

−z5
1

z6
1


eik2x + c.c.



z1
2

z3
2

z2
2

−z4
2

z5
2

z6
2


eik1x +



z1
1

z3
1

z2
1

−z4
1

z5
1

z6
1


eik2x + c.c.

Table 5.2: Action of rotation and reflection (O2) elements of Γsq on Vsq.
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T[α1,α2] v(x) = e−iα1



z1
1

z2
1

z3
1

z4
1

z5
1

z6
1


eik1x + e−iα2



z1
2

z2
2

z3
2

z4
2

z5
2

z6
2


eik2x + c.c.

Table 5.3: Action of translation elements of Γsq on Vsq.

5.3.1 Irreducible Representations

The action of Γsq splits Vsq into six four-dimensional invariant subspaces. For exam-

ple, the subspace of patterns in which only the net fan-in deviates from uniformity,

corresponding to {zji = 0|i ∈ {1, 2}, j 6= 1} (abbr. z1
i 6= 0), forms a four (real)-

dimensional subspace. Similarly the receptive field-width deviations form a subspace,

z6
i 6= 0. By inspection of Tables 5.3 and 5.3, there are two invariant subspaces cor-

responding respectively to the first and second component of the orientation vector,

namely z4
i 6= 0 and z5

i 6= 0. The retinotopic deviation patterns also occupy two

four-dimensional invariant subspaces. One contains “compression waves” of the form

z2
1 , z

3
2 6= 0 and the other contains “transverse waves” of the form z3

1 , z
2
2 6= 0. Figure

5.2 illustrates these retinotopic distortion patterns.

Because Γsq contains translations and reflections, none of the four-dimensional

subspaces just described can themselves contain any proper invariant subspaces—

they are irreducible. The group action on the ith four-dimensional subspace Vi forms

an irreducible representation, i.e. a map from group elements to the 4 × 4 matrices

acting on the coordinates of the subspace, ρi : γ ∈ Γsq → GL4(Vi). Two irreps

ρi, ρj are equivalent if there is a coordinate transformation between them, that is, a

nonsingular matrix M such that for all group elements γ,

Mρi(γ) = ρj(γ)M.

For example, the irreducible representation defined by the action of Γsq on the mass
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Figure 5.2: Splitting the retinotopic distortion subspace.
Left: An element of the compression-wave subspace. This pattern represents z2

1 = 1

and all other z
j
i = 0. It may also be written s(x) = k1 sin(k1x).

Right: An element of the transverse-wave subspace. This pattern represents z3
1 = 1

and all other z
j
i = 0. It may also be written s(x) = k2 cos(k1x).
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subspace is exactly the same as that defined by the group’s action on the subspace of

receptive field width deviations ρ(x)4 Hence these two four-dimensional irreducible

representations are equivalent, with M = I4.

The equivalence or inequivalence of two irreducible representations may be calcu-

lated using orthogonality of group characters. The calculations are straightforward

with the assistance of MATLAB’s symbolic mathematics toolbox (see for example

irrepcalc1.m and irrepcalc3.m in Appendix E). To give an example I will ask

whether the mass irrep and the first orientation irrep are equivalent.

1 z1 z2

ξ z2 z1
κ z1 z2

[α1, α2] e−iα1z1 e−iα2z2

Mass representation

1 z1 z2

ξ −z2 −z1
κ z1 z2

[α1, α2] e−iα1z1 e−iα2z2

First orientation rep.

Table 5.4: Action of the Group Generators on Vj , j = 1, 4.

Writing z
j
1 = a1 + ib1, z

j
2 = a2 + ib2 and ordering coordinates [a1, b1, a2, b2]tr on

Vj , I derive two representations of Γsq in 4 × 4 matrices (see table 5.4). (The mass

irrep corresponds to j = 1 and the first orientation irrep to j = 4.)

ρM(ξ) ρM(κ)
1

1
1
−1




1
1

1
−1


ρM([α1, α2])

cos(α1) sin(α1)
− sin(α1) cos(α1)

cos(α2) sin(α2)
− sin(α2) cos(α2)


Table 5.5: Mass Representation: 4× 4 Matrices.

4The customary use of ρ(γ) to denote a group representation should not be confused with the
receptive-field–width-deviation map component ρ(x), and should be clear from context.
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ρO1(ξ) ρO1(κ)
−1

1
−1

−1




1
1

1
−1


ρO1([α1, α2])

cos(α1) sin(α1)
− sin(α1) cos(α1)

cos(α2) sin(α2)
− sin(α2) cos(α2)


Table 5.6: First Orientation Representation: 4× 4 Matrices.

Absolute Irreducibility

Both of these representations are absolutely irreducible, meaning that any matrix M

that commutes with ρj(γ) (fix either j = M or j = O1) for all γ ∈ Γsq must be a

real scalar multiple of the identity. To see this, suppose a matrix M commutes with

ρM(κ) and ρM(κξ2) = diag(1,−1, 1, 1). Then M must have the form

M =


m11 m13

m22

m31 m33

m44

 . (5.28)

If, in addition, M commutes with ρM([α1, α2]) then m11 = m22,m33 = m44 and

m13 = m31 = 0, so M = diag(m11,m11,m33,m33).

Note that ρM(κ) = ρO1(κ),ρM(κξ2) = ρO1(κξ
2) and ρM([α1, α2]) = ρO1([α1, α2]).

Up to this point the demonstration of absolute irreducibility is the same for both

representations. Note also that if there were a coordinate transformation A under

which the two representations were equivalent, then we would have AρM(γ) = ρO1(γ)A

and A would have to assume the form A = diag(a11, a11, a33, a33) as well.

Finally, consideration of MρM(ξ) − ρM(ξ)M and MρO1(ξ) − ρO1(ξ)M shows that

in either case, M must be a multiple of the identity matrix (see Table 5.7).
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MρM(ξ)− ρM(ξ)M MρO1(ξ)− ρO1(ξ)M

(m11 −m33)


1

1
−1

1

 (m11 −m33)


−1

1
1

1


Table 5.7: Absolute Irreducibility of ρM and ρO1, Respectively.

Equivalence via Characters

The matrices in tables 5.5 and 5.6 generate real orthonormal representations of a

compact Lie group. Equivalence between such representations may be determined by

comparing their character functions χj :

χj(γ) = Tr(ρj(γ)). (5.29)

Characters of inequivalent irreducible representations are orthogonal under the Haar

measure of the group:

χi · χj =< χi(γ)χj(γ) >Γ=

∫
Γ χi(γ)χj(γ) dγ∫

Γ dγ
=

{
0 ρi 6∼ ρj

1 ρi ∼ ρj
(5.30)

Γsq is the semi-direct product of T2 with D4, hence every γ ∈ Γsq may be represented

as a rotation or flip followed by a translation:

Γsq = {[α1, α2] · σ|0 ≤ α1, α2 < 2π, σ ∈ D4} (5.31)

The Haar measure of a function f(γ) on Γsq is given by

< f >Γsq=
1

4π2

∫
[α1,α2]

1

8

3∑
k=0

{
f([α1, α2] · ξk) + f([α1, α2] · κ · ξk)

}
dα1 dα2.

(5.32)

The computation of χM and χO1 are straightforward using tables 5.5 and 5.6 and

MATLAB’s symbolic toolbox (see for example irrepcalc1.m and irrepcalc3.m in

Appendix E). The character functions are identical for the two representations and
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γ χ(γ)
t 2 cos(α1) + 2 cos(α2)
tξ 0

tξ2 0

tξ3 0
tκ 2 cos(α1)
tκξ 0

tκξ2 2 cos(α2)

tκξ3 0

Table 5.8: The Character Function for the Representations. t = [α1, α2]

are given in table 5.8. Note that χ(γ) is normalized, i.e. χ · χ ≡ 1, indicating again

that the representations are irreducible. Because they have the same character, they

must be equivalent.5

Repeating this calculation for different pairs of irreducible representations, I find

that Vsq splits into two isotypic components. The mass irrep is equivalent to the first

(compression-wave) retinotopy irrep which is equivalent to the first orientation irrep.

These are all equivalent to the irrep on the receptive field–width subspace as well. I

will call this irrep “even” because it is equivalent to the even irrep studied in related

work by Bressloff et al. [7, 8]. The second (transverse-wave) retinotopy irrep and the

second orientation irrep are equivalent and together form the odd isotypic component.

5.3.2 Symmetry-Adapted Basis Vectors

Within each irreducible subspace of an isotypic component of Vsq, it is possible to

choose coordinates such that the action of Γsq acts in exactly the same way on each set

of basis vectors. Such a basis for the isotypic component is called symmetry-adapted6,

and facilitates the search for bifurcating solutions.

To construct a symmetry-adapted basis for the even component of Vsq, I begin

with an arbitrary choice of vectors from one of the irreps and determine how Γsq

5Same character implies equivalence for finite groups but not in general for infinite groups. How-
ever the theorem still holds for unitary representations of compact groups. See for example [57].

6See [26].
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permutes them. Choosing from the mass irrep four orthogonal vectors given by cos kix

and sin kix for i = 1, 2, I find from Table 5.3:

ξ : cos k1x→ cos k2x→ cos k1x

sin k1x→ sin k2x→ − sin k1x

κ : cos k1x→ cos k1x

cos k2x→ cos k2x

sin k1x→ sin k1x

sin k2x→ − sin k2x.

Therefore in the ordered basis 
cos k1x

cos k2x

sin k1x

sin k2x

 ,
the action of the holohedry D4 is generated by the representing matrices

ρES(ξ) =


+1

+1

−1

+1

 (5.33)

ρES(κ) =


+1

+1

+1

−1

 .

Considering the group action on a retinotopic-deviation compression wave or an even-

irrep orientation wave, it is straightforward to work out basis vectors for these irreps

for which the representing matrices are the same as in equation 5.34. They are

summarized in Table 5.9. Figure 5.3 shows the patterns in the first row of the table,

from which the rows are generated in identical fashion by rotation, translation and/or
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Net Fan-in Retinotopic Even Receptive
Mass Compression Orientation Field Width

Deviation f(x) Wave s(x) Pattern χ(x) Deviation ρ(x)
cos k1x k1 sin k1x k1 cos k1x cos k1x
cos k2x k2 sin k2x −k1 cos k2x cos k2x
sin k1x −k1 cos k1x k1 sin k1x sin k1x
sin k2x −k2 cos k2x −k1 sin k2x sin k2x

Table 5.9: Symmetry-adapted basis vectors, square lattice even irrep. When ordered
as in this Table, the basis vectors within each irrep permute in identical fashion under
the action of Γsq.

Retinotopic Odd
Transverse Orientation
Wave s(x) Pattern χ(x)
−k2 cos k1x k2 sin k1x
k1 cos k2x −k2 sin k2x
k2 sin k1x k2 cos k1x
−k1 sin k2x −k2 cos k2x

Table 5.10: Symmetry-adapted basis vectors, square lattice odd irrep.

reflection.

Proceeding similarly, I calculate the symmetry-adapted basis for the odd isotypic

subspace on the square lattice, given in Table 5.10 and Figure 5.4. In this basis, the

action of the rotation and reflection element are, respectively:

ρOS(ξ) =


−1

+1

+1

+1

 (5.34)

ρOS(κ) =


−1

+1

−1

−1

 .

The advantage of adapting one’s basis for a vector space to the symmetry of a
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Figure 5.3: Symmetry-adapted basis vectors, square lattice even irrep. The brightness
of the background and the thickness of the line elements both reflect the net input
mass, which deviates from uniformity only in the top-left frame. The centers of
the squares, marked by small dots, reflect the retinotopic spacing, which deviates
from uniformity only in the top-right frame. The elongation of the rectangles reflects
orientation preference (elongated receptive-field shape), and deviates from uniformity
only in the bottom-left frame. The area of the boxes reflects the receptive-field widths,
which deviate from uniformity only in the bottom-right frame.
Top Left: Mass irrep.
Top Right: Retinotopic compression wave irrep.
Bottom Left: Even orientation irrep.
Bottom Right: Receptive-field-width irrep.



129

Figure 5.4: Symmetry-adapted basis vectors, square lattice odd irrep. Taken from
the top row of Table 5.10.
Left: Retinotopic transverse-wave irrep.
Right: Odd orientation irrep.
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group acting on the space is the following: any linear operator that commutes with the

group action on the space will have a block-diagonal form in the symmetry-adapted

basis. If there are cj copies of the jth irrep in the jth isotypic component, and the

jth irrep has dimension nj , then the matrix will have nj identical blocks of size cj×cj
along the diagonal. Because the linearized dynamics dF has the symmetry of Γsq,

it commutes with the representation of Γsq on Vsq. In the basis given in Tables 5.9

and 5.10, dF takes the form:

dF|(sym. ad. basis) =



M+

M+

M+

M+

m−

m−

m−

m−


(5.35)

where M+ is a four-by-four matrix and m− is a two-by-two matrix.

Generically, the kernel of dF will itself be an irreducible subspace of Vsq. Ac-

cording to the Equivariant Branching Lemma [30], there will be bifurcating solution

branches with the symmetry of isotropy subgroups the fixed-point subspaces of which

are one-dimensional. Therefore we seek bifurcating solutions in subspaces with one-

dimensional intersections with ker dF. Finding the kernel of dF a priori requires

solving a degenerate eigenvalue problem for the 24× 24 matrix dF in arbitrary coor-

dinates. In the form 5.35 however, we confront either a four-by-four or a two-by-two

eigenvalue problem, depending on whether the kernel lies in the even (M+) or odd

(m−) subspace.

5.3.3 Axial Subgroups

The axial subgroups of Γsq classify the expected bifurcating solution branches, or

planforms, appearing when the homogeneous state v ≡ 0 becomes unstable. The
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axial subgroups for the even and odd irreps on the square lattice (and also on the

hexagonal and rhombic lattices) have been derived elsewhere—see for example [19].

On the square lattice there are four possibilities: Even Rolls, which are single waves

such as those shown in Figure 5.3, Even Squares, which are sums of Even Rolls in

two orthogonal directions with equal coefficients, Odd Rolls, pictured in Figure 5.4,

and Odd Squares, which are equal-coefficient sums of Odd Rolls.

The kernel of dF on the square lattice will contain combinations of a given kind

of planform drawn from the different irreducible subspaces in a given isotypic com-

ponent. For example, a bifurcating planform could be a combination of Odd Squares

in both orientation and retinotopy simultaneously, or instead a combination of Even

Rolls from the mass irrep, the width irrep and the even retinotopy and orientation ir-

reps. The signs of the coefficients with which the components from different subspaces

are combined determine whether the different cortical-map features are correlated or

anti-correlated. For example, if a pattern combining components of the even irreps

had increased fan-in mass positively correlated with increased receptive-field width,

this relation would be manifest in the two components having the same sign in the

the zero eigenvector of dF|(sym. ad. basis). Different models for cortical-map de-

velopment cannot produce different couplings between irreps than those allowed by

symmetry, but they could yield different pairwise correlations between features that

are coupled. Generically one would not expect to find features sharing an equivalent

irrep to be uncoupled in any model.

The possible models of cortical-map development may therefore be classified by

the correlations they predict between cortical-map components. Within the odd irrep,

which combines two subspaces (retinotopic transverse waves and orientation zig-zag

pattern), there are two possibilities: either the two components are correlated or

anti-correlated. Within the even irrep the possible pairwise correlations between

components allow eight types of models. Using ≈ to denote positive correlation and
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6≈ to denote negative correlation, we have the following possibilities:

1. m ≈ se ≈ χe ≈ ρ

2. m 6≈ se ≈ χe ≈ ρ

3. se 6≈ χe ≈ ρ ≈ m

4. χe 6≈ ρ ≈ m ≈ se

5. ρ 6≈ m ≈ se ≈ χe

6. m ≈ se 6≈ χe ≈ ρ

7. m ≈ χe 6≈ se ≈ ρ

8. m ≈ ρ 6≈ se ≈ χe

Figure 5.5 shows a sample Even Square pattern combining components from the four

even irreps. The correlations are chosen so that the pattern approximately preserves

uniform geniculate fan-out g(r).

