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Abstract

Fox and Lu introduced a Langevin framework for discrete-time stochastic models of
randomly gated ion channels such as the Hodgkin-Huxley (HH) system. They de-
rived a Fokker-Planck equation with state-dependent diffusion tensor D and suggested
a Langevin formulation with noise coefficient matrix S such that SSᵀ = D. Subse-
quently, several authors introduced a variety of Langevin equations for the HH system.
In this paper, we present a natural 14-dimensional dynamics for the HH system in which
each directed edge in the ion channel state transition graph acts as an independent noise
source, leading to a 14 × 28 noise coefficient matrix S. We show that (i) the corre-
sponding 14D system of ordinary differential equations is consistent with the classical
4D representation of the HH system; (ii) the 14D representation leads to a noise co-
efficient matrix S that can be obtained cheaply on each timestep, without requiring a
matrix decomposition; (iii) sample trajectories of the 14D representation are pathwise
equivalent to trajectories of Fox and Lu’s system, as well as trajectories of several ex-
isting Langevin models; (iv) our 14D representation (and those equivalent to it) give
the most accurate interspike-interval distribution, not only with respect to moments but
under both the L1 and L∞ metric-space norms; and (v) the 14D representation gives
an approximation to exact Markov chain simulations that are as fast and as efficient as
all equivalent models. Our approach goes beyond existing models, in that it supports a
stochastic shielding decomposition that dramatically simplifies S with minimal loss of
accuracy under both voltage- and current-clamp conditions.



1 Introduction
Many natural phenomena exhibit stochastic fluctuations arising at the molecular scale,
the effects of which impact macroscopic quantities. Understanding when and how mi-
croscale fluctuations will significantly contribute to macroscale behavior is a fundamen-
tal problem spanning the sciences. The impact of random ion channel fluctuations on
the timing of action potentials in nerve cells provides an important example. Channel
noise can have a significant effect on spike generation (Mainen and Sejnowski, 1995;
Schneidman et al., 1998), propagation along axons (Faisal and Laughlin, 2007), and
spontaneous (ectopic) action potential generation in the absence of stimulation (ODon-
nell and van Rossum, 2015). At the network level, channel noise can drive endogenous
variability of vital rhythms such as respiratory activity (Yu et al., 2017).

Hodgkin and Huxley’s quantitative model for active sodium and potassium currents
producing action potential generation in the giant axon of Loligo (Hodgkin and Hux-
ley, 1952) suggested an underlying system of gating variables consistent with a multi-
state Markov process description (Hill and Chen, 1972). The discrete nature of indi-
vidual ion channel conductances was confirmed experimentally (Neher and Sakmann,
1976). Subsequently, numerical studies of high-dimensional discrete-state, continuous-
time Markov chain models produced insights into the effects of fluctuations in discrete
ion channel populations on action potentials (Skaugen and Walløe, 1979; Strassberg
and DeFelice, 1993), aka channel noise (White et al., 1998, 2000).

In the standard molecular-level HH model, which we adopt here, the K+ channel
comprises four identical “n” gates that open and close independently, giving a five-
vertex channel-state diagram with eight directed edges; the channel conducts a current
only when in the rightmost state (Fig. 1, top). The Na+ channel comprises three iden-
tical “m” gates and a single “h” gate, all independent, giving an eight-vertex diagram
with twenty directed edges, of which one is conducting (Fig. 1, bottom).

Discrete-state channel noise models are numerically intensive, whether implemented
using discrete-time binomial approximations to the underlying continuous-time Markov
process (Skaugen and Walløe, 1979; Schmandt and Galán, 2012) or continuous-time
hybrid Markov models with exponentially distributed state transitions and continuously
varying membrane potential. The latter were introduced by (Clay and DeFelice, 1983)
and are in principle exact (Anderson et al., 2015). Under voltage-clamp conditions
the hybrid conductance-based model reduces to a time-homogeneous Markov chain
(Colquhoun and Hawkes, 1981) that can be simulated using standard methods such as
Gillespie’s exact algorithm (Gillespie, 1977, 2007). Even with this simplification, such
Markov Chain (MC) algorithms are numerically expensive to simulate with realistic
population sizes of 1000s of channels or greater. Therefore, there is an ongoing need
for efficient and accurate approximation methods.

Following Clay and DeFelice’s exposition of continuous time Markov chain imple-
mentations, (Fox and Lu, 1994) introduced a Fokker-Planck equation (FPE) framework
that captured the first and second order statistics of HH ion channel populations in a
14-dimensional representation. Taking into account conservation of probability, one
needs four variables to represent the population of K+ channels, seven for Na+, and
one for voltage, leading to a 12-dimensional state space description. The resulting
high-dimensional partial differential equation is impractical to solve numerically. How-
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Figure 1: Molecular potassium (K+) and sodium (Na+) channel states for the Hodgkin-
Huxley model. Filled circles mark conducting states n4 and m31. Per capita transi-
tion rates for each directed edge (αn, βn, αm, βm, αh and βh) are voltage dependent
(cf. eqns. (80)-(85)). Directed edges are numbered 1-8 (K+ channel) and 1-20 (Na+-
channel), marked in small red numerals.

ever, as Fox and Lu observed, “to every Fokker-Planck description, there is associated
a Langevin description” (Fox and Lu, 1994). They therefore introduced a Langevin
stochastic differential equation of the form:

C
dV

dt
= Iapp(t)− ḡNaM8 (V − VNa)− ḡKN5 (V − VK)− gleak(V − Vleak), (1)

dM

dt
= ANaM + S1ξ1, (2)

dN

dt
= AKN + S2ξ2, (3)

where C is the capacitance, Iapp is the applied current, maximal conductances are de-
noted ḡion, with Vion being the associated reversal potential, and ohmic leak current
gleak(V − Vleak). M ∈ R8 and N ∈ R5 are vectors for the fractions of Na+ and
K+ channels in each state, with M8 representing the open channel fraction for Na+,
and N5 the open channel fraction for K+ (Fig. 1). Vectors ξ1(t) ∈ R8 and ξ2(t) ∈ R5

are independent Gaussian white noise processes with zero mean and unit variances
〈ξ1(t)ξᵀ1(t′)〉 = I8 δ(t − t′) and 〈ξ2(t)ξᵀ2(t′)〉 = I5 δ(t − t′). The state-dependent rate
matrices ANa and AK are given in eqns. (16) and (17). In Fox and Lu’s formulation, S
must satisfy S =

√
D, where D is a symmetric, positive semi-definite k × k “diffusion

matrix” (see Appendix D for the D matrices for the standard HH K+ and Na+ chan-
nels). We will refer to the 14-dimensional Langevin equations (1)-(3), with S =

√
D,

as the “Fox-Lu” model.
The original Fox-Lu model, later called the “conductance noise model” by (Gold-

wyn and Shea-Brown, 2011), did not see widespread use until gains in computing speed
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made the square root calculations more feasible. Seeking a more efficient approxima-
tion, (Fox and Lu, 1994) also introduced a four-dimensional Langevin version of the
HH model. This model was systematically studied in (Fox, 1997) which can be written
as follows:

C
dV

dt
= Iapp(t)− ḡNam

3h (V − VNa)− ḡKn
4 (V − VK)− gleak(V − Vleak) (4)

dx

dt
= αx(1− x)− βxx+ ξx(t), where x = m,h, or, n. (5)

where ξx(t) are Gaussian processes with covariance function

E[ξx(t), ξx(t
′)] =

αx(1− x) + βxx

N
δ(t− t′). (6)

Here N represents the total number of Na+channels (respectively, the total number of
K+channels) and δ(·) is the Dirac delta function. This model, referred as the “subunit
noise model” by (Goldwyn and Shea-Brown, 2011), has been widely used as an ap-
proximation to MC ion channel models (see references in Bruce (2009); Goldwyn and
Shea-Brown (2011)). For example, Schmid et al. (2001) used this approximation to in-
vestigate stochastic resonance and coherence resonance in forced and unforced versions
of the HH model (e.g. in the excitable regime). However, the numerical accuracy of this
method was criticized by several studies (Mino et al., 2002; Bruce, 2009), which found
that its accuracy does not improve even with increasing numbers of channels.

Although more accurate approximations based on Gillespie’s algorithm (using a
piecewise constant propensity approximation, Bruce (2009); Mino et al. (2002)) and
even based on exact simulations (Clay and DeFelice, 1983; Newby et al., 2013; An-
derson et al., 2015) became available, they remained prohibitively expensive for large
network simulations. Meanwhile, Goldwyn and Shea-Brown’s rediscovery of Fox and
Lu’s earlier conductance based model (Goldwyn and Shea-Brown, 2011; Goldwyn
et al., 2011) launched a flurry of activity seeking the best Langevin-type approxima-
tion. Goldwyn and Shea-Brown (2011) introduced a faster decomposition algorithm to
simulate equations (1)-(3), and showed that Fox and Lu’s method accurately captured
the fractions of open channels and the inter-spike intervla (ISI) statistics, in comparison
with Gillespie-type Monte Carlo (MC) simulations. However, despite the development
of efficient singular value decomposition based algorithms for solving S =

√
D, this

step still causes a bottleneck in the algorithms based on (Fox and Lu, 1994; Goldwyn
and Shea-Brown, 2011; Goldwyn et al., 2011).

Many variations on Fox and Lu’s 1994 Langevin model have been proposed in re-
cent years (Dangerfield et al., 2010; Linaro et al., 2011; Dangerfield et al., 2012; Orio
and Soudry, 2012; Güler, 2013b; Huang et al., 2013; Pezo et al., 2014; Huang et al.,
2015; Fox, 2018) including Goldwyn et al’s work (Goldwyn and Shea-Brown, 2011;
Goldwyn et al., 2011), each with its own strengths and weaknesses. One class of meth-
ods imposes projected boundary conditions (Dangerfield et al., 2010, 2012); as we will
show in §5, this approach leads to inaccurate interspike interval distribution, and is
inconsistent with a natural multinomial invariant manifold structure for the ion chan-
nels. Several methods implement correlated noise at the subunit level, as in (5)-(6)
(Fox, 1997; Linaro et al., 2011; Güler, 2013a,b). However, if one recognizes that, at the
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molecular level, the individual directed edges represent the independent noise sources
in ion channel dynamics, then the approach incorporating noise at the subunit level ob-
scures the biophysical origin of ion channel fluctuations. Some methods introduce the
noisy dynamics at the level of edges rather than nodes, but lump reciprocal edges to-
gether into pairs (Orio and Soudry, 2012; Dangerfield et al., 2012; Huang et al., 2013;
Pezo et al., 2014). This approach implicitly assumes, in effect, that the ion channel
probability distribution satisfies a detailed balance (or microscropic reversibility) condi-
tion. However, while detailed balance holds for the HH model under stationary voltage
clamp, this condition is violated during active spiking. Finally, the stochastic shield-
ing approximation (Schmandt and Galán, 2012; Schmidt and Thomas, 2014; Schmidt
et al., 2018) does not have a natural formulation in the representation associated with
an n×n noise coefficient matrix S; in the cases of rectangular S matrices used in (Orio
and Soudry, 2012; Dangerfield et al., 2012) stochastic shielding can only be applied to
reciprocal pairs of edges. We will elaborate on these points in §6.

In this paper, we introduce a new variation of Fox and Lu’s conductance-noise
model that avoids the limitations described above. We show that preserving each di-
rected edge in the channel transition graph (Fig. 1) as an independent noise source leads
to a natural, biophysically motivated Langevin model that does not require any matrix
decomposition step. Our construction lends itself to direct application of stochastic
shielding methods, leading to faster simulations that retain the accuracy of Fox and
Lu’s method.

As an additional benefit, our method answers an open question in the literature,
arising from the fact that the decomposition D = SSᵀ is not unique. As Fox recently
pointed out, sub-block determinants of the D matrices play a major role in the structure
of the S matrix elements. (Fox, 2018) conjectured that “a universal form for S may
exist”. In this paper we obtain the universal form for the noise coefficient matrix S.
Moreover, we prove that our model is equivalent to Fox and Lu’s 1994 model in the
strong sense of pathwise equivalence.

The remainder of the paper is organized as follows. In §2, we review the canonical
deterministic 14D version of the HH model. We prove a series of lemmas which show
(1) the multinomial submanifoldM is an invariant manifold within the 14D space and
(2) the velocity on the 14D space and the pushforward of the velocity on the 4D space
are identical. Moreover, we show (numerically) that (3) the submanifold M is glob-
ally attracting, even under current clamp conditions. Fig. 2 illustrates the relationship
between the 4D and 14D deterministic HH models. §3 lays out our 14 × 28 Langevin
HH model. Like (Orio and Soudry, 2012; Dangerfield et al., 2012; Pezo et al., 2014),
we avoid matrix decomposition by computing S directly. The key difference between
our approach and its closest relative (Pezo et al., 2014) is to use a rectangular n × k
matrix S for which each directed edge is treated as an independent noise source, rather
than lumping reciprocal edges together in pairs. In the new Langevin model, the form
of our S matrix reflects the biophysical origins of the underlying channel noise, and
allows us to apply the stochastic shielding approximation by neglecting the noise on
selected individual directed edges. As we prove in §4, our model (without the stochas-
tic shielding approximation) is pathwise equivalent to all those in a particular class of
biophysically derived Langevin models, including those used in (Fox and Lu, 1994;
Goldwyn et al., 2011; Goldwyn and Shea-Brown, 2011; Orio and Soudry, 2012; Pezo
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et al., 2014; Fox, 2018). In addition to 4D and 14D deterministic trajectories, Fig. 2 also
shows a stochastic trajectory generated by our Langevin model. Finally, we compare
our Langevin model to several alternative stochastic neural models in terms of accuracy
(of the full ISI distribution) and numerical efficiency in §5.

Matlab code to generate the figures throughout the paper is available on github from
this link or this link.

2 The Deterministic 4D and 14D HH Models
In this section, we review the classical four-dimensional model of Hodgkin and Huxley
(1952) (HH), as well as its natural fourteen-dimensional version (Dayan and Abbott
(2001), §5.7), with variables comprising membrane voltage and the occupancies of five
potassium channel states and eight sodium channel states. The deterministic 14D model
is the mean field of the channel-based Langevin model proposed by (Fox and Lu, 1994);
this paper describes both the Langevin and the mean field versions of the 14D Hodgkin-
Huxley system. For completeness of exposition, we briefly review the 4D deterministic
HH system and its 14D deterministic counterpart. In §4 we will prove that the sample
paths of a class of Langevin stochastic HH models are equivalent; in §2.3 we review
analogous results relating trajectories of the 4D and 14D deterministic ODE systems.

In particular, we will show that the deterministic 14D model and the original 4D
HH model are dynamically equivalent, in the sense that every flow (solution) of the
4D model corresponds to a flow of the 14D model. The consistency of trajectories be-
tween of the 14D and 4D models is easy to verify for initial data on a 4D submanifold
of the 14D space given by choosing multinomial distributions for the gating variables
(Dayan and Abbott, 2001; Goldwyn et al., 2011). Similarly, Keener established re-
sults on multinomial distributions as invariant submanifolds of Markov models with
ion channel kinetics under several circumstances (Keener, 2009, 2010; Earnshaw and
Keener, 2010a,b), but without treating the general current-clamped case. Consistent
with these results, we show below that the set of all 4D flows maps to an invariant sub-
manifold of the state space of the 14D model. Moreover, we show numerically that
solutions of the 14D model with arbitrary initial conditions converge to this subman-
ifold. Thus the original HH model “lives inside” the 14D deterministic model in the
sense that the former embeds naturally and consistently within the latter (cf. Fig. 2).