Figure 5.5: An Even Square planform. Positive or negative correlations were chosen
between components of the mass, retinotopic compression, even orientation and width
irreps so as to approximately preserve a uniform geniculate fan-out g(r).
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5.4 Numerical Isolation of a Bifurcating Planform on the

Square Lattice

In Chapter 4, I derived a detailed set of linear interactions between different compo-

nents of the cortical-map vector, based approximately on realistic values of parameters

such as receptive field spread and distance of lateral cortical interactions. The inter-

actions also depended on parameters that could naturally vary during development,

such as the strength of the attraction to the target for net-fan Kf and fan-out Kg,

the rate of spontaneous decay of synaptic weight α and the strength of the lateral

cortical center-surround interaction λ. By increasing the weight-decay coefficient α

it is always possible to find a region in parameter space in which all patterns decay

to homogeneous state v(x) ≡ 0. One can then search for values of Kf, Kg, α and λ

at which a steady-state bifurcation occurs7.

The transformation of the dynamics into the frequency domain converts the matrix

convolution equation

F[v] = −αv + A ∗ v + K ∗ v

into a separate matrix multiplication at each wave-vector k:

˜(F[v])(k) = −αṽ(k) + Ã(k)ṽ(k) + K̃(k)ṽ(k.)

The dynamics F is thereby block-diagonalized into 5 × 5 blocks8 each containing a

combination of M+ and m− in an arbitrary basis. For each 5× 5 block, I solved the

eigenvalue problem numerically. The block with the largest eigenvalue (real part) was

recorded for each value of Kf, Kg, α and/or λ. (See the MATLAB script ctxpat1.m.

7One can also find Hopf bifurcations from the steady state. Because cortical maps are themselves
static patterns, oscillatory pattern formation (Turing-Hopf Bifurcations) were not of interest for this
study.

8This frequency-diagonalization of dF would contain 6×6blocks for a six-dimensional cortical map
vector. For numerical simulation I simply eliminated the sixth dimension, representing receptive-field
width, because the critical parameter values proved easier to isolate that way. The approximations
made to arrive at the cortical-map dynamics are most severe for this map component, which is
directly affected by the hard w(x, r) ≥ 0 cutoff (see for example the discussion accompanying Figure
4.1).
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in Appenix E.) Once I isolated a zero-crossing of the spectrum, I recorded the crit-

ical block and its eigenvector, the cortical eigenmode. Using a 32 × 32 grid for the

components of v(x) and the different convolution kernels, I found a pair of critical

wave vectors at coordinates [3, 31] and [31, 3], corresponding to vectors kc =

[
2

−2

]

and −kc =

[
−2

2

]
relative to the origin [1, 1]. The critical eigenvector for this wave

vector is:

Critical coordinates [3, 31] [31, 3]

m(x)

s1(x)

s2(x)

χ1(x)

χ2(x)





0

0.3037− 0.1973i

0.3037− 0.1973i

−0.4680− 0.7202i

0


+ c.c.



0

0.3518− 0.0862i

0.3518− 0.0862i

0.2044 + 0.8342i

0


+ c.c.

Both of these cortical-map vectors have the form

v(x) =



0[
1

1

]
as cos

([
−2

2

]
· (x− x0)

)
[

1

0

]
aχ sin

([
−2

2

]
· xθ

)


for the values

as = 0.3622

aχ = 0.8589

θ =

{
−0.5761, [3, 31]

−0.2403, [31, 3]

After a rotation by π/4, they may be recognized as instances of the odd roll

pattern coupling orientation and retinotopic distortion.
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Figure 5.6: Lattice vectors and wave vectors for the hexagonal lattice, as defined in
equations 5.22 and 5.25.
Left: Wave vectors in six directions, and the two spatial vectors generating the lattice:
`i · kj = 2πδij for i, j ∈ {1, 2}.
Right: Orthogonal wave vectors k⊥i , each rotated by +π/2 from ki.

5.5 Pattern Formation on a Hexagonal Lattice

I arrived at the isotypic decomposition of the cortical-map vector space on the square

lattice through a rather indirect set of calculations. With the benefit of hindsight,

it is straightforward to adapt the square-lattice construction to the hexagonal lattice

and write down its irreducible representations directly. The same even and odd

roll patterns such as the retinotopic compression and transverse waves provide the

building blocks of the symmetry-adapted basis for Vhex. The axial subgroups of the

even irrep are well known from classical studies of pattern formation in convective fluid

flow [7, 8, 10]; axials for the odd irrep are studied in [7, 8]. Because the axial planforms

on the hexagonal lattice can form orientation singularities of unit topological charge

(±π), the hex lattice provides the most promising scenario for understanding the

formation of the orientation map.

Recall that the hexagonal lattice has lattice vectors `1 and `2 and wave vectors as

shown in Figure 5.6. The symmetry-adapted basis for the even and odd hexagonal

representations are given in Tables 5.11 and 5.12, respectively. As in the square

lattice case, the elements of the lattice are plane waves rotated by the lattice angles,

in this case by π/3 (taking k1x to −k3x) and by 2π/3 (taking k1x to k2x). In these
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coordinates the action of the π/3-rotation ξ and the reflection κ are given by:

ρEH(ξ) =



+1

+1

+1

−1

+1

+1


(5.36)

ρEH(κ) =



+1

+1

+1

+1

−1

−1


for the even hexagonal irrep. For the odd hexagonal irrep they are given by:

ρOH(ξ) =



+1

+1

+1

−1

+1

+1


(5.37)

ρOH(κ) =



−1

−1

−1

−1

+1

+1


.

For purposes of illustration I will show pictures of the odd planforms occurring on

the hexagonal lattice. In square lattice simulations (see section 5.4), it is the odd ir-
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Net Fan-in Retinotopic Even Receptive
Mass Compression Orientation Field Width

Deviation f(x) Wave s(x) Pattern χ(x) Deviation ρ(x)
cos k1x k1 sin k1x k1 cos k1x cos k1x
cos k3x k3 sin k3x k2 cos k3x cos k3x
cos k2x k2 sin k2x k3 cos k2x cos k2x
sin k1x k1 cos k1x k1 sin k1x sin k1x
− sin k3x −k3 cos k3x −k2 sin k3x − sin k3x
sin k2x k2 cos k2x k3 sin k2x sin k2x

Table 5.11: Symmetry-adapted basis vectors, hexagonal lattice even irrep.

Retinotopic Odd
Transverse Orientation
Wave s(x) Pattern χ(x)

k⊥1 sin k1x k⊥1 cos k1x

k⊥3 sin k3x k⊥2 cos k3x

k⊥2 sin k2x k⊥3 cos k2x

k⊥1 cos k1x k⊥1 sin k1x

−k⊥3 cos k3x −k⊥2 sin k3x

k⊥2 cos k2x k⊥3 sin k2x

Table 5.12: Symmetry-adapted basis vectors, hexagonal lattice odd irrep. As in the
square lattice, the retinotopic distortion vector k⊥i lies orthogonal to the direction of

the wave vector ki. The orthogonal vector k⊥i is ki rotated by +π/2.

Name Representative Function Isotropy Group

Even Representative from Mass Irrep
Even Rolls cos k1x O2 × Z2(κ)

Even Hexagons+ cos k1x+ cos k2x+ cos k3x D6(ξ, κ)
Even Hexagons− − cos k1x− cos k2x− cos k3x D6(ξ, κ)

Odd Representative from Orientation Irrep

Odd Rolls k⊥1 cos k1x O2 × Z4(ξ3κT
[12 ,0]

)

Odd Triangles k⊥1 sin k1x− k⊥2 sin k3x+ k⊥3 sin k2x D3(κξ, ξ2)

Odd Hexagons k⊥1 cos k1x+ k⊥2 cos k3x+ k⊥3 cos k2x Z6(ξ)

Odd Rectangles k⊥2 cos k3x− k⊥3 cos k2x D2(κ, ξ3)

Table 5.13: Axial planforms on the hexagonal lattice. Each planform corresponds
to a one-dimensional fixed-point subspace of an isotropy subgroup of Γhex, up to
conjugacy. The nomenclature has been adapted from [8].
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rep that appears in the monocular model. Figure 5.7 shows the Odd Rolls, Triangles,

Hexagons and Rectangles planforms. All planforms except the rolls show singularities

in the orientation field φ(x). In the hexagonal pattern, both double and single sin-

gularities appear. The double singularities have net orientation-change of +2π when

traversed counter-clockwise, and the single singularities have a net orientation-change

of −π. Because double singularities are never observed in orientation maps, the Odd

Hexagons planform is not a plausible model for orientation-map formation. The Odd

Triangles and Odd Rectangles planforms have only ±π singularities. The triangles

planform also exhibits fractures, i.e. line boundaries across which the preferred ori-

entation jumps by π/2. The triangles planform has only −π singularities, while the

rectangles planform has equal numbers of +π and −π singularities.

The occurence of orientation and retinotopy together in the odd irrep provides a

natural explanation for recent observations linking together local distortions in the

retinotopic map and rapid changes in the orientation map. Contrary to classical pre-

dictions of self-organizing map models, Das and Gilbert found that larger-than-typical

shifts in orientation and retinotopy, relative to uniformly spaced cortical locations,

tended to be positively correlated [18]. If there were no bias in their experiment

for a particular relation between the direction of the cortical track chosen and the

local orientation preference, then the observation of larger retinotopic shifts should

reflect lower magnification, or larger retinal areas per unit cortical area, in the re-

gions where orientation preference is shifting more rapidly. In the Odd Rectangles

planform the retinal area per cortical area and the orientation gradient |∇φ(x)| have

a positive correlation coefficient9 of 0.15. The correlation coefficient is the same re-

gardless of whether the coefficients of the odd orientation and retinotopy planforms

in linear combination are positive or negative. In the Odd Triangles planform, which

exhibits both orientation singularities and orientation fractures as regions of rapid

orientation change, the correlation coefficient of area and |∇φ(x)| is 0.40—again pos-

itive. It is not possible to make any claim about the stability of these planforms

without analysis of a higher-order dynamics for v(x). Nevertheless the agreement of

9The correlation coefficient of area and |∇φ(x)| is the covariance normalized by the variances,
and lies within ±1.
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Figure 5.7: Odd axial planforms on the hexagonal lattice.
Top Left: Odd Rolls.
Top Right: Odd Triangles. Each singularity (center of a triangle) is surrounded by
a fracture boundary, across which the orientation changes by π/2.
Bottom Left: Odd Hexagons. Note the combination of single and double singu-
larities. The large low-orientation–preference region at the center of the image is a
double singularity.
Bottom Right: Odd Rectangles. The + and − singularities form alternating
columns. The − singularities lie in North-South striped regions that also contain
horizontal and vertical orientations; the + singularities lie in North-South stripes
that also contain oblique orientations.
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the correlation of retinotopic and orientation shifts arising from planforms derived

from axial superpositions of odd roll patterns —which in turn are those appearing in

numerical evaluation of a realistic interaction kernel—indicates that this approach to

cortical-map formation may indeed be on the right track.



CHAPTER 6

SUMMARY AND CONCLUSION

I model the inter-related cortical feature maps as resulting from a spontaneous symmetry-

breaking process in which a uniform, isotropic geniculo-cortical architecture loses sta-

bility under the influence of lateral cortical competition and correlation-based weight

modification. The cortical-map features jointly comprise a vector derived from vari-

ous moments of the receptive field profiles. The center-surround lateral architecture

influences all cortical-map vectors in the same way, providing a common wavelength

for pattern formation in the different features. The geometrical nature of the features

— total input weight, center-of-mass, covariance matrix — mean that departures from

uniformity in the lower moments influence the subsequent formation of patterns in

the higher moments. Conversely, smooth nonlinear constraints on the total synaptic

weight projecting from geniculate loci determine additional influences of each feature

on the others. The entire feature-development dynamics may be captured, to first

order, in a linear integro-differential equation that possesses the symmetries of the

Euclidean planar motions under a novel group action. The analysis of these symme-

tries leads to the identification of certain patterns of interaction between the features,

and the prediction of e.g. the correlation of orientation preference with retinotopic

shear.

By representing the cortical-map features as moments of the receptive fields I ob-

tain in a completely natural way a derivation of a vector model for map development.

This vector model is in the same family as the XY and Ising models familiar from

the physics of magnetic spin lattices. In particular for the orientation map there is

a direct connection to the XY model with a mixed ferro-antiferromagnetic Hamilto-

nian. Dynamical Monte Carlo techniques for simulating the finite temperature Gibbs

ensemble of such a system connects these models to statistical measures of disorder

in the architecture of visual cortex.

141
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6.1 Predictions

Section 3.3 gives the prediction, based on the feedforward Hebbian model of orientation-

map development and the simple geometrical model of receptive fields, that within a

hypercolumn the direction of local stretching in the retinotopic map should be cor-

related with the direction of orientation preference. Symmetry forces the coupling

of orientation and retinotopy patterns found in the same isotypic component of the

cortical-map space. Moreover, in planforms that reproduce appropriate patterns of

orientation singularities I find significant correlation between local variations in mag-

nification and the orientation preference map that could be tested with data such as

that reported by Das and Gilbert [18].

6.2 Discussion

6.2.1 Noise in Cortical Maps

Matching Monte Carlo simulations of the XY model with data from Maldonado and

Gray [49], I find the that the orientation map lies on the threshold of an order-disorder

transition. The degree of disorder of a given cortical-map feature could reflect its

functional significance. For example, although rats possess orientation-tuned cells in

visual cortex, orintation is not topographically organized (and the rat is not as highly

visual an animal as a cat or primate). But whatever biological mechanism tunes the

degree of disorder in a cortical feature-map remains unknown.

6.2.2 Alternative Models for Cortical Feature-Map Development

I have worked throughout from the simplifying assumption that response properties

of cortical neurons are shaped by the architecture of feedforward geniculo-cortical

connections, while the lateral connections within the cortex that provide the basis

for the symmetry-breaking pattern formation are themselves isotropic. One entirely

different approach to understanding cortical-map formation begins from a uniform

feedforward architecture and studies the formation of receptive field properties via
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anisotropies in the lateral connections [67]. Experiments by Fitzpatrick and Bosking,

and also Blasdel, have shown long-range anisotropic connections in V1 in ferrets and

monkeys respectively. These connections run for several hypercolumns in distance and

connect patches of cells prefering similar orientations. Moreover the connections run

along a direction in the cortex which when translated under the inverse retino-cortical

map to visual field coordinates lies parallel to the common preferred orientation of

the connected iso-orientation patches. Using a one-dimensional model of this kind,

for example, Ernst et al were able to obtain the clustering of receptive-field properties

observed by Das and Gilbert [23]. One approach to understanding the development of

these anisotropic connections would be to study symmetry breaking from an initially

isotropic lateral architecture, which should be possible with the tools developed here

for pattern formation in the cortical-map vectors.

Another major question not addressed here is the role of feedback in the devel-

opment both of cortical response properties and the pattern formation process for

cortical maps. V1 receives massive feedback from higher visual areas whose anatom-

ical organization and functional significance is not yet well understood. And V1

sends a massive feedback to the LGN – four times the number of fibers the LGN

receives from the retina – the role of which is again poorly understood. Murphy et

al have found that feedback from V1 to the LGN clusters in elongated regions the

orientation of which falls with probability better than chance within ±π/8 of either

the orientation preferred by the cortical cell or that orthogonal to it [58], leading to

the possibility that more complicated mechanisms will be necessary to understand

realistic cortical-map development.

Alternative models for cortical-map development would still possess Euclidean

symmetry, with the usual rotation action for retinotopy and a double rotation action

for orientation. The coupling of the isotypic orientation and retinotopy components

forced by symmetry will persist even if there is no feedforward determination of

orientation tuning. Hence the tools developed here, the isotypic decomposition and

symmetry-adapted basis for the space of cortical maps, will apply to models with

different developmental mechanisms.
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6.2.3 Ocular Dominance and the Orientation Map

Ocular dominance stripes appear result from another pattern-formation process on

the same length scale as the orientation map modeled here. Hence one would expect a

symmetry analysis to provide an explanation of the appearance of ocular dominance

stripes and their coupling to the orientation map. It is well established that the

centers of pinwheel orientation singularities have a tendency to be located near the

centers of ocular dominance regions (see Figure 6.1).

A binocular model for cortical maps can possess a new symmetry beyond those

in the monocular model: ι, the exchange operation between the eyes. The action of

the exchange will lead to a tensor product of the irreducible representations in the

monocular case with Z2. This new space, twice as large, will split into odd and even

components according to whether the exchange acts as ±1. Each quantity in the

monocular model leads to two in the binocular model: one for the mean and one for

the difference. Retinotopy gives mean retinotopy between the two eyes (even under ι)

and retinotopic disparity (odd under ι). Orientation gives mean orietation preference

(even) and orientation disparity (odd). Orientation disparity has not been commonly

investigated in the biological literature; the odd quantities can only be meaningfully

measured in cells strongly driven by both eyes.

The ι-even and ι-odd quantities derived from the net input mass are the total

input mass m1(x) + m2(x) and the difference −1 ≤ m1(x)−m2(x)
m1(x)+m2(x)

≤ 1, which is the

ocular dominance variable. Whereas the ι-even quantities such as mean orientation

and retinotopy occupy one set of irreducible representations, the ι-odd quantities —

including O.D. — will occupy inequivalent irreducible representations. Therefore in a

single-bifurcation pattern-formation model, O.D. cannot couple to the mean orienta-

tion preference. However, it is likely that the coupling between O.D. and orientation

may be understood in terms of a secondary bifurcation which further breaks the lat-

tice symmetry (see Figure 6.2). I leave a rigorous treatment of secondary bifurcation

scenarios, as well as a full nonlinear stability analysis of branching planforms, to

future work.



145

Figure 6.1: Correlation of ocular dominance and orientation maps. A: Orientation
preference map obtained by optical imaging. Orientation singularities marked with
green stars. B: Ocular dominance map. Extrema of the OD map marked with red
stars. C: OD map with both markers superimposed, illustrating better-than-chance
coordination of singularities with OD extrema. D: Stick-figure spines of OD regions
with orientation singularity markers superimposed. There is a strong correlation of
orientation singularities with the centers of OD regions. E,F: Same format as C, data
from different animals. [17]
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Orientation,
retinotopy
and ocular
dominance
in
thalamic
coordi-
nates.

Orientation
and ocular
dominance
boundaries
in cortical
coordi-
nates.

Pattern 1 Pattern 2

Figure 6.2: Ocular dominance and orientation patterns. Secondary bifurcations from
a monocular steady-state pattern of orientation singularities to a binocular state with
lower symmetry provides a possible mechanism for coupling orientation and ocular
dominance columns. This monocular orientation pattern, from the Odd Rectangles
planform on the hexagonal cortical lattice is assumed to be identical for both eyes
(see section 5.5). It has the symmetry group Σ = D2(κ, ξ3)× Z2(ι). The branching
of a nonuniform ocular-dominance pattern results in a binocular pattern with the
symmetry of a subgroup of Σ.
Left: Orientation and ocular-dominance pattern with the symmetry group
D2(κ, ξ3ι).
Right: Orientation and ocular-dominance pattern with the symmetry group Z2(ξ3ι).



APPENDIX A: QUADRATIC FORMS

The covariance matrices that characterize the feed-forward receptive fields in the

synaptic model, and other matrix quantities arising in the reduction to the feature

model, have geometric properties which are captured by the geometry of quadratic

forms. Therefore it will be useful to review their properties and establish some nota-

tion.

A.1 Degenerate Quadratic Forms

Given a pair of vectors u, v, their outer product uvtr is the matrix
(
uvtr

)
ij

= uivj .
1

The outer product of a planar vector u =

(
u1

u2

)
= |u|

(
cos θ

sin θ

)
with itself is thus

the symmetric matrix

uutr =

(
u2

1 u1u2

u1u2 u2
2

)
(A.1)

=
1

2

(
u2

1 + u2
2

u2
1 + u2

2

)
+
|u|2

2

 u21−u
2
2

|u|2
2u1u2
|u|2

2u1u2
|u|2 − (u21−u

2
2)

|u|2

 (A.2)

=
|u|2

2

{
I2 +

(
cos2 θ − sin2 θ 2 cos θ sin θ

2 cos θ sin θ −(cos2 θ − sin2 θ)

)}
(A.3)

=
|u|2

2
{I2 + Φ2(θ)} , (A.4)

where I define

Φ2(θ) :=

(
cos 2θ sin 2θ

sin 2θ − cos 2θ

)
. (A.5)

1I denote the transpose of a matrix or vector by the tr superscript.
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I have split uutr into a multiple of the identity and a traceless part; any traceless

2x2 symmetric matrix A can be written (detA)Φ2(θ) for some θ. In this case θ =

arctan(u2/u1), which is the angle in the plane made by the vector u (up to ±π). The

quadratic form uutr is degenerate because the matrix is singular.

A.2 Nondegenerate Quadratic Forms

Suppose A =

(
a b

b c

)
is a covariance matrix with a > c > 0 and detA ≥ 0. Then

the ellipse given by utrAu = r2 has its major axis oriented along the direction

tan 2φ =
2b

a− c

and its minor axis along φ+π
2 ; its area is proportional to the product of the eigenvalues

of A:

area = πr2λ1λ2 = πr2 detA;

and its eccentricity is given by

e =

√
1−

(
λ2

λ1

)
.

These standard results may be obtained these by decomposing A into a product

of two rotations and an anisotropic expansion. Writing α2 for the ratio of the larger



149

eigenvalue to the smaller, α :=
√
λ1/λ2, gives:

A = (detA)
1
2RotφΛRot−φ (A.6)

=
√
λ1λ2

(
cosφ − sinφ

sinφ cosφ

)(
α

1
α

)(
cosφ sinφ

− sinφ cosφ

)
(A.7)

=
√
λ1λ2

 α cos2 φ+ 1
α sin2 φ

(
α− 1

α

)
sinφ cosφ(

α− 1
α

)
sinφ cosφ 1

α cos2 φ+ α sin2 φ

 (A.8)

=
√
λ1λ2

(
αI2 +

(
α− 1

α

)( − sin2 φ sinφ cosφ

sinφ cosφ − cos2 φ

))
(A.9)

=

√
λ1λ2

2

((
α +

1

α

)
I2 +

(
α− 1

α

)
Φ2(φ)

)
(A.10)

where Φ2 is given by equation A.5. I must now cast α in terms of detA and TrA.

The eigenvalues are given by

λ1,2 =
1

2

{
TrA±

√
(TrA)2 − 4 detA

}
,

from which

α =

√
λ1

λ2
=

TrA+
√

(TrA)2 − 4 detA

2
√

detA

1

α
=

TrA−
√

(TrA)2 − 4 detA

2
√

detA
.

Hence

α +
1

α
=

TrA√
detA

(A.11)

α− 1

α
=

√
(TrA)2 − 4 detA√

detA
. (A.12)
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I have decomposed A into trace and traceless parts given by:

A =

√
λ1λ2

2

((
α +

1

α

)
I2 +

(
α− 1

α

)
Φ2(φ)

)
(A.13)

=

√
detA

2

(
TrA√
detA

I2 +

√
(TrA)2 − 4 detA√

detA
Φ2(φ)

)
(A.14)

=
TrA

2
I2 +

√
(TrA)2 − 4 detA

2
Φ2(φ) (A.15)

=
a+ c

2
I2 +

√
(a− c)2 + 4b2

2
Φ2(φ) (A.16)

=
a+ c

2
I2 +

√(
a− c

2

)2

+ b2


(a−c)/2√

(a−c)2/4+b2

b√
(a−c)2/4+b2

b√
(a−c)2/4+b2

− (a−c)/2√
(a−c)2/4+b2

(A.17)

=
a+ c

2
I2 +

(
a−c

2 b

b −a−c2

)
; (A.18)

I can now identify the angle φ in the original decomposition as satisfying

cos 2φ =
a− c√

(a− c)2 + (2b)2
(A.19)

sin 2φ =
2b√

(a− c)2 + (2b)2
. (A.20)

This is the angle in the direction of the major axis in the plane of the ellipses associated

with the quadratic form A. As a linear transformation, A takes the unit ball in R2

to an ellipse with area 2π detA. And the eccentricity is given by the deviation from

unity of the ratio of the major and minor axes of the ellipse:

e =

√
1−

(
λ2

λ1

)
=

√
1−

(
1

α

)4

.

In the main text (Chapter 3) the quantity q[A] =
√

Tr2A− 4 detA becomes the

magnitude of the orientation-tuning vector χ. For A a multiple of the identity matrix,

Tr2A = 4 detA so q[A] = 0. As detA→ 0, q[A]→ TrA. Hence 0 ≤ q[A] ≤ TrA. The
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Figure A.3: Eccentricity and magnitude of orientation preference. The relative
orientation-tuning strength refers to the ratio q[Q−1]/TrQ−1, which lies between
0 and 1.

eccenticity e may be related to the relative orientation-tuning strength, q[A]/TrA, as

shown in figure A.3. It may also be represented as the ratio between the geometric

and arithmetic means of the pair (q[A],TrA):

e =
2
√

TrA/q[A]

1 + TrA/q[A]
=

√
q[A]TrA

(q[A] + TrA)/2
.

In considering the geometry of receptive fields we deal both with the covariance

matrix Q and its inverse Q−1, so we need to know how the two relate as quadratic

forms. Let us rewrite A in terms of its trace, its orientation φ[A] and its “orientation

magnitude” q[A]:

A =
TrA

2
I2 +

q[A]

2
Φ2(φ[A])

Since Φ2(φ)2 = I2 we see at once that(
TrA

2
I2 +

q[A]

2
Φ2(φ[A])

)(
TrA

2
I2 −

q[A]

2
Φ2(φ[A])

)
=

1

4

(
(TrA)2 − q[A]2

)
I2

= detAI2,
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whence

A−1 =
1

detA

(
TrA

2
I2 −

q[A]

2
Φ2(φ[A])

)
.

Because A−1 = 1
detA

(
c −b
−b a

)
, TrA−1 = TrA

detA . Also, Φ2(φ − π
2 ) = −Φ2(φ),

so we can write

A−1 =
TrA−1

2
I2 +

q[A−1]

2
Φ2(φ[A′])

where

φ[A−1] = φ[A] +
π

2

q[A−1] =
q[A]

detA
.

Hence the level curve formed by u
tr
A−1u = r2 forms an ellipse with major axis

oriented orthogonal to that formed by A. Finally, because the eccentricity depends

only on the ratio (TrA)2/ detA and because

(TrA)2

detA
=

(TrA−1)2

detA−1
,

the ellipses formed by A and A−1 have the same eccentricity.

A.3 Measuring Anisotropy in a Map from R2 → R2

The retinocortical map, which may be visualized using metabolic markers such as cy-

tochrome oxidase immunoreactive stains or deoxyglucose autoradiograph techniques

(see Figure 1.4), may be thought of as a map between open subsets of R2. On the

scale of a two- or three-mm–square region of cortical surface, the coarse topography

has little enough curvature that it may be taken to be a linear map of retinotopic

coordinates. On this scale we may approximate the cortical sheet as a plane with

coordinates

x := [x1, x2]tr ∈ X .
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Similarly a small region of the LGN may be represented by its retinotopic coordinates

r := [r1, r2]tr ∈ R.

The retinotopic map of the cortex, R : X → R is smooth and 1 : 1 on this scale and

so we can impose coordinate systems on X and R such that the Jacobian

J(x) := ∇xR(x) =

 ∂R1
∂x1

∂R1
∂x2

∂R2
∂x1

∂R2
∂x2


has positive determinant everywhere. From J I obtain the retino-cortical magnifica-

tion factor

µ(x) :=
√

det J(x)

and the modulus of anisotropy, 2

η(x) :=
||J ||2f
2µ2

− 1.

For a map which is purely a rotation and a uniform expansion or contraction, i.e.

R(x) = R0 + J(x) · (x− x0)

J = µ

(
cos θ − sin θ

sin θ cos θ

)
= constant,

we have no anisotropy because ||J ||2f = 2µ2 and η = 0. On the other hand η will be

positive if the map is sheared, for example, if

J =

(
1 + ε 0

0 1

)

2The Frobenius norm of J is ||J ||f =
√∑2

j,k=1 J
2
jk.
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then we obtain η = ε2/2 + O(ε3). Shearing can also occur by adding an off-diagonal

term: for

J =

(
1 ε

0 1

)

we have η = ε2/2. J takes the unit ball in X to an ellipse in R. The ratio of

the principal axes of this ellipse gives the shear of the retinocortical map at x. The

principal axes are the maximum and minimum values taken by ||Jx||/||x||. Since

||Jx||2 = xtrJtrJx we can find these values as the roots of the eigenvalues of M :=

JtrJ , which is positive-definite symmetric matrix. These eigenvalues are

λ± =
1

2

(
TrM ±

√
(TrM)2 − 4 detM

)
so their root-ratio is

√
λ+

λ−
=

(TrM +
√

(TrM)2 − 4 detM)2

4 detM

1/2

Since TrM = ||J ||2f and detM = (det J)2 = µ4, the shear is given by

√
λ+

λ−
=

 ||J ||2f
2µ2

+

√√√√{ ||J ||2f
2µ2

− 1

}1/2

=
√

1 + η +
√
η

The eigenvectors of M are

x+ =

 2M12

M22 −M11 +
√

(M22 −M11)2 + 4M2
12


x− =

 M11 −M22 −
√

(M11 −M22)2 + 4M2
12

2M12


The direction in the X -plane in which the rate of change of retinotopic position is

greatest—the shear direction in X—is given up to ±π by the direction of x+. The
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Figure A.4: Shear from the Singular Value Decomposition. The ma-

trix J =

(
1 2
0 1

)
may be decomposed as J

  |v1
|

  |v2
|

  =  |
u1
|

  |
u2
|

 ( σ1
σ2

)
, where ui, vi are unit vectors. Heavy arrows in-

dicate v1 (blue) and u1 (red), light arrows indicate v2 (blue) and u2 (red).

direction in the R-plane corresponding to this maximum rate of displacement—the

shear direction in R—is given up to ±π by the direction of Jx+. The shear is derived

from the singular value decomposition 3 of J as follows: There exist orthonormal

matrices V and U such that

JV = U

(
σ1

σ2

)
.

The singular values σi are the major and minor semiaxes of the ellipse in R; the

columns of V are parallel to the vectors x±, and the columns of U are parallel to the

vectors Jx±. For an example, see Figure A.4.

On a sufficiently coarse scale, the curvature of the cortical surface and of the

complex logarithmic map invalidate the affine linear description of the mapping.

3See Trefethen and Bau, [76].



APPENDIX B: GUASSIAN IDENTITIES

The following identities are included for reference. They are used at various points

throughout the text. Let u =

(
u1

u2

)
and v =

(
v1

v2

)
denote vectors in the plane,

and let σ be a positive real number. Define

g(u, σ) :=
1

2πσ2
exp

(
−|u|

2

2σ2

)
The following identities follow:∫

R2
g(u, σ) du = 1 (B.21)∫

R2
ug(u− v, σ) du = v (B.22)∫

R2
|u|2g(u, σ) du = σ2 (B.23)∫

R2
g(u− v, σu)g(v, σv) dv = g

(
u,
√
σ2
u + σ2

v

)
(B.24)

g(u, σ1)g(u, σ2) =

g

(
u, σ1σ2/

√
σ2

1 + σ2
2

)
2π(σ2

1 + σ2
2)

(B.25)

g(u− v, σ)g(u′ − v, σ) = g(u− u′, 2σ)g

(
u+ u′

2
− v, σ

2

)
(B.26)

Let two quadratic forms (see Appendix 6.2.3) P and Q be given by

P =
TrP

2
I2 +

q[P ]

2
Φ2(φ[P ])

Q =
TrQ

2
I2 +

q[Q]

2
Φ2(φ[Q]).
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In analogy with the notation g(u, σ2) given above, define

g(u,Q) =
1

2π
√

detQ
exp

(
−1

2
u

tr
Q−1u

)
(B.27)

Then the convolution of two such Gaussians is again a Gaussian∫
u∈R2

g(u− u′, P )g(u′, Q) du′ = g(u,C) (B.28)

where TrC = TrP + TrQ. Also, if we write in vector form

χ[P ] = q[P ]

(
cos 2φ[P ]

sin 2φ[P ]

)

χ[Q] = q[Q]

(
cos 2φ[Q]

sin 2φ[Q]

)

χ[C] = q[C]

(
cos 2φ[C]

sin 2φ[C]

)
,

then

χ[C] = χ[P ] + χ[Q]. (B.29)

The effect of a shift in the location of the center by order ε is given by the Taylor

series:

g(u+ εv, σ) = g(u, σ)

(
1− εv · u

σ2
+

ε2

2σ4
v ·

[(
u2

1 − σ
2 u1u2

u1u2 u2
2 − σ

2

)
v

]
+O(ε3)

)
.