In the stochastic case, the 14D model has a natural interpretation as a hybrid stochas-
tic system with independent noise forcing along each edge of the potassium (8 directed
edges) and sodium (20 directed edges) channel state transition graphs. The hybrid
model leads naturally to a biophysically grounded Langevin model that we describe
in section §3. In contrast to the ODE case, the stochastic versions of the 4D and 14D
models are not equivalent (Goldwyn and Shea-Brown, 2011).

6

https://github.com/shusenpu/Stochastic_shielding
https://github.com/pjthomas9/Stochastic_shielding


Figure 2: 4D and 14D HH models. The meshed surface is a three dimensional projec-
tion of the 14D state space onto three axes representing the voltage, v, the probability
of all four potassium gates being in the closed state, n0, and the probability of exactly
one potassium gate being in the open state, n1. Blue curves: Trajectories of the deter-
ministic 14D HH model with initial conditions located on the 4D multinomial invariant
submanifold,M. We prove thatM is an invariant submanifold in §2.3. Black curve:
The deterministic limit cycle solution for the 14D HH model, which forms a closed
loop withinM. Green curve: A trajectory of the deterministic 14D HH model with
initial conditions (vertical green arrow) off the multinomial submanifold. Red curve:
A trajectory of the stochastic 14D HH model (cf. §3) with the same initial conditions
as the green trajectory. The blue and black arrows mark the directions of the trajecto-
ries. Note that trajectories starting away fromM converge toM; and all deterministic
trajectories converge to the deterministic limit cycle. Parameters of the simulation are
given in Tab. 5.
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2.1 The 4D Hodgkin-Huxley Model
The 4D voltage-gated ion channel HH model is a set of four ordinary differential equa-
tions

C
dv

dt
= −ḡNam

3h(v − VNa)− ḡKn
4(v − VK)− gL(v − VL) + Iapp, (7)

dm

dt
= αm(v)(1−m)− βm(v)m, (8)

dh

dt
= αh(v)(1− h)− βh(v)h, (9)

dn

dt
= αn(v)(1− n)− βn(v)n, (10)

where v is the membrane potential, Iapp is the applied current, and 0 ≤ m,n, h ≤ 1 are
dimensionless gating variables associated with Na+ and K+ channels. The constant
ḡion is the maximal value of the conductance for the sodium and potassium channel,
respectively. Parameters Vion and C are the ionic reversal potentials and capacitance,
respectively. The quantities αx and βx, x ∈ {m,n, h} are the voltage-dependent per
capita transition rates, defined in Appendix B.

This system is a C∞ vector field on a four-dimensional manifold (with boundary)
contained in R4: X = {−∞ < v <∞, 0 ≤ m,h, n ≤ 1} = R× [0, 1]3. The manifold
is forward and backward invariant in time. If Iapp is constant then X has an invariant
subset given by X ∩{vmin ≤ v ≤ vmax}, where vmin and vmax are calculated in Lemma 1.

As pointed out by (Keener and Sneyd (1998), §3, p. 106) and (Keener, 2009), for
voltage either fixed or given as a prescribed function of time, the equations for m,h
and n can be interpreted as the parametrization of an invariant manifold embedded in
a higher-dimensional time-varying Markov system. Several papers developed this idea
for a variety of ion channel models and related systems (Keener, 2009; Earnshaw and
Keener, 2010b) but the theory developed is restricted to the voltage-clamped case.

Under fixed voltage clamp, the ion channels form a time-homogeneous Markov
process with a unique (voltage-dependent) stationary probability distribution. Under
time-varying current clamp the ion channels nevertheless form a Markov process, albeit
no longer time-homogeneous. Under these conditions the ion channel state converges
rapidly to a multinomial distribution indexed by a low-dimensional set of time-varying
parameters (m(t), h(t), n(t)) (Keener, 2010). In the current-clamped case, the ion chan-
nel process, considered alone, is neither stationary nor Markovian, making the analysis
of this case significantly more challenging, from a mathematical point of view.

2.2 The Deterministic 14D Hodgkin-Huxley Model
For the HH kinetics given in Fig. 1 (on page 3), we define the eight-component state
vector M for the Na+ gates, and the five-component state vector N for the K+ gates,
respectively, as

M = [m00,m10,m20,m30,m01,m11,m21,m31]
ᵀ ∈ [0, 1]8 (11)

N = [n0, n1, n2, n3, n4]
ᵀ ∈ [0, 1]5, (12)
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where
∑3

i=0

∑1
j=0mij = 1 and

∑4
i=0 ni = 1. The open probability for the Na+ channel

is M8 = m31, and is N5 = n4 for the K+ channel. The deterministic 14D HH equations
may be written (compare (7)-(10))

C
dV

dt
= −ḡNaM8(V − VNa)− ḡKN5(V − VK)− gL(V − VL) + Iapp, (13)

dM

dt
= ANa(V )M, (14)

dN

dt
= AK(V )N, (15)

where the voltage-dependent drift matrices ANa and AK are given by

ANa(V ) =



ANa(1) βm 0 0 βh 0 0 0
3αm ANa(2) 2βm 0 0 βh 0 0
0 2αm ANa(3) 3βm 0 0 βh 0
0 0 αm ANa(4) 0 0 0 βh
αh 0 0 0 ANa(5) βm 0 0
0 αh 0 0 3αm ANa(6) 2βm 0
0 0 αh 0 0 2αm ANa(7) 3βm
0 0 0 αh 0 0 αm ANa(8)


, (16)

AK(V ) =


AK(1) βn(V ) 0 0 0
4αn(V ) AK(2) 2βn(V ) 0 0

0 3αn(V ) AK(3) 3βn(V ) 0
0 0 2αn(V ) AK(4) 4βn(V )
0 0 0 αn(V ) AK(5)

 , (17)

and the diagonal elements

Aion(i) = −
∑
j : j 6=i

Aion(j, i), for ion ∈ {Na,K}.

2.3 Relation Between the 14D and 4D Deterministic HH Models
Earnshaw and Keener (2010b) suggests that it is reasonable to expect that the global
flow of the 14D system should converge to the 4D submanifold but also that it is far
from obvious that it must. Existing theory applies to the voltage-clamped case Keener
(2009); Earnshaw and Keener (2010b). Here, we consider instead the current-clamped
case, in which the fluctuations of the ion channel state influences the voltage evolution,
and vice-versa.

In the remainder of this section we will (1) define a multinomial submanifold M
and show that it is an invariant manifold within the 14D space, and (2) show that the
velocity on the 14D space and the pushforward of the velocity on the 4D space are
identical. In §2.4 we will (3) provide numerical evidence thatM is globally attracting
within the higher-dimensional space.

In order to compare the trajectories of the 14D HH equations with trajectories of the
standard 4D equations, we define lower-dimensional and higher-dimensional domains
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X and Y , respectively, as

X = {−∞ < v <∞, 0 ≤ m ≤ 1, 0 ≤ h ≤ 1, 0 ≤ n ≤ 1} = R× [0, 1]3 ⊂ R4

Y = {−∞ < v <∞} ∩

{
0 ≤ mij,

3∑
i=0

1∑
j=0

mij = 1

}
∩

{
0 ≤ ni,

4∑
i=0

ni = 1

}
= R×∆7 ×∆4 ⊂ R14, (18)

where ∆k is the k-dimensional simplex in Rk+1 given by y1 + . . . + yk+1 = 1, yi ≥ 0.
The 4D HH model dx

dt
= F (x), equations (7)-(10), is defined for x ∈ X , and the 14D

HH model dy
dt

= G(y), equations (13)-(15), is defined for y ∈ Y . We introduce a

14D model 4D model
(v,m00, . . . ,m31, n0, . . . , n4) (v,m, h, n)

v v
1
3
(m11 +m10) + 2

3
(m21 +m20) +m31 +m30 m

m01 +m11 +m21 +m31 h
n1/4 + n2/2 + 3n3/4 + n4 n ‘

Table 1: R: Map from the 14D HH model (m00, . . . ,m31, n0, . . . , n4) to the 4D HH
model (m,h, n). Note that {m00, . . . ,m31} and {n0, . . . , n4} both follow multinomial
distributions.

dimension-reducing mapping R : Y → X as in Table 1, and a mapping from lower to
higher dimension, H : X → Y as in Table 2. We construct R and H in such a way that
R ◦ H acts as the identity on X , that is, for all x ∈ X , x = R(H(x)). The maps H
and R are consistent with a multinomial structure for the ion channel state distribution,
in the following sense. The space Y covers all possible probability distributions on the
eight sodium channel states and the five potassium channel states. Those distributions
which are products of one multinomial distribution on the K+-channel 1 and a second
multinomial distribution on the Na+-channel2 form a submanifold of ∆7 ×∆4. In this
way we define a submanifold, denotedM = H(X ), the image of X under H .

Before showing that the multinomial submanifoldM is an invariant manifold within
the 14D space, we first show that the deterministic 14D HH model is defined on a
bounded domain. Having a bounded forward-invariant manifold is a general property
of conductance-based models, which may be written in the form

dV

dt
= f(V,Nopen) =

1

C

{
Iapp − gleak(V − Vleak)−

∑
i∈I

[
giN

i
open(V − Vi)

]}
(19)

dN
dt

= A(V )N and (20)

Nopen = O[N ]. (21)

1That is, distributions indexed by a single open probability n; with the five states having probabilities(
4
i

)
ni(1− n)4−i for 0 ≤ i ≤ 4.
2That is, distributions indexed by two open probabilities m and h, with the eight states having proba-

bilities
(
3
i

)
mi(1−m)3−ihj(1− h)1−j , for 0 ≤ i ≤ 3, and 0 ≤ j ≤ 1.
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4D model 14D model
(v,m, h, n) (v,m00, . . . ,m31, n0, . . . , n4)

v v

(1− n)4 n0

4(1− n)3n n1

6(1− n)2n2 n2

4(1− n)n3 n3

n4 n4

(1−m)3(1− h) m00

3(1−m)2m(1− h) m10

3(1−m)m2(1− h) m20

m3(1− h) m30

(1−m)3h m01

3(1−m)2mh m11

3(1−m)m2h m21

m3h m31

Table 2: H: Map from the 4D HH model (m,h, n) and the 14D HH model
(m00, . . . ,m31, n0, . . . , n4).

Here, C is the membrane capacitance, Iapp is an applied current with upper and lower
bounds I± respectively, and gi is the conductance for the ith ion channel. The index
i runs over the set of distinct ion channel types in the model, I. The gating vector N
represents the fractions of each ion channel population in various ion channel states,
and the operator O gives the fraction of each ion channel population in the open (or
conducting) channel states. The following lemma establishes that any conductance-
based model (including the 4D or 14D HH model) is defined on a bounded domain.

Lemma 1. For a conductance-based model of the form (19)-(21), and for any bounded
applied current I− ≤ Iapp ≤ I+, there exist upper and lower bounds Vmax and Vmin

such that trajectories with initial voltage condition V ∈ [Vmin, Vmax] remain within this
interval for all times t > 0, regardless of the initial channel state.

Proof. Let V1 = min
i∈I
{Vi} ∧ Vleak, and V2 = max

i∈I
{Vi} ∨ Vleak, where the index i runs

over I, the set of distinct ion channel types. Note that for all i, 0 ≤ N i
open ≤ 1, and

11



gi > 0, gleak > 0. Therefore when V ≤ V1

dV

dt
=

1

C

{
Iapp − gleak(V − Vleak)−

∑
i∈I

[
giN

i
open(V − Vi)

]}
(22)

≥ 1

C

{
Iapp − gleak(V − V1)−

∑
i∈I

[
giN

i
open(V − V1)

]}
(23)

≥ 1

C

{
Iapp − gleak(V − V1)−

∑
i∈I

[gi × 0× (V − V1)]

}
(24)

=
1

C
{Iapp − gleak(V − V1)} . (25)

Inequality (23) follows because V1 = min
i∈I
{Vi} ∧ Vleak, and inequality (24) follows

because V − V1 ≤ 0, gi > 0 and N i
open ≥ 0. Let Vmin := min

{
I−
gleak

+ V1, V1

}
. When

V < Vmin, dV
dt
> 0. Therefore, V will not decrease beyond Vmin.

Similarly, when V ≥ V2

dV

dt
=

1

C

{
Iapp − gleak(V − Vleak)−

∑
i∈I

[
giN

i
open(V − Vi)

]}
(26)

≤ 1

C

{
Iapp − gleak(V − V2)−

∑
i∈I

[
giN

i
open(V − V2)

]}
(27)

≤ 1

C

{
Iapp − gleak(V − V2)−

∑
i∈I

[gi × 0× (V − V2)]

}
(28)

=
1

C
{Iapp − gleak(V − V2)} . (29)

Inequality (27) holds because V2 = max
i∈I
{Vi} ∨ Vleak, and inequality (28) holds because

V − V2 ≥ 0, gi > 0 and N i
open ≥ 0. Let Vmax = max

{
Iapp

gleak
+ V2, V2

}
. When V > Vmax,

dV
dt
< 0. Therefore, V will not go beyond Vmax.
We conclude that if V takes an initial condition in the interval [Vmin, Vmax], then V (t)

remains within this interval for all t ≥ 0.

Given that y ∈ Y has a bounded domain, Lemma 2 follows directly, and establishes
that the multinomial submanifold M is a forward-time–invariant manifold within the
14D space. The proof of Lemma 2 is in Appendix C.

Lemma 2. Let X and Y be the lower-dimensional and higher-dimensional Hodgkin-
Huxley manifolds given by (18), and let F and G be the vector fields on X and Y
defined by (7)-(10) and (13)-(15), respectively. Let H : X → M ⊂ Y and R : Y →
X be the mappings given in Tables 2 and 1, respectively, and define the multinomial
submanifoldM = H(X ). ThenM is forward-time–invariant under the flow generated
byG. Moreover, the vector fieldG, when restricted toM, coincides with the vector field
induced by F and the map H . That is, for all y ∈M, G(y) = DxH(R(y)) · F (R(y)).
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Lemma 2 establishes that the 14D HH model given by (13)-(15) is dynamically
consistent with the original 4D HH model given by (7)-(10).

In §2.4 we provide numerical evidence that the flow induced by G on Y converges
to M exponentially fast. Thus, an initial probability distribution over the ion chan-
nel states that is not multinomial quickly approaches a multinomial distribution with
dynamics induced by the 4D HH equations. Similar results, restricted to the voltage-
clamp setting, were established by Keener and Earnshaw (Keener and Sneyd, 1998;
Keener, 2009; Earnshaw and Keener, 2010b).