(B.30)

Further Gaussian Identities

Let g(u, σ2) denote a Gaussian in the plane with width σ:

g(u, σ2) :=
1

2πσ2
exp

[
−||u||

2

2σ2

]
.
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The following are used in section 4.3.

f(u)
∫
u∈R2 f(u)g(u+ v, σ2/2) du

1 1

uj −vj

u1u2 v1v2

u2
i v2

i + σ2/2

||u||2 ||v||2 + σ2

u3
j −vj(v2

j + 3σ2/2)

u2
i uj , i 6= j −(v2

i + σ2/2)vj

u4
i v4

i + 3σ2v2
i + 3σ4/4

u3
i uj , i 6= j vivj(v

2
1 + 3σ2/2)

u2
1u

2
2 v2

1v
2
2 + ||v||2σ2/2 + σ4/4

||u||4 ||v||4 + 4σ2||v||2 + 2σ4
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Fourier Transform

If g(u, σ2) = exp
[
− u2

2σ2

]
/
√

2πσ2, u ∈ R, then the Fourier transform of g is given by:

g̃(ω) :=
1√
2π

∫ ∞
−∞

g(u, σ2)eiωu du

=
σ exp

[
−σ

2ω2

2

]
√

2πσ2

=
1

σ
g(ω, σ−2).



APPENDIX C: STATISTICS FOR ANGULAR

VARIABLES

Optical images generated by Blasdel and others necessarily represent orientation-

tuned neural activity as population averages. The smoothing algorithms and optical

resolution of the apparatus combine between tens and hundreds of cells’ responses in

each pixel of the orientation-preference map. The vector representation of orientation

tuning implicitly assumes the responses of individual units (cells or neighborhoods

of cells) to be unimodal functions of angle. That is, the orientation-tuning vector

may be thought of as a cosinusoid with a phase representing the preferred orientation

and an amplitude representing the strength of the preference. In the differential-

imaging techniques the orientation-tuning vector has one component representing the

magnitude of the signal difference for horizontal vs. vertical stimuli while the other

represents right- vs. left-handed obliques.

Interpreting these images requires an ansatz about the nature of the underlying

units. For example, the magnitude of the orientation-tuning vector passes smoothly

through zero at the “centers” of the “singularities” in the angle map. One may conjec-

ture that decreased magnitude represents weaker orientation tuning of individual cells

on the one hand, or alternatively that they reflect a more widely scattered mixture

of cells whose individual tuning strengths are constant.

To grasp quantitatively the trade-off between heterogeneity of the local orientation

population vs. decrease in individual cell tuning strengths it is useful to analyze rules

for summing cosines. Suppose that the locally averaged tuning generating a given

pixel in the orientation map were a linear combination of the responses of individual

tuning curves, each given as a cosine with a phase and amplitude. The sum of n

cosines with arbitrary phases and amplitudes is again a cosine:

∑
k

ak cos(θ − δk) = a cos(θ − δ) (C.31)
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where

a2 = 2
∑
j

∑
k

ajak cos(δj − δk)−
∑
k

a2
k

a cos(δ) =
∑
k

ak cos(δk)

a sin(δ) =
∑
k

ak sin(δk)

We may also use a continuum version of this identity when we have a distribution of

phases ρ(ψ):

∫ 2π

ψ=0
ρ(ψ) cos(θ − ψ) dψ = a cos(θ − δ)

a2 =

∫
ψ

∫
ψ′
ρ(ψ)ρ(ψ′) cos(ψ − ψ′) dψ dψ′ (C.32)

The mean of the distribution ρ(θ) is of course what determines δ. When considering

the orientation map it is natural to assume that the magnitudes and phases a(x), δ(x)

characterizing the population distribution vary smoothly as functions of position.

As a special case, let us calculate the magnitude of the response a as a function

the variance of a local distribution of phases when the local magnitudes ak are con-

stant. The local distribution will be a probability density function for an angular (i.e.

periodic or pseudoscalar) variable. The question arises which family of distributions

is most appropriate for representing such angular data and their moments. The com-

mon practice in biology of replacing circular distributions with Gaussians clipped at

±π from the mean is unfortunately rather Procrustean. Several alternatives to this

approach exist, including the wrapped Gaussian gw

gw(θ; θ0, σw) =
1

σw
√

2π

∞∑
k=−∞

exp

(
−(θ − θ0 + 2πk)2

2σ2
w

)
, 0 < θ ≤ 2π (C.33)
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and the von Mises distribution gM

gM (θ; θ0, κ) =
1

2πI0(κ)
exp (κ cos(θ − θ0)) . (C.34)

The normalization factor I0(κ) is the zeroth-order modified Bessel function of the

first kind,

I0(κ) =
∞∑
r=0

1

r!2
(
1

2
κ)2r. (C.35)

These two distributions are very similar, becoming identical for very narrow dis-

tributions (σw → 0, κ → ∞), or very broad (σw � 2π, 0 ≤ κ � 2π), because

e−
1
2σ

2
w ≈ I1(κ)/I0(κ) as κ → ∞ for an appropriate σw(κ). The von Mises distribu-

tion arises as the conditional distribution (in angle) of a bivariate normal distribution

(centered on the unit circle); it is the unique distribution for a given mean and circular

variance that maximizes the entropy
∫
θ g(θ) log(g(θ)) dθ. 4 The wrapped Gaussian

distribution arises as a limiting sum of independent identically distributed distribu-

tions and as the probability density function of a particle undergoing a symmetric

random walk on the circle. Each is easier to use in different contexts and they are

close enough numerically to use interchangeably for many purposes.

The norm a of the resultant sum is simple to calculate when the phases obey the

von Mises distribution with concentration parameter κ and mean ψ0:

a(κ) =

(
1

2πI0(κ)

)2 ∫
ψ

∫
ψ′

exp(κ cos(ψ − ψ0)) exp(κ cos(ψ′ − ψ0)) cos(ψ − ψ′) dψ dψ′

=

(
I1(κ)

I0(κ)

)2

I1(κ) is the first-order modified Bessel function of the first kind. In general the p-th

order function is given by

Ip(κ) =
∞∑
r=0

{Γ(p+ r + 1)Γ(r + 1)}−1
(
κ

2

2r+p
)
.

4Reference: Statistics of Directional Data, by Mardia [50]. See section 3.4.9.
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Figure C.5: Resultant sum of von Mises functions. The magnitude of the cosine
resulting from a sum of cosines with phases distributed according to the von Mises
distribution with concentration parameter κ.

See Figure C.5.



APPENDIX D: EQUIVARIANT BIFURCATION THEORY

D.4 Introduction

Bifurcations from steady states in systems which possess the symmetry of a group

provide problems of enduring interest for dynamical systems theory. Typically, sym-

metries in a dynamical system force degeneracy of the critical eigenvalues at a bifur-

cation, rendering the standard bifurcation tools such as normal forms and Lyapunov-

Schmidt reduction difficult to apply.

Nevertheless, exploration of such systems has yielded fascinating and beautiful

results. In the Bénard problem, for example, E2 invariance allows one to predict

D2, D3, D4 and D6 invariant solutions of the Boussinesq equations. [12, 64]. Re-

cently, group-theoretic tools have provided a wealth of techniques for the analysis

of equivariant bifurcations. In this Appendix I review developments in equivariant

bifurcation theory, including the so-called “symmetry - adapted basis” methods of

Fässler - Stiefel, Werner, and Golubitsky - Stewart - Schaeffer [27, 30, 80, 81], and

give examples of applications.

D.5 Equivariant Bifurcation Problems

I consider a dynamical system

dx

dt
= G(x, µ)

wherein x ∈ V moves in a finite-dimensional vector space, µ ∈ R, and G : V ×R⇒ V

is C∞. I assume that for any µ, there exists a fixed point x0(µ):

G(x0(µ), µ) = 0

which is invariant under the action of a Lie group Γ.
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The system is equivariant with respect to a representation ρ of Γ, ρ : Γ→ GL(V ),

if for all x, µ, and γ ∈ Γ,

G(ργx, µ) = ργG(x, µ).

Without loss of generality I will consider only unitary representations. By way of

abbreviation I will use γ in place of ργ , when the intended representation is unam-

biguous.

Differentiating the equivariance condition gives us the immediate consequence: for

all γ in Γ,

Jγ = γJ

where J(x, µ) =
∂G(x,µ)
∂x is the n × n Jacobian of G. Because J commutes with the

representation, eigenvalues of J will occur in multiplets (as described below) resulting

in degenerate bifurcations.

As another immediate consequence of equivariance, we can see that if x is any

solution of G(x, µ) = 0 then for any γ,G(γx, µ) = 0. One solution x will give rise to

a family of conjugate solutions {γx|γ ∈ Γ}; hence bifurcating solution branches often

occur in multiplets as well.

Given any x ∈ V I define Σx to be the subgroup of Γ under which x is preserved:

Σx := {σ ∈ Γ|σx = x}.

A subgroup of Γ arising in this way is known as an isotropy subgroup.

With any subroup Σ of Γ I associate its fixed-point space:

Fix(Σ) := {x ∈ V |σx = x}

which is a subspace of V . It is a theorem due to Van der Bauwhede (see [30]) that

generically, it is in the one-dimensional fixed-point subspaces of isotropy subgroups

that one expects to find bifurcations from a Γ-invariant steady-state. This principle

is known as minimal symmetry breakdown.
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D.6 Representation Theory and Isotypic Decomposition

The requirement that a matrix A commute with the matrices ργ representing a group

Γ imposes restrictions on the possible form of A. In particular, a basis for V may

be found in which all such matrices have a specified block-diagonal form, the blocks

corresponding to the decomposition of ρ as a direct sum of irreducible representations

θi of Γ. Knowledge of this structure allows us to determine which isotropy subgroups

may have branching solutions at a bifurcation point.

A representation ρ of Γ acts irreducibly on the space V if V admits no nontrivial

proper invariant subspaces under Γ. Each irreducible representation ρi of Γ possesses

a distinct character

χi(γ) := trace(ρi(γ))

which is orthogonal to the characters of nonisomorphic representations in the sense

that

< χi|χj >:=

∫
Γ
χi(γ

−1)χj(γ)dγ = δij .

When Γ is finite,
∫

Γ dγ is to be understood as 1
|Γ|
∑
γ∈Γ. Because the character is

constant within conjugacy classes of Γ and distinct between them, the number of dif-

ferent characters and hence the number of nonisomorphic irreducible representations

just equals the number of conjugacy classes of elements of Γ (provided this number

is finite).

The set of all matrices

C(θ) := {A ∈M\|θγA = Aθγ ,∀γ ∈ −}

is an associative algebra over R, isomorphic to either R, C, or H, when θ is an ir-

reducible representation of Γ. An irreducible representation is of real, complex, or

quaternionic type, accordingly. In applications irreducible representations of quater-

nionic type do not commonly arise.

If V is a finite-dimensional space, then any representation ρ : Γ→ GL(V ) may be
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decomposed by virtue of the orthogonality relations:

ρ = c1ρ1 ⊕ c2ρ2 ⊕ ...⊕ cmρm

where ck =
<ρk|ρ>
dk

. Here ck represents the multiplicity with which ρk appears in ρ;

dk = 2 if ρk is a real representation of complex type, otherwise dk = 1. For example,

the regular representation of a finite group of order |Γ| with m distinct irreducible

representations, ρreg : Γ→ GL(R|Γ|), decomposes as

ρreg = n1ρ1 ⊕ n2ρ2 ⊕ · · · ⊕ nmρm

where nj is the dimension of the jth representation of Γ. Each irreducible represen-

tation appears with multiplicity cj equal to its dimension nj , whence

dim(V ) = |Γ| =
m∑
j=1

n2
j .

Corresponding to the decomposition of ρ there is a canonical decomposition of V ,

V = V1 ⊕ V2 ⊕ ...⊕ Vm

with each Vk invariant under ρ, and dim(Vk) = cknk. The linear transformation of

V which projects onto the subspace Vk is given by

P (k) =
nk
|Γ|

∫
Γ
χk(γ−1)ρk(γ)dγ.

The Vk can be further decomposed, although no longer in a unique way, to

Vk =

ck⊕
j=1

Vk,j

where nk = dim(ρk) = dim(Vk,j) for fixed k, and the basis vectors for each Vk,j are

especially chosen to reflect the symmetry of the problem.
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Beginning with a basis for V we may find basis vectors ~bk,j,i, i = 1, · · · , nk for Vk,j

as follows: One vector, ~bk,j,1 for each Vk,j , j = 1, · · · , cj is chosen as an independent

column from the rank-ck matrix

P
(k)
1 = nk

∫
Γ
d

(k)
11 (γ−1)ρk(γ)dγ

where d
(k)
µν is the (µ, ν)-element, in the original basis, of the representation matrix for

ρk.

The remaining basis vectors ~bk,j,i, i = 2, · · · , nk are determined as the images of

~bk,j,1 under the matrices

P
(k)
l = nk

∫
Γ
d

(k)
1l (γ−1)ρk(γ)dγ.

The basis {~bk,j,i} selected in this way has the property that ρk permutes the ith basis

vectors of each Vk,j , j = 1, · · · , ck, in the same way; such a basis is called symme-

try adapted, and greatly facilitates the computation of eigenvalues and bifurcation

behavior of Γ-symmetric matrices5.

Written in the symmetry-adapted basis, every matrix in C(ρ) must be block-

diagonal, with the following form:

• for each irreducible representation ρk of real type, appearing in ρ with mul-

tiplicity ck > 0 and of dimension nk, there are nk identical ck × ck blocks

Ak.

• for each irreducible representation ρk of complex type, appearing in ρ with

multiplicity ck > 0, and of (real) dimension nk, there are nk/2 identical (2ck)×
(2ck) blocks Ak composed of

Ak =

(
ak −bk
bk ak

)

5The algorithm given is due to Fässler and Stiefel, see [27].
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where ak and bk are ck × ck real matrices.

Each Vk,j is invariant under A and the blocks Ak each act on the different Vk,j , j =

1, ..., ck, in the same way.

The eigenvalues of matrices in C(ρ) may be classified according to the isotypic

subspaces Vk in which their eigenspaces lie. An eigenvalue λ of an Ai block will occur
ni
di

times in A; if these are the only occurences of λ it is called a Γ-simple eigenvalue of

A. Just as the eigenvalues of arbitrary matrices are generically simple, the eigenvalues

of arbitrary Γ-symmetric matrices are generically Γ-simple.

If, as µ crosses a critical value µ0, a Γ-simple eigenvalue λ of J of type ρk passes

with nonzero speed through λ = 0, then ker(J(x0, µ0)) will be nk-dimensional. Each

Ak will have a simultaneous 0 eigenvalue and ker(J), which is a proper invariant

subspace of V , will be isomorphic to any of the Vj,k. The equivariant branching lemma

tells us to expect bifurcating branches at µ0 with the symmetry of isotropy subgroups

Σ for which ker(J) ∩ Fix(Σ) is one-dimensional. Such subgroups are consequently

known as the bifurcation subgroups for ρk.

Theorem D.1 (Equivariant Branching Lemma) Let Γ be a Lie group acting ir-

reducibly on V and let g be a Γ-equivariant bifurcation problem satisfying |J(x0(µ), µ)| =
0 and

d|J |
dµ 6= 0. Let Σ be an isotropy subroup of Γ satisfying

dim(Fix(Σ)) = 1.

Then there exists a unique smooth solution branch to g = 0 such that the isotropy

subgroup of each solution is Σ.

Generically, Γ will act irreducibly on ker(J), so we expect Σ-symmetric bifurcation

branches for bifurcation subgroups.
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D.7 Symmetry-Adapted Basis Methods: Example

An idealized vibrating drumhead stretched across a square frame6 satisfies the equa-

tions

∆φ+ λu = 0 (D.36)

φ(x|bdry) = 0 (D.37)

where φ(x) is the amplitude of vibrations at point x.

A coarse discretization of this system is given by considering the 3×3 lattice with

basis vectors φ1, · · · , φ9, as shown in figure D.6. The discretization of the Laplacian

operator is the kernel M , given by the cross operator (see figure D.7).