2.4 Local Convergence Rate
Keener and Earnshaw (Keener and Sneyd, 1998; Keener, 2009; Earnshaw and Keener,
2010b) showed that for Markov chains with constant (even time varying) transition
rates: (i) the multinomial probability distributions corresponding to mean-field mod-
els (such as the HH sodium or potassium models) form invariant submanifolds within
the space of probability distributions over the channel states, and (ii) arbitrary initial
probability distributions converged exponentially quickly to the invariant manifold. For
systems with prescribed time-varying transition rates, such as for an ion channel system
under voltage clamp with a prescribed voltage V (t) as a function of time, the distribu-
tion of channel states had an invariant submanifold again corresponding to the multi-
nomial distributions, and the flow on that manifold induced by the evolution equations
was consistent with the flow of the full system.

In the preceding section we established the dynamical consistency of the 14D and
4D models with enough generality to cover both the voltage-clamp and current-clamp
systems; the latter is distinguished by NOT having a prescribed voltage trace, but rather
having the voltage coevolve along with the (randomly fluctuating) ion channel states.
Here, we give numerical evidence for exponential convergence under current clamp
similar to that established under voltage clamp by Keener and Earnshaw.

Rather than providing a rigorous proof, we give numerical evidence for the standard
deterministic HH model that y → M under current clamp (spontaneous firing condi-
tions) in the following sense: if y(t) is a solution of ẏ = G(y) with arbitrary initial
data y0 ∈ Y , then ||y(t)−H(R(y(t)))|| → 0 as t → ∞, exponentially quickly. More-
over, the convergence rate is bounded by λ = max(λv, λNa, λK), where λion is the least
negative nontrivial eigenvalue of the channel state transition matrix (over the voltage
range Vmin ≤ v ≤ Vmax) for a given ion, and −1/λv is the largest value taken by the
membrane time constant (for Vmin ≤ v ≤ Vmax). In practice, we find that the membrane
time constant does not determine the slowest time scale for convergence toM. In fact it
appears that the second-least-negative eigenvalues (not the least-negative eigenvalues)
of the ion channel matrices set the convergence rate.

Note that y ∈ Y can be written as y = [V ;M;N]. As shown in Appendix C,
the Jacobian matrix ∂H

∂x
consists of three block matrices: one for the voltage terms,

∂V
∂v

, one associated to the Na+ gates, given by ∂M
∂m

and ∂M
∂h

, and one corresponding to
the K+ gates, ∂N

∂n
. Fixing a particular voltage v, let λi, i ∈ {0, 1, 2, . . . , 7} be the

eight eigenvalues of ANa and vi be the associated eigenvectors, i.e., ANavi = λivi for
the rate matrix in equations (14). Similarly, let ηi, wi, i ∈ {0, 1, 2, . . . , 4} be the five
eigenvalues and the associated eigenvectors ofAK, i.e.,AKwi = ηiwi, for the rate matrix
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in equations (15). If we rank the eigenvalues of either matrix in descending order, the
leading eigenvalue is always zero (because the sum of each column for ANa and AK

is zero for every V ) and the remainder are real and negative. Let λ1 and η1 denote
the largest (least negative) nontrivial eigenvalues of ANa and AK, respectively, and let
v1 ∈ R8 and w1 ∈ R5 be the corresponding eigenvectors.

The eigenvectors of the full 14D Jacobian are not simply related to the eigenvec-
tors of the component submatrices, because the first (voltage) row and column con-
tain nonzero off-diagonal elements. However, the eigenvectors associated to the largest
nonzero eigenvectors ofANa andAK (respectively v2 andw2) are parallel to ∂M/∂h and
∂N/∂n, regardless of voltage. In other words, the slowest decaying directions for each
ion channel, v1 and w1, transport the flow along the multinominal sub-manifold of Y .
Therefore, it is reasonable to make the hypothesis that if Y (t) is a solution of ẏ = G(y)
with arbitrary initial data y ∈ Y , then

||y(t)−H(R(y(t)))||
||y(0)−H(R(y(0)))||

. e−λ2t (30)

for λ2 being the second largest nonzero eigenvalue of AK and ANa over all v in the
range vmin < v < vmax. The convergence behavior is plotted numerically in Fig. 3, and
is consistent with the Ansatz (30). We calculate the distance from a point y toM as

ymax = argmax
y∈Y

‖y −H(R(y))‖2 . (31)

In order to obtain an upper bound on the distance as a function of time, we begin with
the furthest point in the simplex from M, by numerically finding the solution to the
argument (31), which is

ymax = [v, 0.5, 0, 0, 0.5, 0, 0, 0, 0, 0.5, 0, 0, 0, 0.5].

This vector represents the furthest possible departure from the multinomial distribution:
all probability equally divided between the extreme states m00 and m03 for the sodium
channel, and the extremal states n0 and n4 for potassium. The maximum distance from
the multinomial submanifold M, dmax, is calculated using this point. As shown in
Fig. 3, the function dmax e

−λ2t provides a tight upper bound for the convergence rate
from arbitrary initial data y ∈ Y to the invariant submanifoldM.

3 Stochastic 14D Hodgkin-Huxley Models
Finite populations of ion channels generate stochastic fluctuations (“channel noise”) in
ionic currents that influence action potential initiation and timing (White et al., 1998;
Schneidman et al., 1998). At the molecular level, fluctuations arise because transitions
between individual ion channel states are stochastic (Hill and Chen, 1972; Neher and
Sakmann, 1976; Skaugen and Walløe, 1979). Each directed edge in the ion channel
state transition diagrams (cf. Fig. 1) introduces an independent noise source. It is of
interest to be able to attribute variability of the interspike interval timing distribution to
specific molecular noise sources, specifically individual directed edges in each channel
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Figure 3: Convergence of trajectories y(t), for arbitrary initial conditions y0 ∈ Y , to the multi-
nomial submanifoldM, for an ensemble of random initial conditions. A: distance (31) between
y(t) and M. B: Logarithm of the distance in panel A. The red solid line shows dmaxe

−λ2t in
panel A and log(dmax)− λ2t in panel B.

state graph. In order to explore these contributions, we develop a system of Langevin
equations for the Hodgkin-Huxley equations, set in a 14-dimensional phase space.

Working with a higher-dimensional stochastic model may appear inconvenient, but
in fact has several advantages. First, any projection of an underlying 14D model onto a
lower (e.g. 4D) stochastic model generally entails loss of the Markov property. Second,
the higher-dimensional representation allows us to assess the contribution of individ-
ual molecular transitions to the macroscopically observable variability of timing in the
interspike interval distribution. Third, by using a rectangular noise coefficient matrix
constructed directly from the transitions in the ion channel graphs, we avoid a matrix
decomposition step. This approach leads to a fast algorithm that is equivalent to the
slower algorithm due to Fox and Lu (Fox and Lu, 1994; Goldwyn and Shea-Brown,
2011) in a strong sense (pathwise equivalence) that we detail in §4.

3.1 Exact Stochastic Simulation of HH Kinetics: the Random–Time-
Change Representation

An “exact” representation of the Hodgkin-Huxley system with a population of Mtot

sodium channels and Ntot potassium channels treats each of the 20 directed edges in
the sodium channel diagram, and each of the 8 directed edges in the potassium channel
diagram, as independent Poisson processes, with voltage-dependent per capita intensi-
ties. As in the deterministic case, the sodium and potassium channel population vectors
M and N satisfy

∑3
i=0

∑1
j=0Mij ≡ 1 ≡

∑4
i=0Ni.3 Thus they are constrained, re-

3We annotate the stochastic population vector M either as [M00,M10, . . . ,M31] or as [M1, . . . ,M8],
whichever is more convenient. In either notation M31 ≡ M8 is the conducting state of the Na+channel.
For the K+channel, N4 denotes the conducting state.

15



spectively, to a 7D simplex embedded in R8 and a 4D simplex embedded in R5. In the
random–time-change representation (Anderson and Kurtz, 2015) the exact evolution
equations are written in terms of sums over the directed edges E for each ion channel,
ENa = {1, . . . , 20} and EK = {1, . . . , 8}, cf. Fig. 1.

M(t) = M(0) +
1

Mtot

∑
k∈ENa

ζNa
k Y

Na
k

(
Mtot

∫ t

0

αNa
k (V (s))Mi(k)(s) ds

)
(32)

N(t) = N(0) +
1

Ntot

∑
k∈EK

ζK
k Y

K
k

(
Ntot

∫ t

0

αK
k (V (s))Ni(k)(s) ds

)
. (33)

Here ζ ion
k is the stoichiometry vector for the kth directed edge. If we write i(k) for

the source node and j(k) for the destination node of edge k, then ζ ion
k = eion

j(k) −
eion
i(k).

4 Each Y ion
k (τ) is an independent unit-rate Poisson process, evaluated at “inter-

nal time” (or integrated intensity) τ , representing the independent channel noise aris-
ing from transitions along the kth edge. The voltage-dependent per capita transition
rate along the kth edge is αion

k (v), and Mi(k)(s) (resp. Ni(k)(s)) is the fractional oc-
cupancy of the source node for the kth transition at time s. Thus, for example, the
quantity Mtotα

Na
k (V (s))Mi(k)(s) gives the net intensity along the kth directed edge in

the Na+ channel graph at time s.

Remark 1. Under “voltage-clamp” conditions, with the voltage V held fixed, (32)-(33)
reduce to a time-invariant first-order transition process on an directed graph (Schmidt
and Thomas, 2014; Gadgil et al., 2005).

Under “current-clamp” conditions, the voltage evolves according to a conditionally
deterministic current balance equation of the form

dV

dt
=

1

C
{Iapp(t)− ḡNaM31 (V − VNa)− ḡKN4 (V − VK)− gleak(V − Vleak)} . (34)

Here,C (µF/cm2) is the capacitance, Iapp (nA/cm2) is the applied current, the maximal
conductance is ḡchan (mS/cm2), Vchan (mV ) is the associated reversal potential, and the
ohmic leak current is gleak(V − Vleak).

The random–time-change representation (32)-(34) leads to an exact stochastic sim-
ulation algorithm, given in (Anderson and Kurtz, 2015); equivalent simulation algo-
rithms have been used previously (Clay and DeFelice, 1983; Newby et al., 2013). Many
authors substitute a simplified Gillespie algorithm that imposes a piecewise-constant
propensity approximation, ignoring the voltage dependence of the transition rates αion

k

between channel transition events (Goldwyn et al., 2011; Goldwyn and Shea-Brown,
2011; Orio and Soudry, 2012; Pezo et al., 2014). The two methods give similar moment
statistics, provided Ntot,Mtot & 40 (Anderson and Kurtz, 2015); their similarity regard-
ing path-dependent properties (including interspike interval distributions) has not been
studied in detail. Moreover, both Markov chain algorithms are prohibitively slow for
modest numbers (e.g. thousands) of channels; the exact algorithm may be even slower
than the approximate Gillespie algorithm. For consistency with previous studies, in this

4We write eNa
i and eK

i for the ith standard unit vector in R8 or R5, respectively.
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paper we use the piecewise-constant propensity Gillespie algorithm with Mtot = 6000
Na+ and Ntot = 1800 K+ channels as our “gold standard” Markov chain (MC) model,
as in (Goldwyn and Shea-Brown, 2011).

In §3.2 we develop a 14D conductance-based Langevin model with 28 independent
noise sources – one for each directed edge – derived from the random–time-change rep-
resentation (32)-(34). In previous work (Schmidt and Thomas, 2014) we established a
quantitative measure of “edge importance”, namely the contribution of individual tran-
sitions (directed edges) to the variance of channel state occupancy under steady-state
voltage-clamp conditions. Under voltage clamp, the edge importance was identical for
each reciprocal pair of directed edges in the graph, a consequence of detailed balance.
Some Langevin models lump the noise contributions of each pair of edges (Dangerfield
et al., 2010; Orio and Soudry, 2012; Dangerfield et al., 2012; Pezo et al., 2014). Under
conditions of detailed balance, this simplification is well justified. However, as we will
show (cf. Fig. 5) under current-clamp conditions, e.g. for an actively spiking neuron,
detailed balance is violated, the reciprocal edge symmetry is broken, and each pair of
directed edges makes a distinct contribution to ISI variability.

3.2 Langevin Equations of the 14D HH Model
For sufficiently large number of channels, (Schmidt and Thomas, 2014; Schmidt et al.,
2018) showed that under voltage clamp, equations (32)-(33) can be approximated by
a multidimensional Ornstein-Uhlenbeck (OU) process (or Langevin equation) in the
form5

dM =
20∑
k=1

ζNa
k

{
αNa
k (V )Mi(k)dt+

√
εNaαNa

k (V )Mi(k) dW
Na
k

}
(35)

dN =
8∑

k=1

ζK
k

{
αK
k (V )Ni(k)dt+

√
εKαK

k (V )Ni(k) dW
K
k

}
. (36)

Here, M, N, ζ ion
k , and αion

k have the same meaning as in (32)-(33). The channel state
increments in a short time interval dt are dM and dN, respectively. The finite-time
increment in the Poisson process Y ion

k is now approximated by a Gaussian process,
namely the increment dW ion

k in a Wiener (Brownian motion) process associated with
each directed edge. These independent noise terms are scaled by εNa = 1/Mtot and
εK = 1/Ntot, respectively.

Equations (34)-(36) comprise a system of Langevin equations for the HH system
(under current clamp) on a 14-dimensional phase space driven by 28 independent white
noise sources, one for each directed edge. These equations may be written succinctly
in the form

dX = f(X) dt+
√
εG(X) dW(t) (37)

where we define the 14-component vector X = (V ;M;N), and W(t) is a Wiener pro-
cess with 28 independent components. The deterministic part of the evolution equation

5The convergence of the discrete channel system to a Langevin system under voltage clamp is a
special case of Kurtz’ theorem (Kurtz, 1981).

17



f(X) =
[
dV
dt

; dM
dt

; dN
dt

]
is the same as the mean-field, equations (13)-(15). The state-

dependent noise coefficient matrix G is 14× 28 and can be written as

√
εG =

01×20 01×8

SNa 08×8

05×20 SK

 .

The coefficient matrix SK is

SK =
1√
Ntot


−
√

4αnn0

√
βnn1 0 0√

4αnn0 −
√
βnn1 −

√
3αnn1

√
2βnn2

0 0
√

3αnn1 −
√

2βnn2

0 0 0 0
0 0 0 0

· · ·

· · ·

0 0 0 0
0 0 0 0

−
√

2αnn2

√
3βnn3 0 0√

2αnn2 −
√

3βnn3 −
√
αnn3

√
4βnn4

0 0
√
αnn3 −

√
4βnn4

 ,
and SNa is given in Appendix D. Note that each of the 8 columns of SK corresponds to
the flux vector along a single directed edge in the K+ channel transition graph. Simi-
larly, each of the 20 columns of SNa corresponds to the flux vector along a directed edge
in the Na+ graph (cf. App. §D).

Remark 2. Although the ion channel state trajectories generated by equation (37) are
not strictly bounded to remain within the nonnegative simplex, empirically, the voltage
nevertheless remains within specified limits with overwhelming probability.

To facilitate comparison of the model (34)-(36) with prior work (Fox and Lu, 1994;
Fox, 1997; Goldwyn and Shea-Brown, 2011), we may rewrite the 14 × 28D Langevin
description in the equivalent form

C
dV

dt
= Iapp(t)− ḡNaM8 (V − VNa)− ḡKN5 (V − VK)− gleak(V − Vleak), (38)

dM

dt
= ANaM + SNaξNa, (39)

dN

dt
= AKM + SKξK, (40)

The drift matrices ANa and AK remain the same as in (Fox and Lu, 1994), and are the
same as in the 14D deterministic model (16)-(17). SNa and SK are constructed from
direct transitions of the underlying kinetics in Fig. 1, ξNa ∈ R20 and ξK ∈ R8 are vectors
of independent Gaussian white noise processes with zero mean and unit variance.

Fox and Lu’s original approach (Fox and Lu, 1994) requires solving a matrix square
root equation SSᵀ = D to obtain a square (8× 8 for Na+ or 5× 5 for K+) noise coef-
ficient matrix consistent with the state-dependent diffusion matrix D. As an advantage,
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the ion channel representation (38)-(40) uses sparse, nonsquare noise coefficient ma-
trices (8 × 20 for the Na+ channel and 5 × 8 for the K+ channel), which exposes the
independent sources of noise for the system.

The new Langevin model in (38)-(40) does not require detailed balance, which gives
more insights to the underlying kinetics. Review papers such as (Goldwyn and Shea-
Brown, 2011; Pezo et al., 2014; Huang et al., 2015), did systematic comparison of
various stochastic versions of the HH model. In §4 and §5, we quantitaviely analyze
the connection between the new model and other existing models (Fox and Lu, 1994;
Goldwyn et al., 2011; Goldwyn and Shea-Brown, 2011; Dangerfield et al., 2010; Orio
and Soudry, 2012; Dangerfield et al., 2012; Huang et al., 2013; Pezo et al., 2014; Huang
et al., 2015; Fox, 2018). Problems such as the boundary constrains are beyond the
scope of this paper, however, we would like to connect the new model to another type
of approximation to the MC model, namely the stochastic shielding approximation.

3.3 Stochastic Shielding for the 14D HH Model
The stochastic shielding (SS) approximation was introduced by Schmandt and Galán
(Schmandt and Galán, 2012), in order to approximate the Markov process using fluc-
tuations from only a subset of the transitions, namely those corresponding to changes
in the observable states. In (Schmidt and Thomas, 2014), we showed that, under volt-
age clamp, each directed edge makes a distinct contribution to the steady-state variance
of the ion channel conductance, with the total variance being a sum of these contribu-
tions. We call the variance due to the kth directed edge the edge importance; assuming
detailed balance, it is given by

Rk = Jk

n∑
i=2

n∑
j=2

(
−1

λi + λj

)
(cᵀvi) (wᵀ

i ζk) (ζᵀkwj)
(
vᵀj c
)
. (41)

Here, Jk is the steady-state probability flux along the kth directed edge; λn < λn−1 ≤
. . . ≤ λ2 < 0 are the eigenvalues of the drift matrix (ANa or AK, respectively), and
vi (resp. wi) are the corresponding right (resp. left) eigenvectors of the drift matrix.
Each edge’s stoichiometry vector ζk has components summing to zero; consequently
the columns of ANa and AK all sum to zero. Thus each drift matrix has a leading trivial
eigenvalue λ1 ≡ 0. The vector c specifies the unitary conductance of each ion channel
state; for the HH model it is proportional to eNa

8 or eK
5 , respectively.

Fig. 4 shows the edge importance for each pair of edges in the HH Na+ and K+ ion
channel graph, as a function of voltage in the range [−100, 100] mV. Note that recipro-
cal edges have identical Rk due to detailed balance. Under voltage clamp, the largest
value of Rk for the HH channels always corresponds to directly observable transitions,
i.e. edges k such that |cᵀζk| > 0, although this condition need not hold in general
(Schmidt et al., 2018).

To apply the stochastic shielding method under current clamp, we simulate the
model with noise from only a selected subset E ′ ⊂ E of directed edges, replacing
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Figure 4: Stochastic shielding under voltage clamp. Redrawn (with permission) from
Figs. 10 & 13 of (Schmidt and Thomas, 2014). Each curve shows the edge importance
Rk (equation (41)) as a function of voltage in the range [−100, 100] mV for a different
edge pair. For the K+ kinetics, R7 = R8 are the largest Rk value in the voltage range
above. For the Na+ kinetics, R11 = R12 have the largest Rk values in the subthreshold
voltage range (c. [−100,−25] mV), and R19 = R20 have the largest Rk values in the
suprathreshold voltage range (c. [−25, 100] mV).

(39)-(40) with

dM

dt
= ANaM + S ′NaξNa, (42)

dN

dt
= AKM + S ′KξK, , (43)

where S ′Na (resp. S ′K) is a reduced matrix containing only the noise coefficients from
the most important edges E ′. That is, E ′ contains a subset of edges with the largest
edge-importance values Rk.

Schmandt and Galán (2012) assumed that the edges with the largest contribution
contribution to current fluctuations under voltage clamp would also make the largest
contributions to variability in voltage and timing under current clamp, and included
edges 7 − 8 of the K+channel (E ′K = {7, 8}) and edges 11 − 12 and 19 − 20 of the
Na+ channel (E ′Na = {11, 12, 19, 20}), yielding an 8 × 4 matrix S ′Na and an 5 × 2
matrix S ′K. They demonstrated numerically that restricting stochastic forcing to these
edges gave a significantly faster simulation with little appreciable change in statistical
behavior: under voltage clamp, the mean current remained the same, with a small (but
noticeable) decrease in the current variance; meanwhile similar inter-spike interval (ISI)
statistics were observed.

Under current clamp, detailed balance is violated, and it is not clear from mathemat-
ical principles whether the edges with the largest Rk under voltage clamp necessarily
make the largest contribution under other circumstances. In order to evaluate the con-
tribution of the fluctuations driven by each directed edge on ISI variability, we test the
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stochastic shielding method by removing all but one column of Sion at a time. That is,
we restrict to a single noise source and observe the resulting ISI variance empirically.
For example, to calculate the importance of the kth direct edge in the Na+ channel, we
suppress the noise from all other edges by setting S ′KξK = 05×1 and

S ′Na =
[
08×1, · · · , SNa(:, k), · · · ,08×1

]
i.e., only include the kth column of SNa and set other columns to be zeros. The ISI
variance was calculated from an ensemble of 104 voltage traces, each spanning c. 500
ISIs.

Fig. 5A plots the logarithm of the ISI variance for each edge in EK. Vertical bars
(cyan) show the ensemble mean of the ISI variance, with a 95% confidence interval su-
perimposed (magenta). Several observations are in order. First, the ISI variance driven
by the noise in each edge decreases rapidly, the further the edge is from the observable
transitions (edges 7,8), reflecting the underlying “stochastic shielding” phenomenon.
Second, the symmetry of the edge importance for reciprocal edge pairs ((1,2), (3,4),
(5,6) and (7,8)) that is observed under voltage clamp is broken under current clamp.
The contribution of individual directed edges to timing variability under current clamp
has another important difference compared with the edge importance (current fluctua-
tions) under voltage clamp. A similar breaking of symmetry for reciprocal edges is seen
for the Na+ channel, again reflecting the lack of detailed balance during active spiking.

Fig. 5B shows the ISI variance when channel noise is included on individual edges
of ENa. Here the difference between voltage and current clamp is striking. Under volt-
age clamp, the four most important edges are always those representing “observable
transitions”, in the sense that the transition’s stoichiometry vector ζ is not orthogonal to
the conductance vector c. That is, the four most important pairs are always 11-12 and
19-20, regardless of voltage (Fig. 4). Under current clamp, the most important edges
are 17, 18, 19 and 20. Although edges 11 and 12 are among the four most impor-
tant sources of channel population fluctuations under voltage clamp, they are not even
among the top ten contributors to ISI variance, when taken singly. Even though edges
17 and 18 are “hidden”, meaning they do not directly change the instantaneous channel
conductance, these edges are nevertheless the second most important pair under current
clamp. Therefore, when we implement the stochastic-shielding based approximation,
we include the pairs 17-18 and 19-20 in equation (42). We refer to the approximate SS
model driven by these six most important edges as the 14× 6D HH model.

Given the other parameters we use for the HH model (cf. Tab. 5 in Appendix B), the
input current of Iapp = 10 nA is slightly beyond the region of multistability associated
with a subcritical Andronov-Hopf bifurcation. In order to make sure the results are
robust against increases in the applied current, we tried current injections ranging from
20 to 100 nA. While injecting larger currents decreased the ISI variance, it did not
change the rank order of the contributions from the most important edges.

4 Pathwise Equivalence for a Class of Langevin Models
Fox and Lu’s method was widely used since its appearance (see references in Bruce
(2009); Goldwyn and Shea-Brown (2011); Huang et al. (2015)), and the “best” ap-

21



Figure 5: Logarithm of variance of ISI for stochastic shielding under current clamp.
Cyan bar is the mean of ISI, and magenta plots 95% confidence interval of the mean ISI
(see text for details). The applied current is 10 nA with other parameters specified in
the Appendices. For the K+ kinetics, the largest contribution edge is 7, and 8 is slightly
smaller ranking the second largest. For the Na+ kinetics, the largest contribution pair
is 19 and 20, with 20 slightly smaller than 19. Moreover, edge 17 and 18 is the second
largest pair.
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proximation for the underlying Markov Chain (MC) model has been a subject of ongo-
ing discussion for decades. Several studies (Mino et al., 2002; Bruce, 2009; Sengupta
et al., 2010) attested to discrepancies between Fox’s later approach in (Fox, 1997) and
the discrete-state MC model, raising the question of whether Langevin approximations
could ever accurately represent the underlying fluctuations seen in the “gold standard”
MC models. An influential review paper (Goldwyn and Shea-Brown, 2011) found that
these discrepancies were due to the way in which noise is added to the stochastic dif-
ferential equations (1)-(3). Recent studies including Dangerfield et al. (2010); Linaro
et al. (2011); Goldwyn and Shea-Brown (2011); Goldwyn et al. (2011); Dangerfield
et al. (2012); Orio and Soudry (2012); Güler (2013b); Huang et al. (2013); Pezo et al.
(2014); Huang et al. (2015); Fox (2018) discussed various ways of incorporating chan-
nel noise into HH kinetics based on the original work by Fox and Lu (Fox and Lu,
1994; Fox, 1997), some of which have the same SDEs but with different boundary con-
ditions. Different boundary conditions (BCs) are not expected to have much impact on
computational efficiency. Indeed, if BCs are neglected, the main difference between
channel-based (or conductance-based) models is the diffusion matrix S in the Langevin
euqations (2) and (3). As the discussion about where and how to incorporate noise into
the HH model framework goes on, Fox (2018) recently asked whether there is a way of
relating different models with different S matrices. We give a positive answer to this
question below.

In §4.1 we will demonstrate the equivalence (neglecting the boundary conditions) of
a broad class of previously proposed channel-based Langevin models including: (Fox
and Lu, 1994; Dangerfield et al., 2010; Goldwyn and Shea-Brown, 2011; Dangerfield
et al., 2012; Orio and Soudry, 2012; Huang et al., 2013; Pezo et al., 2014; Fox, 2018)
and the 14D Langevin HH model with 28 independent noise sources (one for each
directed edge in the channel state transition graph), i.e. our “14×28D” Langevin model.

4.1 When are Two Langevin Equations Equivalent?
Two Langevin models are pathwise equivalent if the sample paths (trajectories) of one
model can be made to be identical to the sample paths of the other, under an appropriate
choice of Gaussian white noise samples for each. To make this notion precise, consider
two channel-based Langevin models of the form dX = f(X) dt + G(X)dW with the
same mean dynamics f ∈ Rd and two different d× n matrices (possibly with different
values of n1 and n2), G1 and G2. Denote

f : Rd → Rd, (44)
G1 : Rd → Rd×n1 , (45)
G2 : Rd → Rd×n2 . (46)

Let X(t) = [X1(t), X2(t), . . . , Xd(t)]
ᵀ and X∗(t) = [X∗1 (t), X∗2 (t), . . . , X∗d(t)]ᵀ be

trajectories produced by the two models and let W(t) = [W1(t),W2(t), . . . ,Wn1(t)]
ᵀ

and W∗(t) = [W ∗
1 (t),W ∗

2 (t), . . . ,W ∗
n2

(t)]ᵀ be vectors of Weiner processes. That is,
Wi(t), i = 1, 2, . . . , n1 and W ∗

j (t), j = 1, 2, . . . , n2 are independent Wiener processes
with 〈Wi(s)Wj(t)〉 = δijδ(t−s) and 〈W ∗

i (s)W ∗
j (t)〉 = δijδ(t−s). Note that n1 and n2

need not be equal. As defined in (Allen et al., 2008), the stochastic differential equation
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(SDE) models
dX = f(t,X(t))dt+G1(t,X(t))dW(t) (47)

and
dX∗ = f(t,X∗(t))dt+G2(t,X

∗(t))dW∗(t) (48)

are pathwise equivalent if systems (47) and (48) posses the same probability distribu-
tion, and moreover, a sample path solution of one equation is also a sample solution
to the other one. Allen et al. (2008) proved a theorem giving general conditions under
which the trajectories of two SDEs are equivalent. We follow their construction closely
below, adapting it to the case of two different Langevin equations for the Hodgkin-
Huxley system represented in a 14-dimensional state space.

As in §3, channel-based Langevin models for the stochastic dynamics of HH can be
written as

dX = f(X) dt+ S(X)dW(t) (49)

where the 14-component random vector X = (V ;M;N) and f(x) =
[
dV
dt

; dM
dt

; dN
dt

]
is

the same as the mean-field, eqns. (13)-(15). Recall that x = [v,m,n]ᵀ. Here we write

S(x) =

 01×m 01×n

SNa(m) 08×n

05×m SK(n)

 , with

SNa : R8 → R8×m, (50)

for the Na+ channel, and

SK : R5 → R5×n, (51)

for the K+ channel. Here, m is the number of independent white noise forcing terms
affecting the sodium channel variables, while n is the number of independent noise
sources affecting the potassium gating variables. We write

W(t) = [W1(t),W2(t), . . . ,Wm+n(t)]ᵀ

for a Wiener process incorporating both the sodium and potassium noise forcing. Given
two channel-based models with diffusion matrices

SNa,1 : R8 → R8×m1 , (52)
SNa,2 : R8 → R8×m2 , (53)

for the Na+ channel, and

SK,1 : R5 → R5×n1 , (54)
SK,2 : R5 → R5×n2 , (55)

for the K+ channel, we construct the diffusion matrix D = SSᵀ. In order for the two
models to generate equivalent sample paths, it suffices that they have the same diffusion
matrix, i.e.

D = S1Sᵀ
1 =

01×1 01×8 01×5

08×1 DNa 08×5

05×1 05×8 DK

 = S2Sᵀ
2 .
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The SDEs corresponding to the two channel-based Langevin models are

dX = f(t,X(t))dt+ S1(t,X(t))dW(t), (56)
dX∗ = f(t,X∗(t))dt+ S2(t,X∗(t))dW∗(t). (57)

The probability density function p(t,x) for random variable X in eqn. (56) satisfies
the Fokker-Planck equation

∂p(t,x)

∂t
=

1

2

8∑
i=1

8∑
j=1

∂2

∂xixj

[
p(t,x)

m1+n1∑
l=1

S(i,l)
1 (t,x)S(j,l)

1 (t,x)
]

−
8∑
i=1

∂

∂xi

[
fi(t,x)p(t,x)

]
=

1

2

8∑
i=1

8∑
j=1

∂2

∂xixj

[
D(i,j)(t,x)p(t,x)

]
−

8∑
i=1

∂

∂xi

[
fi(t,x)p(t,x)

]
(58)

where S(i,j)
1 (t,x) is the (i, j)th entry of the diffusion matrix S1(t,x). Eqn. (58) holds

because

D(i,j)(t,x) =

m1+n1∑
l=1

S(i,l)
1 (t,x)S(j,l)

1 (t,x).