Figure D.6: 3× 3 discretized membrane

In the standard basis M has the following matrix represention:

6Fässler and Stiefel consider this problem in [27].
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Figure D.7: Discrete Laplacian

Mφ =



4 −1 0 −1 0 0 0 0 0

−1 4 −1 0 −1 0 0 0 0

0 −1 4 0 0 −1 0 0 0

−1 0 0 4 −1 0 −1 0 0

0 −1 0 −1 4 −1 0 −1 0

0 0 −1 0 −1 4 0 0 −1

0 0 0 −1 0 0 4 −1 0

0 0 0 0 −1 0 −1 4 −1

0 0 0 0 0 −1 0 −1 4




φ1

φ2
...

φ9

 .

A priori, the eigenvalue problem for M appears cumbersome, but the D4-symmetry

of the system allows for considerable simplification.

The projection formula given above yields a symmetry adapted basis:

x1 =

· · ·
· 1 ·
· · ·

x2 =

· 1 ·
1 · 1

· 1 ·

x3 =

1 · 1

· · ·
1 · 1

y =

· 1 ·
−1 · −1

· 1 ·

z =

−1 · 1

· · ·
1 · −1
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u1 =

· · ·
−1 · 1

· · ·

u2 =

−1 · 1

· · ·
−1 · 1

v1 =

· 1 ·
· · ·
· −1 ·

v2 =

1 · 1

· · ·
−1 · −1

The representation space R9 decomposes into invariant subspaces

V = R9 = V1 ⊕ V2 ⊕ V3 ⊕ V4

with

V1 = span{xi}3i=1

V2 = span{y}
V3 = span{z}
V4 = span{u1, u2, v1, v2}.

D4 is generated by two elements r and s, satisfying r4 = e, s2 = e, and sr =

r−1s. The decomposition of V corresponds to a decomposition of the representation

ρ : D4 → GL(R9)

ρ = ρ1 ⊕ ρ2 ⊕ ρ3 ⊕ ρ4.

In this decomposition, ρ1(r) and ρ1(s) act as


1

1

1

 on V1; ρ2(r) acts on

V2 as (−1) and ρ2(s) as (1); ρ3(r) acts on V3 as (−1) and ρ3(s) also as (−1). In

the two-dimensional representation, ρ4(r) and ρ4(s) act on V4 respectively as I2 ⊗
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cos(π/2) − sin(π/2)

sin(π/2) cos(π/2)

)
and I2 ⊗

(
1

−1

)
, or

ρ4(r) =


0 0 −1 0

0 0 0 −1

1 0 0 0

0 1 0 0



ρ4(s) =


1

1

−1

−1

 .

Within ρ4, D4 acts on the paired vectors (u1, v1) and (u2, v2) in precisely the same

fashion; also ρ1 acts on each of (xi)
3
i=1 in (trivially) like fashion. This coordination

between the actions of the group on distinct sets of basis vectors is the essence of the

symmetry adapted approach.

In the symmetry adapted basis, ordered as {x1, x2, x3, y, z, u1, u2, v1, v2}, we find

that M has been block-diagonalized:

M =


A1

A2

A3

A4


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=




4 −4 0

−1 4 −2

0 −2 4


(4)

(4) 
(

4 −2

−1 4

)
(

4 −2

−1 4

)




.

The eigenvalues and eigenfunctions of M may now be found easily. The first

block has eigenvalues {4, 4± 2
√

2}, the second and third both have {4} and the last

two blocks have eigenvalues {4 ±
√

2}. The corresponding eigenvectors bear direct

comparison to the analytical solutions sin(mx) sin(ny) for the square drumhead. The

lowest and highest frequency harmonics of the discretization, and their continuum

counterparts, are shown for comparison.
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Figure D.8: Lowest frequency; sin (πx) sin (πy)

Lowest frequency: ν = 4− 2
√

2

fν = 2x1 +
√

2x2 + x3

1
√

2 1
√

2 2
√

2

1
√

2 1

Highest frequency: ν = 4 + 2
√

2

fν = 2x1 −
√

2x2 + x3

1 −
√

2 1

−
√

2 2 −
√

2

1 −
√

2 1

D.8 Spontaneous Symmetry Breaking in the n-Box

Brusselator

The dynamical system

d

dt

(
x

y

)
= f

(
x

y

)
=

(
a− (b+ 1)x+ x2y

bx− x2y

)
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Figure D.9: Highest frequency; sin (3πx) sin (3πy)

models a chemical reaction-diffusion system, first developed in Brussels [62]. We

imagine a ring of n identical, well-stirred reaction vessels, the common walls of which

allow diffusion of the reacting species with coefficients 1
λ2
Dx,

1
λ2
Dy. The reaction

equations for the nth box become

dzk
dt

= gk(~z) = f(zk) +
1

λ

(
Dx 0

0 Dy

)
(zk−1 − 2zk + zk+1)

where zk = (xk, yk)tr, k = 1, · · · , n; addition is taken modulo n.

The system has a Dn-symmetric steady state zk =

(
a

b/a

)
, k = 1, · · · , n, which

is stable for sufficiently large coefficients of diffusion (small λ). To study bifurcations

which break this symmetry we need to decompose the representation space V = R2n

via irreducible representations of Dn. The desired decomposition is

V = 2V 1
1 ⊕ (2V 1

2 )⊕ 2V 2
1 ⊕ 2V 2

2 ⊕ · · · ⊕ 2V 2
l

If n is even, l = n
2 − 1. If n is odd, l = n−1

2 , and V 1
2 does not appear in the

decomposition.

The one-dimensional irreducible representations are ρ1
1, the trivial representation,

and ρ1
2 : r → 1, ρ1

2 : s→ −1. When n is odd, ρ1
2 does not appear.
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The two-dimensional irreducible representations given by

ρ2
k :

r →


cos 2π kn − sin 2π kn

sin 2π kn cos 2π kn



s →


1 0

0 −1


, k = 1, · · · , l.

The symmetry-adapting projection algorithm gives basis vectors:

v1
1,1 = (1, 0, 1, 0, · · · , 1, 0)

v1
1,2 = (0, 1, 0, 1, · · · , 0, 1)

for V 1
1,1 and V 1

1,2;

v1
2,1 = (1, 0,−1, 0, · · · ,−1, 0)

v1
2,2 = (0, 1, 0,−1, · · · , 0,−1)

and V 1
2,1 and V 1

2,2, (these are the one-dimensional representations); and

v2
k,1,1 = (1, 0, cos(2π

k

n
), 0, · · · , cos(2π(n− 1)

k

n
, 0))

v2
k,1,2 = (0, 1, 0, cos(2π

k

n
), · · · , 0, cos(2π(n− 1)

k

n
))

v2
k,2,1 = (0, 0, sin(2π

k

n
), 0, · · · , sin(2π(n− 1)

k

n
, 0))

v2
k,2,2 = (0, 0, 0, sin(2π

k

n
), · · · , 0, sin(2π(n− 1)

k

n
))

for V 2
k,1 and V 2

k,2.

For a concrete example, consider the 6-box Brusselator7. The basis vectors are

7Studied by Werner [80]
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(suppressing the y-concentrations)

v1
1 = (1, 1, 1, 1, 1, 1)

v1
2 = (1,−1, 1,−1, 1,−1)

v2
1,1 = (2, 1,−1,−2,−1, 1)

v2
1,2 = (0, 1, 1, 0,−1,−1)

v2
2,1 = (2,−1,−1, 2,−1,−1)

v2
2,2 = (0, 1,−1, 0, 1,−1).

With the basis ordered as above, the Jacobian of the system at the steady state

becomes

J =



A1
1

A1
2

A2
1

A2
1

A2
2

A2
2



=



(
3b+ 1 a2

b −a2

)
A1

1 −
4
λ2
D

A1
1 −

1
λ2
D

A1
1 −

1
λ2
D

A1
1 −

3
λ2
D

A1
1 −

3
λ2
D


.

where D =

(
Dx 0

0 Dy

)
. Each irreducible representation appearing is of real type,

and each has multiplicity two, leading to the (2×2) blocks throughout. Blocks for A2
1

and A2
2 appear twice because the corresponding representations are two-dimensional.

When for example block A2
1 develops a zero eigenvalue it is forced to be degenerate,

but is still Γ-simple. The kernel of J will then lie in V 2
1 , and from the equivariant

branching lemma we expect bifurcating solution branches with the symmetries of
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subgroups whose fixed-point spaces’ intersections with V 2
1 are one-dimensional. It is

in the direction of the shared subspace that the bifurcating solution will grow.

Bases for the fixed point subspaces of the isotropy subgroups of D6 (shown here for

all isotropy subgroups up to conjugacy) can be made to coincide with the symmetry-

adapted basis vectors found via the irreducible representations, as follows:

Basis vectors v1
1 v1

2 v2
1,1 v2

1,2 v2
2,1 v2

2,2

Isotropy Subgroups

D6
√

D3(s, r2)
√ √

Z2 ⊕ Z2(s, r3)
√ √

Z2(r3)
√ √ √

Z2(sr3)
√ √ √

Z2(s)
√ √ √ √

1
√ √ √ √ √ √

When 0 becomes a Γ-simple eigenvalue of A2
1, we expect bifurcating solution

branches with the symmetries of the three subgroups conjugate to Z2(s), and the

three conjugate to Z2(sr3). When A2
2 has a Γ-simple zero we expect these subgroups

and also the three conjugates of Z2 ⊕ Z2(s, r3), but not Z2(r3) (nor 1). When

A1
2 becomes singular we expect to find symmetry breaking from D6 to the normal

subgroup D3.

Detailed numerical calculations by Werner and others8 have confirmed these ex-

pectations for the case of the 6-box Brusselator.

8see [30, 80]
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D.9 Spontaneous Symmetry Breaking in the Bénard

Problem

The Boussinesq approximation for Rayleigh-Bénard convection yields the equations

1
ρ

{
∂v
∂t + (v · ∇)v

}
= −∇p+ θ~g + ∆v

div(v) = 0

∂θ
∂t + (v · ∇)θ = Rv3 + ∆θ

where ρ and p represent the fluid density and pressure, respectively; v ∈ R3 is the

fluid velocity, x ∈ R3 the position and θ ∈ R the variation of temperature from a

linear profile. The boundary conditions
∂v1
∂x3

=
∂v2
∂x3

= v3 = 0 at x3 = 0, 1 are assumed

for analytical convenience.

This system is equivariant with respect to the action of Γ = E2 ⊕ Z2 given by

σ ∈ O(2) : (v, θ)(x)→ (σv, θ)(σtrx)

(t1, t2) ∈ T2 : (v, θ)(x)→ (v, θ)(x− (t1, t2, 0))

κ ∈ Z2 : (v, θ)(x)→ (v,−θ)(x1, x2, 1− x3).

The trivial solution v = 0, θ = 0 is clearly Γ-invariant.

The linearized response of the system to perturbations of (v, θ) = (0, 0) is given

by

∆v −∇p+ θ~g = 0

div(v) = 0

∆θ +Rv3 = 0,

and these equations inherit the system’s equivariance under Γ. For sufficiently small

Rayleigh number R, the trivial solution is stable to small perturbations. Solutions

for vk and θ of the form ei(k1x1+k2x2) sin(nπx3) become critical at

R =
(n2π2 + |k|2)3

|k|2
,
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so we expect a bifurcation from the steady state at Rc = min|k|

{
(π2+|k|2)3

|k|2

}
. For

a given |kc| we have an infinity of solutions becoming critical at once, each with a

different orientation in the plane, and we cannot apply the usual Lyapunov-Schmidt

reduction.

To make the problem more tractable, we restrict attention to solutions which are

periodic on a lattice, that is functions f(x1, x2) of the form f(x) = f(x + e1) =

f(x + e2), where e1 and e2 are two vectors spanning the plane. Motivated by the

observation under selected experimental conditions of hexagonal planar patterns in

the fluid, we choose e1 and e2 to span a lattice L with D6-symmetry (see figure D.10):

e1 = c(1, 0)

e2 = c(−1/2,
√

3/2).

Figure D.10: Hexagonal Lattice L

Any C∞ function invariant under translations by e1 and e2 has an expansoin in

Fourier series

f(x1, x2) =
∑
j∈Z2

cje
i(j1~k1·~x+j2~k2·~x)

where k1 = 4π
c
√

3
(0, 1), k2 = 4π

c
√

3
(
√

3
2 , 1

2); for real f , cj = c̄−j . The natural action of T2

on (x1, x2) induces an action on the Fourier components of f , taking ei(j1
~k1+j2 ~k2)·~x

to a complex multiple of itself. The orbits of D6 are either six independent expo-

nentials, if j1 ~k1 + j2 ~k2 is invariant under one of the reflections generating D6, or

twelve exponentials if it is not. If j1 ~k1 + j2 ~k2 = 0(modL), the orbit is {1}. We arrive
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therefore at families of irreducible representations of dimension either six or twelve.

The fundamental representation, generated by ei
~k1·~x, is given as

6∑
j=1

zje
i~kj ·~x

zj ∈ C; z̄1 = z4, z̄2 = z5, z̄3 = z6

~k3 = −(~k1 + ~k2), ~k4 = −~k1, ~k5 = −~k2, ~k6 = −~k3

.

D6 acts on {zk}3k=1 as follows: D3 permutes the coordinates (z1, z2, z3) and Z2(s)

acts as complex conjugation. The action of a translation ~p ∈ T2 is

~p : (z1, z2, z3)→ (ei
~k1·~pz1, e

i ~k2·~pz2, e
i ~k3·~pz3).

The isotropy subgroups with one dimensional fixed-point subspaces for Γ are cal-

culated, up to conjugacy, to be:

IR
∼= Z2

2 ⊕ S
1 generated by (z1, z2, z3)→ (z1, z3, z2), (z1, z2, z3)→ (z̄1, z̄2, z̄3),

and (0, p2) ∈ T2. Rolls or Stripes.

IH
∼= D6 Hexagons.

IT
∼= D3 Triangles.

IP
∼= Z3

2 generated by (z1, z2, z3) → (z̄1, z̄2, z̄3), (z1, z2, z3) → (z2, z1, z3), and

(z1, z2, z3)→ (z1, z2,−z3). Patchwork Quilt.

The corresponding fixed-point spaces, shown in figure D.11, are:

Fix(IR) = R{(1, 0, 0)}
Fix(IH) = R{(1, 1, 1)}
Fix(IT ) = R{(i, i, i)}
Fix(IP ) = R{(1, 1, 0)}

.

Every bifurcation subgroup of (T2 oD6)⊕ Z2 is conjugate to one of these.



183

Figure D.11: Four planforms for bifurcation subgroups of (T2 o D6) ⊕ Z2: Rolls,
Hexagons, Triangles, and Patchwork



APPENDIX E: MATLAB CODES

E.10 Simulated Annealing Codes

xyann1 (script) XY model heat-bath (annealing) simulation. Compares center-

surround with pure Gaussian interaction kernel. Also compares same for Ising

model.

xyann4 XY model heat-bath (annealing) simulation. Runs long-time average sam-

ples of steady states to evaluate orientation scatter as a function of temperature.

objfun2 Calculates XY objective function explicitly. Fairly slow.

The basic simulated annealing algorithm simulates a heat bath (Gibbs ensemble)

by sampling a vector near the current vector, and selecting it with probability given by

a sigmoid function of the energy increment or decrement it would cause. The effective

step size in the random walk is controlled by the interaction of the ”temperature”,

which determines the selectivity or slope of the sigmoid, and the sampling ensemble.

If the sampling width is too large or too small compared to the size of features such as

local minima on the energy landscape the random walk will proceed slowly, or become

trapped. Similarly, if the ”temperature” is too low the process will not escape local

minima. In the center-surround XY model this means topological singularities will

not approach each other and annihilate. If the ”temperature” is too high then no

organized pattern forms.

Generally the obective function or energy to be minimized is given as a quadratic

function of the vector field, e.g.

H(χ) = −1

2

∑
i

χi ·
∑
j

Aijχj

184
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(possibly with addtional constraint terms). It is substantially more time-efficient to

sample a neighborhood of each spin χi simultaneously and independently. Using

some sampling function I generate a new χ′i and compare it to the background field

generated by the current χi

H(χ′ − χ) = −
∑
i

(χ′i − χi) ·
∑
j

Aijχj +O(|χi|2)

accurate to second order in |χ|.9

xyann1

model = ’Ising’;

%’XY’ -> planar XY model

%’Ising’ -> Ising model

kernel = ’dog’;

%’dog’ -> difference of Gaussians.