If z1, z2 ∈ R14 and z1 6 z2, then

P (z1 6 X(t) 6 z2) =

∫ z2,14

z1,14

∫ z2,13

z1,13

· · ·
∫ z2,1

z1,1

p(t,x)dx1dx2 · · · dx8.

Note that (56) and (57) have the same expression (58) for the Fokker-Planck equation,
therefore, X and X∗ possess the same probability density function. In other words, the
probability density function of X in eqn. (49) is invariant for different choices of the
diffusion matrix S.

4.2 Map Channel-based Langevin Models to Fox and Lu’s Model
We now explicitly construct a mapping between Fox and Lu’s 14D model (Fox and Lu,
1994) and any channel-based model (given the same boundary conditions). We begin
with a channel-based Langevin description

dX = f(t,X(t))dt+ S(t,X(t))dW(t), (59)

and Fox and Lu’s model (Fox and Lu, 1994)

dX∗ = f(t,X∗(t))dt+ S0(t,X∗(t))dW∗(t), (60)

where S is a d by m matrix satisfying SSᵀ = D (note that S is not necessarily a square
matrix), and S0 =

√
D.

Let T be the total simulation time of the random process in equations (59) and (60).
For 0 6 t 6 T , denote the singular value decomposition (SVD) of S as

S(t) = P (t)Λ(t)Q(t)
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where P (t) is an d×d orthogonal matrix (i.e., P ᵀP = PP ᵀ = Id) andQ(t) is anm×m
orthogonal matrix, and Λ(t) is a d×m matrix with rank(Λ) = r 6 d positive diagonal
entries and d− r zero diagonal entries.

First, we prove that given a Wiener trajectory, W(t), t ∈ [0, T ] and the solution
to eqn. (59), X(t), there exists a Wiener trajectory W∗(t) such that the solution to
eqn. (60), X∗, is also a solution to eqn. (59). In other words, for a Wiener process W(t)
we can construct a W∗(t), such that X∗(t) = X(t), for 0 ≤ t ≤ T .

Following (Allen et al., 2008), we construct the vector W∗(t) of d independent
Wiener processes as follows:

W∗(t) =

∫ t

0

P (s)
[(
Λ(s)Λᵀ(s)

) 1
2

]+
Λ(s)Q(s)dW(s) +

∫ t

0

P (s)dW∗∗(s) (61)

for 0 6 t 6 T , where W∗∗(t) is a vector of length d with the first r entries equal to 0

and the next d − r entries independent Wiener processes, and
[(
Λ(s)Λᵀ(s)

) 1
2

]+
is the

pseudoinverse of
(
Λ(s)Λᵀ(s)

) 1
2 . Consider that

D(t) = S(t)Sᵀ(t) = P (t)Λ(t)Q(t)
[
P (t)Λ(t)Q(t)

]ᵀ
(62)

= P (t)Λ(t)Λᵀ(t)P ᵀ(t) (63)
= [S0(t)]2, (64)

where S0(t) = P (t)
(
Λ(t)Λᵀ(t)

) 1
2
P ᵀ(t) is a square root of D, by construction.

The diffusion term on the right side of (60) with X∗(t) replaced by X(t) satisfies

S0(t,X(t))dW∗(t)

=S0(t)
(
P (t)

[(
Λ(t)Λᵀ(t)

) 1
2

]+
Λ(t)Q(t)dW(t) + P (t)dW∗∗(t)

)
=P (t)

(
Λ(t)Λᵀ(t)

) 1
2
P ᵀ(t)P (t)

[(
Λ(t)Λᵀ(t)

) 1
2

]+
Λ(t)Q(t)dW(t)

+ P (t)
(
Λ(t)Λᵀ(t)

) 1
2
P ᵀ(t)P (t)dW∗∗(t)

= {P (t)Λ(t)Q(t)}dW(t). (65)

From the SVD of S=PΛQ, we conclude that

S0(t,X(t))dW∗(t) = S(t,X(t))dW(t). (66)

Hence, dX = f(t,X(t))dt + S0(t,X(t))dW∗
t , i.e., X(t) is a sample path solution of

equation (60).
Similarly, given a Wiener trajectory W∗(t) and the solution to eqn. (60) X∗(t), we

can construct a vector W(t) of m independent Winner processes as

W(t) =

∫ t

0

Qᵀ(s)Λ+(s)
[
Λ(s)Λᵀ(s)

]1/2
P ᵀ(s)dW∗(s) +

∫ t

0

Qᵀ(s)dW∗∗∗(s) (67)
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for 0 6 t 6 T , where W∗∗∗(t) is a vector of length m with the first r entries equal to 0
and the next m − r entries independent Wiener processes, and Λ+(s) is the pseudoin-
verse of Λ(s). Then, by an argument parallel to (65), we conclude that

S(t,X∗(t))dW (t) = S0(t,X∗(t))dW∗(t). (68)

Hence, dX∗ = f(t,X∗(t))dt + S(t,X∗(t))dW(t), that is, X∗(t) is also a solution to
(59). Therefore we can conclude that the channel-based Langevin model in eqn. (59) is
pathwise equivalent to the Fox and Lu’s model.

To illustrate pathwise equivalence, Fig. 6 plots trajectories of the 14×28D stochastic
HH model and Fox and Lu’s model, using noise traces dictated by the preceding con-
struction. In panel A, we generated a sample path for eqn. (59) and plot three variables
in X: the voltage V , Na+ channel open probability M31 and K+ channel open probabil-
ity N4. The corresponding trajectory, X∗, for Fox and Lu’s model was generated from
eqn. (60) and the corresponding Wiener trajectory was calculated using eqn. (61). The
top three subplots in panel A superposed the voltage V ∗, Na+ channel open probability
M∗

31 and K+ channel open probability N∗4 in X∗ against those in X. The bottom three
subplots in panel A plot the point-wise differences of each variable. Eqns. (59) and (60)
are numerically solved in Matlab using the Euler-Maruyama method with a time step
dt = 0.001ms. The slight differences observed arise in part due to numerical errors in
calculating the singular value decomposition of S (in eqn. (59)); another source of error
is the finite accuracy of the Euler-Maruyama method.6 As shown in Fig. 6, most differ-
ences occur near the spiking region, where the system is numerically very stiff and the
numerical accuracy of the SDE solver accounts for most of the discrepancies (analysis
of which is beyond the scope of this paper). We can conclude from the comparison in
Fig. 6 that the 14× 28D Langevin model is pathwise equivalent with the Fox and Lu’s
model. Similarly, the same analogy applies for other channel-based Langevin models
such that with the same diffusion matrix D(X).

We have shown that our “14× 28D” model, with a 14-dimensional state space and
28 independent noise sources (one for each directed edge) is pathwise equivalent to Fox
and Lu’s original 1994 model as well as other channel-based models (under correspond-
ing boundary conditions) including (Goldwyn et al., 2011; Goldwyn and Shea-Brown,
2011; Orio and Soudry, 2012; Pezo et al., 2014; Fox, 2018). As we shall see in §5, the
pathwise equivalent models give statistically indistinguishable interspike interval dis-
tributions under the same BCs. We emphasize the importance of boundary conditions
for pathwise equivalence. Two simulation algorithms with the same Ai and Si matrices
will generally have nonequivalent trajectories if different boundary conditions are im-
posed. For example, (Dangerfield et al., 2012) employs the same dynamics as (Orio and
Soudry, 2012) away from the boundary, where ion channel state occupancy approaches
zero or one. But where the latter allow trajectories to move freely across this boundary
(which leads only to small, short-lived excursions into “nonphysical” values), Danger-
field imposes reflecting boundary conditions through a projection step at the boundary.
As we will see below (§5), this difference in boundary conditions leads to a statisti-

6The forward Euler method is first order accurate for ordinary differential equations, but the forward
Euler-Maruyama method is only O(

√
dt) accurate for stochastic differential equations (Kloeden and

Platen, 1999).
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Figure 6: Pathwise equivalency of 14D HH model and Fox and Lu’s model. A: Given
a sample path of the 14× 28D Langevin model in eqn. (59), we construct the noise by
eqn. (61) and generate the sample trajectory of Fox and Lu’s model using eqn. (60).
B: Given a sample path of Fox and Lu’s model in eqn. 60, we construct the noise
by eqn. (67) and generate the sample trajectory of the 14× 28D Langevin model using
eqn. (59). For both cases, we plot the voltage V , the open probability of the Na+ channel
(M31), and the open probability of the K+ channel (N4). To show that these trajectories
are pathwise equivalent, we superpose the trajectories for each variable and also plot
the point-wise differences of each. We obtain excellent agreement in both directions.
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cally significant difference in the ISI distribution, as well as a loss of accuracy when
compared with the “gold standard” Markov chain simulation.

5 Model Comparison
In §3, we studied the contribution of every directed edge to the ISI variability and pro-
posed how stochastic shielding could be applied under current clamp. Moreover, in §4,
we proved that a family of Langevin models are pathwise equivalent.

Here we compare the accuracy and computational efficiency of several models, in-
cluding the “subunit model” (Fox, 1997; Goldwyn and Shea-Brown, 2011), Langevin
models with different S matrices or boudary conditions (Fox and Lu, 1994; Goldwyn
and Shea-Brown, 2011; Dangerfield et al., 2012; Orio and Soudry, 2012; Pezo et al.,
2014), the 14D HH model (proposed in §3.2), the 14D stochastic shielding model
with six independent noise sources (proposed in §3.3), and the “gold standard” Markov
Chain model (discussed in §3.1). Where other studies have compared moment statis-
tics such as the mean firing frequency (under current clamp) and stationary channel
open probababilies (under voltage clamp), we base our comparison on the entire in-
terspike interval (ISI) distributions, under current clamp with a common fixed driving
current. We use two different comparisons of ISI distributions, the first based on the L1

norm of the difference between two distributions (the Wasserstein distance, (Wasser-
stein, 1969)), in §5.1 and the second based on the L∞ norm (the Kolmogorov-Smirnov
test, (Kolmogorov, 1933; Smirnov, 1948)), in §5.2. We find similar results using both
measures: as expected, the models that produce pathwise equivalent trajectories (Fox &
Lu ’94, Orio & Soudry, and our 14 × 28D model) have indistinguishable ISI statistics,
while the non-equivalent models (Fox ’97, Dangerfield, Goldwyn & Shea-Brown, our
14 × 6D stochastic-shielding model) have significantly different ISI distributions. Of
these, the 14 × 6D SS model is the closest to the models in the 14 × 28D class, and as
fast as any other model considered.

5.1 L1 Norm Difference of ISIs
We first evaluate the accuracy of different stochastic simulation algorithms by compar-
ing their ISI distributions under current clamp to that produced by a reference algorithm,
namely the discrete-state Markov Chain (MC) algorithm.

Let X1, X2, . . . , Xn be n independent samples of ISIs with a true cumulative distri-
bution function F . Let Fn(·) denote the corresponding empirical cumulative distribu-
tion function (ECDF) defined by

Fn(x) =
1

n

n∑
i=1

1{Xi≤x}, x ∈ R, (69)

where we write 1A to denote the indicator function for the set A. Let Q and QM be the
quantile functions of F and FM , respectively. The L1-Wasserstein distance between
two CDF’s FM and F can be written as (Shorack and Wellner, 2009) (page 64)

ρ1(F, F
M) =

∫ ∞
0

∣∣F (x)− FM(x)
∣∣ dx =

∫ 1

0

∣∣Q(x)−QM(x)
∣∣ dx. (70)
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Note that ρ1 has the same units as “dx”. Thus the L1 distances reported in Tab. 3 have
units of milliseconds.

When two models have the same number of samples, n, (70) can be estimated by∫ 1

0

∣∣Q(x)−QM(x)
∣∣ dx ≈ 1

n

n∑
i=1

|Xi − Yi| := ρ1(Fn, F
M
n ), (71)

whereX1, · · · , Xn and Y1, · · · , Yn are n independent samples sorted in ascending order
with CDF F and FM , respectively.

We numerically calculate ρ1(Fn, FM
n ) to compare several Langevin models against

the MC model. We consider the following models: “Fox94” denotes the original model
proposed by (Fox and Lu, 1994), which requires a square root decomposition (S =√
D) for each step in the simulation, see equations (1)-(3). “Fox97” is the widely used

“subunit model” of Fox (1997), see equations (4)-(5). “Goldwyn” denotes the method
taken from (Goldwyn and Shea-Brown, 2011), where they restrict the 14D system (V ,
5 K+ gates and 8 Na+ gates) to the 4D multinomial submanifold (V, m, n, and h, see
p. 8 above), with gating variables truncated to [0, 1]. We write “Orio” for the model
proposed by (Orio and Soudry, 2012), where they constructed a rectangular matrix S
such that SSᵀ = D (referred to as Spaired in Tab. 3) combining fluctuations driven
by pairs of reciprocal edges, thereby avoiding taking matrix square roots at each time
step. The model “Dangerfield” represents (Dangerfield et al., 2012), which used the
same S matrix as in (Orio and Soudry, 2012) but added a reflecting (no-flux) boundary
condition via orthogonal projection (referred to as SEF in Tab. 3). Finally, we include
the 14 × 28D model we proposed in §3.2, or “14D” (referred to as Ssingle in Tab. 3);
“SS” is the stochastic shielding model specified in §3.3.

For each model, we ran 10,000 independent samples of the simulation, holding
channel number, injected current (Iapp = 10 nA), and initial conditions fixed. Through-
out the paper, we presume a fixed channel density of 60 channels/µm2 for sodium and
18 channels/µm2 for potassium in a membrane patch of area 100µm2, consistent with
prior work such as Goldwyn and Shea-Brown (2011); Orio and Soudry (2012). The
initial condition is taken to be the point on the deterministic limit cycle at which the
voltage crosses upwards through −60 mV. An initial transient corresponding to 10-15
ISIs is discarded, to remove the effects of the initial condition. See Tab. 5 in Appendix
B for a complete specification of simulation parameters. We compared the efficiency
and accuracy of each model through the following steps:

1. For each model, a single run simulates a total time of 84000 milliseconds (ms)
with time step 0.008 ms, recording at least 5000 ISIs.

2. For each model, repeat 10,000 runs in step one.

3. Create a reference ISI distribution by aggregating all 10,000 runs of the MC
model, i.e. based on roughtly 5× 107 ISIs.

4. For each of 104 individual runs, align all ISI data into a single vector and calculate
the ECDF using equation (69).

5. Compare the ISI distribution of each model with the reference MC distribution
by calculating the L1-difference of the ECDFs using equation (71).
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6. To compare the computational efficiency, we take the average execution time of
the MC model as the reference. The relative computational efficiency is the ratio
of the average execution time of a model with that of the MC model (c. 3790
sec.).

Model Variables S Matrix Noise Dim. L1 Norm (msec.) Runtime
V+M+N Na+K (Wasserstein Dist.) (sec.)