%’Jij’ -> classical Ising interaction

%’Gauss’ -> a single Gaussian.

%%%Parameters%%%

gridsize = [100 100]; % 2 mm^2

sigp = 5; % 100 micron excitatory radius

sigm = 3*sigp; % 300 micron inhibitory radius

switch kernel

case ’Jij’

K = [0 1 0; 1 0 1; 0 1 0];

case ’dog’

K = kernel4(sigp,sigm,4*sigp,0);

case ’Gauss’

K = kernel4(3,100,15,29);

end

%K = K/sum(abs(K(:))); % set maximal local energy change to 1.

9I am indebted to A. Dimitrov for originally pointing out this expedient to me.
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%%%Heat Bath parameters%%%

sigphi = pi/10; % typical stepsize in sampling

beta = 1000; % inverse temperature for Gibbs ensemble

%1000 for XY DOG, 100 for XY Jij;

%.1 for Ising -- DOG or , Gauss (or .01 for Jij?)

nits = 1000; % total number of iterations

%snap = 10; % snapshots per iteration

snap=10; % use this for movie effect

switch model

case ’XY’

%%%Initial Conditions%%%

phi = pi*rand(gridsize);

seephi(phi),drawnow

for its = 1:nits

%%%Generate alternative angles%%%

phi0=phi;

phi1 = mod(phi + sigphi*randn(gridsize),pi); % random walk in phi

% difference in energy function H = Kij cos(2(phi_i-phi_j))

dH = (cos(2*phi1)-cos(2*phi0)).*...

conv2(cos(2*phi),-K,’same’)/prod(size(K)) + ...

(sin(2*phi1)-sin(2*phi0)).*...

conv2(sin(2*phi),-K,’same’)/prod(size(K));

choice = rand(gridsize) < sigmoid(-2/beta,dH); % binary choice

phi = phi1.*choice + phi0.*(1-choice);

if ~rem(its,snap)

seephi(phi),title([’Iteration ’,num2str(its)])

drawnow

end

end
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case ’Ising’

%%%Initial Conditions%%%

z = round(rand(gridsize))*2 - 1; % +- 1

seez(z),drawnow

for its = 1:nits

%%%Generate alternative angles%%%

z0=z;

z1 = -z0; % flip spins

% difference in energy function H = Kij cos(2(phi_i-phi_j))

dH = (z1-z0).*conv2(z,-K,’same’);

choice = rand(gridsize) < sigmoid(-2/beta,dH); % binary choice

z = z1.*choice + z0.*(1-choice);

if ~rem(its,snap)

seez(z),title([’Iteration ’,num2str(its)])

drawnow

end

end

end

xyann4

function [avephidiffs,nndiffs,locdiffs] = xyann4(fname,tol)

%function [avephidiffs,nndiffs,locdiffs] = xyann4(fname,tol)

%

% Simulate XY model with heat bath with difference-of-Gaussians

% interaction at different temperatures. Run at a given

% temp until the average change in the local statistics

% falls below tolerance TOL (e.g. 0.01) -- or reverses.

%

% Outputs:

% AVEPHIDIFFS is average absolute difference in neighboring

% angles -- the statistic reported in Maldonado & Gray Visual
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% Neuroscience 1996.

% NNDIFFS is average angle difference between adjacent units,

% cos(2(phi1-phi2))

% LOCDIFFS is average angle difference with local field, cos(2(phi-philoc))

%

% FNAME is a filename to which to save data.

%

% Same setup as XYANN2, except statistics appropriate for

% exptl data comparisons.

if nargin < 2,

tol = .01; % one percent change in average difference to stop

end

%%% Set up the geometry & initial conditions %%%

ic = ’hot’; % initial conditions. ’cold’->roll pattern. ’hot’ -> random

gridsize = [100 100]; % size of spatial grid

maxits = 2000; % maximum number of iterations

sigp=4.718;sigm=3*sigp;% kernel widths -- gives 1mm stripes if each pix=50micr.

K = kernel3(sigp,sigm,ceil(4*sigp),0); % difference of Gaussians interaction

sigphi = pi/4; % typical stepsize in phi

switch ic

case ’cold’ % low temp initial conds -> optimal roll pattern

width = pi*sqrt(2/log(3))*sigp; % spatial period of roll pattern

[x,y]=meshgrid(1:gridsize(2),1:gridsize(1)); % xy spatial grid

phi0=pi*mod(y/width,1); % orientation roll pattern

case ’hot’

phi0 = mod(pi*rand(gridsize),pi); % random -- high temp approx.

end

%%% Simmer at different temperatures beta and record statistical behavior %%%

nbeta = 9; minlogbeta = 2; maxlogbeta = 4;

betas = logspace(minlogbeta,maxlogbeta,nbeta);

for jbeta = 1:nbeta

beta = betas(jbeta)

[avephidifftemp,nndifftemp,locdifftemp,phi] = ...
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bake(phi0,beta,sigphi,maxits,K,gridsize,tol);

avephidiffs(jbeta,1:length(avephidifftemp)) = avephidifftemp;

nndiffs(jbeta,1:length(nndifftemp)) = nndifftemp;

locdiffs(jbeta,1:length(locdifftemp)) = locdifftemp;

phis(:,:,jbeta) = phi;

figure

plot(nndifftemp,’+’),hold on

plot(locdifftemp,’o’),plot(avephidifftemp,’*’)

title([’Log10(\beta) = ’,num2str(log10(beta))])

xlabel(’Iteration’)

axis([0 length(nndifftemp),0,2])

end

save(fname)

%%% FUNCTIONS %%%============================================================%%%

function [avephidiff,nndiff,locdiff,phi] = ...

bake(phi0,beta,sigphi,maxits,K,gridsize,tol)

%%% Initialize %%%

its = 0; % iteration number

% record average absolute difference between n.n. ala Maldonado+Gray

avephidiff = 0;

% record difference between nearest neighbors (ave. cos 2 phidiff)

nndiff = 0;

locdiff = 0; % record difference between phi and local (K-averaged) phi

stopflag = 0; % signals when stat’l steady state is approximately reached

%%% Iterate heat bath and calculate statistics %%%

while ((its+1) < maxits) & ~stopflag

its = its + 1;

%%% Choose new phi according to Boltzman Distribution %%%

phi=phi0;
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phi1 = mod(phi0 + sigphi*randn(gridsize),pi); % random walk in phi

% difference in energy function H = Kij cos(2(phi_i-phi_j))

dH = (cos(2*phi1)-cos(2*phi0)).*...

conv2(cos(2*phi),-K,’same’)/prod(size(K)) + ...

(sin(2*phi1)-sin(2*phi0)).*...

conv2(sin(2*phi),-K,’same’)/prod(size(K));

choice = rand(gridsize) < sigmoid(-2/beta,dH); % binary choice

phi = phi1.*choice + phi0.*(1-choice);

[avephidiff(its), nndiff(its), locdiff(its)] = xystats(phi,K,gridsize);

% Continue until changes drop below tol -- and at least 200 its

if (its > 200) & ~rem(its-1,50) % check every 50 its after 200

locdiffave1 = mean(locdiff(its + [-99:0])) % average last 250 nndiff

locdiffave2 = mean(locdiff(its + [-199:-100])) % avg prior 100 nndiff

% fractional decrease of tol.

if ((locdiffave2-locdiffave1)/locdiffave2 < tol)...

& (locdiffave1 < .5); % cool state

stopflag = 1;

%disp([locdiffave1,locdiffave2])

end

end

phi0 = phi;

end % while ((its+1) < maxits) & ~stopflag

%%% Picture phi drawn from steady state distribution.

figure,seephi(phi),

title([’Typical \phi configuration at Log10(\beta) = ’,num2str(log10(beta))])

%%%-----------------------------------------------------------------------------

function [avephidiff, nndiff, locdiff] = xystats(phi,K,gridsize)

%%% Find differences in neighboring angles as in Maldonado & Gray
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% Find absolute angular differences and take population average

% phi difference -- horizontal neighbors

phidiffhor = conv2(phi,[1, -1],’valid’);

phidiffhor = min(abs(phidiffhor),min(abs(phidiffhor+pi),abs(phidiffhor-pi)));

% phi difference -- vertical neighbors

phidiffver = conv2(phi,[1; -1],’valid’);

phidiffver = min(abs(phidiffver),min(abs(phidiffver+pi),abs(phidiffver-pi)));

avephidiff = mean(phidiffhor(:)+phidiffver(:))/2;

%%% Angle between neighboring orientations

% Population average of cos(2(phi1-phi2)) where phi1,phi2 are neighbors

phivec(:,:,1) = cos(2*phi);

phivec(:,:,2) = sin(2*phi);

nndiffhor = sum(phivec(1:(gridsize(1)-1),:,:).*phivec(2:gridsize(1),:,:),3);

nndiffver = sum(phivec(:,1:(gridsize(2)-1),:).*phivec(:,2:gridsize(2),:),3);

nndiff = mean(nndiffhor(:)+nndiffver(:))/2;

%%% Angle between local field and phi

% Compute local field

phivecloc(:,:,1) = conv2(phivec(:,:,1),K,’same’);

phivecloc(:,:,2) = conv2(phivec(:,:,2),K,’same’);

qloc(:,:,1) = sqrt(sum(phivecloc.^2,3));

qloc(:,:,2) = qloc(:,:,1);

% Population average of cos(2(phi-philoc))

locdiff = 2*mean(phivec(:).*(phivecloc(:)./qloc(:)));

objfun2

function f = objfun2(x,K)

%function f = objfun2(x,K)

%

% An objective function to accompany ann5 (annealing program.)

% Calculates overlap (or "conflict") of orientation sensitive
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% cells according to a convolution kernel K. The grid "x" is

% a square of orientation values scaled from 0 to pi.

% Returns a matrix the size of x.

% Uses zero-flux boundary conditions.

% Higher (positive) f represents less conflict or more overlap.

[rk ck] = size(K);

j = 1:rk;

k = 1:ck;

Kcent = [rk+1,ck+1]/2; % Assumes K has odd depth and breadth.

[rx cx] = size(x);

f = zeros(rx,cx);

pad1 = Kcent(1);

pad2 = Kcent(2);

x = addbdy(x,pad1,pad2); % Adds no-flux boundary to x.

for l1 = 1:rx

for l2 = 1:cx

f(l1,l2) = sum(sum( K .* ...

cos(2*( ...

x(l1+pad1, l2+pad2) ... % Center of kernel;

- x(l1+j, l2+k) )) ... % outlying point.

));

end % l2

end % l1

E.11 Visualization Codes

diffim Simulate physiology, optics and averaging of raw orientation distribution to

generate optical image (Blasdel’s method).

singplot2 Locate the singularities in an orientation map.
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rect Draw an oriented box with given aspect ratio, area, position etc.

diffim

function [orients, prefstr] = diffim(x)

%function [orients, prefstr] = diffim(x)

%

% Filter for "differential imaging" of annealed

% orientation-preference data.

% Input: GRIDSIZE x GRIDSIZE vector of preferred orientations

% 0 <= theta < pi.

% Output: oplot of a subgrid of the values superimposed on

% a colored background of averaged orientation responses.

[rx cx] = size(x);

hor = (cos(x)).^2 - (cos(x - pi/2)).^2; % response to 0 - resp to pi/2

tilt = (cos(x+pi/4)).^2 - (cos(x-pi/4)).^2; % resp to -pi/4 - resp to pi/4

% compress and smooth images -- average 8x8 region spaced every 4x4.

jmax = fix(rx/4)-1;

kmax = fix(cx/4)-1;

for j = 1:jmax, for k = 1:kmax

horcomp(j,k) = sum2(hor(4*j-3:4*j+4,4*k-3:4*k+4));

tiltcomp(j,k) = sum2(tilt(4*j-3:4*j+4,4*k-3:4*k+4));

end, end

figure(gcf+1);setfsize(600,600),pcolor(horcomp),colormap gray,axis(’equal’)

shading(’interp’),

title(’Preference for Horizontal Stimuli over Vertical’)

figure(gcf+1);setfsize(600,600),pcolor(tiltcomp),colormap gray,axis(’equal’)

shading(’interp’),

title(’Preference for -Pi/4 Oblique Stimuli over +Pi/4’)

% Plot orientation preferences (not strengths of preferences)
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% as colorwheel plot, with oriented line segments overlain.

[xx yy] = meshgrid(1:jmax,1:kmax); % positions for line-segment plotting

points = length(xx(:));

a = zeros(4,points);

a(1,:) = xx(:)’+1/2;

a(2,:) = yy(:)’+1/2;

a(3,:) = atan2(tiltcomp(:),horcomp(:))’/2;

a(4,:) = sqrt(tiltcomp(:)’.^2 + horcomp(:)’.^2);

orients = reshape(a(3,:),size(xx));

prefstr = reshape(a(4,:),size(xx));

figure(gcf+1), setfsize(800,800)

pcolor(orients), colormap hsv, axis(’equal’), shading(’flat’)

hold on

oplot(a,.75)

title(’Orientation Preference Based on Two-Component Differential Imaging’)

figure(gcf+1), setfsize(800,800)

pcolor(prefstr), colormap gray, axis(’equal’), shading(’flat’)

title(’Strength of Orientation Preferences’)

singplot2

function sx = singplot2(x,period,plotflag)

%function sx = singplot2(x,period,plotflag)

%

% Let X be an RX x CX matrix of values of a PERIOD-periodic

% scalar (default period is 2*pi).

% SINGPLOT2 returns the closed integrals around the RX-1 x CX-1

% squares of size 2x2 ranging over X.

if nargin < 3, plotflag = 1; end

if nargin < 2, period = 2*pi;, end
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[rx cx] = size(x);

sx = zeros(rx-1,cx-1);

for j = 1:rx-1

for k = 1:cx-1

int = 0;

int = delphi(x(j,k), x(j+1,k), period) + int;

int = delphi(x(j+1,k), x(j+1,k+1), period) + int;

int = delphi(x(j+1,k+1), x(j,k+1), period) + int;

int = delphi(x(j,k+1), x(j,k), period) + int;

sx(j,k) = int;

end

end

if plotflag == 1,

figure(gcf+1), setfsize(800,800)

pcolor(sx), colormap gray, axis(’equal’), shading(’interp’),

caxis([-period, period])

end

MATLAB function rect.m creates an oriented box – a component of the graphics

shown in chapter 5.

rect

function h=rect(x,y,theta,area,thick,aspect)

%function rect(x,y,theta,area,thick,aspect)

%

% Add a box (four line objects) to the current figure

% at position [X,Y], angle THETA,

% length sqrt(AREA*ASPECT), width sqrt(AREA/ASPECT).

% ASPECT should be >=1; default ASPECT=3.

% THICK (default 3) specifies the thickness of the

% line elements.
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%

% Returns a vector of handles to the line elements.

if nargin < 6, aspect = 3; end

if nargin < 5, thick = 2; end

if nargin < 4, area = 1; end

if nargin < 3, theta = 0; aspect = 1; end % make a square box.

a = sqrt(area*aspect)/2;

b = sqrt(area/aspect)/2;

xa = a*cos(theta);

ya = a*sin(theta);

xb = -b*sin(theta);

yb = b*cos(theta);

xs = x + [xa+xb,-xa+xb,-xa-xb,xa-xb,xa+xb];

ys = y + [ya+yb,-ya+yb,-ya-yb,ya-yb,ya+yb];

h=line(xs,ys);

set(h,’LineWidth’,thick)

E.12 Pattern Formation Analysis

irrepcalc1 Code for calculating equivalence of different irreducible representations.

irrepcalc3 Code for calculating projections onto isotypic subspaces.

ctxpat1 Searches for a bifurcation (zero eigenvalue) in the parameter space of the

monocular model.

irrepcalc1

function irrepcalc1(i,j)

% Square Lattice

% Calculation to see if different Irreps from

% xy model are inequivalent or not
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% Based on Schurr’s lemma.

%

% choose i,j from 1,2,3,4,5.