MC 1+8+5 n/a 20+8 2.27 e-4± 7.15 e-5 3790
Fox94 1+7+4 S =

√
D 7+4 4.74 e-2± 1.93 e-4 2436

Fox97 1+2+1 n/a 3 8.01 e-1± 9.48 e-4 67
Dangerfield 1+8+5 SEF 10+4 2.18 e-1± 2.14 e-4 655
Goldwyn 1+8+5 S =

√
D 8+5 1.83 e-1± 1.93 e-4 2363

Orio 1+8+5 Spaired 10+4 4.52 e-2± 2.08 e-4 577
14× 28D 1+8+5 Ssingle 20+8 4.93 e-2± 1.94 e-4 605
SS 1+8+5 Sss 4+2 7.62 e-2± 7.57 e-5 73

Table 3: Summary of the L1-Wasserstein distances of ISI distributions for Langevin
type Hodgkin-Huxley models compared to the MC model. Model (see text for details):
MC: Markov-chain. Fox1994: model from Fox and Lu (1994). Fox97: Fox (1997).
Goldwyn: Goldwyn and Shea-Brown (2011). Dangerfield: Dangerfield et al. (2010,
2012). 14× 28D: model proposed in §3.2. SS: stochastic-shielding model (§3.3). Vari-
ables: number of degrees of freedom in Langevin equation representing voltage, sodium
gates, and potassium gates, respectively. S Matrix: Form of the noise coefficient matrix
in equations (1)-(3). Noise Dimensions: number of independent Gaussian white-noise
sources represented for sodium and potassium, respectively. L1 Norm: Empirically
estimated L1-Wasserstein distance between the model’s ISI distribution and the MC
model’s ISI distribution. For MC-vs-MC, independent trials were compared. a ± b:
mean±standard deviation. Runtime (in sec.): see text for details. n/a: not applicable.

Table 3 gives the empiricially measured L1 difference in ISI distribution between
several pairs of models.7 The first row (“MC”) gives the average L1 distance between
individual MC simulations and the reference distribution generated by aggregating all
MC simulations, in order to give an estimate of the intrinsic variability of the measure.
Figure 8 plots the L1-Wasserstein differences versus the relative computational effi-
ciency of several models against the MC model. These results suggest that the Fox94,
Orio, and 14× 28D models are statistically indistinguishable, when compared with the
MC model using the L1-Wasserstein distance. This result is expected in light of our
results (§4) showing that these three models are pathwise-equivalent. (We will make
pariwise statistical comparisons between the ISI distributions of each model in §5.2.)
Among these equivalent models, however, the 14 × 28D and Orio models are signif-
icantly faster than the original Fox94 model (and the Goldwyn model) because they
avoid the matrix square root computation. The Dangerfield model has speed similar to

7Runtimes in Tab. 3, rounded to the nearest integer number of seconds, were obtained by averaging
the runtimes on a distribution of heterogeneous compute nodes from Case Western Reserve University’s
high-performance computing cluster.
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the 14×28D model, but the use of reflecting boundary conditions introduces significant
inaccuracy in the ISI distribution. The imposition of truncating boundary conditions in
the Goldwyn model also appears to affect the ISI distribution.

Figure 7: The probability density of interspike
intervals (ISIs) for Fox97 (blue) and the MC
model (red). The probability densities were cal-
culated over more than 5.4× 107 ISIs.

Of the models considered, the
Fox97 subunit model is the fastest,
however it makes a particularly poor
approximation to the ISI distribution
of the MC model. Note that the max-
imum L1-Wasserstein distance be-
tween two distributions is 2. The ISI
distribution of Fox97 subunit model
to that of the MC model is more
than 0.8, which is ten times larger
than the L1-Wasserstein distance of
the SS model, and almost half of
the maximum distance. As shown in
Fig. 7, the Fox97 subunit model fails
to achieve the spike firing threshold
and produces longer ISIs. Because of
its inaccuracy, we do not include the
subunit model in our remaining com-
parisons. The stochastic shielding model, on the other hand, has nearly the same speed
as the Fox97 model, but is over 100 times more accurate (in the L1 sense). The SS
model is an order of magnitude faster than the 14× 28D model, and has less than twice
the L1 discrepancy versus the MC model (L1 norm 76.2 versus 49.3 microseconds).
While this difference in accuracy is statistically significant, it may not be practically
significant, depending on the application (see §6 for further discussion of this point).

5.2 Two-sample Kolmogorov-Smirnov Test
In addition to using the L1-Wasserstein distances to test the differences between two
CDFs, we can also make a pairwise comparison between each model by applying the
Dvoretzky-Kiefer-Wolfowitz inequality (Dvoretzky et al., 1956) and the two-sample
Kolmogorov-Smirnov (KS) test (Kolmogorov, 1933; Smirnov, 1948). While the Wasser-
stein distance is based on the L1 norm, the KS statistic is based on the L∞ (or supre-
mum) norm.

The Dvoretzky-Kiefer-Wolfowitz inequality (Dvoretzky et al., 1956) establishes
confidence bounds for the CDF. Specifically, the interval that contains the true CDF,
F (·), with probability 1− α, is given by

|Fn(x)− F (x)| ≤ ε where ε =

√
ln 2

α

2n
. (72)

When comparing samples XM
1 , X

M
2 , . . . , X

M
n obtained from an approximate model M

against the gold standard, in §5.1 we computed the L1 difference of the empirical den-
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Figure 8: The L1-Wasserstein distances and relative computational efficiency vs. the
MC model. “Fox94” (green circle), “Goldwyn” (black cross), “Orio” (cyan square),
“14D” (blue star), “SS” (magenta downward pointing triangle), “Dangerfield” (red up-
ward pointing triangle), and the “MC” (brown diamond) model. The L1 error for ISI
distribution was computed using the L1-Wasserstein distance (71), with discrete time
Gillespie/Monte-Carlo simulations as a reference. The relative computational efficiency
is the ratio of the recorded run time to the mean recorded time of the MC mode (3790
seconds). The mean and 95% confidence intervals were calculated using 100 repetitions
of 10, 000 runs each (5× 109 ISIs total).
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sity functions, as an approximation for the L1 difference of the true distributions. In-
stead, we work here with the L∞ norm,

ρ∞(Fn, F
M
n ) = lim

p→∞

(∫ ∞
0

∣∣FM
n (x)− Fn(x)

∣∣p dx)1/p

= sup
0≤x<∞

(∣∣FM
n (x)− Fn(x)

∣∣) .
(73)

For each x ≥ 0, equation (72) bounds the discrepancy between the true and empiri-
cal distribution differences as follows. By the triangle inequality, and independence of
the Xi from the XM

i , the inequality

|FM − F | = |FM − FM
n + Fn − F + FM

n − Fn|
≤ |FM − FM

n |+ |Fn − F |+ |FM
n − Fn|

≤ 2ε+ |FM
n − Fn|, (74)

holds with probability (1− α)2. Similarly,

|FM
n − Fn| = |FM

n − FM
n + F − Fn + FM − F |

≤ |FM − FM
n |+ |Fn − F |+ |FM − F |

≤ 2ε+ |FM − F | (75)

also holds with probability (1 − α)2. Together, (74)-(75) indicate that the discrepancy
between the difference of empirical distributions and the difference of true distributions
is bounded as ∣∣∣|FM − F | − |FM

n − Fn|
∣∣∣ ≤ 2ε (76)

with probability (1− α)2, for ε =

√
ln 2
α

2n
.

We will use the pointwise difference of the ECDF’s for a large sample as an estimate
for the pointwise difference between two true CDFs. The two-sample Kolmogorov-
Smirnov (KS) test (Kolmogorov, 1933; Smirnov, 1948) offers a statistics to test whether
two samples are from the same distribution. The two-sample KS statistic is

Dn,m = sup
x
|F1,n(x)− F2,m(x)|, (77)

where F1,n and F2,m are two ECDFs for two samples defined in (69), and the sup is the
supremum function. The reference statistic, Rn,m(α), depending on the significance
level α, is defined as

Rn,m(α) =

√
− log(α/2)

2

√
n+m

nm
, (78)

where n and m are the sample sizes. The null hypothesis that “the two samples come
from the same distribution” is rejected at the significance level α if

Dn,m > Rn,m(α). (79)

Figure 9 plots the logarithm of ratio of the two-sample KS statistics, Dn,m
Rn,m(0.01)

, for
“Fox94” (Fox and Lu, 1994), “Goldwyn” (Goldwyn and Shea-Brown, 2011),“Danger-
filed” (Dangerfield et al., 2012), “Orio” (Orio and Soudry, 2012), “14D” (the 14× 28D
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Figure 9: Logarithm of the ratio of Kolmogorov-Smirnov test statistic Dn,m/Rn,m(α),
eqns. (77)-(78), for samples from the ISI distribution for each pair of models. Left:
Box and whisker plots showing mean and 95% confidence intervals based on 10,000
pairwise comparisons. The first five plots show self-comparisons (green bars); the re-
mainder compare distinct pairs (grey bars). A:“Fox94” (Fox and Lu, 1994), B:“Orio”
(Orio and Soudry, 2012), C: “14D” (the 14×28D model we proposed in §3.2), D: Dan-
gerfield (Dangerfield et al., 2012), E: Goldwyn (Goldwyn and Shea-Brown, 2011). The
models of Fox and Lu, Orio and Soudry, and our 14D model generate indistinguishable
ISI distributions, but are distinguishable from Dangerfield’s model and Fox’s 97 model.
Right: Mean logarithms (as in left panel) for all pairwise comparisons. Fox94, Orio
and 14× 28D form a block of statistically indistinguishable samples.

35



model we proposed in §3.2). Data of “self-comparison” (e.g. Fox94 vs. Fox 94) was
obtained by comparing two ISI ECDF’s from independent simulations. As shown in
Fig. 9, models that we previously proved were pathwise equivalent in §4, namely the
“Fox94”, “Orio” and the “14D” model, are not distinguishable at any confidence level
justified by our data. Note that those three models use the same boundary conditions
(free boundary condition as in Orio and Soudry (2012)) and the ratio Dn,m/Rn,m(α) of
pairwise comparison is on the same magnitude of that for the self-comparisons. How-
ever, as pointed out above, these statistically equivalent simulation algorithms have dif-
ferent computational efficiencies (Fig. 8). Among these methods, Orio and Soundry’s
algorithm (14 dimensional state space with 14 undirected edges as noise sources) and
our method (14 dimensional state space with 28 directed edges as noise sources) have
similar efficiencies, with Orio’s method being about 5% faster than ours method. Our
14×28D method provides the additional advantage that it facilitates further acceleration
under the stochastic shielding approximation (see §6).

In contrast to the statistically equivalent Orio, 14× 28D and Fox ’94 models, algo-
rithms using different boundary conditions are not pathwise equivalent, which is again
verified in Fig. 9. Algorithms with subunit approximation and truncated boundary con-
dition (i.e., “Goldwyn”) and the reflecting boundary condition (i.e. “Dangerfield”) are
significantly different in accuracy (and in particular, they are less accurate) than models
in the 14× 28D class.

6 Discussion & Conclusions

6.1 Summary
The exact method for Markov Chain (MC) simulation for an electrotonically compact
(single compartment) conductance-based stochastic model under current clamp is a hy-
brid discrete (channel state) / continuous (voltage) model of the sort used by (Clay
and DeFelice, 1983; Newby et al., 2013; Anderson et al., 2015). While MC methods
are computationally expensive, simulations based on Gaussian/Langevin approximation
can capture the effects of stochastic ion channel fluctuations with reasonable accuracy
and excellent computational efficiency. Since Goldwyn and Shea Brown’s work fo-
cusing the attention of the computational neuroscience community on Fox and Lu’s
Langevin algorithm for the Hodgkin-Huxley system (Fox and Lu, 1994; Goldwyn and
Shea-Brown, 2011), several variants of this approach have appeared in the literature.

In the present paper we advocate for a class of models combining the best features of
conductance-based Langevin models with the recently developed stochastic shielding
approximation (Schmandt and Galán, 2012; Schmidt and Thomas, 2014; Schmidt et al.,
2018). We propose a Langevin model with a 14-dimensional state space, representing
the voltage, five states of the K+ channel, and eight states of the Na+-channel; and a
28-dimensional representation of the driving noise: one independent Gaussian noise
term for each directed edge in the channel-state transition graph. We showed in §2 that
the corresponding mean-field 14D ordinary differential equation model is consistent
with the classical HH equations in the sense that the latter correspond to an invariant
submanifold of the higher-dimensional model, to which all trajectories converge expo-
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nentially quickly. Fig. 2 illustrated the relation between the deterministic 4D and 14D
Hodgkin Huxley systems. Building on this framework, we introduced the 14 × 28D
model, with independent noise sources corresponding to each ion channel transition
(§3). We proved in §4 that, given identical boundary conditions, our 14 × 28D model
is pathwise equivalent both to Fox and Lu’s original Langevin model, and to A 14-state
model with 14 independent noise sources due to (Orio and Soudry, 2012).

The original 4D HH model, the 14D deterministic HH model, and the family of
equivalent 14D Langevin models we consider here, form a nested family, each con-
tained within the next. Specifically, (i) the 14D ODE model is the “mean-field” version
of the 14D Langevin model, and (ii) the 4D ODE model forms an attracting invariant
submanifold within the 14D ODE model, as we establish in our Lemma 2. So in a very
specific sense, the original HH equations “live inside” the 14D Langevin equations.
Thus these three models enjoy a special relationship. In contrast, the 4D Langevin
equations studied in Fox (1997) do not bear an especially close relationship to the other
three.

In addition to rigorous mathematical analysis we also performed numerical com-
parisons (§5) showing that, as expected, the pathwise equivalent models produced sta-
tistically indistinguishable interspike interval (ISI) distributions. Moreover, the ISI dis-
tributions for our model (and its equivalents) were closer to the ISI distribution of the
“gold standard” MC model under two different metric space measures. Our method
(along with Orio and Soudry’s) proved computationally more efficient than Fox and
Lu’s original method and Dangerfield’s model (Dangerfield et al., 2012). In addition,
our method lends itself naturally to model reduction (via the stochastic shielding ap-
proximation) to a significantly faster 14 × 6D simulation that preserves a surprisingly
high level of accuracy.

6.2 Discrete Gillespie Markov Chain algorithms
The discrete-state Markov Chain algorithm due to Gillespie is often taken to be the gold
standard simulation for a single-compartment stochastic conductance-based model. Most
former literature on Langevin HH models, such as (Goldwyn and Shea-Brown, 2011;
Linaro et al., 2011; Orio and Soudry, 2012; Huang et al., 2013), when establishing a ref-
erence MC model, consider a version of the discrete Gillespie algorithm that assumes
a piecewise-constant propensity approximation, i.e. that does not take into account that
the voltage changes between transitions, which changes the transition rates. This ap-
proximation can lead to biophysically unrealistic voltage traces for very small system
sizes (cf. Fig. 2 of (Kispersky and White, 2008), top trace with N = 1 ion channel)
although the differences appear to be mitigated for N & 40 channels (Anderson et al.,
2015). In the present paper, our MC simulations are based on 6000 Na+ and 1800
K+ channels (as in Goldwyn and Shea-Brown (2011)), and we too use the ISI dis-
tribution generated by a piecewise-constant propensity MC algorithm as our reference
distribution. As shown in Tab. 3 and Fig. 8, the computation time for MC is one order of
magnitude larger than efficient methods such as (Orio and Soudry, 2012), (Dangerfield
et al., 2012) and the 14×28D model. The computational cost of the MC model increases
dramatically as the number of ion channels grows, therefore, even the approximate MC
algorithm is inapplicable for a large number of channels.
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6.3 Langevin Models
It is worth pointing out that the accuracy of Fox and Lu’s original Langevin equations
has not been fully appreciated. In fact, Fox and Lu’s model (Fox and Lu, 1994) gives an
approximation to the MC model that is just as accurate as (Orio and Soudry, 2012) both
in the gating variable statistics (Goldwyn and Shea-Brown, 2011) and also in the ISI
distribution sense (see §5) – because as we have established, these models are pathwise
equivalent! However, the original implementation requires taking a matrix square root
in every timestep in the numerical simulation, which significantly reduces its computa-
tional efficiency.

Models based on modifications of (Fox and Lu, 1994)’s work can be divided into
three classes: the subunit model (Fox, 1997); effective noise models (Linaro et al.,
2011; Güler, 2013b), and channel-based Langevin models such as (Goldwyn and Shea-
Brown, 2011; Dangerfield et al., 2012; Orio and Soudry, 2012; Pezo et al., 2014; Huang
et al., 2013).

Subunit model The first modification of the Fox and Lu’s model is the subunit model
(Fox, 1997), which keeps the original form of the HH model, and adds noise to the
gating variables (m, h, and n) (Fox, 1997; Goldwyn and Shea-Brown, 2011). The
subunit approximation model was widely used because of its fast computational speed.
However, as (Bruce, 2009) and others pointed out, the inaccuracy of this model remains
significant even for large number of channels. Moreover, (Goldwyn and Shea-Brown,
2011) and (Huang et al., 2015) found that the subunit model fails to capture the statistics
of the HH Na+ and K+ gates. In this paper, we also observed that the subunit model is
more efficient than channel-based Langevin models, but tends to delay spike generation.
As shown in Fig. 7, the subunit model generates significantly longer ISIs than the MC
model.

Effective noise models Another modification to Fox and Lu’s algorithm is to add
colored noise to the channel open fractions. Though colored noise models such as
(Linaro et al., 2011; Güler, 2013b) are not included in our model comparison, (Huang
et al., 2015) found that both these effective noise models generate shorter ISIs than the
MC model with the same parameters. Though the comparison we provided in §5 only
include the Fox and Lu 94, Fox97, Goldwyn, Dangerfield, Orio, SS and the 14 × 28D
model, combining the results from (Goldwyn and Shea-Brown, 2011) and (Huang et al.,
2015), the 14 × 28D model could be compared to a variety of models including (Fox
and Lu, 1994; Fox, 1997; Goldwyn and Shea-Brown, 2011; Linaro et al., 2011; Orio
and Soudry, 2012; Dangerfield et al., 2012; Huang et al., 2013; Güler, 2013b).

Channel-based Langevin models The main focus of this paper is the modification
based on the original Fox and Lu’s matrix decomposition method, namely, the channel-
based (or conductance-based) Langevin models. We proved in §4 that under the same
boundary conditions, Fox and Lu’s original model, Orio’s model and our 14 × 28D
model are pathwise equivalent, which was also verified from our numerical simulations
in §4 and §5. In §4, we discussed channel-based Langevin models including (Fox and
Lu, 1994; Goldwyn and Shea-Brown, 2011; Dangerfield et al., 2012; Orio and Soudry,
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2012; Fox, 2018). We excluded Fox’s more recent implementation (Fox, 2018) in §5
for two reasons. First, the algorithm is pathwise equivalent to others considered there.
And moreover, the method is vulnerable to numerical instability when performing the
Cholesky decomposition. Specifically, some of the elements in the S matrix from the
Cholesky decomposition in (Fox, 2018) involve square roots of differences of several
quantities, with no guarantee that the differences will result in nonnegative terms – even
with strictly positive value of the gating variables. Nevertheless, this model would be in
the equivalence class and in any case would not be more efficient than the Orio’s model,
because of the noise dimension and complicated operations (involving taking multiple
square roots) in each step.

6.4 Model comparisons
If two random variables have similar distributions, then they will have similar moments,
but not vice-versa. Therefore, comparison of the full interspike-interval distributions
produced by different simulation algorithms gives a more rigorous test than compar-
ison of first and second moments of the ISI distribution. Most previous evaluations
of competing Langevin approximations were based on the accuracy of low-order mo-
ments, for example the mean and variance of channel state occupancy under voltage
clamp, or the mean and variance of the interspike interval distribution under current
clamp (Goldwyn et al., 2011; Goldwyn and Shea-Brown, 2011; Schmandt and Galán,
2012; Linaro et al., 2011; Dangerfield et al., 2012; Orio and Soudry, 2012; Huang et al.,
2013, 2015). Here, we compare the accuracy of the different algorithms using the full
ISI distribution, but using the L1 norm of the difference (Wasserstein metric) and the
L∞ norm (Kolmogorov-Smirnov test). Greenwood et al. (2015) previously compared
the ISI distributions generated by the Markov chain (Gillespie algorithm) to the dis-
tribution generated by different types of Langevin approximations (LA), including the
original Langevin models (Fox and Lu, 1994; Goldwyn and Shea-Brown, 2011), the
channel-based LA with colored noise (Linaro et al., 2011; Güler, 2013b), and LA with
a 14 × 14 variant of the diffusion coefficient matrix S (Orio and Soudry, 2012). They
concluded that Orio and Soudry’s method provided the best match to the Markov chain
model, specifically “Fox-Goldwyn, and Orio-Kurtz8 methods both generate ISI his-
tograms very close to those of Micro9” (Greenwood et al., 2015). We note that the
comparison reported in this paper simply superimposed plots of the ISI distributions,
allowing a qualitative comparison, while our metric-space analysis is fully quantitative.
In any case, their conclusions are consistent with our findings; we showed in §4 that the
Fox-Goldwyn and the Orio-Kurtz model are pathwise equivalent (when implemented
with the same boundary conditions), which accounts for the similarity in the ISI his-
tograms they generate. In fact, because of pathwise equivalence, we can conclude that
the true distributions for these models are identical, and any differences observed just
reflect finite sampling.

8We refer to this model as to as “Orio”
9This is the model we refer to as the Markov-chain model.
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6.5 Stochastic Shielding Method
The stochastic shielding (SS) approximation (Schmandt and Galán, 2012) provides an
efficient and accurate method for approximating the Markov process with only a subset
of observable states. For conductance-based models, rather than aggregating ion chan-
nel states, SS effects dimension reduction by selectively eliminating those independent
noise sources that have the least impact on current fluctuations. Recent work in (Pezo
et al., 2014) compared previous methods such as (Gillespie, 1977; Orio and Soudry,
2012; Dangerfield et al., 2012; Huang et al., 2013; Schmandt and Galán, 2012) in accu-
racy, applicability and simplicity as well as computational efficiency. They concluded
that for mesoscopic numbers of channels, stochastic shielding methods combined with
diffusion approximation methods can be an optimal choice. Like (Orio and Soudry,
2012), the stochastic shielding method proposed by (Pezo et al., 2014) also assumed
detailed balance of transitions between adjacent states and used edges that are directly
connected to the open gates of HH Na+ and K+. We calculated the edge importance
in §3.3 and found that the four (out of twenty) most important directed edges for the
Na+ gates are not the four edges directly connected to the conducting state, as assumed
in previous application of the SS method (Schmandt and Galán, 2012).

6.6 Which model to use?
Among all modifications of Fox and Lu’s method considered here, Orio and Soudry’s
approach, and our 14 × 28D model provide the best approximation to the “gold stan-
dard” MC model, with the greatest computational efficiency. Several earlier models
were studied in the review paper by (Goldwyn and Shea-Brown, 2011), where they
rediscovered that the original Langevin model proposed by Fox and Lu is the best ap-
proximation to the MC model among those considered. Later work (Huang et al., 2015)
further surveyed a wide range of Langevin approximations for the HH system including
(Fox and Lu, 1994; Fox, 1997; Goldwyn and Shea-Brown, 2011; Linaro et al., 2011;
Güler, 2013b; Orio and Soudry, 2012; Huang et al., 2013) and explored models with
different boundary conditions. Huang et al. (2015) concluded that the bounded and
truncated-restored Langevin model (Huang et al., 2013) and the unbounded (Orio and
Soudry, 2012)’s model provide the best approximation to the MC model.

As shown in §4 and §5, the 14 × 28D Langevin model naturally derived from the
channel structure is pathwise equivalent to the Fox and Lu ‘94, Fox ‘18, and Orio-
Soudry models under the same boundary conditions. The 14 × 28D model is more
accurate than the reflecting boundary condition method of (Dangerfield et al., 2012),
and also better than the approximation method proposed by (Goldwyn and Shea-Brown,
2011), when the entire ISI distribution is taken into account. We note that (Huang et al.,
2015) treated Goldwyn’s method (Goldwyn and Shea-Brown, 2011) as the original Fox
and Lu model in their comparison, however, the simulation in (Goldwyn and Shea-
Brown, 2011) uses the 4D multinomial submanifold to update gating variables. Our
analysis and numerical simulations suggest that the original Fox and Lu model is indeed
as accurate as the Orio-Soudry model, while the computational cost still remains a major
concern.

Though the 14 × 28D model has similar efficiency and accuracy with Orio and
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Soudry (2012), it has several advantages. First, the rectangular S matrix (in eqn. (2)-(3))
in Orio’s model merges the noise contributions of reciprocal pairs of edges. However,
this dimension reduction assumes, in effect, that detailed balance holds along reciprocal
edges, which our results show is not the case, under current clamp (Fig. 5). Moreover,
the 14 × 28D model arises naturally from the individual transitions of the exact evolu-
tion equations (eqn.(32)-(33)) for the underlying Markov Chain model, which makes it
conceptually easier to understand. In addition, our method for defining the 14 × 28D
Langevin model and finding the best SS model extends to channel-based models with
arbitrary channel gating schemes beyond the standard HH model. Given any channel
state transition graph, the Langevin equations may be read off from the transitions, and
the edge importance under current clamp can be evaluated by applying the stochastic
shielding method to investigate the contributions of noise from each individual directed
edge. Finally, in exchange for a small reduction in accuracy, the stochastic shielding
method affords a significant gain in efficiency. The 14× 28D model thus offers a natu-
ral way to quantify the contributions of the microscopic transitions to the macroscopic
voltage fluctuations in the membrane through the use of stochastic shielding. For gen-
eral ion channel models, extending a biophysically-based Langevin model analogous to
our 14×28D HH model, together with the stochastic shielding method, may provide the
best available tool for investigating how unobservable microscopic behaviors (such as
ion channel fluctuations) affect the macroscopic variability in many biological systems.

6.7 Limitations
All Langevin models, including our proposed 14 × 28D model, proceed from the as-
sumption that the ion channel population is large enough (and the ion channel state
transitions frequent enough) that the Gaussian approximations by which the white noise
forcing terms are derived, are justified. Thus when the system size is too small, no
Langevin system will be an appropriate. Fortunately the Langevin approximation ap-
pears quite accurate for realistic population sizes.

The 14 × 28D model uses more noise sources than other approaches. However,
stochastic shielding allows us to jettison noise sources that do not significantly impact
the system dynamics (the voltage fluctuations and ISI distribution). Moreover, in or-
der to compare the ISI distribution in detail among several variants of the Fox and Lu
’94 model versus the Markov Chain standard, we have considered a single value of the
driving current, while other studies have compared parametrized responses such as the
firing rate, ISI variance, or other moments, as a function of applied current. Accurate
comparisons require large ensembles of independent trajectories, forcing a tradeoff be-
tween precision and breadth; we opted here for precise comparisons at a representative
level of the driving current.

From a conceptual point of view, a shortcoming of most Langevin models is the
tendency for some channel state variables x to collide with the domain boundaries x ∈
[0, 1] and to cross them during numerical simulations with finite time steps. We adopted
the approach advocated by Orio and Soudry (2012) of using “free boundaries” in which
gating variables can make excursions into the (unphysical) range x < 0 or x > 1.
Practically speaking, these excursions are always short, if the time step is reasonably
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small, as they tend to be self-correcting.10 Another approach is to construct reflecting
boundary conditions; different implementations of this idea were used in Dangerfield
et al. (2010), Fox and Lu (1994), and Schmid et al. (2001). Dangerfield’s method
proved both slower and less accurate than the free boundary method. As an alternative
method, one uses a biased rejection sampling approach, testing each gating variable
of the 14D model on each time step, and repeating the noise sample for any time step
violating the domain conditions Fox and Lu (1994); Schmid et al. (2001). We found
that this method had accuracy similar to that of Dangerfield’s method (L1-Wasserstein
difference ≈ 4.4e-1 msec, cf. Tab. 3) and runtime similar to that of the Fox and Lu 94
implementation, about 4 times slower than our 14D Langevin model.

Yet another approach that in principle can guarantee the stochastic process remains
within proscribed bounds, rederives a “best diffusional approximation” Fokker-Planck
equation based on matching a master-equation birth-and-death description of a (bino-
mial) population of two-state ion channels, leading to modified drift and diffusion terms
(Goychuk, 2014). This method does not appear to extend readily to the 14D setting,
with underlying multinomial structure of the ion channel gates, so we do not dwell on
it further.

Table 3 gives the accuracies with which each model reproduces the ISI distribu-
tion, compared to a standard reference distribution generated through a large number
of samples of the MC method. The mean L1 difference between a single sample and
the reference sample is about 0.227 microseconds. For a nonnegative random variable
T ≥ 0, the difference in the mean under two probability distributions is bounded above
by the L1 difference in their cumulative distribution functions.11 Thus the L1 norm
gives an idea of the temporal accuracy with which one can approximate a given dis-
tribution by another. The mean difference between the ISI distribution generated by a
single run of the full 14 × 28D model is about 49 µsec, and the discrepancy produced
by the (significantly faster) SS model is about 76 µsec. When would this level of ac-
curacy matter for the function of a neuron within a network? The barn owl Tyto alba
uses interaural time difference to localize its prey to within 1-2 degrees, a feat that re-
quires encoding information in the precise timing of auditory system action potentials
at the scale of 5-20 microseconds (Moiseff and Konishi, 1981; Gerstner et al., 1996).
For detailed studies of the effects of channel noise in this system, the superior accuracy
of the MC model might be preferred. On the other hand, the timescale of information
encoding in the human auditory nerve is thought to be in the millisecond range (Gold-
wyn et al., 2010); with precision in the feline auditory system as reported as low as 100
µs (Imennov and Rubinstein, 2009), see also (Woo et al., 2009). For these and other
mammalian systems, the stochastic shielding approximation should provide sufficient
accuracy.