% bases [cos(k1.x), sin(k1.x), cos(k2.x), sin(k2.x)]

% for +- permutation matrices

%%% five different 4x4 irreps

%% rotation by pi/2

a = zeros(4,4,5);

%% reflection in x-axis

b = zeros(4,4,5);

%%% First Irrep -- mass irrep

%% rotation by pi/2

a(1,3,1) = 1;

a(2,4,1) = 1;

a(3,1,1) = 1;

a(4,2,1) = -1;

% reflection in k1

b(:,:,1)=eye(4,4);

b(4,4,1) = -1;

%%% Second Irrep -- "compression wave" retinotopy irrep

%% rotation by pi/2

a(1,3,2) = -1;

a(2,4,2) = 1;

a(3,1,2) = 1;

a(4,2,2) = 1;

% reflection in k1

b(:,:,2)=eye(4,4);

b(3,3,2) = -1;

%%% Third Irrep -- "transverse wave" retinotopy irrep
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%% rotation by pi/2

a(1,3,3) = 1;

a(2,4,3) = -1;

a(3,1,3) = -1;

a(4,2,3) = -1;

% reflection in k1

b(:,:,3)=-eye(4,4);

b(3,3,3) = 1;

%%% Fourth Irrep -- Orientation (4)

%% rotation by pi/2

a(1,3,4) = -1;

a(2,4,4) = 1;

a(3,1,4) = -1;

a(4,2,4) = -1;

% reflection in k1

b(:,:,4)=eye(4,4);

b(4,4,4) = -1;

%%% Fifth Irrep -- Orientation (5)

%% rotation by pi/2

a(1,3,5) = -1;

a(2,4,5) = 1;

a(3,1,5) = -1;

a(4,2,5) = -1;

% reflection in k1

b(:,:,5)=-eye(4,4);

b(4,4,5) = 1;

%%% Choose which irreps to compare

if nargin < 2

i=1;

j=1;

end
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a1 = squeeze(a(:,:,i))

b1 = squeeze(b(:,:,i))

a2 = squeeze(a(:,:,j))

b2 = squeeze(b(:,:,j))

tot = zeros(4,4); % total

for k=0:3 % four rotations in D4

tot = tot ...

+ a1^k*(a2^k)’ ...

+ a1^k*b1*b2’*(a2)’^k; % note b2=b2’

end

tot = tot/8; % normalize by number of elements in group

disp([’Inner Product of Irreps ’,num2str(i),’ and ’,num2str(j),’ is:’])

disp(tot)

%keyboard

syms alpha1 alpha2 real

t = [cos(alpha1),sin(alpha1),0,0;...

-sin(alpha1),cos(alpha1),0,0;...

0,0,cos(alpha2),sin(alpha2);...

0,0,-sin(alpha2),cos(alpha2)];

%e.g.: finding the character function

disp([’Character Function for Irrep ’,num2str(i)])

for k=0:3,[k,trace(t*a1^k)],end

for k=0:3,[k,trace(t*b1*a1^k)],end

%

disp([’Character Function for Irrep ’,num2str(j)])

for k=0:3,[k,trace(t*a2^k)],end

for k=0:3,[k,trace(t*b2*a2^k)],end

keyboard
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irrepcalc3

%Projection calculation onto isotypic subspaces for cortical map problem

%(square lattice actions).

opt = 1; % opt = +-1 for the two kinds of irreps

% bases [cos(k1.x), sin(k1.x), cos(k2.x), sin(k2.x)]

% for +- permutation matrices and rotation matrices

% Elements of the group T^2 \sdp D_4 are given as

% translation(alpha1,alpha2).\sigma where \sigma \in D_4.

% (alpha1,alpha2) is in [0,2 pi)x[0,2 pi).

syms alpha1 alpha2 real

% character of the irreducible

% representation is

% \chi(\gamma) =

% 2 cos(alpha1) + 2 cos(alpha2), for t(alpha1,alpha2);

% +- 2 cos(alpha1), for t(alpha1,alpha2).\kappa;

% +- 2 cos(alpha2), for t(alpha1,alpha2).\kappa.\xi^2;

% 0, otherwise.

% translation matrix in the above basis represented as

t = [cos(alpha1),sin(alpha1),0,0;...

-sin(alpha1),cos(alpha1),0,0;...

0,0,cos(alpha2),sin(alpha2);...

0,0,-sin(alpha2),cos(alpha2)];

%%% five different 4x4 irreps in the above basis

%% rotation by pi/2

a = zeros(4,4,5);

%% reflection in x-axis

b = zeros(4,4,5);

%%% First Irrep -- mass irrep
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%% rotation by pi/2

a(1,3,1) = 1;

a(2,4,1) = 1;

a(3,1,1) = 1;

a(4,2,1) = -1;

% reflection in k1

b(:,:,1)=eye(4,4);

b(4,4,1) = -1;

%%% Second Irrep -- "compression wave" retinotopy irrep

%% rotation by pi/2

a(1,3,2) = -1;

a(2,4,2) = 1;

a(3,1,2) = 1;

a(4,2,2) = 1;

% reflection in k1

b(:,:,2)=eye(4,4);

b(3,3,2) = -1;

%%% Third Irrep -- "transverse wave" retinotopy irrep

%% rotation by pi/2

a(1,3,3) = 1;

a(2,4,3) = -1;

a(3,1,3) = -1;

a(4,2,3) = -1;

% reflection in k1

b(:,:,3)=-eye(4,4);

b(3,3,3) = 1;

%%% Fourth Irrep -- Orientation (4)

%% rotation by pi/2

a(1,3,4) = -1;

a(2,4,4) = 1;
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a(3,1,4) = -1;

a(4,2,4) = -1;

% reflection in k1

b(:,:,4)=eye(4,4);

b(4,4,4) = -1;

%%% Fifth Irrep -- Orientation (5)

%% rotation by pi/2

a(1,3,5) = -1;

a(2,4,5) = 1;

a(3,1,5) = -1;

a(4,2,5) = -1;

% reflection in k1

b(:,:,5)=-eye(4,4);

b(4,4,5) = 1;

% Projections via characters:

for opt = -1:2:1

disp([’Projections for type ’,num2str(opt)])

for i = 1:5

disp([’Component number ’,num2str(i)])

a1 = squeeze(a(:,:,i));

b1 = squeeze(b(:,:,i));

int(...

int(...

simplify(...

(2*cos(alpha1)+2*cos(alpha2))*t+...

opt*(2*cos(alpha1)*t*b1+2*cos(alpha2)*t*b1*a1^2)),...

alpha1,0,2*pi),...

alpha2,0,2*pi)...

*4/(8*4*sym(pi)^2)

end
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end

ctxpat1

function [vmax,dmax,a0grid,alphagrid,lammax,inds] = ctxpat1

%function [vmax,dmax,a0grid,alphagrid,lammax,inds] = ctxpat1

%

% Determine cortical pattern developing from

% an instability in the six-dimensional xy model.

%

% The cortex vector is:

%

% [(m-m0)/m0 ] [ v(:,:,1) ]

% [s(:,:,1) ] [ v(:,:,2) ]

% v = [s(:,:,2) ] = [ v(:,:,3) ]

% [chi1(:,:,1)] [ v(:,:,4) ]

% [chi2(:,:,2)] [ v(:,:,5) ]

% [rh0 ] [ v(:,:,6) ]

%

% The "dynamics" are given by

%

% (d/dt) u(:,:,j) = conv(u1,kj1,’same’) + ... + conv(u6,kj6,’same’)

%

% or, in the Fourier domain,

%

% (d/dt) U(:,:,j) = Kj1.*U(:,:,1) + Kj2.*U(:,:,2) + ... + Kj6.*U(:,:,6)

%

% It’s faster (by a factor of c. 100) to stay in the Fourier domain

% with occasional forays into position space for visualization and

% results.

%

% Capitalization conventions:

% U(:,:,j) = fft2(u(:,:,j))

% Kjk = fft2(kjk)

% etc.
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% a menagerie of numerical convolution kernels

global AA Ax1 Ax2 Arr Ahv Aob

global GG Gx1 Gx2 G11 G22 G12 Grr Ghv Gob

global G111 G112 G122 G222 Ghv1 Ghv2 Gob1 Gob2 Grr1 Grr2

global Grrrr Grrhv Grrob Ghvhv Ghvob Gobob

%%% Geometry of simulation

n = 16; % n x n cortical grid represents a 1x1 mm^2 region.

N = 2*n; % N x N cortical grid total

mu = .5; % retinocortical magnification factor dX/dR (mm CTX/mm LGN)

%Geniculate coordinates -- cortical given by dCTX = mu dLGN

% (2mm)^2 region of LGN

[x1,x2] = meshgrid(linspace(-1,1,N),linspace(-1,1,N));

r = sqrt(x1.^2+x2.^2); % radial distance

%%% CONVOLUTION KERNELS %%%

% convolution kernels will be represented in Fourier space

% recall 1 mm^2 = n^2 units.

% nominal receptive field width -- 200 microns (in LGN)

sig = 0.2;

% correlation width in LGN -- sigr in paper -- 200 microns (in LGN)

sigG = 0.2;

% positive Mexican Hat width -- 100 microns (in LGN, under magnification)

sigp = 0.1;

% negative Mexican Hat width -- 300 microns (in LGN, under magnification)

sigm = 0.3;

%% try this..

%sigG = 0.05

% Difference of Gaussians and related kernels

A = (exp(-(r/(2*sigp)).^2)/(2*pi*sigp^2) ...
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- exp(-(r/(2*sigm)).^2)/(2*pi*sigm^2));

AA = (1/n^2)*fft2(A);

Ax1 = (1/n^2)*fft2(A.*x1/mu);

Ax2 = (1/n^2)*fft2(A.*x2/mu);

Arr = (1/n^2)*fft2(A.*(r.^2)/mu^2);

% horizontal vs vertical kernel

Ahv = (1/n^2)*fft2(A.*(x1.^2 - x2.^2)/mu^2);

% +oblique vs -oblique kernel

Aob = (1/n^2)*fft2(A.*(2*x1.*x2)/mu^2);

% Gaussian LGN correlations and related kernels

G = exp(-(r/(2*mu*sqrt(2)*sigG)).^2)/(2*pi*(sqrt(2)*sigG)^2);

GG = (1/n^2)*fft2(G);

Gx1 = (1/n^2)*fft2(G.*x1/(2*mu));

Gx2 = (1/n^2)*fft2(G.*x2/(2*mu));

G11 = (1/n^2)*fft2(G.*x1.^2/((2*mu)^2));

G22 = (1/n^2)*fft2(G.*x2.^2/((2*mu)^2));

G12 = (1/n^2)*fft2(G.*x1.*x2/((2*mu)^2));

Grr = (1/n^2)*fft2(G.*(r.^2)/((2*mu)^2));

Ghv = (1/n^2)*fft2(G.*(x1.^2-x2.^2)/((2*mu)^2));

Gob = (1/n^2)*fft2(G.*(2*x1.*x2)/((2*mu)^2));

G111 = (1/n^2)*fft2(G.*(x1.^3)/((2*mu)^3));

G112 = (1/n^2)*fft2(G.*(x1.^2).*x2/((2*mu)^3));

G122 = (1/n^2)*fft2(G.*x1.*(x2.^2)/((2*mu)^3));

G222 = (1/n^2)*fft2(G.*(x2.^3)/((2*mu)^3));

Ghv1 = (1/n^2)*fft2(G.*(x1.^2-x2.^2).*x1/((2*mu)^3));

Ghv2 = (1/n^2)*fft2(G.*(x1.^2-x2.^2).*x2/((2*mu)^3));

Gob1 = (1/n^2)*fft2(G.*(2*x1.*x2).*x1/((2*mu)^3));

Gob2 = (1/n^2)*fft2(G.*(2*x1.*x2).*x2/((2*mu)^3));

Grr1 = (1/n^2)*fft2(G.*(r.^2).*x1/(2*mu)^3);

Grr2 = (1/n^2)*fft2(G.*(r.^2).*x2/(2*mu)^3);

Grrrr = (1/n^2)*fft2(G.*(r.^4)/((2*mu)^4));

Grrhv = (1/n^2)*fft2(G.*(r.^2).*(x1.^2-x2.^2)/((2*mu)^4));

Grrob = (1/n^2)*fft2(G.*(r.^2).*(2*x1.*x2)/((2*mu)^4));

Ghvhv = (1/n^2)*fft2(G.*(x1.^2-x2.^2).^2/((2*mu)^4));
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Ghvob = (1/n^2)*fft2(G.*(x1.^2-x2.^2).*(2*x1.*x2)/((2*mu)^4));

Gobob = (1/n^2)*fft2(G.*(2*x1.*x2).^2/((2*mu)^4));

%keyboard

%%% Search iteratively through part of parameter space for bifurcation

%a00 = 3; a01 = 4; na0 = 25;

%alpha0 = 4; alpha1 = 5; nalpha = 20;

a00 = 1; a01 = 4; na0 = 16;

alpha0 = 1; alpha1 = 5; nalpha = 15;

a0s = linspace(a00,a01,na0);

alphas = linspace(alpha0,alpha1,nalpha);

ndim = 6; % dimensions of cortical map

ndim = 5; % dimensions of reduced cortical map, 5x5 system

lammax = zeros(nalpha,na0); % record eigenvalues of maximal modes

% record which modes were maximal (by indices within K)

inds = zeros(nalpha,na0,4);

vmax = zeros(nalpha,na0,ndim,ndim,ndim);

dmax = zeros(nalpha,na0,ndim,ndim,ndim);

for ja0 = 1:na0

for jalpha = 1:nalpha

%%% Interactions between different map components

Kout = 1; % damping coefficient on fan-out

Kin = 1; % damping coefficient on fan-in

m0 = 1; % baseline fan-in weight

%a0 = 4; % strength of intracortical interaction *

% magnitude of LGN correlation fcn.

%alpha = 4; % decay rate affecting all variables

a0 = a0s(ja0);

alpha = alphas(jalpha);

K = Kinteract(alpha,a0,m0,Kin,Kout,sig,sigG);

% study system without rho-interactions
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%K(:,:,:,6) = zeros(N,N,6,1);

%K(:,:,6,:) = zeros(N,N,1,6);

K = K(:,:,1:5,1:5);

[rs cs ndim1 ndim2] = size(K); ndim = ndim1;

% Want max and min of spectrum of K(k1,k2,1:ndim,1:ndim)

% for each wave vector index (k1,k2).

% Record all eigenvalues in rs x rc x ndim array

for k1 = 1:rs

for k2 = 1:cs

lambda(k1,k2,1:ndim) = eig(squeeze(K(k1,k2,:,:)));

% alternative -- two largest real parts

%lambda(k1,k2,1:2) = eigs(squeeze(K(k1,k2,:,:)),’LR’,2);

end

end

% Find the largest eigenvalue(s). (There should be pairs

% in orthogonal fourier vector directions, by D4 invariance.)

maxind = find(real(lambda(:)) == max(real(lambda(:))));

% k1max, k2max give the Fourier component

% jjmax gives which eigenvalue

[k1max, k2max, jjmax] = ind2sub([N,N,ndim],maxind);

modes = length(k1max);

for jmode = 1:modes

[vmax(jalpha,ja0,:,:,jmode),dmax(jalpha,ja0,:,:,jmode)] = ...

eig(squeeze(K(k1max(jmode),k2max(jmode),:,:)));

end

%keyboard

inds(jalpha,ja0,1:length(maxind)) = maxind;

lammax(jalpha,ja0) = lambda(maxind(1));

[ja0,jalpha]

end

end

figure

[a0grid,alphagrid]=meshgrid(a0s,alphas);

%bifplot1(a0grid,alphagrid,lammax); axis equal,shading flat
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%keyboard

%%%=======================================================================%%%

%%% SUBROUTINES

%%%=======================================================================%%%

function K = Kinteract(alpha,a0,m0,Kin,Kout,sig,sigG)

global AA Ax1 Ax2 Arr Ahv Aob

global GG Gx1 Gx2 G11 G22 G12 Grr Ghv Gob

global G111 G112 G122 G222 Ghv1 Ghv2 Gob1 Gob2 Grr1 Grr2

global Grrrr Grrhv Grrob Ghvhv Ghvob Gobob

% Interaction Parameters

% correlation width in LGN -- 200 microns (in LGN)

if nargin < 7, sigG = 0.2; end

% nominal receptive field width -- 200 microns (in LGN)

if nargin < 6, sig = 0.2; end

if nargin < 5, Kout = 1; end % damping coefficient on fan-out

if nargin < 4, Kin = 1; end % damping coefficient on fan-in

if nargin < 3, m0 = 1; end % baseline fan-in weight

if nargin < 2, a0 = 4; end % strength of intracortical interaction *

% magnitude of LGN correlation fcn.

if nargin < 1, alpha = 4; end % decay rate affecting all variables

% Influence of all variables on the first variable

%(Fan-in deviation / base fan-in)

K11 = m0*(-Kin - Kout*GG)+ a0*AA - alpha;

K12 = -m0*Kout*Gx1/sig^2;

K13 = -m0*Kout*Gx2/sig^2;

K14 = -m0*Kout*Ghv/(4*sig^4);

K15 = -m0*Kout*Gob/(4*sig^4);

K16 = -m0*Kout*(Grr+GG*sig^2/2)/(2*sig^4);

% Influence of all variables on the second and third variables

% s(:,:,1) and s(:,:,2) -- retinotopic deviation vector
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K21 = -a0*Ax1 - Kout*m0*Gx1;

K31 = -a0*Ax2 - Kout*m0*Gx2;

K22 = a0*AA - alpha - Kout*m0*(sig^2*GG/2 - G11)/sig^2;

K32 = - Kout*m0*G12/sig^2;

K23 = - Kout*m0*G12/sig^2;

K33 = a0*AA - alpha - Kout*m0*(sig^2*GG/2 - G22)/sig^2;

K24 = -Kout*m0*(sig^2*(+Gx1) - (G111 - G122))/(4*sig^4);

K34 = -Kout*m0*(sig^2*(-Gx2) - (G112 - G222))/(4*sig^4);

K25 = -Kout*m0*(sig^2*Gx2 - 2*G112)/(4*sig^4);

K35 = -Kout*m0*(sig^2*Gx1 - 2*G122)/(4*sig^4);

K26 = -Kout*m0*(2*sig^2*Gx1 - Grr1)/(2*sig^4);

K36 = -Kout*m0*(2*sig^2*Gx2 - Grr2)/(2*sig^4);

% Influence of all variables on the fourth and fifth variables

% chi(:,:,1) and chi(:,:,2) -- orientation tuning vector

K41 = a0*Ahv - Kout*m0*Ghv;

K51 = a0*Aob - Kout*m0*Gob;

K42 = +2*a0*Ax1 - Kout*m0*(Ghv1 - Gx1*sig^2)/sig^2;

K52 = +2*a0*Ax2 - Kout*m0*(Gob1 - Gx2*sig^2)/sig^2;

%

K43 = -2*a0*Ax2 - Kout*m0*(Ghv2 + Gx2*sig^2)/sig^2;

K53 = +2*a0*Ax1 - Kout*m0*(Gob2 - Gx1*sig^2)/sig^2;

%K42 = -2*a0*Ax1 - Kout*m0*(Ghv1 - Gx1*sig^2)/sig^2;

%K52 = -2*a0*Ax2 - Kout*m0*(Gob1 - Gx2*sig^2)/sig^2;

%??

%K43 = +2*a0*Ax2 - Kout*m0*(Ghv2 + Gx2*sig^2)/sig^2;

%K53 = -2*a0*Ax1 - Kout*m0*(Gob2 - Gx1*sig^2)/sig^2;

K44 = a0*AA - alpha - Kout*m0*(Ghvhv - Grr*2*sig^2 + GG*sig^4)/(4*sig^4);

K54 = - Kout*m0*(Ghvob)/(4*sig^4);
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K45 = - Kout*m0*(Ghvob)/(4*sig^4);

K55 = a0*AA - alpha - Kout*m0*(Gobob - Grr*2*sig^2 + GG*sig^4)/(4*sig^4);

K46 = -Kout*m0*(Grrhv - (3*sig^2)*Ghv)/(2*sig^4);

K56 = -Kout*m0*(Grrob - (3*sig^2)*Gob)/(2*sig^4);

% Influence of all variables on the sixth variable (rho) --

% receptive field width deviation

K61 = a0*Arr + AA*sigG^2 - Kout*m0*Grr;

K62 = 2*a0*Ax1 - Kout*m0*(G111+G122-sig^2*Gx1)/sig^2;

K63 = 2*a0*Ax2 - Kout*m0*(G112+G222-sig^2*Gx2)/sig^2;

K64 = -Kout*m0*(Grrhv-Ghv*2*sig^2)/(4*sig^4);

K65 = -Kout*m0*(Grrob-Gob*2*sig^2)/(4*sig^4);

K66 = a0*AA - alpha - Kout*m0*(Grrrr - Grr*3*sig^2 - GG*sig^4/2)/(2*sig^4);

%keyboard

%%% Identify eigenvalue with largest real part.

[rs cs] = size(K11); % size of spatial grid = size of fourier grid

ndim = 6; % number of dimensions (variables).

K = zeros(rs,cs,ndim,ndim);

K(:,:,1,1) = K11; K(:,:,1,2) = K12; K(:,:,1,3) = K13;

K(:,:,1,4) = K14; K(:,:,1,5) = K15; K(:,:,1,6) = K16;

K(:,:,2,1) = K21; K(:,:,2,2) = K22; K(:,:,2,3) = K23;

K(:,:,2,4) = K24; K(:,:,2,5) = K25; K(:,:,2,6) = K26;

K(:,:,3,1) = K31; K(:,:,3,2) = K32; K(:,:,3,3) = K33;

K(:,:,3,4) = K34; K(:,:,3,5) = K35; K(:,:,3,6) = K36;

K(:,:,4,1) = K41; K(:,:,4,2) = K42; K(:,:,4,3) = K43;

K(:,:,4,4) = K44; K(:,:,4,5) = K45; K(:,:,4,6) = K46;
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K(:,:,5,1) = K51; K(:,:,5,2) = K52; K(:,:,5,3) = K53;

K(:,:,5,4) = K54; K(:,:,5,5) = K55; K(:,:,5,6) = K56;

K(:,:,6,1) = K61; K(:,:,6,2) = K62; K(:,:,6,3) = K63;

K(:,:,6,4) = K64; K(:,:,6,5) = K65; K(:,:,6,6) = K66;

%%%==================================================================%%%

function bifplot1(a,b,lam,ind1,ind2,ind3,ind4)

%function bifplot1(a,b,lam,ind1,ind2,ind3,ind4)

%

% Given an array of eigenvalues LAM sampled at

% different values of two parameters A and B,

% and up to four (optional) binary indicator array

% IND1...IND4: plot eigenvalues identifying

% complex numbers with a color space; also draw

% lines indicating boundary between real an complex,

% negative vs positive real part, and regions where

% INDS take on different values.

%

[r,c]=size(a);

maxeigsize = max(abs(lam(:).*real(lam(:)>0))); % largest + eigenvalue

%maxeigsize = max(abs(lam(:))); % largest magnitude

ncolor = 256; % size of hue-saturated colormap

cmap = hsv(ncolor); % hue-saturated colormap

for jb = 1:(r-1)

for ja = 1:(c-1)

theta = angle(lam(jb,ja));

rho = abs(lam(jb,ja));

%plotcolor = cmap(mod(floor(ncolor*theta/(2*pi))+ncolor/2,ncolor)... + 1) ...

% * rho/maxeigsize;

plotclr = cmap(mod(floor(ncolor*theta/(2*pi))+ncolor/2,ncolor) + 1,:) ...

* rho/maxeigsize;

patch(a(jb,ja)+(a(1,2)-a(1,1))*[0 1 1 0 0],...
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b(jb,ja)+(b(2,1)-b(1,1))*[0 0 1 1 0],...

...%plotcolor);

plotclr);

hold on

end

end

%caxis([1, ncolor]), colorbar

%colorbar

axis equal,%shading flat

[c1,h1]=contour(a,b,real(lam)>0,1);

set(plot(c1(1,2:length(c1)),c1(2,2:length(c1)),’w’),’LineWidth’,5)

hold on

[c2,h2]=contour(a,b,imag(lam)==0,1);

set(plot(c2(1,2:length(c2)),c2(2,2:length(c2)),’w’),’LineWidth’,5)

hold on

if nargin > 3

[c3,h3]=contour(a,b,ind1,1);

% plot(c3(1,2:length(c3)),c3(2,2:length(c3)),’k’)

hold on

end

if nargin > 4

[c4,h4]=contour(a,b,ind2,1);

% plot(c4(1,2:length(c4)),c4(2,2:length(c4)),’k’)

hold on

end

if nargin > 5

[c5,h5]=contour(a,b,ind3,1);

% plot(c5(1,2:length(c5)),c5(2,2:length(c5)),’k’)

hold on

end

if nargin > 6
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[c6,h6]=contour(a,b,ind4,1);

% plot(c6(1,2:length(c6)),c6(2,2:length(c6)),’k’)

hold on

end

E.13 General Utilities

addbdy Adds a boundary to a matrix – for zero-flux boundary conditions.

kernel4 Generates difference-of-Gaussians convolution kernel with specified + and -

widths.

kernel5 Generates difference-of-Gaussians convolution kernel with specified + and -

widths and a given L2 norm.

nowave Generates a grid of orientations in a roll-pattern with a proscribed amount

of noise.

addbdy

function mout = addbdy(m,r1,c1,r2,c2)

%function mout = addbdy(m,r1,c1,r2,c2)

%

% Adds a boundary to matrix M equal to the adjacent

% row or column, of thickness r1 before the first row,

% r2 after the last row, c1 before the first column,

% and c2 after the last column.

% By default, r2 := r1 and c2 := c1.

% Default thickness is one.

%

% Example:

% a = [1 2 3; 4 5 6; 7 8 9];

% addbdy(a,0,1,2,3)

%

% 1 1 2 3 3 3 3
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% 4 4 5 6 6 6 6

% 7 7 8 9 9 9 9

% 7 7 8 9 9 9 9

% 7 7 8 9 9 9 9

%

% Useful for setting up zero-flux boundary conditions!

% See also ADDBDYP (periodic), SUBBDY, PAD, and CLIP.

[rm cm] = size(m);

if nargin < 3, r1 = 1; c1 = 1; end

if nargin < 5, r2 = r1; c2 = c1; end

mout = zeros(rm+r1+r2,cm+c1+c2);

% middle

mout(r1+1 : r1+rm, c1+1 : c1+cm) = m;

% sides

mout(1 : r1, c1+1 : c1+cm) = ones(r1,1)*m(1,:);

mout(r1+rm+1 : r1+r2+rm, c1+1 : c1+cm) = ones(r2,1)*m(rm,:);

mout(r1+1 : r1+rm, 1 : c1) = m(:,1)*ones(1,c1);

mout(r1+1 : r1+rm, c1+cm+1 : c1+c2+cm) = m(:,cm)*ones(1,c2);

% corners

mout(1 : r1, 1 : c1) = m(1,1)*ones(r1,c1);

mout(1 : r1, c1+cm+1 : c1+c2+cm) = m(1,cm)*ones(r1,c2);

mout(r1+rm+1 : r1+r2+rm, 1 : c1) = m(rm,1)*ones(r2,c1);

mout(r1+rm+1 : r1+r2+rm, c1+cm+1 : c1+c2+cm) = m(rm,cm)*ones(r2,c2);

kernel4

function K = kernel4(d1,d2,d3,bias)
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%function K = kernel4(d1,d2,d3,bias)

%

% Discrete approximation of a 2-d difference of Gaussians.

% Returns an N x N matrix of weights. (N = 2*d3+1)

% D1 is approx. half-width of first gaussian, D2 of second.

% BIAS is the net integral of area under the weights; default = 0.

% UNLIKE KERNEL3, self interaction K(1+d3, 1+d3) is NOT set to zero.

% For a single gaussian set d2 = large and bias = 1.

if nargin < 4, bias = 0; end

n = 2*d3 + 1;

K = zeros(n);

j = 1:n; k = 1:n;

x = (j - d3 - 1)’ * ones(1,n);

y = ones(n,1) * (k - d3 - 1);

dist = sqrt(x.^2 + y.^2);

K1(j,k) = gauss(dist, d1);

K2(j,k) = gauss(dist, d2);

%K1(d3+1,d3+1) = 0; % these lines are the only difference

%K2(d3+1,d3+1) = 0; % between KERNEL3 and KERNEL4

K2 = K2 * (sum(sum(K1)) - bias) / sum(sum(K2)) ;

K = K1 - K2;

% Bug: the range of DOGs with a given area is 2-dimensional.

% This program picks out a 1-par. family by holding the

% positive gaussian K1 fixed for any choice of BIAS.

% Don’t know how much difference this makes.
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kernel5

function K = kernel5(d1,d2,d3,bias)

%function K = kernel5(d1,d2,d3,bias)

%

% Discrete approximation of a 2-d difference of Gaussians.

% Returns an N x N matrix of weights. (N = 2*d3+1)

% D1 is approx. half-width of first gaussian, D2 of second.

% BIAS is the net integral of area under the weights; default = 0.

% UNLIKE KERNEL3, self interaction K(1+d3, 1+d3) is NOT set to zero.

% For a single gaussian set d2 = large and bias = 1.

%

% Same as KERNEL4, but generates K with fixed L2 norm sum2(K.^2) = 1.

if nargin < 4, bias = 0; end

n = 2*d3 + 1; % pixel-size of the resulting kernel

K = zeros(n);

j = 1:n; k = j;

x = (j - d3 - 1)’ * ones(1,n);

y = ones(n,1) * (k - d3 - 1);

dist = sqrt(x.^2 + y.^2);

K1 = gauss(dist, d1)/(d1*sqrt(pi/2));

%K1=K1/sqrt(sum2(K1.^2)/n^2);

K2 = gauss(dist, d2)/(d2*sqrt(pi/2));

%K2=K2/sqrt(sum2(K2.^2)/n^2);

% start with Gaussians of unit L2 norm.

%K1(d3+1,d3+1) = 0; % these lines are the only difference

%K2(d3+1,d3+1) = 0; % between KERNEL3 and KERNEL4

% Rescale to fit mean=bias and mean-square = norm 1:

% K = C1 K1 - C2 K2, Cj > 0.

k1 = sum2(K1);
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k2 = sum2(K2);

k11 = sum2(K1.^2); % = 1

k12 = sum2(K1.*K2);

k22 = sum2(K2.^2); % = 1

% using the L2 norm leads to a quadratic equation for Cj with coefficients

% a,b,c.

a = k11*k2^2 - 2*k2*k12*k1 + k22*k1^2;

b = 2*bias*(k11*k2 - k12*k1);

c = k11*bias^2 - k1^2;

q = b^2 - 4*a*c; if q < 0 , error(’KERNEL5: BIAS too large!’), end

c2 = (-b + sqrt(q))/(2*a);

c1 = (c2*k2 + bias) / k1;

K = c1*K1 - c2*K2;

%=========================================================================%

%visualization for debugging

if 0 % set to 1 to include this part

clf

plot(K(:,d3+1)),hold on,plot(c1*K1(:,d3+1),’g’),plot(-c2*K2(:,d3+1),’r’)

grid on

[sum2(K),sum2(K.*K)]

figure(gcf+1)

[a1 a2]=meshgrid(0:.1:5.0,0:.1:5.0);

[cs, h]=contour(0:.1:5.0,0:.1:5.0, ...

a1.^2*k11-2*k12*a1.*a2+k22*a2.^2, ...

[1 2 3 4 5]);

clabel(cs,h,[1 2 3 4 5])

view([0 90])

grid on
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hold on

plot(a1(1,:),(a1(1,:)*k1 - bias)/k2,’+’)

xlabel(’c1’),ylabel(’c2’)

%figure

%surf(a1.^2*k11-2*k12*a1.*a2+k22*a2.^2)

hold off

end

nowave

function x = nowave(noise,gridsize, k1, k2)

%function x = nowave(noise,gridsize, k1, k2)

%

% Generates X, a GRIDSIZExGRIDSIZE array of angles 0 <= X <= Pi

% on a wave with reciprocal vector [K1 K2] (gridsize ~= Pi spatial unit)

% with each point’s angle perturbed with gaussian-wrapped noise

% of width NOISE.

%

% Defaults: NOISE = 0; GRIDSIZE = 50; [K1 K2] = [? 0].

k = 4;

if nargin == 3, k = k1; end

if nargin <3, k1 = k; k2 = 0; end

if nargin < 2, gridsize = 50; end

if nargin < 1, noise = 0; end

x = zeros(gridsize);

hgs = (gridsize - 1)/2; % half GRIDSIZE; offset by 1/2

[h v] = meshgrid(-hgs:hgs,-hgs:hgs); % Horizontal, Vertical

x = pi*(k1*h + k2*v)/gridsize;

dx = noise * randn(size(x));

x = x+dx;

x = mod(x,pi);
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