10To avoid complex entries, we use |x| when calculating entries in the noise coefficient matrix.
11For a nonnegative random variable T with cumulative distribution function F (t) = P[T ≤ t],

the mean satisfies E[T ] =
∫∞
0

(1 − F (t)) dt (Grimmett and Stirzaker, 2005). Therefore the differ-
ence in mean under two distributions F1 and F2 satisfies |E1[T ] − E2[T ]| =

∣∣∫∞
0
F1(t)− F2(t) dt

∣∣ ≤
ρ1(F1, F2).
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6.8 Future Work
In §3.3 we compared the ISI variance when noise was included one edge at a time, and
found that the edges making the greatest contribution to population fluctuations under
voltage clamp were not identical to the edges having the largest effect on ISI variance,
when taken one at a time. However, the ISI, considered as a random variable deter-
mined through a first-passage time process, depends on the entire trajectory, not just on
the occupancy of the conducting states. The HH dynamics are strongly nonlinear, pro-
ducing a limit cycle in the deterministic case, and it is not immediately clear whether
the effects of channel noise on ISI variability should be additive. In future work, we
plan to address the question of the additive contribution of individual/molecular noise
sources on ISI variability.

A principle motivation for using the stochastic shielding algorithm is to develop
fast and accurate algorithms for ensemble simulations of forward models for parameter
estimation in a data assimilation framework. We expect that our method may prove
useful for such studies based on current-clamp electrophysiological data in the future.
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Appendices
A Table of Common Symbols and Notations

Symbol Meaning
C Membrane capacitance (µF/cm2)
v Membrane potential (mV )
VNa, VK, VL Ionic reversal potential for Na+, K+and leak (mV )
Iapp Applied current to the membrane (nA/cm2)
m, h, n Dimensionless gating variables for Na+ and K+ channels
αx, βx , x ∈ {m,n, h} Voltage dependent rate constant (1/msec)
x vector of state variables
M = [M1,M2, · · · ,M8] Eight-component state vector for the Na+ gates
[m00,m10,m20,m30,m01,m11,m21,m31]

ᵀ Components for the Na+gates
N = [N1,N2, · · · ,N5] Five-component state vector for the K+ gates
[n0, n1, n2, n3, n4]

ᵀ Components for the K+ gates
Mtot, Ntot Total number of Na+ and K+ channels
X 4-dimensional manifold domain for 4D HH model
Y 14-dimensional manifold domain for 14D HH model
∆k k-dimensional simplex in Rk+1

given by y1 + . . .+ yk+1 = 1, yi ≥ 0
M Multinomial submanifold within the 14D space
ANa, AK State-dependent rate matrix
D State diffusion matrix
S, S1, S2, SNa, SK Noise coefficient matrices
ξ Vector of independent δ-correlated Gaussian white

noise with zero mean and unit variance
X = [X1, X2, . . . , Xd] A d-dimensional random variable for sample path
W = [W1,W2, . . . ,Wn] A Wiener trajectory with n components
δ(·) The Dirac delta function
δij The Kronecker delta
Fn Empirical cumulative distribution function with n

observations (in §5, we use m, n as sample sizes)

Table 4: Common symbols and notations in this paper.
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Symbol Meaning Value
C Membrane capacitance 1 µF/cm2

ḡNa Maximal sodium conductance 120 µS/cm2

ḡK Maximal potassium conductance 36 µS/cm2

gleak Leak conductance 0.3 µS/cm2

VNa Sodium reversal potential for Na+ 50 mV
VK Potassium reversal potential for K+ -77 mV
Vleak Leak reversal potential -54.4 mV
Iapp Applied current to the membrane 10 nA/cm2

A Membrane Area 100µm2

Mtot Total number of Na+ channels 6,000
Ntot Total number ofK+ channels 18,00

Table 5: Parameters used for simulations in this paper.

B Parameters and Transition Matrices
Subunit kinetics for the Hodgkin and Huxley equations are given by

αm(v) =
0.1(25− v)

exp(2.5− 0.1v)− 1
(80)

βm(v) = 4 exp(−v/18) (81)
αh(v) = 0.07 exp(−v/20) (82)

βh(v) =
1

exp(3− 0.1v) + 1
(83)

αn(v) =
0.01(10− v)

exp(1− 0.1v)− 1
(84)

βn(v) = 0.125 exp(−v/80) (85)

AK(v) =


DK(1) βn(v) 0 0 0
4αn(v) DK(2) 2βn(v) 0 0

0 3αn(v) DK(3) 3βn(v) 0
0 0 2αn(v) DK(4) 4βn(v)
0 0 0 αn(v) DK(5)

 ,

ANa =



DNa(1) βm 0 0 βh 0 0 0
3αm DNa(2) 2βm 0 0 βh 0 0

0 2αm DNa(3) 3βm 0 0 βh 0
0 0 αm DNa(4) 0 0 0 βh
αh 0 0 0 DNa(5) βm 0 0
0 αh 0 0 3αm DNa(6) 2βm 0
0 0 αh 0 0 2αm DNa(7) 3βm
0 0 0 αh 0 0 αm DNa(8)


,
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where the diagonal elements

Dion(i) = −
∑
j:j 6=i

Aion(j, i), ion ∈ {Na,K}.

C Proof of Lemma 2
For the reader’s convenience we restate

Lemma 2. Let X and Y be the lower-dimensional and higher-dimensional Hodgkin-
Huxley manifolds given by (18), and let F and G be the vector fields on X and Y
defined by (7)-(10) and (13)-(15), respectively. Let H : X → M ⊂ Y and R : Y →
X be the mappings given in Tables 2 and 1, respectively, and define the multinomial
submanifoldM = H(X ). ThenM is forward-time–invariant under the flow generated
byG. Moreover, the vector fieldG, when restricted toM, coincides with the vector field
induced by F and the map H . That is, for all y ∈M, G(y) = DxH(R(y)) · F (R(y)).

The main idea of the proof is to show that show that for every y ∈ Y , G(y) is

contained in the span of the four vectors
{
∂H
∂xi

(R(y))
}4

i=1
.

Proof. The map from the 4D HH model to the 14D HH model is given in Tab. 2 as
{H : x → y | x ∈ X , y ∈ Y}, and the map from the 14D HH model to the 4D HH
model is given in Tab. 1 as {R : y → x | x ∈ X , y ∈ Y}. The partial derivatives ∂H

∂x
of

the map H are given by

dm00

dm
= −3(1−m)2(1− h)

dm00

dh
= −(1−m)3

dm10

dm
= 3(1− h)(3m2 − 4m+ 1)

dm10

dh
= −3(1−m)2m

dm20

dm
= 3(1− h)(2m− 3m2)

dm20

dh
= −3(1−m)m2

dm30

dm
= 3(1− h)m2 dm30

dh
= −m3

dm01

dm
= −3h(1−m)2

dm01

dh
= (1−m)3

dm11

dm
= 3h(3m2 − 4m+ 1)

dm11

dh
= 3(1−m)2m

dm21

dm
= 3h(2m− 3m2)

dm21

dh
= 3(1−m)m2

dm31

dm
= 3hm2 dm31

dh
= m3.
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We can write ∂H/∂x in matrix form as:

∂H

∂x
=



1 0 0 0
0 −3(1−m)2(1− h) −(1−m)3 0
0 3(1− h)(3m2 − 4m+ 1) −3(1−m)2m 0
0 3(1− h)(2m− 3m2) −3(1−m)m2 0
0 3(1− h)m2 −m3 0
0 −3h(1−m)2 (1−m)3 0
0 3h(3m2 − 4m+ 1) 3(1−m)2m 0
0 3h(2m− 3m2) 3(1−m)m2 0
0 3hm2 m3 0
0 0 0 −4(1− n)3

0 0 0 4(1− n)2(1− 4n)
0 0 0 12n(1− n)(1− 2n)
0 0 0 4n2(3− 4n)
0 0 0 4n3



.

We write out the vector fields (14) and (15) component by component:

dM1

dt
= βmM2 + βhM5 − (3αm + αh)M1

= −3(1−m)2(1− h) [(1−m)αm −mβm] + (1−m)3 [hβh − (1− h)αh]

dM2

dt
= 3αmM1 + 2βmM3 + βhM6 − (2αm + βm + αh)M2

= 3(1− h)(3m2 − 4m+ 1) [(1−m)αm −mβm] + 3(1−m)2m [hβh − (1− h)αh]

dM3

dt
= 2αmM2 + 3βmM4 + βhM7 − (αm + 2βm + αh)M3,

= 3(1− h)(2m− 3m2) [(1−m)αm −mβm] + 3(1−m)m2 [hβh − (1− h)αh]

dM4

dt
= αmM3 + βhM8 − (3βm + αh)M4,

= 3(1− h)m2 [(1−m)αm −mβm] +m3 [hβh − (1− h)αh]

dM5

dt
= βmM6 + αhM1 − (3αm + βh)M5,

= −3h(1−m)2 [(1−m)αm −mβm] + (1−m)3 [hβh − (1− h)αh]

dM6

dt
= 3αmM5 + 2βmM7 + αhM2 − (2αm + βm + βh)M6,

= 3h(3m2 − 4m+ 1) [(1−m)αm −mβm]− 3(1−m)2m [hβh − (1− h)αh]

dM7

dt
= 2αmM6 + 3βmM8 + αhM3 − (αm + 2βm + βh)M7,

= 3h(2m− 3m2) [(1−m)αm −mβm]− 3(1−m)m2 [hβh − (1− h)αh]

dM8

dt
= αmM7 + αhM4 − (3βm + βh)M8,

= 3hm2 [(1−m)αm −mβm]−m3 [hβh − (1− h)αh]

dN1

dt
= βnN2 − 4αnN1 = −4(1− n)3[αn(1− n)− nβn],

dN2

dt
= 4αnN1 + 2βnN3 − (3αn + βn)N2 = 4(1− n)2(1− 4n)[αn(1− n)− nβn],
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dN3

dt
= 3αnN2 + 3βnN4 − (2αn + 2βn)N3 = 12n(1− n)(1− 2n)[αn(1− n)− nβn],

dN4

dt
= 2αnN3 + 4βnN5 − (3αn + 3βn)N4 = 4n2(3− 4n)[αn(1− n)− nβn],

dN5

dt
= αnN4 − 4βnN5 = 4n3[αn(1− n)− nβn].

By extracting common factors from the previous expressions it is clear that G(y) may
be written, for all y ∈ Y , as

G(y) =
−ḡNaM8(V − VNa)− ḡKN5(V − VK)− gL(V − VL) + Iapp

C

{
∂H

∂v
(R(y))

}
+ [(1−m′)αm −m′βm]

{
∂H

∂m
(R(y))

}
− [h′βh − (1− h′)αh]

{
∂H

∂h
(R(y))

}
+ [αn(1− n′)− n′βn]

{
∂H

∂n
(R(y))

}
(86)

where m′ = (M2 + M6)/3 + 2(M3 + M7)/3 + (M4 + M8), h
′ = M5 + M6 + M7 + M8

and n′ = N2/4 + N3/2 + 3N4/4 + N5. Thus G(y) is in the span of the column vectors
∂H/∂v, ∂H/∂m, ∂H/∂n, and ∂H/∂h, as was to be shown.

On the other hand, the vector field for the 4D HH ODE (7-10) is given by

F =


(−ḡNam3h(V − VNa)− ḡKn4(V − VK)− gL(V − VL) + Iapp) /C

αm(V )(1−m)− βm(V )m
αh(V )(1− h)− βh(V )h
αn(V )(1− n)− βn(V )n

 .
Referring to (86), we see that G(y) = DxH(R(y))F (R(y)). Thus we complete the
proof of Lemma 2.

D Diffusion Matrix of the 14D Model
As defined in equations (11) and (12)

M = [m00,m10,m20,m30,m01,m11,m21,m31]
ᵀ, (87)

N = [n0, n1, n2, n3, n4]
ᵀ, (88)

the diffusion matrices DNa and DK are given by
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DK =


DK(1, 1) −4αnn0 − βnn1 0

−4αnn0 − βnn1 DK(2, 2) 3αnn1 − 2βnn2

0 −3αnn1 − 2βnn2 DK(3, 3)
0 0 −2αnn2 − 3βnn3

0 0 0

· · ·

· · ·

0 0
0 0

−2αnn2 − 3βnn3 0
DK(4, 4) −αnn3 − 4βnn4

−αnn3 − 4βnn4 DK(5, 5)

 ,

D
(1:4)
Na =



DNa(1, 1) −3αmm00 − βmm10 0 0
−3αmm00 − βmm10 DNa(2, 2) −2αmm10 − 2βmm20 0

0 −2αmm10 − 2βmm20 DNa(3, 3) −αmm20 − 3βmm30

0 0 −αmm20 − 3βmm30 DNa(4, 4)
−αhm00 − βhm01 0 0 0

0 −αhm10 − βhm11 0 0
0 0 −αhm20 − βhm21 0


,

D
(5:8)
Na =



−αhm00 − βhm01 0 0 0
0 −αhm10 − βhm11 0 0
0 0 −αhm20 − βhm21 0
0 0 0 −αhm30 − βhm31

DNa(5, 5) −3αmm01 − βmm11 0 0
−3αmm01 − βmm11 DNa(6, 6) −2αmm11 − 2βmm21 0

0 −2αmm11 − 2βmm21 DNa(7, 7) −αmm21 − 3βmm31


,

where
Dion(i, i) = −

∑
j : j 6=i

Dion(j, i), for ion ∈ {Na,K}.
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The matrices SK and SNa for the 14× 28D HH model are given by

S
(1:5)
Na =



−√αhm00

√
βhm01 −

√
3αmm00

√
βmm10 0

0 0
√

3αmm00 −
√
βmm10 −

√
αhm10

0 0 0 0 0
0 0 0 0 0√

αhm00 −
√
βhm01 0 0 0

−
√
βhm11 0 0 0 0
0 0 0

√
αhm20 −

√
βhm21

0 0 0 0 0



S
(6:10)
Na =



0 0 0 0 0√
βhm11 −

√
2αmm10

√
2βmm20 0 0√

2αmm10 −
√

2βmm20 −
√
αhm20

√
βhm21

0 0 0 0 0
0 0 0 0 0

−
√
βhm11 0 0 0 0
0 0 0

√
αhm20 −

√
βhm21

0 0 0 0 0



S
(11:15)
Na =



0 0 0 0 0
0 0 0 0 0

−√αmm20

√
3βmm30 0 0 0√

αmm20 −
√

3βmm30 −
√
αhm30

√
βhm31 0

0 0 0 00
0 0 0 0

√
3αmm01

0 0 0 0 0
0 0

√
αhm30 −

√
βhm31 0



S
(16:20)
Na =



0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

−
√

3αmm01

√
βmm11 0 0 0

−
√
βmm11 −

√
2αmm11

√
2βmm21 0 0

0
√

2αmm11 −
√

2βmm21 −
√
αmm21

√
3βmm31

0 0 0
√
αmm21 −

√
3βmm31


,

where S(i:j)
Na is the ith-jth column of SNa, and

SK =


−
√

4αnn0

√
βnn1 0 0√

4αnn0 −
√
βnn1 −

√
3αnn1

√
2βnn2

0 0
√

3αnn1 −
√

2βnn2

0 0 0 0
0 0 0 0

· · ·

· · ·

0 0 0 0
0 0 0 0√

2αnn2 −
√

3βnn3 −
√
αnn3

√
4βnn4

0 0
√
αnn3 −

√
4βnn4

 .
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Güler, M. (2013a). An investigation of the stochastic Hodgkin-Huxley models under
noisy rate functions. Neural Computation, 25(9):2355–2372.
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